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Spectrum-based fault localization (SFL) shortens the test–diagnose–repair cycle by reducing the debug-
ging effort. As a light-weight automated diagnosis technique it can easily be integrated with existing test-
ing schemes. Since SFL is based on discovering statistical coincidences between system failures and the
activity of the different parts of a system, its diagnostic accuracy is inherently limited. Using a common
benchmark consisting of the Siemens set and the space program, we investigate this diagnostic accuracy
as a function of several parameters (such as quality and quantity of the program spectra collected during
the execution of the system), some of which directly relate to test design. Our results indicate that the
superior performance of a particular similarity coefficient, used to analyze the program spectra, is largely
independent of test design. Furthermore, near-optimal diagnostic accuracy (exonerating over 80% of the
blocks of code on average) is already obtained for low-quality error observations and limited numbers of
test cases. In addition to establishing these results in the controlled environment of our benchmark set,
we show that SFL can effectively be applied in the context of embedded software development in an
industrial environment.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Testing, debugging, and verification represent a major expendi-
ture in the software development cycle (Hailpern and Santhanam,
2002), which is to a large extent due to the labor-intensive task of
diagnosing the faults (bugs) that cause tests to fail. Because under
typical market conditions, only those faults that affect the user
most can be solved before the release deadline, the efficiency with
which faults can be diagnosed and repaired directly influences
software reliability. Automated diagnosis can help to improve this
efficiency.

Diagnosis techniques are complementary to testing in two
ways. First, for tests designed to verify correct behavior, they gen-
erate information on the root cause of test failures, focusing the
subsequent tests that are required to expose this root cause. Sec-
ond, for tests designed to expose specific potential root causes,
the extra information generated by diagnosis techniques can help
to further reduce the set of remaining possible explanations. Given
its incremental nature (i.e., taking into account the results of an
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entire sequence of tests), automated diagnosis alleviates much of
the work of selecting tests in the latter category, and can hence
have a profound impact on the test–diagnose–repair cycle.

An important part of diagnosis and repair consist in localizing
faults, and several tools for automated debugging and systems
diagnosis implement spectrum-based fault localization (SFL), an
approach to diagnosis based on an analysis of the differences in
program spectra (Harrold et al., 2000; Reps et al., 2000) for passed
and failed runs. Passed runs are executions of a program that com-
pleted correctly, whereas failed runs are executions in which an er-
ror was detected. A program spectrum is an execution profile that
indicates which parts of a program are active during a run. Spec-
trum-based fault localization entails identifying the part of the
program whose activity correlates most with the detection of er-
rors. Examples of tools that implement this approach are Pinpoint
(Chen et al., 2002), which focuses on large, dynamic on-line trans-
action processing systems (Jones et al., 2002) whose implementa-
tion focuses on the analysis of C programs, and AMPLE (Dallmeier
et al., 2005), which focuses on object-oriented software (see Sec-
tion 9 for a discussion).

Spectrum-based fault localization does not rely on a model of
the system under investigation. It can easily be integrated with
existing testing procedures, and because of the relatively small
overhead with respect to CPU time and memory requirements, it
lends itself well for application within resource-constrained envi-
ronments (Zoeteweij et al., 2007). However, the efficiency of SFL
comes at the cost of a limited diagnostic accuracy. As an indication,
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Fig. 1. A faulty C function for sorting rational numbers.
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in one of the experiments described in Section 5, on average 20% of
a program still needs to be inspected after the diagnosis due to a
low number of failed runs.

In SFL, a similarity coefficient is used to rank potential fault loca-
tions. In earlier work (Abreu et al., 2006b), we obtained prelimin-
ary evidence that the Ochiai similarity coefficient, known from
the biology domain (see, e.g., da Silva Meyer et al., 2004), can im-
prove diagnostic accuracy over eight other coefficients, including
those used by the Pinpoint and Tarantula tools mentioned above.
Extending as well as generalizing this previous result, in this paper
we investigate the main factors that influence the accuracy of SFL
in a much wider setting. Apart from the influence of the similarity
coefficient on the diagnostic accuracy, we also study the influence
of the quality and quantity of the (pass/fail) observations used in
the analysis.

