
Simultaneous Debugging of Software Faults∗

Rui Abreu†1 Peter Zoeteweij2

Arjan J.C. van Gemund3

1 Department of Informatics Engineering
Faculty of Engineering

University of Porto
Portugal

rui@computer.org

2 IntelliMagic B.V.
The Netherlands

p.zoeteweij@gmail.com

3 Embedded Software Department
Faculty of Electronics, Math, and CS

Delft University of Technology
The Netherlands

a.j.c.vangemund@tudelft.nl

Abstract

(Semi-)automated diagnosis of software faults can drastically increase
debugging efficiency, improving reliability and time-to-market. Current
automatic diagnosis techniques are predominantly of a statistical nature
and, despite typical defect densities, do not explicitly consider multiple
faults, as also demonstrated by the popularity of the single-fault bench-
mark set of programs. We present a reasoning approach, called Zoltar-
M(ultiple fault), that yields multiple-fault diagnoses, ranked in order of
their probability. Although application of Zoltar-M to programs with
many faults requires heuristics (trading-off completeness) to reduce the
inherent computational complexity, theory as well as experiments on syn-
thetic program models and multiple-fault program versions available from
the software infrastructure repository (SIR) show that for multiple-fault
programs this approach can outperform statistical techniques, notably
spectrum-based fault localization (SFL). As a side-effect of this research,
we present a new SFL variant, called Zoltar-S(ingle fault), that is optimal
for single-fault programs, outperforming all other variants known to date.

∗This work has been carried out as part of the TRADER project under the responsibility
of the Embedded Systems Institute. This project is partially supported by the Netherlands
Ministry of Economic Affairs under the BSIK03021 program.

†Corresponding author.

1

Keywords: Software fault diagnosis, program spectra, statistical and
reasoning approaches.

1 Introduction

Automatic software fault localization (also known as fault diagnosis) techniques
aid developers to pinpoint the root cause of detected failures, thereby reducing
the debugging effort. Two approaches can be distinguished:

(1) the spectrum-based fault localization (SFL) approach, which correlates soft-
ware component activity with program failures (a statistical approach)
[3, 15, 20, 21, 26, 30], and

(2) the model-based diagnosis or debugging (MBD) approach, which deduces
component failure through logic reasoning [11, 13, 23, 28].

Because of its low computational complexity, SFL has gained large popu-
larity. Although inherently not restricted to single faults, in most cases these
statistical techniques are applied and evaluated in a single-fault context, as
demonstrated by the benchmark set of programs widely used by researchers1,
which is seeded with only 1 fault per program (version). In practice, however,
the defect density of even small programs typically amounts to multiple faults.
Although the root cause of a particular program failure need not constitute
multiple faults that are acting simultaneously, many failures will be caused by
different faults. Hence, the problem of multiple-fault localization (diagnosis)
deserves detailed study.

Unlike SFL, MBD traditionally deals with multiple faults. However, apart
from much higher computational complexity, the logic models that are used in
the diagnostic inference are typically based on static program analysis. Con-
sequently, they do not exploit execution behavior, which, in contrast, is the
essence of the SFL approach. Combining the dynamic approach of SFL with
the multiple-fault logic reasoning approach of MBD, in this paper, we present a
multiple-fault reasoning approach that is based on the dynamic, spectrum-based
observations of SFL. Additional reasons to study the merits of this approach
are the following.

• Diagnoses are returned in terms of multiple faults, whereas statistical tech-
niques return a one-dimensional list of single fault locations only. The in-
formation on fault multiplicity is attractive from parallel debugging point
of view [19].

• Unlike statistical approaches, multiple-fault diagnoses only include valid
candidates, and are asymptotically optimal with increasing test informa-
tion [4].

1http://sir.unl.edu/

2

• The ranking of the diagnoses is based on probability instead of similarity.
This implies that the quality of a diagnosis can be expressed in terms
of information entropy or any other metric that is based on probability
theory [24].

• The reasoning approach naturally accommodates additional (model) in-
formation about component behavior, increasing diagnostic performance
when more information about component behavior is available.

To illustrate the difference between multiple-fault and the statistical ap-
proach, consider a triple-fault (sub)program with faulty components c1, c2, and
c3. Whereas under ideal testing circumstances a traditional SFL approach would
produce multiple single-fault diagnoses (in terms of the component indices) like
{{1}, {2}, {3}, {4}, {5}, . . .} (ordered in terms of statistical similarity), a
multiple-fault approach would simply produce one single multiple-fault diagno-
sis {{1, 2, 3}}. Although the statistical similarity of the first three items in the
former diagnosis would be highest, the latter, single diagnosis unambiguously
reveals the actual triple fault.

Despite the above advantages, a reasoning approach is more costly than sta-
tistical approaches because an exponential number of multiple-fault candidates
need to be processed instead of just the (M , being M the number of components
in the system under analysis) single-fault candidates. In this paper, we compare
our reasoning approach to several statistical approaches. Our study is based on
random synthetic spectra, as well as on several benchmark programs, extended
by us to accommodate multiple faults. More specifically, this paper makes the
following 5 contributions.

• We introduce a multiple-fault diagnosis approach that originates from the
model-based diagnosis area, but which is specifically adapted to the inter-
action dynamics of software. The approach is coined Zoltar-M (Zoltar for
the name of our debugging tool set [18]2, M for multiple-fault).

• We show how our reasoning approach applies to single-fault programs,
yielding a provably optimal SFL variant, called Zoltar-S (S for single-
fault), as of yet unknown in literature.

• We introduce a general, multiple-fault, probabilistic program (spectrum)
model, parameterized in terms of size, testing code coverage, and testing
fault coverage, to theoretically study Zoltar-M, compared to statistical
techniques such as Tarantula and Zoltar-S.

• We extend the traditional, single-fault benchmark set of programs (re-
ferred to as SIR-S) with a multiple-fault version (SIR-M), by combining
the existing single-fault versions, to empirically evaluate debugging per-
formance under realistic, multiple-fault conditions.

2http://www.fdir.org/zoltar

3

• We investigate the ability of all techniques to deduce program fault mul-
tiplicity, which is aimed at providing a good estimate to guide parallel
debugging, using an approach that substantially differs from [19].

To the best of our knowledge, this is the first paper to specifically address
software multiple-fault localization using a spectrum-based, logic reasoning ap-
proach, yielding two new localization techniques Zoltar-S and Zoltar-M, im-
plemented within our Zoltar SFL framework. Our experiments confirm that
Zoltar-S is superior to all known similarity coefficients for the Siemens-S bench-
mark. More importantly however, our experiments for multiple-fault programs
show that although for synthetic spectra Zoltar-M is outperformed by Zoltar-
S, for our SIR-M experiments Zoltar-M outperforms all similarity coefficients
known to date.

The paper is organized as follows. In the next section, we present the con-
cepts and terminology used throughout the paper. In Section 3, our multiple-
fault localization approach is described, as well as a derivation of the optimal
similarity coefficient for single-fault programs. In Section 4, the approaches are
theoretically evaluated, and in Section 5, real programs are used to assess the
capabilities of the studied techniques for fault localization. Related work is dis-
cussed in Section 6. Preliminary results of Section 4 and Section 5 appeared
in [2]. We conclude and discuss future work in Section 7.

2 Preliminaries

In this section, we introduce basic definitions as well as the traditional SFL
approach. As defined in [6], in the remainder of this paper, we use the following
terminology.

• A failure is an event that occurs when delivered service deviates from
correct service.

• An error is the part of the total state of the system that may cause a
failure.

• A fault is the cause of an error in the system.

To illustrate these concepts, consider the C function in Figure 1. It is meant
to sort, using the bubble sort algorithm, a sequence of n rational numbers
whose numerators and denominators are passed via parameters num and den,
respectively. There is a fault (bug) in the swapping code of block 4: only the
numerators of the rational numbers are swapped. The denominators are left in
their original order.

