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Abstract—Despite the enhancement on software hardness
induced by development-time automatic testing and debugging
tools, it remains practically impossible to create fault-free
applications. The research on self-healing systems emerged to
enable applications to cope with unexpected events at run-time
in order to maximize their availability, survivability, maintain-
ability, and reliability, while minimizing human intervention.
With the increase in software’s complexity, in part triggered by
the advent of the Internet and Cloud Computing, self-healing
properties in applications are becoming a necessity. The main
focus of this position paper is on presenting the issues that
render unusable or ineffective the usage of the development-
time Spectrum-based Fault Localization (SFL) algorithm in
run-time environments. We concluded that, despite the issues
found, it should be possible to devise an SFL algorithm for
run-time environments that can also achieve the good results
yielded by SFL at development-time.

Keywords-Fault Localization, Cloud Computing, Spectrum-
based Fault Localization, Self-healing

I. INTRODUCTION

Society is increasingly dependent on technology and, with
the appearance of computers as a mainstream good, this
dependency experienced an exponential growth. One side
effect is the increase in software’s complexity which, almost
unavoidably, leads to a growing amount of bugs as well
as a harder process of fault detection, localization, and
correction.

Efforts have already been made in order to alleviate
the debugging stress from humans by relaying part of the
process to automated mechanisms. Tools such as “Tarantula”
[16], “EzUnit” [9], and “GZoltar” [20] already provide
automated ways of pinpointing the most probable fault
locations. In contrast to traditional debugging methods such
as the use of tools like “GDB” [21] or mere log analysis,
automated fault localization tools improve the development
cycle by: (1) reducing the time needed to find the source
of the error/failure, (2) enforcing a much more structured
debugging process when compared to the ad-hoc, art-like
traditional methods and (3) enabling regression testing.

Despite the great advance such tools represent, they
largely rely on the provided test suite, both in terms of

coverage and quality [1, 2]. It is common sense that it is
not always easy to create a comprehensive test suite, either
due to time, money, or even complexity constraints. Also,
there are failures that are not triggered by a software bug
but by a specific condition of the run-time environment,
such as a hardware fault. Given that, it is clear that such
tools, although they are of great help, are not able to
ascertain fault-free applications. As a result the need to
develop complimentary tools and techniques that are capable
of autonomously “heal” failing applications during run-time
becomes prominent. Despite the existence of bugs being an
unavoidable issue, most applications cannot afford to have
down times, and therefore it is very important to devise
techniques to make them aware of their environment and
health and be able to responde to changes effectively.

The goal of this position paper is to discuss how self-
healing techniques may enhance Cloud applications, fo-
cusing our attention on the fault localization topic. We
will address the issues that are inhibiting the application
of Spectrum-based Fault Localization (SFL) [1, 4, 8], our
algorithm of choice, to run-time fault localization.

The remainder of this paper is organized as follows.
Section II will give an introduction on SFL applied to
development-time debugging. Section III will discuss how
self-healing techniques may improve Cloud applications. In
Section IV we will cover the issues that render difficult or
ineffective the usage of SFL in run-time scenarios. In Section
V we will expose our evaluation methodology. Finally, in
Section VI we will draw some conclusions on the issues
addressed in this paper.

II. SPECTRUM-BASED FAULT LOCALIZATION FOR
DEVELOPMENT-TIME FAULT DIAGNOSIS

SFL is a lightweight statistic based fault localization tech-
nique that takes as its input an execution trace abstraction,
called Program Spectrum (PS) (Fig. 2), and produces a list
of likely fault candidates, sorted according the probability of
being the real failure explanation. The PS consists of matrix
(“A”), known as Program Activity Matrix [1] and a vector
(“e”) in which are recorded all the transactions performed
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Figure 1. Web server architecture

by the system under analysis. “A” consists of a T×C binary
matrix being “T ” the number of recorded transactions and
“C” the number of components in the system. The scope
of each component is completely arbitrary and depends on
the desired granularity, ranging from logical blocks to lines
of code. Each element of matrix “A”, “Aij”, is set to True
if component j participated in transaction i and to False
otherwise. “e” consist of a vector with “T ” elements, being
“ei” set to False if the oracle’s result for transaction i is
pass and True otherwise.

Oversimplifying the problem, the process of defining the
probability of some component being faulty consists in
finding the similarity between each column of “A” and “e”.
Abreu et al. in [5], analyse several similarity coefficients and
conclude that the coefficient used for SFL deeply impacts
the diagnosis performance.

