
An Empirical Study on the Usage of Testability Information
to Fault Localization in Software

∗

Alberto Gonzalez-Sanchez† Rui Abreu‡ Hans-Gerhard Gross† Arjan J.C. van Gemund†

†Department of Software Technology
Delft University of Technology

The Netherlands
{a.gonzalezsanchez, h.g.gross, a.j.c.vangemund}@tudelft.nl

‡Department of Informatics Engineering
Faculty of Engineering, University of Porto

Portugal
rui@computer.org

ABSTRACT

When failures occur during software testing, automated soft-
ware fault localization helps to diagnose their root causes
and identify the defective statements of a program to sup-
port debugging. Diagnosis is carried out by selecting test
cases in such way that their pass or fail information will
narrow down the set of fault candidates, and, eventually,
pinpoint the root cause. An essential ingredient of effec-
tive and efficient fault localization is knowledge about the
false negative rate of tests, which is related to the rate at
which defective statements of a program will exhibit fail-
ures. In current fault localization processes, false negative
rates are either ignored completely, or merely estimated a
posteriori as part of the diagnosis. In this paper, we study
the reduction in diagnosis effort when false negative rates are
known a priori. We deduce this information from testabil-
ity, following the propagation-infection-execution (PIE) ap-
proach. Experiments with real programs suggest significant
improvement in the diagnosis process, both in the single and
the multiple-fault cases. When compared to the next-best
technique, PIE-based false negative rate information yields
a fault localization effort reduction of up to 80% for systems
with only one fault, and up to 60% for systems with multiple
faults.

1. INTRODUCTION
Testing is the most commonly used method for detect-

ing the presence of faults in software. However, once the
presence of a fault has been detected (by means of a fail-
ing test), its precise location has to be determined. Fault
localization denotes the process of finding the root-cause of
failures through diagnosis to support debugging. Diagnostic
accuracy is a critical success factor in the cycle of testing,

∗
This work has been carried out as part of the Poseidon project un-

der the responsibility of the Embedded Systems Institute (ESI), Eind-
hoven, The Netherlands. This project is partially supported by the
Dutch Ministry of Economic Affairs under the BSIK03021 program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

diagnosing, acting/recovering, and repairing. Typically mul-
tiple diagnoses are possible, and further tests are executed to
narrow down the set of possibilities, ideally until a perfectly
accurate diagnosis is reached.

In software, not all test inputs will produce a failure, be-
cause of the different paths taken in a test, introducing false
negatives or coincidental correctness. Ignoring false nega-
tives, as done in statistical diagnosis approaches [2, 11], re-
sults in degraded diagnostic performance [3]. An alternative
approach is to approximate the false negative rates (FNR)
during a Bayesian diagnosis process [4, 6]. However, the
absence of prior knowledge about the false negative rates
of faulty statements leads to a loss of diagnostic accuracy.
The diagnosis algorithm must approximate the FNR while
it computes the diagnosis, and that, again, depends on the
FNR. The net result is that a large number of tests is re-
quired to obtain an accurate estimate of the FNR, thereby
reducing the rate at which the diagnosis converges, and thus,
increasing both testing effort and diagnostic effort.

In software fault localization, the FNR depends on the
testability of the faulty statements, and can be determined
a priori, using testability quantification techniques [17, 18].
By providing testability-based information on the false neg-
ative rate, the estimation problem can be detached from the
diagnosis, leading to significant performance gains in the
fault localization process.

In this paper we evaluate to what extent testability infor-
mation can lead to performance gains in the fault localiza-
tion process, both in single-fault and multiple-fault settings.
We study and assess the testability of the statements in a
system, and use that information as input to a Bayesian
diagnosis algorithm. As existing techniques for testabil-
ity quantification are performed in a single-fault setting.
Multiple-fault diagnosis relies on failures to be independent
events, a condition that may not hold in software. The ex-
tent to which testability results can be used for diagnosing
systems where multiple faults are present simultaneously re-
mained unknown, and is also evaluated in this paper.

In particular, the paper makes the following contributions.