A failure occurs when applying RationalSort yields anything other than a
sorted version of its input. An error occurs after the code inside the conditional
statement is executed, while den[j] 6= den[j+1]. Such errors can be temporary:
if we apply RationalSort to the sequence 〈41 , 2

2 , 0
1 〉, an error occurs after the

first two numerators are swapped. However, this error is “canceled” by later

4

void RationalSort (int n, int *num , int *den)

{ /* block 1 */

int i,j,temp ;

for (i=n -1; i>=0; i--) {

/* block 2 */

for (j=0; j<i; j++) {

/* block 3 */

if (RationalGT (num[j], den[j],

num[j+1], den[j+1])) {

/* block 4 */

temp = num[j];

num[j] = num[j+1];

num[j+1] = temp ; } } }

}

Figure 1: A faulty C function for sorting rational numbers

swapping actions, and the sequence ends up being sorted correctly. Faults do
not automatically lead to errors either: no error will occur if the input is already
sorted, or if all denominators are equal.

The purpose of diagnosis is to locate the faults that are the root cause of
detected errors. As such, error detection is a prerequisite for diagnosis. As
a rudimentary form of error detection, failure detection can be used, but in
software more powerful mechanisms are available, such as pointer checking,
array bounds checking, deadlock detection, etc.

In a software context, faults are often called bugs, and diagnosis is part of
debugging. Computer-aided techniques as the one we consider in this paper are
known as automated debugging.

2.1 Basic Definitions

A program that is being diagnosed comprises a set of M components (statements
in the context of this paper), which is executed using N test cases that either
pass or fail. Program (component) activity is recorded in terms of program
spectra [16]. This data is collected at run-time, and typically consists of a
number of counters or flags for the different components of a program. In the
context of this paper, we use the so-called hit spectra, which indicate whether
a component was involved in a (test) run or not.

Both spectra and program pass/fail (test) information is input to SFL, as
well as to our reasoning technique. The program spectra are expressed in terms
of the N×M activity matrix A. An element aij is equal to 1 if component j was
observed to be involved in the execution of run i, and 0 otherwise. For j ≤M ,
the row Ai∗ indicates whether a component was executed in run i, whereas the
column A∗j indicates in which runs component j was involved. The pass/fail
information is stored in a vector e, the error vector, where ei signifies whether

5

run i has passed (ei = 0) or failed (ei = 1). Note that the pair (A, e) is the
only input to the techniques studied in this paper. From (A, e), we can derive
the probability r that a component is actually executed in a run (testing code
coverage), and the probability g that a faulty component is actually exhibiting
good behavior (testing fault coverage, also known as the “goodness” parameter
g from MBD [9]).

Programs can have multiple faults, the number being denoted C (fault car-
dinality). A diagnosis candidate is expressed as the set of indices of those com-
ponents whose combined faulty behavior is logically consistent with the observa-
tions A and therefore must be considered as a collective candidate. A diagnosis
is the ordered set of diagnostic candidates D = {d1, . . . , dk}, all of which are an
explanation consistent with observed program behavior (A), ordered in prob-
ability of being the program’s actual multiple fault condition. An example
multiple-fault diagnosis is the diagnosis {d1} = {{1, 2, 3}} given in the Intro-
duction. For brevity, we will often refer to diagnostic candidates as diagnoses
as well, as it is clear from the context whether we refer to a single diagnosis
candidate or to the entire diagnosis.

2.2 Traditional SFL

In SFL, one measures the similarity between the error vector e and the activity
profile vector A∗j for each component j. This similarity is quantified by a
similarity coefficient, expressed in terms of four counters npq(j) that count the
number of positions in which A∗j and e contain respective values p and q, i.e.,
for p, q ∈ {0, 1}, we define

npq(j) = |{i | nij = p ∧ ei = q}|

Two examples of well-known coefficients are

sT =

n11(j)
n11(j)+n01(j)

n11(j)
n11(j)+n01(j) + n10(j)

n10(j)+n00(j)

as used by the Tarantula tool [20], and the Ochiai coefficient

sO =
n11(j)

√

(n11(j) + n01(j)) ∗ (n11(j) + n10(j))
(1)

known from molecular biology, introduced in SFL in [3].
Under the assumption that a high similarity to the error vector indicates

a high probability that the corresponding parts of the software cause the de-
tected errors, the calculated similarity coefficients rank the parts of the program
with respect to their likelihood of containing the faults. Algorithm 1 concisely
describes the SFL approach to fault localization.

As an example, suppose we have a program with M = 7 components, of
which c1, c2, and c3 are faulty, with A as given in Table 1. The table also in-
cludes the npq counts as well as the resulting similarity based on the Tarantula

6

Algorithm 1 SFL Algorithm

Require: Activity matrix A, error vector e, number of runs N , number of
components M , and similarity coefficient s

Ensure: Diagnostic report D
1 D ← ∅
2 for j = 0 to M do

3 n11(j)← 0
4 n10(j)← 0
5 n01(j)← 0
6 n00(j)← 0
7 S[j]← 0 ⊲ Similarity s of component j
8 end for

9 for i = 0 to N do

10 for j = 0 to M do

11 if a[i, j] = 1 ∧ e[i] = 1 then

12 n11(j)← n11(j) + 1
13 else if a[i, j] = 0 ∧ e[i] = 1 then

14 n01(j)← n01(j) + 1
15 else if a[i, j] = 1 ∧ e[i] = 0 then

16 n10(j)← n10(j) + 1
17 else if a[i, j] = 0 ∧ e[i] = 0 then

18 n00(j)← n00(j) + 1
19 end if

20 end for

21 end for

22 for j = 0 to M do

23 S[j]← s(n11(j), n10(j), n01(j), n00(j))
24 end for

25 D ← Sort(S)
26 return D

and Ochiai coefficients. Assuming that a developer would follow the ranking
produced by the techniques, Tarantula requires him/her to inspect more com-
ponents in order to find a faulty one. The first faulty component ranked by
Tarantula is at the 3rd place of the list, whereas with Ochiai it is already at the
2nd place. The results shows the sensitivity of Tarantula to components that are
not involved in passed runs (n00), considering them likely to be the faulty one
and not taking into account their involvement in failed runs (e.g., c4 and c7).
Ochiai, however, exonerates components based on their involvement in passed
runs (n10), and absence in failed runs (n01, for detailed comparison, see [3]).

As can be seen, both Tarantula and Ochiai fail to consider c3 as one of the
most suspicious components. Besides, c2 and c3 can be considered as multiple
fault because all failed runs can be explained either by c2 or c3 (but the two
by themselves are not a valid explanation for all failures). In the next section,
we present our technique that exploits this info and contains multiple-fault

7

c1 c2 c3 c4 c5 c6 c7 e

1 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0
1 1 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1
1 1 0 1 1 1 1 1
1 1 0 0 0 1 0 1
1 0 1 0 0 1 1 1

n11(j) 6 4 2 2 2 5 3
n10(j) 5 1 4 0 4 2 0
n01(j) 0 2 4 4 4 1 3
n00(j) 2 6 3 7 3 5 7

sT 0.58 0.82 0.37 1 0.37 0.74 1
sO 0.74 0.73 0.33 0.58 0.33 0.77 0.71

Table 1: Observation Matrix Example A

explanations in its ranking.

3 Multiple-Fault Localization

In this section, we present our multiple-fault localization approach Zoltar-M,
which is based on reasoning as performed in model-based diagnosis, combined
with (Bayesian) probability theory to compute the ranking of the candidates.
The major difference with the statistical approach in Section 2.2 is

• that only a subset of components is considered (the so-called hitting set)
in contrast to all components,

• all computed candidates logically explain the observed failures, and

• that the ranking is based on probability, rather than statistical similarity.