Quality of the observations relates to the classification of runs
as passed or failed. Since most faults lead to errors only under spe-
cific input conditions, and as not all errors propagate to system
failures, this parameter is relevant because error detection mecha-
nisms are usually not ideal. Quantity of the observations relates to
the number of passed and failed runs available for the diagnosis. If
fault localization has to be performed at run-time, e.g., as a part of
a recovery mechanism, one cannot wait to accumulate many
observations to diagnose a potentially disastrous error until suffi-
cient confidence is obtained. In addition, quality and quantity of
the observations both relate to test coverage. Varying the observa-
tion context with respect to these two observational parameters
allows a much more thorough investigation of the influence of sim-
ilarity coefficients. Our study is based on a widely-used set of
benchmark faults (single faults) consisting of the Siemens set
(Hutchins et al., 1994) and the space program, both of which
are available from the Software-artifact Infrastructure Repository
(Do et al., 2005).

While the benchmark problems are well-suited for studying the
influence of the similarity coefficient and the quality and quantity
of the observations, they give little indication on the accuracy of
spectrum-based fault localization for large-scale codes, and the
kind of problems that are encountered in practice. For this reason,
we also report our experience with implementing SFL for an indus-
trial software product, namely the control software of a particular
product line of hybrid analog/digital LCD television sets.

The main contributions of our work are the following. We show
that for the purpose of software fault diagnosis, the Ochiai similar-
ity coefficient consistently outperforms several other coefficients
used in fault localization and data clustering. Intuitively, this can
be attributed to the Ochiai coefficient being more sensitive to
activity of potential fault locations in failed runs than to activity
in passed runs, which is well suited to software fault diagnosis be-
cause execution of faulty code does not necessarily lead to failures,
while failures always involve a fault. We establish this result across
the entire quality space, and for varying numbers of runs involved.
Furthermore, we show that near-optimal diagnostic accuracy
(exonerating over 80% of all code on average) is already obtained
for low-quality (ambiguous) error observations, while, in addition,
only a few runs are required. In addition to establishing these re-
sults in the controlled environment of our benchmark set, we show
that SFL can effectively be applied in the industrial development of
embedded software for resource-constrained systems.

The remainder of this paper is organized as follows. In Section 2
we introduce some basic concepts and terminology, and explain
the diagnosis technique in more detail. In Section 3 we describe
our experimental setup. In Sections 4–6 we describe the experi-
ments on the similarity coefficient, and the quality and quantity
of the observations, respectively. Preliminary results of Section 4
appeared in (Abreu et al., 2006b), and of Sections 5 and 6 in (Abreu
et al., 2007). In Sections 7 and 8 we give an account of the indus-
trial case study. Related work is discussed in Section 9. We con-
clude, and discuss possible directions for future work in Section 10.

2. Preliminaries

In this section we introduce program spectra, and describe how
they are used in spectrum-based fault localization.

2.1. Failures, errors, and faults

As defined in Avižienis et al. (2004), we use the following termi-
nology. A failure is an event that occurs when delivered service
deviates from correct service. An error is a system state that may
cause a failure. A fault is the cause of an error in the system.

In this paper we apply this terminology to computer programs,
where faults are bugs in the program code. Specifically in our
benchmark experiments, these programs transform an input file
into an output file in a single run, and failures occur when the out-
put for a given input differs from the expected output for that
input.

To illustrate these concepts, consider the C function in Fig. 1. It
is meant to sort, using the bubble sort algorithm, a sequence of n
rational numbers whose numerators and denominators are stored
in the parameters num and den, respectively. There is a fault (bug)
in the swapping code within the body of the if statement (labeled
as block 4): only the numerators of the rational numbers are
swapped while the denominators are left in their original order.
In this case, a failure occurs when RationalSort changes the con-
tents of its argument arrays in such a way that the result is not a
sorted version of the original. An error occurs after the code inside
the conditional statement is executed, while den½j�– den½jþ 1�.
Such errors can be temporary, and do not automatically lead to
failures. For example, if we apply RationalSort to the sequence
h41 ; 2

2 ;
0
1i, an error occurs after the first two numerators are swapped.

However, this error is ‘‘canceled” by later swapping actions, and
the sequence ends up being sorted correctly.

Error detection is a prerequisite for the fault localization tech-
nique studied in this paper: we must know that something is
wrong before we can try to locate the responsible fault. Failures
constitute a rudimentary form of error detection, but many errors
remain latent and never lead to a failure. An example of a tech-
nique that increases the number of errors that can be detected is
array bounds checking. Failure detection and array bounds check-
ing are both examples of generic error detection mechanisms, that
can be applied without detailed knowledge of a program. Other



Fig. 2. The ingredients of spectrum-based fault localization.