1. We compare the performance of Bayesian diagnosis
with prior FNR information with (1) Bayesian diagno-
sis without prior knowledge of the FNR, and (2) with
similarity coefficients. We perform our experiments in
both the single and multiple-fault cases.

2. We evaluate to which extent testability estimations can
be used to accurately predict the rate of false nega-
tives when testing a system with multiple faults, i.e.,

1398

Program: Character Counter t1 t2 t3 t4 t5 t6 t7 t8
c0 0 0 0 0 0 0 0 0
c1 main() { 1 1 1 1 1 1 1 1
c2 int let, dig, other, c; 1 1 1 1 1 1 1 1
c3 let = dig = other = 0; 1 1 1 1 1 1 1 1
c4 while(c = getchar()) { 1 1 1 1 1 1 1 1
c5 if (’A’<=c && ’Z’>=c) 1 1 1 1 1 1 1 0
c6 let += 2; /* FAULT */ 1 0 1 1 0 0 1 0
c7 elif (’a’<=c && ’z’>=c) 1 1 0 1 1 1 1 0
c8 let += 1; 1 0 0 0 1 0 1 0
c9 elif (’0’<=c && ’9’>=c) 1 1 0 1 1 1 0 0
c10 dig += 1; 1 1 1 1 0 0 0 0
c11 elif (isprint(c)) 0 0 0 0 1 1 0 0
c12 other += 1;} 0 0 0 0 1 0 0 0
c13 printf("%d %d %d\n", let, dig, others);} 1 1 1 1 1 1 1 1

Test case outcomes 1 0 1 1 0 0 1 0

Table 1: Faulty program and fault diagnosis inputs

whether failures of different faults are independent.

Our results show that the gains achieved by introducing
prior knowledge about false negative rates are significant.
For real programs containing real faults, we observed up to
a 80% diagnostic effort reduction for the same testing effort
in the single fault case, and a 62% for multiple faults.

The paper is organized as follows. Section 2 introduces the
main concepts of diagnosis and the main diagnostic tech-
niques. Section 3 presents two different solutions for esti-
mating the FNR of a system under test. The systems used
in our experiments are presented in Section 4. An empirical
validation is performed in Section 5 for single faults and in
Section 6 for multiple faults. Section 7 discusses the threats
to the validity of our results. Section 8 describes related
work in the area of fault diagnosis. Section 9 concludes the
paper and presents our future research directions.

2. FAULT DIAGNOSIS
Consider the example system presented in Table 1, which

shows an example faulty program [10]. The objective of fault
diagnosis is to pinpoint the precise location of the fault (or
faults) in the program by observing the program’s behavior
given a number of tests.

The following inputs are usually involved in automated
diagnosis:

• A finite set C = {c1, c2, . . . , cj , . . . , cM} of M compo-
nents (e.g., source code statements, function points,
classes, etc.) which are potentially faulty. We will
denote the number of faults in the system as Mf .

• A finite set T = {t1, t2, . . . , ti, . . . , tN} of N tests with
binary outcomes O = (o1, o2, . . . , oi, . . . , oN), where
oi = 1 if test ti failed, and oi = 0 otherwise.

• A N ×M coverage matrix, A = [aij], where aij = 1 if
test ti involves component cj , and 0 otherwise.

For the remainder of this paper, we will consider state-
ment level as our level of granularity. Hence, the output of
fault localization, is a diagnosis, i.e., a list or a statement
ranking of statement indices ordered by the likelihoods of
each of them being faulty. Diagnostic performance is ac-
counted in terms of a metric Cd that measures the per-
centage of excess effort incurred in finding all statements
at fault [4]. Cd measures wasted effort, independent of the
number of faults Mf in the program, to enable an unbiased

evaluation of the effect of Mf on Cd. Thus, regardless of
Mf , Cd = 0 represents an ideal diagnosis technique (all Mf

faulty statements on top of the ranking, no effort wasted on
testing other statements to find they are not faulty), while
Cd = M−Mf represents the worst case (testing all M−Mf

healthy statements until arriving at the Mf faulty ones).
For example, consider a diagnostic algorithm that re-

turned the ranking 〈c12, c5, c6, . . .〉, while c6 is the actual
fault. In this case, the diagnosis leads the developer to in-
spect c12 and c5 first. As both statements are healthy, Cd is
increased with 2. The next statement to be inspected is c6.
As it is faulty, no more effort is wasted, and consequently,
Cd = 2.