In the remainder of this section, specific details on the two main phases
of our Zoltar-M approach are given (see Figure 2): (1) candidate generation
and (2) candidate fault probability computation (ranking). In addition, as a
by-product of Zoltar-M, we propose an optimal SFL variant for single faults.

8

Figure 2: Zoltar-M’s main phases

3.1 Hitting Set Computation

In model-based diagnosis, one derives a model of the program that, together with
the observations of input-output behavior, determines a set of constraints from
which diagnostic solutions consistent with this behavior are logically deduced.
Unlike the MBD approaches such as presented in [22, 23], in our Zoltar-M
approach we refrain from modeling the program in detail, but use A as the
only, dynamic source of information, from which we derive the model and the
input-output observations.

Each component cj is modeled by the logic proposition

hj ⇒ in.okj ⇒ out.okj (2)

where hj models the health state of cj (true = healthy, false = defect). This
so-called weak model specifies that a component produces correct output values
(out.ok true) if (1) healthy (h is true), and (2) when provided with correct input
(in.ok true). Note that this model still allows a component to produce correct
data (the probability of which is measured by g) even though h = false. Also
note that a component can accept erroneous input data and still produce correct
output. Finally, this approach allows the inclusion of additional component
information as the number of propositions per component is not limited to the
above, default model of nominal behavior.

Due to dynamic (data-dependent) control flow each run may involve differ-
ent components. Consequently, rather than modeling the program by a static
composition of component propositions (Eq. 2), we consider a dynamic model
that is defined per program run (i.e., Ai∗). In [4], it is shown that each failed
run yields a conjunction of logical constraints (i.e., a sub-model) in terms of the
components involved, which is known in MBD as a conflict [10]. For instance, a

9

failed run involving c1 and c2 generates the conflict ¬h1 ∨ ¬h2, indicating that
c1 and c2 cannot both be healthy.

The multiple-fault approach is based on compiling each failed run (row Ai∗)
to a conflict, after which the diagnosis for A is derived by computing the hitting
set [25] from all conflicts [4] (the hitting set algorithm essentially transforms logic
products-of-sums into sums-of-products). For instance, the example observation
matrix A in Table 1 generates the following 6 conflicts

(¬h1 ∨ ¬h2 ∨ ¬h5 ∨ ¬h6) ∧

(¬h1 ∨ ¬h2 ∨ ¬h4 ∨ ¬h6 ∨ ¬h7) ∧

(¬h1 ∨ ¬h3) ∧

(¬h1 ∨ ¬h2 ∨ ¬h4 ∨ ¬h5 ∨ ¬h6 ∨ ¬h7) ∧

(¬h1 ∨ ¬h2 ∨ ¬h6) ∧

(¬h1 ∨ ¬h3 ∨ ¬h6 ∨ ¬h7)

The (minimal) hitting set comprises one single-fault candidate {1}, and two
double-fault candidates {2, 3} and {3, 6}. Note that the triple-fault candidate
{1, 2, 3}, which equals the actual fault state, is subsumed by both {1} and
{2, 3} and therefore does not appear in D (which is the minimal hitting set).
The reason why, e.g., {1} subsumes {1, j}, j = 2, 3, . . . , M is that the weak
component model (2) allows any faulty component j to exhibit correct behavior.
Hence {1, j} is also a valid explanation. The hitting set can be directly observed
from A by (multi-)column “chains” of ’1’s from top to bottom formed by all
failing rows of A. Note that this procedure only considers failed runs. Passed
runs are considered later on when computing the probability of each diagnostic
candidate.

The above example illustrates that the true diagnosis (candidate) can be
preceded (or subsumed) by other, more probable candidates. However, for N →
∞ Zoltar-M produces the optimal result, where diagnoses such as {1} and {2, 3}
eventually disappear, exposing the only correct diagnosis {1, 2, 3}. This can be
seen through the following argument. Consider a C-fault program. While for
small N the minimal hitting set will still contain many members (components)
other than the C faulty components, by increasing N the probability that a
non-faulty component will still be included steadily decreases [4]. Let f denote
the probability of a run failing. As the probability that a run passes equals
the probability that none of the C components cause a failure, which equals
(1− r · (1− g))C , it follows that f = 1− (1− r · (1− g))C [4]. For the hitting set
analysis, only failing runs matter. For f ·N failing runs, the C-fault candidate is
by definition within the set of candidates that “survive” those f ·N runs (whose
chain is still unbroken). However, the probability that other components can
be involved in a candidate is less than unity, which forms the basis of those
candidates’ eventual elimination.

For example, the probability of a B-cardinality diagnosis (B < C) competing
with our C-cardinality solution equals the probability that at least one out of the
B components is hit every time in a failing run. The latter probability equals b =

10

1− (1− r)B (derivation similar to f). Hence, for N runs, the probability of this
competing diagnosis surviving in the final hitting set is of the order bf ·N , which
as b < 1 negative-exponentially decreases to zero for large N . Note that the
above analysis does not consider a particular probability computation regarding
the ranking. It simply proves that, for large N , the diagnosis can only consist
of the single surviving C-cardinality candidate ({1, 2, 3} in the earlier example).
Our experiments confirm this optimality. There is one exception to the above
argument. Components that are always executed (e.g., initialization code) will
always appear as single-fault candidate, which is typically ranked higher than
a genuine multiple-fault (see next section). As this applies to techniques based
on spectral information this problem also occurs with statistical techniques.

3.2 Probability Computation

For each multiple-fault candidate, the probability of being the actual diagnosis
depends on the extent to which that candidate explains all observations (pass
or fail per run). Let Pr({j}) denote the a priori probability that a component
cj is at fault. Although this value is typically dependent on code complexity,
design, etc., we will simply assume Pr({j}) = p (we arbitrarily set p = 0.01
in the context of this paper). Assuming components fail independently, and in
absence of any observation, the prior probability a particular diagnosis dk is
correct is given by Pr(dk) = p|dk| · (1 − p)M−|dk|. Similar to the incremental
compilation of conflicts per run we compute the posterior probability for each
candidate based on the pass/fail observation obs for each sequential run using
Bayes’ update rule according to

Pr(dk|obs) =
Pr(obs|dk)

Pr(obs)
· Pr(dk)

The denominator Pr(obs) is a normalizing term that is identical for all dk and
thus needs not to be computed directly. Pr(obs|dk) is defined as

Pr(obs|dk) =

0 if dk and obs are inconsistent
1 if dk logically follows from obs
ǫ if neither holds

In the context of model-based diagnosis, many policies exist for ǫ (see [9]). In
this paper, we define ǫ as follows

ǫ =

{

g(dk)η if run passed
1− g(dk)η if run failed

In this equation, η is the number of faulty components involved in the run (the
rationale being that the more faulty components are involved, the more likely
it is that the run will fail [4]), and g is estimated by

g(dk) =
n10(dk)

n10(dk) + n11(dk)

11

Technique D = {d1(s|pr), . . . , dk(s|pr)}
Tarantula {{4}(1), {7}(1), {2}(0.82), {6}(0.74),

{1}(0.58), {3}(0.37), {5}(0.37)}
Ochiai {{6}(0.77), {1}(0.74), {2}(0.73), {7}(0.71),

{4}(0.58), {3}(0.33), {5}(0.33)}
Zoltar-M {{1}(0.98), {2, 3}(0.99e−2), {3, 6}(0.52e−2)}

Table 2: Diagnoses for example A

where n1q(dk) =
∑

i=1..N

[(
∨

j∈dk

aij = 1)∧ei = q] is a generalization of the definition

in Section 2.2 to support multiple fault explanations, q ∈ {0, 1}, and [·] denotes
Iverson’s operator [17] ([true] = 1, [false] = 0).