Fig. 1 shows and example architecture of a web server,
which could possibly be deployed in a Infrastructure-as-a-
Service (IaaS) Cloud. Fig. 2 presents a possible PS gathered
from a running instance of the architecture in Fig. 1. For
compactness sake, each component group is only repre-
sented by a single column and if some of the components in
the group was involved in transaction “i”, “Aij” is set to the
component number. In practice, each group column would
be expanded to the number of components, as presented
earlier. The most probable failing components, according to
SFL would be “fw1” and “hs1”. “fw1” is almost certainly
faulty, due to Transaction 4 in which it is the only participant
in a faulty transaction. However its that either the fault is
transient or the oracle is inaccurate, because “fw1” partici-
pates in passed transactions. On the other hand, “hs1” has
a permanent fault (at least during this observation), because
it only appears in failed transactions.

The basic SFL algorithm has the limitation of only being
capable of detecting single faults. However, more advanced
methods based on SFL for localizing multiple faults have
already been devised [8].

Component Group
Transaction fw px lb hs db Error

1 1 3 2 4 3 0
2 1 2 2 3 0 0
3 1 1 1 2 1 0
4 1 0 0 0 0 1
5 1 2 1 1 0 1
6 1 1 2 1 0 1

Figure 2. PS example

III. SELF-HEALING IN CLOUD APPLICATIONS

The appearance of computing and storage as a service,
also known as Cloud Computing (CC), dramatically changed
the way people see and use computers. If before CC applica-
tions and hardware had a tendency to work isolated and for
local purposes, now, triggered by the advent of the Internet
and the appearance of CC, we are observing an increasing
interoperability between users and applications. However,
such high degree of interaction between all components of
the Cloud (users, applications, hardware, etc.) also leads to
a higher probability of experiencing failures. Considering
the high dynamic qualities of CC, the creation of self
healing techniques becomes naturally a necessity. On the one
hand, we believe that Cloud applications can deeply benefit
from self-healing methods by being able to (1) increase
their reliability while (2) reducing operational costs. On
the other hand, the dynamic properties of the Cloud and
the interoperability services provided by applications, easily
enable the implementation of healing techniques such as
infrastructures scaling, component rejuvenation, etc. Also,
as Cloud applications tend to be distributed, modularized
and service based, they ease the creation of a self-healing
service layer.

In order to an application being able to self heal, it must
at least be able to: (1) detect errors/failures, (2) locate the
faulty components and (3) target such components with
an appropriate remedy. As stated earlier, our main target
of research is run-time fault localization. The algorithm in
which we will focus our attention is SFL. As said before,
SFL is a statistic based algorithm that was created to localize
faults during development time and little work has been
done in applying SFL to run-time environments. However,
from the experience of previous work ([6]), we think that
it manifests a set of properties that may be of interest
in the scope of run-time, dynamic environments, such as
Cloud Computing. First, on the performance side, SFL is
considered to be lightweight (at least in comparison to other
methods), being able to deliver results in a timely fashion.
In run-time environments, the information about the possible
error sources may experience a very narrow utility window.

Second, it does not require a model of the system, which
in dynamic systems can sometimes be hard to obtain. As



users pay per use in the Cloud paradigm, applications
tend to self adapt to environment changes by increasing or
decreasing the number of components in order to be able to
deliver the expected performance while reducing expenses.

Furthermore, it is relatively resilient to low quality oracles.
Previous work ([2, 5, 7]) showed that it is a useful technique
for reducing the scope of debugging and, even with low
quality test suites, over 80% of the initial code is considered
not to be a probable cause to a particular failure.

By having a reliable fault localization technique, it should
be easier to determine whether or not and to what extent
some corrective action really solved the original problem.
This information enables more complex reasoning when
selecting healing strategies as the information gathered from
previous healing actions may impact the decision on future
troubleshooting. An example of this event would be the
scenario where healing actions were performed recurrently
without really solving some problem or solving it in a
mediocre way. With this feedback loop, the application
should be able to detect such type of events and either plan
another method to solve the problem or fall-back to a human
operator.