2.1 Statistical Fault Diagnosis
Statistical fault diagnosis is a well-known approach to

fault diagnosis that originates from the Software Engineer-
ing domain. Its most known variant is Spectrum-based Fault
Localization (SFL) [2, 11]. In SFL, the fault likelihood lj
is quantified in terms of similarity coefficients. A similar-
ity coefficient (SC) measures the statistical similarity be-
tween statement cj ’s test coverage (a1j , . . . , aNj) and the
observed test outcomes, (o1, . . . , oN). Similarity is computed
by means of four counters npq(j) that count the number of
times aij and oi form the combinations (0, 0), . . . , (1, 1), re-
spectively, i.e.,

npq(j) = |{i | aij = p ∧ oi = q}| p, q ∈ {0, 1} (1)

For instance, n10(j) and n11(j) are the number of tests
in which cj is executed, and which passed or failed, respec-
tively. The four counters sum up to the number of tests
N . Two of the most known SCs are the Tarantula [11], and
Ochiai [2] similarity coefficients, given by

Tarantula: lj =

n11(j)
n11(j)+n01(j)

n11(j)
n11(j)+n01(j)

+
n10(j)

n10(j)+n00(j)

(2)

Ochiai: lj =
n11(j)√

(n11(j)+n01(j))·(n11(j)+n10(j))
(3)

In our example system, after executing all the tests in the
test suite, the counters for c6 are n11(6) = 8, n10(6) = 0,
n01(6) = 0, n00(6) = 0. Its likelihood being the faulty
one according to Ochiai is l6 = 1.0. The remaining state-
ments have lower likelihoods, as they all have n10(j) > 0
or n01(j) > 0. For example, for c5, n11(5) = 3, n10(5) = 3,
n01(5) = 0, n00(5) = 1, and its Ochiai similarity is l5 = 0.71.

Despite their lower diagnostic accuracy [4], similarity co-
efficients have gained much interest. A great advantage of
similarity coefficients is their ultra-low computational com-
plexity compared to probabilistic approaches and their in-
dependence from prior FNR knowledge. Therefore, we will
include SC in our evaluation.

2.2 Bayesian Fault Diagnosis
Bayesian fault diagnosis is aimed at obtaining a set of fault

candidates D = 〈d1, . . . , dk〉. Each candidate dk is a subset
of the statements which, at fault, explain the observed fail-
ures. For instance, d = {c1, c3, c4} indicates that c1 and c3
and c4 are faulty, and no other statement. These diagnostic
candidates are again sorted by the probability of being the
correct diagnosis, Pr(dk). A more detailed description can
be found in [6].

1399

After test case ti is executed, the probability of each can-
didate dk ∈ D is updated depending on the outcome oi of
the test, following Bayes’ rule:

Pr(dk|oi) =
Pr(oi|dk)
Pr(oi)

· Pr(dk) (4)

which is repeated recursively for each executed test.
In this equation, Pr(dk) represents the prior probability

of candidate dk before the test is executed. Pr(oi) is a nor-
malization value that represents the residual probability of
the observed outcome, independent of which candidate is
the actual diagnosis, and need not be computed directly.
Pr(oi|dk) represents the probability of the observed outcome
oi produced by a test ti, if that candidate dk is the actual
diagnosis. It is defined as

Pr(oi|dk) =











0 if oi and dk are inconsistent

1 if oi is unique to dk

ε(dk) otherwise

(5)

The value of ε is related directly to the false negative
rate of the tests that cover the statements in dk. Multiple
policies for ε exist. In the next section we will describe the
most common one.

3. ESTIMATING FNR
Correct information on the FNR of tests is crucial to a

correct diagnosis, and its estimation has been a recurring
research topic. The FNR of tests that cover the statements
in a diagnosis candidate dk depends on the FNR of every
individual statement cj ∈ dk. The FNR of individual state-
ments is modeled by a probability value hj ∈ [0, 1] (h for
health). hj = 0 means that when tested, a faulty state-
ment will always produce a failure. hj = 1 means that when
tested, a faulty statement will never produce a failure.