To illustrate the differences between the probabilistic approach as presented
in this section and the statistical SFL approach (as explained in Section 2.2),
again consider the example A in Table 1. The diagnostic report D for the
different approaches are listed in Table 2. As can be seen, the top ranked can-
didate for both Tarantula and Ochiai is not one of the three faulty locations,
whereas for Zoltar-M one of the faults, namely c1 would be immediately found.
Furthermore, in contrast to Zoltar-M, which contains multiple faults explana-
tions such as {2, 3}, Tarantula and Ochiai only rank single-fault explanations.
To conclude, note that Zoltar-M only lists candidates that actually explain all
observed failures.

While the inherent multiple-fault approach used in Zoltar-M is asymptoti-
cally optimal, the complexity of the underlying hitting set algorithm and subse-
quently having to manage a possibly exponential number of multiple-fault can-
didates (e.g., update their probability) is prohibitive for large C (and N, M).
Nevertheless, preliminary experiments with a statistically directed search tech-
nique (i.e., using statistical similarity to guide the search) indicates that the
complexity of our current hitting set computation can be reduced by several
orders of magnitude. In addition, hitting set completeness can be traded-off to
further reduce time complexity (see [13] for a greedy stochastic search addressing
this issue).

3.3 Single-fault Case

In this section, we show how our above reasoning approach can be used to derive
an optimal similarity coefficient for single-fault programs.

In the single-fault case (such as the SIR benchmark set of programs), we
know that all failures relate to only one fault, which, by definition, is included
in the minimal hitting set. Hence, any coefficient approach should consider the
minimal hitting set only (i.e., only those cj which consistently occur in failing
runs). This implies that the optimal approach is to select only the failing runs

12

and compute the similarity coefficient. Since for these components by definition
n01 = 0, one only needs to consider n11 and n10. This, in turn, implies that the
ranking is only determined by the exonerating term n10. In summary, once we
only consider the components included in the hitting set, any of the coefficients
that includes n10 in the denominator will produce the same, optimal ranking.
Experiments using this “hitting set filter” combined with a simple similarity
coefficient such as Tarantula indeed confirm that this approach leads to the
best performance [27]. For instance,

filter =

{

sT if n01 6= 0,

0 otherwise.

Note that the above filter is only optimal for programs that have only 1 fault
as applying this filter to any multiple-fault program would be overly restrictive.
It would fail to detect faults that are not always involved in failed runs. For
example, the diagnosis for A in Table 1 when using the filtering approach would
yield D = {{1}}, entirely ignoring two of the three faults. Hence, instead of
considering a single-fault hitting set filter, we modify this approach in order to
also allow application to multiple-fault programs. Taking the Ochiai coefficient
as (best) starting point (for κ = 1, Eq. 3 follows from Eq. 1 by squaring,
and factoring out n11(j), none of which changes the ranking) and applying the
above filtering approach, we derive the following similarity coefficient [4], coined
Zoltar-S, according to

sZ-S =
n11(j)

n11(j) + n10(j) + n01(j) + κ · n01(j)·n10(j)
n11(j)

(3)

where κ > 0 is a constant factor that exonerates a component cj that was either
seldom executed in failed runs or often in passed runs. We empirically verified
that the higher the value of κ, the more identical the diagnosis becomes with
the one obtained by the hitting set filter [27]. In the context of this paper, we
limit κ to 10, 000 to avoid round-off errors.

In [5] it has been proven that, for single-fault programs, given the available
input data (A, e), the diagnostic ranking produced by our reasoning technique
is theoretically optimal. As such theoretical optimality applies to C = 1 (i.e.,
for single-fault programs), we have adapted the result in [5] to a similarity
coefficient in terms of κ. The following theorem proves that for κ → ∞ the
Zoltar-S similarity coefficient has exactly the same behavior.

Theorem For single-fault programs, given the available input data (A, e), the
diagnostic ranking produced by Zoltar-S is theoretically optimal.

Proof Let cf be the faulty component and cp a (representative) non-faulty
component. For single faults, n01(f) = 0, n11(f) = NF (where NF is the number

of failed runs), and n01(p) ≥ 0. Therefore, n01(f)·n10(f)
n11(f) = 0 and n01(p)·n10(p)

n11(p) ≥ 0.

Consequently, for non-faulty components, the following holds

13

Program Faulty Versions #components (M) #runs (N) Description

print tokens 7 539 4,130 Lexical Analyzer
print tokens2 10 489 4,115 Lexical Analyzer

replace 32 507 5,542 Pattern Recognition
schedule 9 397 2,650 Priority Scheduler
schedule2 10 299 2,710 Priority Scheduler

tcas 41 174 1,608 Altitude Separation
tot info 23 398 1,052 Information Measure

Table 3: The Siemens benchmark set

lim
κ→∞

sZ−S(p) ≃ 0 (4)

lim
κ→∞

sZ−S(f) =
n11(f)

n11(f) + n10(f)
=

NF

NF + n10(f)
> 0 (5)

Hence, the higher κ is, the more is the exoneration factor for non-faulty, and as
such, the faulty one will rank high in the diagnostic ranking.

To evaluate the diagnostic capabilities of Zoltar-S in comparison with other
techniques, the Siemens benchmark set is used. This well-known benchmark is
composed of 7 programs (see Table 3; for detailed info, visit http://sir.unl.edu).
In total, the Siemens benchmark set of programs provides 132 faulty programs.
However, as no failures are observed in two of these programs, namely version
9 of schedule2 and version 32 of replace, they are discarded. Besides, we
also discard versions 4 and 6 of print tokens because the faults are not in the
program itself but in a header file. In summary, we discarded 4 versions out
of 132 provided by the suite, using 128 versions in our experiments. To collect
the program spectra, the Zoltar toolset [18] was used. For compatibility with
previous work in (single-) fault localization, we use the effort/score metric [3,
26], which is the percentage of statements that need to be inspected to find the
fault - in other words, the rank position of the faulty statement divided by the
total number of statements. Note that some techniques such as in [21, 26] do
not rank all statements in the code, and their rankings are therefore based on
the program dependence graph (PDG) of the program.

Figure 3 plots the percentage of located faults in terms of debugging ef-
fort [3]. Apart from the coefficients studied for SFL, the following techniques are
also plotted: Intersection and Union [26], Delta Debugging (DD) [30], Nearest
Neighbor (NN) [26], and Sober [21], which are among the best SFL techniques
(detailed discussion in Section 6). As Sober is publicly available, we run it in
our own environment. The values for the other techniques are, however, directly
cited from their respective papers.

From Figure 3, we conclude that Zoltar-S and the filter version are con-
sistently the best performing techniques (note that in the single-fault context
Zoltar-M simply reduces to Zoltar-S), finding 60% of the faults by examining

14

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
e

rc
e

n
ta

g
e

 o
f

lo
c
a

te
d

 f
a

u
lt
s

Effort

Zoltar-S
Filter

Ochiai
Tarantula

Sober
NN
DD

Intersection
Union

Figure 3: Effectiveness Comparison (C = 1)

less than 10% of the source code. For the same effort, using Ochiai would lead a
developer to find 52% of the faulty versions and with Tarantula only 46% would
be found. The Zoltar-S approach is followed by Ochiai, which outperforms Sober
and Tarantula, which as concluded in [21], yield similar performance. Finally,
the other techniques plotted are clearly outperformed by the spectrum-based
techniques.