Also, with a sound run-time fault localization technique,
it should be easier to perform proactive maintenance in order
to enhance survivability. Most of the time, and as we point
out in Section IV-A, there normally is a gradual transition
from a healthy to a faulty state. We expect to have the
possibility to detect which components are most likely to
be responsible for the system’s degradation and with such
information trigger proactive maintenance tasks to restore
the system’s normality. Proactive maintenance techniques
are expected to be more cost effective than the reactive tech-
niques [18] as the former ones plan and execute maintenance
tasks while the system is still responsive (preferably without
downtimes) while on the latter ones the planning and the
execution of maintenance tasks is done while the system
is unresponsive, representing further downtime. Moreover,
proactive maintenance actions are applied to functional
system and empirically it should be plausible to assume that
less effort is needed to fix the it when compared to a broken
system.

Finally, concerning preventive strategies, which are based
on heuristics such as age or mean time between failures of
each component, they can extract from SFL the information
of which components failed and more accurately perform
their healing actions.

Having in mind one of the main goals of Cloud Comput-
ing, cost reduction, we believe that a correct usage of self-
healing techniques may effectively reduce expenses. First,
applications should experience a higher degree of adaptive-
ness, enabling a thinner baseline usage of resources while
being able to scale on demand. Second, they should become
more robust to unexpected events and respond to those in
an effective manner, assuring survivability. Finally, a more

comprehensive view applications’ health with much more
clear and verbose bug reports. By being able to recognize
and locate problems within the application, it should be
possible to correlate faults, automatically report bugs and
improve human supervised maintenance’s efficiency.

IV. SPECTRUM-BASED FAULT LOCALIZATION FOR
RUN-TIME FAULT DIAGNOSIS

While impressive diagnostic results have been achieved
during development-time, little work has been performed
in applying SFL to run-time fault localization. This comes
from the fact that there is a huge difference between run-
time and development-time environments. In this section we
will explain how such differences impact in the creation of
an SFL algorithm for run-time environments. Some of the
issues addressed in this section have already been reported
in other works such as [10] or [19].

A. State Fuzziness

When compared to development-time debugging, compo-
nents in a run-time environment tend to suffer the effects of
age [15] and some start to deliver the correct responses to the
requests made while breaking certain constrains (temporal,
resource usage, etc.). This type of behavior (soft-fail) cannot
be completely described using a binary pass/fail flag as the
component is not failing in the sense that it delivers a wrong
response but, at the same time, is failing due to breaking cer-
tain constraints. Also, issues such as performance degrada-
tion or resource hogging which may not represent a system
failure (hard-fail) within certain thresholds but, may trigger
a hard-failure, leading to service deliverance interruption. A
close monitoring and analysis of such artifacts may enhance
of the system’s behavior by possibly reducing the number
of hard-failures [18], improving the usage experience and
reducing operational costs.

The generic state diagram of a run-time system [14] is
depicted in Fig. 3. It is clear that it is somewhat difficult
to define the limits of some system’s degraded state as it
heavily depends on thresholds that are not normally agreed
among all users (e.g. threshold latency of response from
some component). An appropriate definition of the degraded
state boundaries is of great importance as, on the one hand
small boundaries may cause a direct transition from a normal
to a broken state and, on the other hand large boundaries may
trigger a large amount of corrective actions, which in turn
may have an adverse effect on the system’s responsiveness.

This kind of failures must be taken into consideration
when designing the run-time SFL algorithm as the traditional
binary pass/fail flag is too simplistic and may hide certain
problems. Considering for instance, a component that either
takes too long or uses too much memory (at least more than
it would be expected to) but outputs the correct data, may be
considered healthy if no constraints were enforced. On the
other hand, if some transaction would be considered failed
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due to resource overuse, assuming that no more data was
available, the real reason of failure would be masked by the
binary pass/fail information.

The distinction between soft-failures and hard-failures
enables a better selection of the healing actions to use. The
software ageing problem has already been acknowledged
and several methods have been developed to tackle this
problem (for instance software rejuvenation [17, 22], in
which components are restarted in order to improve the
system’s robustness).

B. System Dynamics

Another issue on applying SFL to run-time environments
is the assumption that, provided with the same input, an
arbitrary chain of components should always deliver the
same results. While in development-time environments this
premise almost always observed, in run-time, as the system
is not normally reset before each transaction, this condition
is broken. This results from the fact that a particular set of
operations may alter the component health and influence the
result of the following transactions. This effect can possibly
mangle the conclusions taken from the PS (see Section II).