The most common ε policy assumes that faulty statements
will cause failures independently, e.g., a failure in a system
with 2 faults will be produced when either of the faults
causes a failure. This is known as the disjunctive failure
model, i.e., ”OR Model” [6].

The probability of a false negative occurring is, therefore,
the probability of all faults not producing any failure. If
the hj values are known, they can be used to calculate this
probability by

ε(dk) =















∏

cj∈dk∧aij=1

hj if oi = 0

1−
∏

cj∈dk∧aij=1

hj if oi = 1
(6)

For example, let’s assume the hj values for the system in
Table 1 were known to be all 0.1, and we want to calculate
the FNR of candidates d6 = {c6} and d8,10 = {c8, c10}. In
this case, for test t1 (o1 = 1), ε(d6) = 0.9 and ε(d8,10) =
0.99. For t2 (o2 = 0), ε(d6) = 1 and ε(d8,10) = 0.1.
Assuming the initial priors are Pr(d6) = Pr(d8,10) = 0.5,
the final updated value after executing all tests would be
Pr(d6) = 0.98, Pr(d8,10) = 0.02.

3.1 Posterior FNR estimation
Unfortunately, the hj values are hardly ever known a pri-

ori. A number of approximation strategies have been pro-
posed for the case when the individual hj are unknown. In

this paper we will consider the ε(2) strategy [1] given by

ε
(2)(dk) =

{

g(dk)
η if oi = 0

1− g(dk)
η if oi = 1

(7)

where η is the the number of faulty statements according
to dk involved in the test ti, and g(dk) is the “effective”
FNR parameter for dk ,estimated by counting how many
times statements in dk are involved in failed and passed tests,
according to

g(dk) =

N
∑

i=1

[(
∨

j∈dk

aij = 1) ∧ oi = 0]

N
∑

i=1

[
∨

j∈dk

aij = 1)]

(8)

where [. . .] casts truth values into [true] = 1, [false] = 0.
The failures in the example system of Table 1 can be ex-

plained by candidate d6 = {c6} and also by d8,10 = {c8, c10}.
The value for g(d6) = 0

4
, whereas g(d8,10) = 2

6
. For

the failing tests, the ε(d6) = 1 − 0. In the case of d8,10
ε depends on the number of statements involved. For
t1 ε(d8,10) = 1 − 0.332 = 0.88, and for t3, t4, and t7,
ε(d8,10) = 1− 0.331 = 0.66 because there is only one state-
ment involved. Assuming that Pr(d6) = Pr(d8,10) = 0.5
initially, after the update with all tests Pr(d6) = 0.97 and
Pr(d8,10) = 0.03.

A stable estimation requires a large number of tests, and
still may be imprecise. This reduces the rate at which the di-
agnosis improves, requiring the execution of a large number
of tests to obtain a high quality diagnosis.

3.2 Prior FNR Estimation: Testability
False negatives in the context of software fault diagnosis

are intimately connected with the concept of testability. Of
the multiple definitions of testability, the one proposed by
Voas and Miller [20] is directly related to the concept of
false negatives: the degree to which software reveals faults
during testing. Testability relates the number of tests to be
executed on a faulty statement before it exposes the fault as
a failure, i.e., the complement of the FNR, 1− h.

Testability can be estimated by the so-called propagation-
infection-execution approach (PIE) [18]. The PIE approach
involves an expensive mutation analysis. However, its imple-
mentation is simple and can be automated. In this paper, we
use a variation of the PIE approach to obtain an estimation
of the testability of a statement.

First, for each statement cj for which we wish to calcu-
late hj , we created a set of mutants Mj . This was done
by applying a small set of mutation operators [15] to the
arithmetic, logic and indexing operations contained in the
statement or function. The mutations were done at the level
of the bytecode representation used by the Zoltar [9] fault
diagnosis tool. Second, the program’s full test suite was run,
recording test coverage and failure information for each of
the mutants. Finally, the FNR of each statement cj was
obtained by averaging the FNR of each mutation in Mj ,
calculated as the ratio of the number of tests which covered
the fault but did not produce a failure, to the number of
tests which covered the fault.