4 Theoretical Evaluation

In order to gain understanding of the effects of the various parameters on the
diagnostic performance of the different approaches, we use a simple, probabilistic
model of program behavior that is directly based on C, N, M, r, and g. Without
loss of generality we model the first C of the M components to be at fault.
For each run, every component has probability r to be involved in that run. If
a selected component is faulty, the probability of exhibiting nominal (“good”)
behavior equals g. When either of the C components fails, the run will fail.
We study the performance of Zoltar-M in comparison to Tarantula, Ochiai, and
Zoltar-S for observation matrices that are randomly generated according to the
above model.

15

P 1 2 3 4 5 6 . . .
Tarantula W/I 14/0 29/0 29/1 43/1 43/2 43/3 . . .
Zoltar-M W/I 0/1 0/2 0/3 14/3 – – . . .

Table 4: Wasted effort for different developers P

4.1 Performance Metrics

Before evaluating the results, we first present our performance metric. As one
of the motivations of our multiple-fault approach is the exposure of fault multi-
plicity (parallel debugging) we refrain from reusing established metrics such as
the diagnostic quality [3] or score [26] but evaluate the amount of wasted debug-
ging effort W as a function of the number of parallel debuggers [19], denoted
by P , which more clearly indicates practical debugging parallelism. The wasted
debugging effort is computed as follows. From the diagnosis (obtained with
either a statistical or reasoning approach), the first P candidates are examined
(debugged) in parallel [19]. Actual faults are assumed to be properly debugged,
after which the program is retested. Based on the retest a new diagnosis is
obtained (excluding the repaired components, but including the still uncovered
faults that may have considerably moved up in the ranking). This P -parallel
process continues until in the last iteration the program retests ok (i.e., all faults
have been found). W measures the percentage of non-faulty components that
were debugged in the above process. For P = 1, the above procedure reduces
to a standard sequential debugging process. For instance, consider the diag-
nostic reports yielded by Tarantula and Zoltar-M (as in Table 2) for Example
A in Table 1. Table 4 shows the performance profile for these two techniques
(I stands for the number of bugs found in the first debugging iteration). As
can be seen, Tarantula would need more developers in order to get a bug-free
program in one iteration (6 developers against 3 for Zoltar-M). Furthermore,
for this example, the wasted effort is consistently higher for Tarantula: with
Zoltar-M, 3 developers would eliminate all bugs from the program at the cost
of 0% wasted effort, whereas with Tarantula 6 developers would be needed at a
cost of 43%. Note that there is no point in putting more than 4 developers to
work as the Zoltar-M diagnosis contains only 4 different components.

Another reason not to adopt the aforementioned score metric [26] is that in
our synthetic model we do not have program dependence graph information.
Furthermore, the choice to exclude the actual faults from the debugging effort
(i.e., instead of counting them as effort) is to make our performance metric
independent of the number of faults C.

4.2 Experimental Results

In our first experiment, we focus on the effect of C, N , M , r, and g on W .
Consequently, we choose P = 1. We have varied M between 10 and 30 and
after verifying that this does not change our conclusions [4], we choose M = 20

16

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9

Figure 4: Wasted effort W for C = 1

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9

Figure 5: Wasted effort W for C = 2

for the plots in the paper. Similarly, we also varied r between r = 0.4 and
r = 0.6, and as there are no significant differences we only include the plots for
r = 0.6, which is roughly the same as the values measured for the Siemens set.

Figures 4, 5, and 6 plot W versus N for C = 1, C = 2, and C = 5,
respectively. We have also applied the technique for matrices with C = 8
and the conclusions are essentially the same. Each measurement represents
an average over 1,000 sample matrices. The plots show that for small N all
techniques start with equal W (for N = 1 it follows that W = (M−C)·r/M [4]),
while for sufficiently large N all techniques produce an optimal diagnosis. The
plots clearly show that all techniques yield an optimal diagnosis for sufficiently
large N . This happens earlier for small C and g. In the single-fault case,
there is hardly any difference in the various techniques. For a small value of
g, almost each run that involves the faulty component yields a failure, already
producing near-perfect diagnoses for only small N . For a large value of g (which
is more realistic, the Siemens set exhibits g values ranging from 79% (tot info)
to 99% (tcas)), the fraction of failing runs dramatically decreases (cf. f in
Section 3.1). Consequently, a much larger number of runs is required to obtain
a good diagnosis. For C = 5, we see the same trend, albeit that convergence
to good diagnosis is much slower, especially for high g. This is due to the

17

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9

Figure 6: Wasted effort W for C = 5

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9

Figure 7: W vs. P for C = 1

(combinatorial) fact that the number of “competitor” candidates of cardinality
B ≤ C (see Section 3.1) greatly increases with C (and M [4]). The main
conclusion is that all techniques are very similar for the synthetic matrices and
no technique clearly outperforms the others. For C = 5, we conclude that for
small g Zoltar-S outperforms all other techniques, Zoltar-M is the second-best
technique, and Tarantula is the worst performing technique. Besides, for small
g and N , the Tarantula technique has very poor performance because some of
the non-faulty components are only touched in failed runs, hence sharing the
first position of the ranking and degrading the diagnosis. This is also the reason
why the wasted effort first increases and only then starts to decrease (more
passed runs are needed for non-faulty components to be exonerated). The fact
that Zoltar-S outperforms Zoltar-M comes from the fact that for the synthetic
matrices there are not that many non-faulty components involved in all failed
runs, and therefore Zoltar-S manages to rank the faulty components on top. For
more realistic cases (g = 0.9), all techniques perform equally (poor), and much
higher N is required to produce high diagnostic quality.

In Figures 7, 8, and 9, we measure W for all approaches as function of P
to study inherent debugging parallelism for C = {1, 2, 5}. For these plots, we
set N = 500 to ensure that each technique has reached acceptable diagnostic

18

quality. For g = 0.1, W starts a linear increase after P = C (the “knee”), which
indicates that all C faults are indeed at or near the top of the ranking (the bump
at P = 4 is due to integer division effects). Except for Ochiai, both Zoltar-S
and Tarantula yield similar performance as Zoltar-M. For C = 1 and g = 0.1,
Zoltar-M has zero wasted effort throughout. This occurs because, for N = 500,
the diagnosis only contains the faulty statement (perfect diagnosis), revealing
that there is no point in having more than 1 developer debugging the program.

While the above results show to what extent debugging can be efficiently
parallelized, in practice information on C is, of course, not available. In the fol-
lowing, we evaluate the added value of multiple-fault diagnosis in estimating the
number of debuggers P that can be efficiently deployed in parallel. The plots
in Figure 10 show the distribution of the probability (Zoltar-M) or similarity
(Zoltar-S, Ochiai, Tarantula) versus the ranking position. For multiple-fault
diagnoses, each member index is counted as separate position. For cases where
the diagnoses are near-perfect (g = 0.1), the Zoltar-M distribution clearly ex-
hibits the added information on the program’s fault cardinality C (correspond-
ing to the “knee” in the previous plots), whereas the statistical techniques fail
to produce any information on C whatsoever (although the Zoltar-S ranking
distribution has more dynamics). For a high value of g, this relative advantage
becomes less as diagnostic quality degrades. Note that this can be remedied by
further increasing N .

5 Empirical Evaluation

Whereas the synthetic observation matrices used in the previous section are
populated using a uniform distribution, this is not the case with observation
matrices for the behavior of actual programs (different spectral distribution).
Therefore, in this section we will evaluate the same diagnosis techniques on the
SIR-S set, which provides the programs introduced in Section 3.3 extended with
the real-world, large programs space, gzip, and sed (see Table 5. In addition,
we also evaluated our techniques in the extended the benchmark set of programs

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9

Figure 8: W vs. P for C = 2

19

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9

Figure 9: W vs. P for C = 5

Program Faulty Versions M N Description
space 38 9,564 150 ADL Interpreter

gzip-1.3 7 5,680 210 Data compression
sed-4.1.5 6 14,427 370 Textual manipulator

Table 5: SIR’s real-world programs

to accommodate multiple-fault (SIR-M).