Table 1
SFL applied on six runs of the RationalSort program.

Input Block Error

1 2 3 4 5

I1 ¼ hi 1 0 0 0 0 0
I2 ¼ h14i 1 1 0 0 0 0
I3 ¼ h21 ; 1

1i 1 1 1 1 1 0
I4 ¼ h41 ; 2

2 ;
0
1i 1 1 1 1 1 0

I5 ¼ h31 ; 2
2 ;

4
3 ;

1
4i 1 1 1 1 1 1

I6 ¼ h14 ; 1
3 ;

1
2 ;

1
1i 1 1 1 0 1 0

sJ 0.17 0.20 0.25 0.33 0.25
sT 0.50 0.56 0.63 0.71 0.63
sO 0.41 0.45 0.50 0.58 0.50
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examples are the detection of null pointer handling, malloc prob-
lems, and deadlock detection in concurrent systems. Examples of
program specific mechanisms are precondition and postcondition
checking, and the use of assertions.

2.2. Program spectra

A program spectrum (Reps et al., 2000) is a collection of data
that provides a specific view on the dynamic behavior of software.
This data is collected at run-time, and typically consist of a number
of counters or flags for the different parts of a program. Many dif-
ferent forms of program spectra exist, see Harrold et al. (2000) for
an overview. Although we work with so-called block-hit spectra,
the approach studied in this paper easily generalizes to other types
of program spectra (e.g., path-hit spectra, data-dependence-hit
spectra).

A block hit spectrum contains a flag for every block of code in a
program, that indicates whether or not that block was executed in
a particular run. With a block of code we mean a C language state-
ment, where we do not distinguish between the individual state-
ments of a compound statement, but where we do distinguish
between the cases of a switch statement.1 As an illustration, we
have identified the blocks of code in Fig. 1.

2.3. Spectrum-based fault localization

The hit spectra of M runs constitute a binary matrix, whose col-
umns correspond to N different parts (blocks in our case) of a pro-
gram (see Fig. 2). The information in which runs an error was
detected constitutes another column vector, the error vector. This
vector can be thought to represent a hypothetical part of the pro-
gram that is responsible for all observed errors. Spectrum-based
fault localization essentially consists in identifying the part whose
column vector resembles the error vector most.

In the field of data clustering, resemblances between vectors of
binary, nominally scaled data, such as the columns in our matrix of
program spectra, are quantified by means of similarity coefficients
(see, e.g., Jain and Dubes, 1988). Many similarity coefficients exist.
As an example, below are three different similarity coefficients,
namely the Jaccard coefficient sJ , which is used by the Pinpoint tool
(Chen et al., 2002), the coefficient sT , used in the Tarantula fault
localization tool (Jones and Harrold, 2005), and the Ochiai coeffi-
cient sO, used in the molecular biology domain (da Silva Meyer
et al., 2004):

sJðjÞ ¼
a11ðjÞ

a11ðjÞ þ a01ðjÞ þ a10ðjÞ
; ð1Þ

sTðjÞ ¼
a11ðjÞ

a11ðjÞþa01ðjÞ
a11ðjÞ

a11ðjÞþa01ðjÞ
þ a10ðjÞ

a10ðjÞþa00ðjÞ

; ð2Þ

sOðjÞ ¼
a11ðjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða11ðjÞ þ a01ðjÞÞ � ða11ðjÞ þ a10ðjÞÞ
p ; ð3Þ
1 This is a different notion from a basic block, which is a block of code that has no
branch.
where a11ðjÞ is the number of failed runs in which part j is involved,
a10ðjÞ is the number of passed runs in which part j is involved, a01ðjÞ
is the number of failed runs in which part j is not involved, and
a00ðjÞ is the number of passed runs in which part j is not involved,
i.e., referring to Fig. 2,

a00ðjÞ ¼ jfi j xij ¼ 0 ^ ei ¼ 0gj;
a01ðjÞ ¼ jfi j xij ¼ 0 ^ ei ¼ 1gj;
a10ðjÞ ¼ jfi j xij ¼ 1 ^ ei ¼ 0gj;
a11ðjÞ ¼ jfi j xij ¼ 1 ^ ei ¼ 1gj:

Note that a10ðjÞ þ a11ðjÞ equals the number of runs in which part j is
involved, and that a10ðjÞ þ a00ðjÞ and a11ðjÞ þ a01ðjÞ equal the number
of passed and failed runs, respectively. The latter two numbers are
equal for all j. Similarly, for all j, the four counters sum op to the
number of runs M.