It is important to note that program mutation can pro-
duce equivalent mutants, i.e., altered programs but tested

1400

as being correct. These should be removed from the aver-
age.In our study, though, we kept those mutants, because
the fact that a mutant did not produce any failure in the
tests could also mean that there is no test case to render the
mutant faulty. Therefore, the values obtained by our FNR
estimation should be seen as pessimistic. This approach
was also used in [17]. The cost of a testability scales with
O(k · M · N), where k is the average number of mutants
generated per component.

4. EXPERIMENT SETUP
We will perform our experiments on the well-known

Siemens benchmark set [8]. The Siemens set comprises seven
programs, providing one correct version, and a set of faulty
versions for each program. Every faulty version contains ex-
actly one fault. As the few faults in Siemens would provide
a very reduced set of fault combinations, in our experiments
we use a larger set of faults obtained by random mutation,
similar to the ones used in the PIE testability study. 100
faulty versions with 1 fault, and 100 faulty versions with 3
faults were created per program.

For each program, a test suite is provided to achieve full
statement and branch coverage. As each program studied
comes with a correct version, we use this as test oracle. Ta-
ble 2 summarizes the programs used for empirical evalua-
tion.

Following existing literature on fault diagnosis, we assume
uniform a priori fault probability pj [4]. The precise values
of pj have little influence on the performance of the diagno-
sis, as they are modified by the subsequent Bayesian update
process.

SC
Tarantula lj =

n11(j)
n11(j)+n01(j)

n11(j)
n11(j)+n01(j)

+
n10(j)

n10(j)+n00(j)

Ochiai lj =
n11(j)

√

(n11(j)+n01(j))·(n11(j)+n10(j))

Bayes
Post EPS2 ε(2)(dk) =

{

g(dk)
η if oi = 0

1 − g(dk)
η if oi = 1

Prior
PIE ε(dk) =

{

∏

hj if oi = 0

1 −
∏

hj if oi = 1

SFB ε′(dk) =

{

ε(dk) if |dk| = 1

0 if |dk| > 1

Table 3: Overview of the compared techniques

Table 3 provides an overview of the compared tech-
niques. For completeness we have added a fifth technique:
single-fault Bayesian diagnostic with PIE information (SFB-
Bayes), i.e., where only dk containing one statement are con-
sidered (ε(dk) = 0 if |dk| > 1).

5. SINGLE FAULT EXPERIMENTS
The box plot in Figure 1 shows the performance of each

technique in terms of Cd for all programs. In addition, Ta-
ble 2 shows, the average Cd per program. The values have
been normalized by dividing by the number of non-faulty
statements M − Mf . From our results it is apparent how
the introduction of a priori FNR information greatly im-
proves the performance in the diagnosis.

SFB-Bayes provides the largest improvement possible,
with reductions of diagnostic effort that can reach a 80%
in the case of schedule2 and are above 50% in many cases
when compared with the Ochiai similarity coefficient. How-
ever, it must be taken into account that SFB-Bayes will pro-
duce an inconsistent diagnosis if more than one statement is
faulty. For this reason its applicability is limited.

It can be seen how removing the single fault assump-
tion poses a slight penalty in the improvements that can
be achieved, which is due to the diagnosis algorithm consid-
ering equally probable multiple fault candidates. Improve-
ments on diagnosis quality with PIE-Bayes can reach 72%
for schedule2 and 60% for schedule. However, for some
programs this is not the case. For example tot_info does
not show any improvement, and print_tokens2 shows a per-
formance degradation with respect to Ochiai.

The reason for the dramatic improvement of the quality of
the diagnosis, especially in the case of SFB-Bayes, is the fact
that PIE-Bayes is less affected by ambiguities in the diag-
nosis, i.e., uncertainty if there are different statements with
equal likelihoods (due to their columns in A being identi-
cal). Similarity coefficients and EPS2-Bayes estimate iden-
tical likelihood values for statements with identical columns
in A, making the diagnosis more ambiguous, leading to an
increase in diagnosis effort. However, the hj values esti-
mated for the statements inside the same ambiguity group
are typically not identical. Even if their execution patterns
are identical, SFB and PIE-Bayes will rank first the state-
ments whose hj is closer to the real FNR of tests, effectively
removing ambiguity.