In order to minimize the “memory effect” of the run-
time operation it is necessary to have some notion of time
when analysing the PS. One approach to the problem is
by defining an analysis window and correctly dimension it.
The sub-problem that arises is how to determine the time
span in which an observation is valid. We believe that it
should be possible to determine how dynamic the system
under analysis and predict an appropriate window size for
each component. Provided that a good observation window
is used, SFL should deliver better results, when comparing
to analysing all available data, as obsolete data is purged.

Another approach that can be used isolated or in addition
to the analysis window, is by taking into account the time
diference between each transaction and the analysis point.
Empirically, it should be acceptable that an older observation
as less impact in some diagnostic than a more recent one.
By giving weight to each observation, it is possible to

reduce an eventual negative impact induced by obsolete data.
However, an similarly to the previous approach, we must
determine how to weigh each observation. The weighing
curve is once again deeply related with the system’s dynamic
behavior and should be possible to deduce an appropriate
one automatically and dynamically.

Still regarding system dynamics, the effects of altering
the system’s configuration on the diagnosis performance
of SFL, to the best of our knowledge, have not yet been
studied. However we foresee that it may pose a problem
to the classic SFL. When the system is altered without
adding or removing any component, two scenarios exist: the
components subjected to the corrective action (1) maintain
their columns in matrix A and inherit the previous history
or (2) a new columns are created and a new history branch
is created. For (1), older data may confuse the algorithm
as the components will change their behaviors. This effect
may be attenuated by the window displacement and age
weighing techniques previously presented. As for (2), there
is the advantage that the corrected components are treated
as a new components and little adaptation should be needed
to the classic algorithm.

Still regarding the effects of triggering healing actions,
it is very important to keep track of such events in order
to acknowledge the effectiveness of some corrective action
when applied to a failing application with a given set of
symptoms. For instance, if some component was subjected
to some healing action and is considered to be broken again,
it should be possible to analyse its history and from this
analysis determine the remedy effectiveness.

C. Performance

When applying SFL to a high dimension application, and
considering a high granularity instrumentation, each trans-
action will have a significant impact in terms of resource
utilization. For instance the Linux kernel version 3.2 has
around 11.5 million lines of code. If instrumented to the
statement level, each transaction record would have a size
of approximately 1.3 MB (in a dense binary matrix).

Another related problem that results from the instru-
mentation of the target application is performance loss.
Even though the performance impact derived from the
instrumentation was reported to be low, averaging 6% loss
[1], in run-time systems such loss may represent an issue.
Also, as Cloud users pay based on the infrastructure usage,
performance losses represent additional costs.

Such issues may be solved by creating zones within
the application with different levels of granularity. One
challenge to this solution would be how to decide the
inspection granularity of each component. This decision
could be any combination of either static or dynamic and
human or automatic. The automatic dynamic mode, which
is the most challenging, could be based on the knowledge
gathered about the system. For instance, if a component only



appears in successful and high quality transactions, it should
be more or less safe to discard the high granularity details
about its inner processes. On the other hand, components
with a high probability of being faulty should be inspected
with a higher degree of detail in order to enable a better
reasoning on the fault cause. The dynamic probe placement
can be implemented by using just-int-time (JIT)frameworks
such as LLVM . While the dynamic approaches present
transient performance reductions due to the warm-up effect
of JIT, they provide a higher degree of flexibility.

D. Test oracles

A requirement to the SFL algorithm is to have some
mechanism that evaluates the status of the transactions.
Those mechanisms are commonly called test oracles and,
in development-time debugging, they are commonly im-
plemented either by manually creating test cases or by
having some reference implementation that is known to be
faultless. Some work ([2, 3, 11, 12, 13]) has already been
done in order to creating low-cost oracles by using program
invariants to determine the transactions’ statuses.

Program invariants are conditions that when broken the
program is guaranteed to be in a faulty state. Such conditions
may be user defined, naive or machine learned. User defined
invariants may be defined in the code or in a model definition
of the application and may manifest themselves in the
form of exceptions or through specific framework calls.
Naive invariants are those that are relatively easy to detect
such as invalid pointer addresses or deadlocks. Machine
learned invariants must be subjected to a prior training in
order to perform adequately. Examples of machine learned
invariants are array bounds or range detection. Once again,
the effectiveness of machine learned invariants deeply relies
on the quality and quantity of training done. Also, the use
of machine learned invariants may introduce the existence
of false negatives and, even worse, false positives, which are
known to mangle SFL [6].