5.1 Experimental Setup

The SIR-M set extends the Siemens-S set with program versions that combine
several faults from the latter set. The faults can be selectively activated via
conditional compilation. The selections of faults that are available in the SIR-
M set are limited by

(1) their nature (e.g., a fault in non-executable code, which is not handled by
our techniques would effectively reduce a C-fault diagnosis to a (C − 1)-
fault diagnosis),

(2) the number of failed runs (we only consider faults that yield at least one
failed test case),

(3) their locations (several faults in SIR-S have the same statement location),
and

(4) the number of lines of code involved (we only consider faults that can be
attributed to a single line).

As mentioned in Section 3.3, the Zoltar toolset [18] is used to obtain code
coverage information for each of the test cases supplied with the programs in the
benchmark set of programs. The error vector in the last column is constructed

20

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

P
r

/
C

o
e

ff

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1 and C = 1

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

P
r

/
C

o
e

ff

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9 and C = 1

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

P
r

/
C

o
e

ff

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(c) g = 0.1 and C = 2

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

P
r

/
C

o
e

ff

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(d) g = 0.9 and C = 2

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

P
r

/
C

o
e

ff

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(e) g = 0.1 and C = 5

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

P
r

/
C

o
e

ff

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(f) g = 0.9 and C = 5

Figure 10: Probability/Similarity distribution

by comparing the output of a faulty version of a program with that of the correct
version of the program, on a given test case.

For the resulting set of program spectra, Zoltar supports various diagnosis
techniques, including Zoltar-M, and the Tarantula, Ochiai, and Zoltar-S coef-
ficients. In the case of Zoltar-M, the presence of duplicate columns, following
from the block structure of a program, is exploited in the hitting-set calcula-
tion by grouping all identical columns, while maintaining the set of components
(lines of code) that they correspond to. This way, larger numbers of components
can be handled than in the case of synthetic observation matrices.

21

5.2 Experimental Results

In Figure 11, we show W versus P for tcas and replace, two representative
programs, when seeded with C = 1, C = 2, and C = 3 faults, respectively.
Although the minimal hitting set computation is known to be rather expensive,
we have used a low-cost, approximate technique dubbed Staccato [1], which
makes Zoltar scale to large, real-world programs [5]. We have also repeated the
experiment up to C = 5 (up to C = 10 for tcas), but the graphs are similar to
those for C = 2 and C = 3 of the representative programs, with the performance
of Zoltar-S approaching that of the other methods as C increases.

The plotted W values are averaged over several different program versions:
in case of the plots for C = 1, these are all faulty versions in the SIR-S set
that can be attributed to a single line of executable code (30 for tcas, and 25
for replace). In the case of the C = 2 and C = 3 plots, these are 40 – 100
randomly selected combinations of faults. The plateau reached by Zoltar-M for
tcas at high P values is caused by the limited size (ambiguity) of Zoltar-M’s
diagnosis, removing the need to have them inspected by additional developers.

5.3 Evaluation

Figure 11(a) and 11(d) confirm the observation of Section 4 that for single
faults, Zoltar-S is optimal. Although at the end of Section 3.3 we noted that
in a single-fault context, Zoltar-M reduces to Zoltar-S, here Zoltar-M runs in
multiple-fault mode, and the presence of cardinality C′ = 3 diagnoses in the
hitting set, as explained above, is the cause for the small differences between
these two techniques.

Contrary to what we observed in Section 4.2, where Zoltar-S is among the
best performing methods for multiple-faults, in Figures 11(b), 11(c), 11(e),
and 11(f), Zoltar-S performs worst. This is caused by many non-faulty com-
ponents that are active in all failed runs. Having n01(j) = 0 in Eq. (3), such

components fail to be exonerated via the term κ · n01(j)·n10(j)
n11(j)

, and will therefore

rank high, leading to a lower quality diagnosis. While in the synthetic observa-
tion matrices it is unlikely that a component is active in all failed runs, this is
quite common in software (e.g., statements that are always executed).

As shown in Figures 11(b), 11(c), 11(e), and 11(f), for C = 2 and C = 3,
Zoltar-M generally outperforms the statistical techniques, but for tcas, its per-
formance is quite close to that of the SFL approaches using the Ochiai and
Tarantula coefficients. This can be attributed to the following two related ef-
fects. First, the tcas faults that are available for making multiple-fault ver-
sions have a higher goodness factor (g = 0.95) than those available for replace
(g = 0.86), making the diagnosis problems for the multiple-fault tcas versions
inherently more difficult. The rationale is that for faults whose observation ma-
trix inherently does not permit a good diagnosis (e.g., because the activity of a
non-faulty component accidentally coincides with the occurrence of failures), all
appropriate techniques will yield an equally bad diagnosis on average. Referring
back to the discussion at the end of Section 4.2, the high values for g (common

22

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) tcas, C = 1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) tcas, C = 2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(c) tcas, C = 3

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(d) replace, C = 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(e) replace, C = 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

W
 (

%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(f) replace, C = 3

Figure 11: Wasted effort for 1 - 64 developers on representative programs of the
SIR-M benchmark set

23

to all programs in the used benchmark set of programs) also explain why on
average, no technique achieves optimal diagnostic quality on the Siemens-S and
Siemens-M faults, and the consequent absence of a “knee” in the P −W graph
of Zoltar-M.

The second effect that contributes to the difference in the plots for tcas and
replace is that the variations in control flow in the former program are ex-
tremely limited, while essentially, this is what the diagnosis methods are based
on. As an illustration, for the correct version of tcas, the observation matrix
that follows from the 1,608 test cases that accompany the program contains
many duplicate rows and columns: the number of unique rows (spectra) and
columns (component behavior profiles) are 8 and 14, respectively. In compar-
ison, the 5,542 test cases of replace lead to 2,023 different spectra, and 91
different behavior profiles, providing much more information to base the diag-
nosis on.

The latter observation confirms our expectation that the effectiveness of
automated diagnosis techniques generally improves with program size. As an
illustration, near-zero wasted effort is implied by the experiments with SFL on a
0.5 MLOC industrial software product reported in [33]. In summary, tcas is too
simple, and Figures 11(e) and 11(f) can be expected to be the more representa-
tive of multiple-fault debugging in a realistic development environment. From
this, we conclude that Zoltar-M can be expected to yield a significant improve-
ment of debugging efficiency over the statistical methods in the multiple-fault
case.

5.4 Time/Space Complexity

In this section, we report on the time/space complexity of Zoltar-M, compared
to other fault localization techniques. We measure the time efficiency by con-
ducting our experiments on a 2.3 GHz Intel Pentium-6 PC with 4 GB of memory.
As most fault localization techniques have been evaluated in the context of sin-
gle faults, in order to allow us to compare our fault localization approach to
related work we limit ourselves to the original, single-fault Siemens benchmark
set. We obtained timings for probabilistic dependence graph (PPDG) and Delta
Debugging (DD) from published results [7, 30].

Table 6 summarizes the results of the study. The columns show the pro-
grams, the average CPU time (in seconds) of Zoltar-M, traditional SFL (Taran-
tula/Ochiai), PPDG, and DD, respectively. As expected, the less expensive
techniques are the statistics-based techniques Tarantula and Ochiai. At the
other extreme are PPDG and DD. Zoltar-M costs much less than PPDG and
DD.

With respect to space complexity, statistical techniques need two store the
counters (n11, n10, n01, n00) for the similarity computation for all M compo-
nents. Hence, the space complexity is O(M). Zoltar-M also stores similar
counters but per diagnosis candidate. Assuming that |D| scales with M , these
approaches have O(M) space complexity.