6. MULTIPLE FAULT EXPERIMENTS
In this section we present the results of our experiments

with programs seeded with multiple faults. Due to the small
sizes of the programs in the Siemens set we seeded a max-
imum of Mf = 3 faults, in order to avoid unrealistic fault
densities.

6.1 Diagnostic Performance
Once the validity of the OR model has been assessed, we

will now comment on the performance of the multiple fault
diagnosis techniques. It can be seen in Figure 1 and Ta-
ble 2 how the introduction of PIE testability information
greatly improves the quality of every diagnosis. PIE-Bayes
provides improvements in diagnostic quality of an average
of 37%, with replace, schedule and schedule2 providing
the largest improvements, of a 60%. On the bottom of the
improvement scale is tot_info with just a 20%.

The reason for the improvements in the multiple fault case
is similar to that for single faults. tcas and tot_info are
the two programs with the highest approximation error on
their FNR due to the failure independence assumption not
holding, as we will explain in the following secion. This er-
ror is affecting the quality of the Bayesian update, reducing
considerably the performance.

6.2 Testability and the OR Failure Model
Testability estimations obtained by the PIE method de-

scribed in Section 3 are obtained in a single fault setting, i.e.,
the fault being studied is the only one existing in the sys-
tem. However, when using PIE testability estimations in a
multiple-fault setting, we must assess the error incurred when
combining testability estimations by using the OR model as-

1401

Mf = 1 Mf = 3
Program Name Mutants M N Program Type SFB PIE EPS2 TAR OCH PIE EPS2 TAR OCH
print_tokens 491 539 4,130 Lexical Analyzer 0.038 0.064 0.100 0.248 0.077 0.210 0.422 0.473 0.397
print_tokens2 294 489 4,115 Lexical Analyzer 0.076 0.156 0.189 0.317 0.143 0.281 0.456 0.481 0.550

replace 757 507 5,542 Pattern Recognition 0.019 0.061 0.104 0.153 0.077 0.160 0.468 0.430 0.497
schedule 281 397 2,650 Priority Scheduler 0.024 0.041 0.120 0.244 0.097 0.188 0.549 0.459 0.630
schedule2 212 299 2,710 Priority Scheduler 0.072 0.094 0.362 0.490 0.343 0.211 0.604 0.630 0.565

tcas 208 174 1,608 Altitude Separation 0.104 0.134 0.211 0.230 0.197 0.313 0.481 0.451 0.477
tot_info 396 398 1,052 Information Measure 0.053 0.093 0.128 0.209 0.094 0.360 0.450 0.543 0.519

Table 2: Programs used for evaluation and results

 0

 0.2

 0.4

 0.6

 0.8

 1

s
fb

p
ie

e
p

s
2

ta
r

o
c
h

s
fb

p
ie

e
p

s
2

ta
r

o
c
h

s
fb

p
ie

e
p

s
2

ta
r

o
c
h

s
fb

p
ie

e
p

s
2

ta
r

o
c
h

s
fb

p
ie

e
p

s
2

ta
r

o
c
h

s
fb

p
ie

e
p

s
2

ta
r

o
c
h

s
fb

p
ie

e
p

s
2

ta
r

o
c
h

C
d
 /

 (
M

 -
 M

f)

Diagnostic Performance for Mf=1

print_tokens print_tokens2 replace schedule schedule2 tcas tot_info
 0

 0.2

 0.4

 0.6

 0.8

 1

p
ie

e
p

s
2

ta
r

o
c
h

p
ie

e
p

s
2

ta
r

o
c
h

p
ie

e
p

s
2

ta
r

o
c
h

p
ie

e
p

s
2

ta
r

o
c
h

p
ie

e
p

s
2

ta
r

o
c
h

p
ie

e
p

s
2

ta
r

o
c
h

p
ie

e
p

s
2

ta
r

o
c
h

C
d
 /

 (
M

 -
 M

f)

Diagnostic Performance for Mf=3

print_tokens print_tokens2 replace schedule schedule2 tcas tot_info

Figure 1: Performance for mutated programs

sumption in Equation 6, and whether failure independence
holds in a multiple fault environment. This is crucial since
Bayesian diagnosis relies on the assumption that failures are
independent events and failure rates can be combined dis-
junctively.