Given the difficulty of producing accurate oracles, it is
very important to enable SFL to weigh each oracle output
in order to produce accurate results out from inaccurate data.
The weight of each output could be either determined by the
oracle itself, with some score reflecting its confidence on the
result, or based on the reputation, which could be generated
during run-time.

Another issue that has to be solved is the necessity
to define the limits in which each oracle will operate.
Throughout this paper we used the term “transaction” to
define such limits.

In the scope of SFL, transactions (lines in the PS, see
Section II) are one of the building blocks of the algorithm.
In development-time, transactions are delimited by extent of
each unit test. However, when it comes to run-time systems,
it is not always trivial to define such boundaries. If, on one
hand there are systems in which it is easy to define the

boundaries of a transaction, as for instance in the example of
Fig. 1, on the other hand there are systems in which it is not
clear to define transactions, for instance a word processor.

Additionally we foresee the possibility of having multiple
oracles evaluating overlapping scopes as a way of improving
the accuracy of the fault localization technique. This method
follows a philosophy similar to the modular redundancy
techniques and should enable a more effective usage of low-
cost oracles. We also expect to be able to use the system test
suite in order to gather accurate PS. By previously analyzing
the coverage of each unit test in the system test suite, it is
possible to target suspicious components, with a relevant set
of tests. Those tests should be performed without reseting
the system in order provide a representative picture of the
system’s status.

Regarding the performance degradation problems, the test
suite should be first ran in an healthy system to create a set
of reference values which can be compared to the results
obtained in run-time.

In order not to disrupt the system’s responsiveness, such
tests should only be evaluated under a certain load threshold.
However it may be worthwhile to perform some testing,
when the expected accuracy of the PS available within the
analysis window (see Section IV-B) falls under a certain
threshold.

V. EVALUATING RESULTS

In order to evaluate the efficiency of our run-time SFL
algorithm, we are considering a two pronged approach.
On the one hand we are creating a simulator which from
some arbitrary system’s model and behavior description can
generate Program Spectrum. On the other hand we will apply
SFL to representative live systems while injecting faults in it.
By comparing the injected faults with the results from SFL
we can estimate how SFL behaves in different application
types.

The first approach enables: (1) a more objective bench-
marking by being possible to easily creating a simulated
system that tests a set of specific artifacts; (2) an easier
process of testing, as normally “normal” applications must
be configured and altered to interact with a monitoring
entity; (3) test reproducibility as the system’s model and
behavior are contained in a single file, which is easily
distributable.

The second approach provides: (1) real world validation
and (2) usefulness proof.

Provided that good results are found from the aforemen-
tioned methodology, we also plan integrating SFL algorithm
with some correction mechanisms and evaluate SFL’s per-
formance when cooperating in a self-healing loop. For that
we plan on enhancing the simulator to provide actuators on
the simulation in order to alter the simulation path as if some
healing task was triggered. Further, we expect to also test
SFL in real self-healing applications.



VI. CONCLUSIONS

In this paper we discussed how the advent of the Internet
and the Cloud aggravated the old software bug problem. We
started by introducing SFL, an fault localization algorithm
used in development time environments, which we believe
that has several characteristics that are well suited for run-
time environments. Following we explained why Cloud
Computing both can benefit from and favor self-healing
techniques. Self-healing techniques can take advantage of
the modularity and flexibility of the Cloud to make it more
robust and trustworthy. Our main topic, the issues that must
be solved to create an SFL algorithm for run-time, was
then addressed. We discovered at least four groups of issues
that at best render ineffective the usage of development-time
SFL in runtime environments. The first is related with state
fuzziness where it is not always possible to categorize all
transactions as having either passed or failed. The second
issue is the fact of systems having a dynamic behavior
when compared to development-time testing. In run-time the
result or issues of previous transactions may have effects on
future ones. The third is performance. On the one hand,
the algorithm performance must be high enough to deliver
results in a timely manner. On the other hand, the target
application may suffer from performance losses due to
instrumentation. Finally, and the most common issue in fault
localization, is the difficulty of creating accurate oracles for
runtime. We proposed several ideas on how to deal with
such issues, which will be target of future work.

Besides, we presented our evaluation methodology which
will use to assess the diagnosis performance of the run-
time SFL. Two approaches will be used. The first will use
simulations in order to have a more fine tuned evaluation.
The second will use real applications to have a proof that
the method is implementable in the real world.

Finally, SFL has already shown its potential on detecting
the possible fault sources in development-time debugging
and, despite the amount of adaptations needed, we expect
similar results when applied to run-time.
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