24

Program Zoltar-M Tarantula/Ochiai PPDG DD
print tokens 4.2 0.37 846.7 2590.1
print tokens2 4.7 0.38 243.7 6556.5

replace 6.2 0.51 335.4 3588.9
schedule 2.5 0.24 77.3 1909.3
schedule2 2.5 0.25 199.5 7741.2

tcas 1.4 0.09 1.7 184.8
tot info 1.2 0.08 97.7 521.4
space 7.4 0.15 N/A N/A
gzip 6.2 0.19 N/A N/A
sed 9.7 0.36 N/A N/A

Table 6: Diagnosis cost for the single-fault subject programs (time in seconds)

5.5 Threats to Validity

Although the empirical study presented in this section provides evidence of the
potential usefulness of the simultaneous bug fixing technique, there are threats
to the validity of the empirical results that should be taken into account when
interpreting the results.

Using only small to medium-sized C programs is a threat to external validity.
Although, we believe the results will be identical, we cannot claim that the
results generalize (large-sized programs, other programming languages). Yet
another threat to external validity is the way multiple fault versions are built.
When combining faults we assume an or-model (cf. the ǫ-policy). So, we ignore
interference between faults (faults can mask other faults).

Quantifying the debugging effort is extremely difficult because developers
can recognize some components do not need to be inspected. Besides, we assume
developers will inspect components following the ranking given by the techniques
and that may not be entirely true (a developer could try to follow a “smell”
following the control-data relationship). Finally, we also assume that a developer
is able to identify the faulty component once it inspects it.

Deploying several developers to fix the multiple bugs in a system may be
more error-prone than a single developer fixing all bugs. The experiments re-
ported do not address this problem. Further studies are needed to investigate
this issue.

6 Related Work

As mentioned in the introduction, automated debugging techniques can be dis-
tinguished into statistical and logic reasoning approaches that use program mod-
els.

In model-based reasoning to automatic software debugging (MBSD), the
program model is typically generated from the source code using static analy-

25

Figure 12: Using Conceptual Models to Enhance Model-based Reasoning

sis, as opposed to the traditional application of model based diagnosis where the
model is obtained from a formal specification of the (physical) system [25]. An
overview of different techniques to generate program models is given in [23]. The
authors conclude that models generated by means of abstract interpretation [22]
are the most accurate for debugging, while not suffering from the computational
complexity inherent to more precise analysis techniques [23]. Recently, model-
based techniques have also been proposed to isolate specific faults stemming
from incorrect implementation of high-level conceptual models [29], where mu-
tations are applied to state machine models to detect conceptual errors (see
Figure 12), such as incorrect control flow and missing or additional features
found in the implementation. Model-based approaches also include the work
of Wotawa, Stumptner, and Mayer [28]. Other approaches that fit into this
category include explain [14] and ∆-slicing [14], which are based on comparing
execution traces of correct and failed runs using model checkers. Model-based
test generation [12] from abstract specifications of systems employs a similar
idea where possible faults manifested as differences in abstract state machines
are analyzed to generate tests. Although model-based diagnosis inherently con-
siders multiple-faults, thus far the above software debugging approaches only
consider single faults. Apart from this, our approach differs in the fact that
we use program spectra as dynamic information on component activity, which
allows us to exploit execution behavior, unlike static approaches. Furthermore,
our approach does not rely on the approximations required by static techniques
(i.e., incompleteness).

26

Statistical approaches are very attractive from complexity-point of view.
Well-known examples are the Tarantula tool [20], the Nearest Neighbor tech-
nique [26], the Sober tool [21], CP [31], Holmes [8], and the Ochiai coefficient [3].
Although differing in the way they derive the statistical fault ranking, all tech-
niques are based on measuring program spectra. Examples of other techniques
that do not require extra knowledge of the program under analysis are the Delta
Debugging technique [30] and the dynamic program slicing technique [15].

Essentially all of the above work has mainly been studied in the context of
single faults, except for recent work by Jones, Bowring, and Harrold [19] and
Zheng, Jordan, Liblit, Naik, and Aiken [32] which are motivated by the obvious
advantages of parallel debugging with respect to development time reduction
(particularly the work in [19]). They use clustering techniques to identify traces
(rows in A) that refer to the same fault, after which a single-fault technique
is applied to each cluster of rows. While our work has the same motivation,
our approach is based on logic reasoning instead of clustering. Although both
introduce an increase of computational complexity, compared to the aforemen-
tioned statistical approaches, our hitting set analysis approach is asymptotically
optimal, while in the clustering approach there is a possibility that multiple de-
velopers will still be effectively fixing the same bug. As their parallel debugging
approach has only been evaluated in a restricted empirical context, our results,
e.g., for the Siemens programs, cannot yet be compared.

7 Conclusions and Future Work

In this paper, we have presented a multiple-fault localization technique, Zoltar-
M, which is based on the dynamic, spectrum-based measurement approach from
statistical fault localization methods, combined with a logic (and probabilistic)
reasoning approach from model-based diagnosis, inspired by previous work in
both separate disciplines [3, 13]. We have compared the performance of Zoltar-
M with Tarantula and Ochiai, which are amongst the best known statistical SFL
approaches, as well as a new statistical SFL technique, coined Zoltar-S, derived
by us as a by-product of our reasoning approach, and shown to be optimal for
single-fault programs (C = 1).

Our synthetic experiments show that both the reasoning and statistical ap-
proaches have the same general properties with respect to the influence of the
parameters we introduced, viz, number of components M , number of test cases
N , testing code coverage r, testing fault coverage g, and fault cardinality C. For
a low value of g, both approaches yield near-perfect quality for relatively small
N , while for high g (typical for many components in practice) a much larger N
is required for good diagnosis. In most cases, it is Zoltar-S that outperforms
Zoltar-M, which for C > 1 is due to the fact that all components are involved in
different runs with the same probability, making it easy for Zoltar-S to pinpoint
the faulty ones. Despite these small differences, Zoltar-M’s ranking probability
distribution clearly provides information on the program’s potential debugging
parallelism while statistical techniques fail to provide any information.

27

Our results on two multiple-fault programs of our newly created SIR-M
benchmark suggest that for programs with small spectral distribution variabil-
ity (and high g value) both approaches do not significantly differ. For the larger
program, much more test information is available (N), the g parameter is some-
what lower, and the spectral distribution is highly non-uniform. In this case
(for C > 1), Zoltar-M clearly outperforms all statistical approaches. The dis-
parity with the synthetic results is due to the particular spectral distribution
properties of real programs (such as components being executed in all failed
runs). Aimed at providing a first-order understanding of the impact of some of
the main parameters on diagnostic performance, our simple, probabilistic pro-
gram model is still far from being able to accurately account for real program
behavior.

Although both the reasoning and statistical approach are based on the same
(spectral) information, our reasoning approach generally produces improved di-
agnostic information, in terms of debugging effort and/or (most notably) po-
tential debugging parallelism. Nevertheless our results also indicate that even
in the multiple-fault case statistical approaches are by no means outclassed by
our reasoning approach, a result that was not initially anticipated. Given the
higher complexity of the reasoning approach, there may be situations where ap-
plication of a statistical technique such as Ochiai or Zoltar-S may be preferred
over Zoltar-M. In this respect, we believe the result may be relevant in the
context of the multiple-fault / parallel debugging work by Jones, Bowring, and
Harrold [19]. Provided their clustering approach produces spectral partitions
that apply to a single fault (or a very low fault multiplicity), our results would
suggest the use of Zoltar-S, rather than Tarantula.

Acknowledgments

We extend our gratitude to Johan de Kleer for discussions which have influ-
enced our multiple-fault reasoning approach. Also thanks to Rafi Vayani for
conducting initial experiments on the effect of the hitting set filter in the single-
fault case. Finally, we acknowledge the feedback from the discussions with our
TRADER project partners.