In order to answer these questions, we measured the real
FNR of each possible executed fault combination (F1, F2,
F3, F1 ∧F2, F2 ∧F3, F1 ∧F3, F1 ∧F2 ∧F3) occurring in the
test matrix of our mutated programs, and compared their
actual values with the value estimated with Equation 6 and
PIE.

Figure 2: Estimation error of the FNR

Our experiment confirmed that, in general, the estimated
FNR of a known combination of faults presents a moderate
error due to the errors of the testability estimations used.
However, in some cases, this error is extremely high. The
scatter plots in Figure 2 show two examples of this situa-
tion. To explain these cases, one must remember that, in
many cases, failures in software are heavily dependent on
the distribution of failing inputs, which is abstracted away
in fault diagnosis. The diagrams in Figure 3 present two
situations in which the OR model and the failure indepen-
dence assumption will hold, and two situations in which they
will not. The circled area represents the inputs that cover a
given fault, with passing inputs depicted as empty shapes,

and failing inputs as filled shapes.

a

c d

b

Figure 3: Weak OR-model at the input level

In case (a), the sets of inputs that cover each fault is
disjoint. This case is frequent in software if the faults occur
in parts of the software dedicated to very different tasks.
Case (b) shows a case where the OR model is applied for
two faults whose failures are uniformly distributed across the
input domain. When combined, this uniform distribution
will still hold for the intersection area, and the OR model
will present a low estimation error.

The faults in cases (c) and (d), on the other hand, do not
produce failures that are uniformly distributed across their
input domains. In case (c), the OR model will lead to a
failure probability that is too low for the F1∧ F2 combina-
tion, and too high for the F1 and F2 combinations. Case
(d) presents the reverse situation.

7. THREATS TO VALIDITY
The Siemens programs used are small programs with very

extensive and redundant test suites. The validity of our
results can be strengthened by using larger, more realistic
programs.

The validity of the results presented is further threatened
by the fact that the same set of mutants were used to es-
timate hj and to perform the diagnosis. Firstly, this could
produce too optimistic results, as the estimated FNR cor-
responds exactly to the average of the actual FNR of the

1402

mutants being diagnosed. However, the seeded faults in-
cluded in Siemens are, to a great extent, also generated by
our mutation tool. Secondly, the density of the faults must
be considered. As previously mentioned, we avoid perform-
ing our multiple fault experiments with more than 3 faults to
keep the fault density at a realistic level. Finally, in our ex-
periments we assumed that faults are distributed uniformly
in the program code. The validity of our results could also be
strengthened by considering the effect of fault distributions.

8. RELATED WORK
Automated fault localization techniques minimize diag-

nostic cost and support debugging when failures occur dur-
ing software testing. Statistical approaches include [2, 11,
12, 13, 16, 21]. A recent, probabilistic approach of accept-
able complexity is [4]. Although, different in the way they
derive the ranking of the diagnosis, all techniques are based
on measuring the coverage information and failure pattern
of a program (also termed its spectrum), while ignoring or
deriving the rate of false negatives a posteriori. The novelty
of our approach consists in factoring the FNR estimation
problem out of the diagnostic problem, so that FNR can be
exploited from the beginning. False negatives in software
are related to testability [20]. Testability quantification has
been approached at the class level [5], function level [7] and
statement level [14, 18, 19, 22, 23]. However, of the current
state of the art, only [18] allows for a straightforward usage
as FNR in our experiments. Our work is novel with respect
to evaluating the degree to which software faults produce
failures independently, a necessary assumption in fault di-
agnosis.

9. CONCLUSIONS AND FUTURE WORK
False negatives are an essential problem of fault localiza-

tion. Previous work in diagnosis has considered FNR mod-
eling a part of the diagnosis process. In this paper we have
studied the improvement in software fault localization when
information on the false negative rate is available a priori,
by means of a PIE testability study.

PIE-Bayes reduces the average effort for coming to the
diagnosis by a 27% for real programs with single faults in
average when using multiple-fault techniques. When using
SFB-Bayes the performance increases dramatically, with a
60% reduction of diagnostic effort on average.

For multiple faults, prior FNR information achieves a 37%
reduction of diagnostic effort on average. The performance
for the multiple fault case does not only depend on the qual-
ity of the FNR estimations, but also on the degree to which
they are independent and can be combined meaningfully in
a disjunctive fashion.

The improvement in the fault localization process was
traded against an expensive testability analysis, although,
it should be noted that, in practice, the cost of such analy-
sis is amortized over many debug-repair cycles. Future work
will investigate the usage of alternative testability estimation
techniques, e.g. bridging the gap between static techniques
and the probabilistic approach needed for PIE-Bayes.

10. REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. van Gemund. An

observation-based model for fault localization. In
Proc. WODA’08.

[2] R. Abreu, P. Zoeteweij, and A. van Gemund. On the
accuracy of spectrum-based fault localization. In Proc.
TAIC PART’07.

[3] R. Abreu, P. Zoeteweij, and A. J. van Gemund. A new
bayesian approach to multiple intermittent fault
diagnosis. In Proc. IJCAI’09.

[4] R. Abreu, P. Zoeteweij, and A. J. van Gemund.
Spectrum-based multiple fault localization. In Proc.
ASE’09.

[5] M. Bruntink and A. van Deursen. An empirical study
into class testability. J. Syst. Softw., 79(9):1219–1232,
2006.

[6] J. de Kleer. Diagnosing multiple persistent and
intermittent faults. In Proc. IJCAI’09.

[7] R. S. Freedman. Testability of software components.
IEEE TSE, 17(6):553–564, 1991.

[8] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc.
ICSE’94.

[9] T. Janssen, R. Abreu, and A. J. C. van Gemund.
Zoltar: A toolset for automatic fault localization. In
Proc. ASE’09 - Tool Demonstrations.

[10] B. Jiang, Z. Zhang, W. Chan, and T. Tse. Adaptive
random test case prioritization. In Proc. ASE’09.

[11] J. A. Jones, M. J. Harrold, and J. Stasko.
Visualization of test information to assist fault
localization. In Proc. ICSE’02.

[12] B. Liblit. Cooperative debugging with five hundred
million test cases. In Proc. ISSTA’08.

[13] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff.
Sober: Statistical model-based bug localization. In
Proc. ESEC/FSE-13.

[14] A. J. Offutt and J. H. Hayes. A semantic model of
program faults. SIGSOFT Soft. Eng. Notes,
21(3):195–200, 1996.

[15] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An experimental determination of sufficient
mutant operators. ACM TOSEM, 5:99–118, April
1996.

[16] M. Renieris and S. P. Reiss. Fault localization with
nearest neighbor queries. In Proc. ASE’03.

[17] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Prioritizing test cases for regression testing.
IEEE TSE, 27(10), 2001.

[18] J. M. Voas. Pie: A dynamic failure-based technique.
IEEE TSE, 18(8):717–727, 1992.

[19] J. M. Voas and K. W. Miller. Semantic metrics for
software testability. Journal of Systems and Software,
20(3):207–216, 1993.

[20] J. M. Voas and K. W. Miller. Software testability: The
new verification. IEEE Software, 12(3):17–28, 1995.

[21] W. Wong, T. Wei, Y. Qi, and L. Zhao. A
crosstab-based statistical method for effective fault
localization. In Proc. ICST’08.

[22] M. R. Woodward and Z. A. Al-Khanjari. Testability,
fault size and the domain-to-range ratio: An eternal
triangle. SIGSOFT Soft. Eng. Notes, 25(5):168–172,
2000.

[23] L. Zhao. A new approach for software testability
analysis. In ICSE ’06.

1403