References

[1] R. Abreu and A. J. C. van Gemund. A low-cost approximate minimal
hitting set algorithm and its application to model-based diagnosis. In
V. Bulitko and J. C. Beck, editors, Proceedings of the 8th Symposium on
Abstraction, Reformulation and Approximation (SARA’09), Lake Arrow-
head, California, USA, 8 – 10 July 2009. AAAI Press.

[2] R. Abreu, P. Zoeteweij, and A. van Gemund. Localizing software faults
simultaneously. In B. Choi, editor, 9th International Conference on Quality
of Software (QSIC’09). IEEE Computer Society, August 2009.

28

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of
spectrum-based fault localization. In P. McMinn, editor, Proceedings of the
Testing: Academia and Industry Conference - Practice And Research Tech-
niques (TAIC PART’07), pages 89–98, Windsor, United Kingdom, Septem-
ber 2007. IEEE Computer Society.

[4] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An observation-based
model for fault localization. In B. Liblit and A. Rountev, editors, Proceed-
ings of the 6th Workshop on Dynamic Analysis (WODA’08), pages 64–70.
ACM Press, July 2008.

[5] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. Spectrum-based multi-
ple fault localization. In G. Taentzer and M. Heimdahl, editors, Proceedings
of the IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’09), Auckland, New Zealand, 16 – 20 November 2009. IEEE
Computer Society.

[6] A. Avižienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE Trans.
Dependable Sec. Comput., 1(1):11–33, 2004.

[7] G. K. Baah, A. Podgurski, and M. J. Harrold. The probabilistic program
dependence graph and its application to fault diagnosis. In Proceedings of
International Symposium on Software Testing and Analysis (ISSTA’08).

[8] T. M. Chilimbi, B. Liblit, K. K. Mehra, A. V. Nori, and K. Vaswani.
Holmes: Effective statistical debugging via efficient path profiling. In
Proceedings of the 31st International Conference on Software Engineering
(ICSE’09), pages 34–44, Vancouver, Canada, 16 – 24 May 2009. IEEE CS.

[9] J. de Kleer. Diagnosing intermittent faults. In G. Biswas, X. Koutsoukos,
and S. Abdelwahed, editors, Proceedings of the 18th International Work-
shop on Principles of Diagnosis (DX’07), pages 45 – 51, Nashville, Ten-
nessee, USA, 29 – 31 May 2007.

[10] J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing diagnoses and
systems. Artificial Intelligence, 56:197–222, 1992.

[11] J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial
Intelligence, 32(1):97–130, 1987.

[12] M. Esser and P. Struss. Automated test generation from models based on
functional software specifications. In M. M. Veloso, editor, Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI’07),
pages 2255–2268, Hyderabad, India, 6 – 12 January 2007. AAAI Press.

[13] A. Feldman, G. Provan, and A. J. C. van Gemund. Computing minimal
diagnoses by greedy stochastic search. In D. Fox and C. P. Gomes, edi-
tors, Proceedings of the 23rd National Conference on Artificial Intelligence

29

(AAAI’08), pages 919–924, Chicago, Illinois, USA, 13 – 17 July 2008. AAAI
Press.

[14] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error explanation with
distance metrics. International Journal on Software Tools for Technology
Transfer (STTT), 8(3):229–247, 2006.

[15] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code using
failure-inducing chops. In D. F. Redmiles, T. Ellman, and A. Zisman,
editors, Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE’05), pages 263 – 272, Long Beach,
California, USA, 7 – 11 November 2005. IEEE Computer Society.

[16] M. Harrold, G. Rothermel, R. Wu, and L. Yi. An empirical investigation
of program spectra. volume 33. ACM Press, 1998.

[17] K. E. Iverson. A programming language. John Wiley & Sons, New York,
NY, USA, 1962.

[18] T. Janssen, R. Abreu, and A. J. C. van Gemund. Zoltar: A toolset for au-
tomatic fault localization. In A. van der Hoek and T. Menzies, editors, Pro-
ceedings of the IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE’09) - Tools Track, Auckland, New Zealand, 16 –
20 November 2009. IEEE Computer Society.

[19] J. A. Jones, M. J. Harrold, and J. F. Bowring. Debugging in paral-
lel. In D. S. Rosenblum and S. G. Elbaum, editors, Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Anal-
ysis (ISSTA’07), pages 16–26, London, UK, 9 – 12 July 2007. ACM Press.

[20] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization of test infor-
mation to assist fault localization. In M. Young and J. Magee, editors,
Proceedings of the 24th International Conference on Software Engineering
(ICSE’02), pages 467–477, Orlando, Florida, USA, 19 – 25 May 2002. ACM
Press.

[21] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER: statistical
model-based bug localization. In M. Wermelinger and H. Gall, editors,
Proceedings of the 10th European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/SIGSOFT FSE), pages 286–295, Lisbon,
Portugal, 5 – 9 September 2005. ACM Press.

[22] W. Mayer and M. Stumptner. Abstract interpretation of programs for
model-based debugging. In M. M. Veloso, editor, Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJCAI’07), Hyder-
abad, India, 6 – 12 January 2007. AAAI Press.

30

[23] W. Mayer and M. Stumptner. Evaluating models for model-based de-
bugging. In A. Ireland and W. Visser, editors, Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineering
(ASE’08), pages 128–137, L’Aquila, Italy, 15 – 19 September 2008. ACM
Press.

[24] J. Pietersma and A. J. C. van Gemund. Temporal versus spatial observabil-
ity in model-based diagnosis. In C.-T. Lin, editor, Proceedings of 2006 IEEE
International Conference on Systems, Man, and Cybernetics (SMC’06),
pages 5325–5331, Taipei, Taiwan, 8 – 11 October 2006. IEEE Computer
Society.

[25] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, April 1987.

[26] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor
queries. In J. Grundy and J. Penix, editors, Proceedings of the 18th IEEE
International Conference on Automated Software Engineering (ASE’03),
pages 30–39, Montreal, Canada, 6 – 10 October 2003. IEEE Computer
Society.

[27] R. Vayani. Improving automatic software fault localization, July 2007.
Master’s thesis, Delft University of Technology.

[28] F. Wotawa, M. Stumptner, and W. Mayer. Model-based debugging or
how to diagnose programs automatically. In T. Hendtlass and M. Ali,
editors, Proceedings of IEA/AIE 2002, volume 2358 of LNCS, pages 746–
757, Cairns, Australia, 17 – 20 June 2002. Springer-Verlag.

[29] C. Yilmaz and C. Williams. An automated model-based debugging ap-
proach. In R. E. K. Stirewalt, A. Egyed, and B. Fischer, editors, Pro-
ceedings of the 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE’07), pages 174–183, Atlanta, Georgia, USA, 5
– 9 November 2007. ACM Press.

[30] A. Zeller. Isolating cause-effect chains from computer programs. In Proceed-
ings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE’02), pages 1 – 10, Charleston, South Carolina, USA, 10
– 12 November 2002. ACM Press.

[31] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang. Capturing propa-
gation of infected program states. In Proceedings of the the 7th joint meeting
of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (ESEC/FSE’09),
pages 43–52, Amsterdam, The Netherlands, 2009. ACM.

[32] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical
debugging: Simultaneous identification of multiple bugs. In Proceedings
of International Conference on Machine Learning (ICML’06), Pittsburgh,
Pennsylvania, USA, 25 – 18 June 2006. ACM Press.

31

[33] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. C. van Gemund. Diagnosis
of embedded software using program spectra. In J. Leaney, J. Rozenblit,
and J. Peng, editors, Proceedings 14th International Conference on the
Engineering of Computer Based Systems (ECBS’07), pages 213 – 218. IEEE
Computer Society, 2007.

32