Under the assumption that a high similarity to the error vector
indicates a high probability that the corresponding parts of the
software cause the detected errors, the calculated similarity coeffi-
cients rank the parts of the program with respect to their likeli-
hood of containing the faults.

To illustrate the approach, suppose that we apply the Ration-

alSort function to the input sequences I1; . . . ; I6 shown in Table 1.
The block hit spectra for these runs are shown in the central part of
the table (‘1’ denotes a hit), where block five corresponds to the
body of the RationalGT function, which has not been shown in
Fig. 1. I1; I2, and I6 are already sorted, and lead to passed runs. I3

is not sorted, but the denominators in this sequence happen to
be equal, hence no error occurs. I4 is the example from Section
2.1: an error occurs during its execution, but goes undetected.
For I5 the program fails, since the calculated result is h11 ; 2

2 ;
4
3 ;

3
4i in-

stead of h14 ; 2
2 ;

4
3 ;

3
1i, which is a clear indication that an error has oc-

curred. For this data, the calculated similarity coefficients
sx2fJ;T;Pgð1Þ; . . . ; sx2fJ;T;Pgð5Þ listed at the bottom of Table 1 (correctly)
identify block 4 as the most likely location of the fault.

3. Experimental setup

In this section we describe the benchmark set that we use in our
experiments. We also detail how we extract the data of Fig. 2, and
define how we measure diagnostic accuracy.

3.1. Benchmark set

In our study we work with two sets of faults that are available
from the Software-artifact Infrastructure Repository (SIR, Do et al.,
2005):

� the Siemens set (Hutchins et al., 1994), which is a widely-used
collection of benchmark faults in seven small C programs, and

� a set of faults in a somewhat larger program called space.



Table 2
Set of programs used in the experiments.

Program Faulty versions Blocks Test cases Description

print_tokens 7 110 4130 Lexical analyzer
print_tokens2 10 105 4115 Lexical analyzer
replace 32 124 5542 Pattern recognition
schedule 9 53 2650 Priority scheduler
schedule2 10 60 2710 Priority scheduler
tcas 41 20 1608 Altitude separation
tot_info 23 44 1052 Information measure
space 38 777 13,585 Array definition language
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The Siemens set and space are the only programs in SIR that
are ANSI-C compliant, and that could therefore be handled by
our instrumentation tool (see Section 3.2). Table 2 contains details
about our benchmark set. For all eight programs, a correct version,
and a number of faulty versions is available. Each faulty version
contains a single fault, but this fault may span through multiple
statements and/or functions. In addition, every program has a set
of inputs (test cases) designed to provide full code coverage. For
space, 1000 test suites are provided that consist of a selection of
(on average) 150 test cases.

In our experiments we were not able to use all the faults offered
by the Siemens set and space. Because we conduct our experi-
ments using block hit spectra, we cannot use faults that are located
outside a block, such as global variable initializations. Versions 4
and 6 of print_tokens contain such faults and were therefore ex-
cluded. Version 9 of schedule2, version 32 of replace, and ver-
sions 1, 2, 32, and 34 of space were not considered in our
experiments because no test case fails and therefore the existence
of a fault was never revealed. In total, we used 162 faulty versions
in our experiments: 128 out of 132 faulty versions provided by the
Siemens set, and 34 out of 38 faulty versions of space.

3.2. Data acquisition

3.2.1. Collecting spectra
To obtain block hit spectra, we automatically instrument the

source code of all faulty versions of the programs in our benchmark
set. A function call is inserted at the beginning of every block of
code to log its execution. For the Siemens set, the spectra are gen-
erated for all test cases that are provided with the programs. For
the faulty versions of space, we randomly choose one of the
1000 test suites. For instrumentation we use the parser generator
Front (Augusteijn, 2002), which is part of the development envi-
ronment of NXP Semiconductors (NXP), the main industrial part-
ner in the TRADER project (Embedded Systems Institute, 2009).
The overhead of the instrumentation on the execution time is mea-
sured to be approximately 6% on average (with standard deviation
of 5%). The programs were compiled on a Fedora Core release 4
system with gcc-3.2. For details of the instrumentation process,
see (Abreu et al., 2006a).

3.2.2. Error detection
As for each program our benchmark set provides a correct ver-

sion, we use the output of the correct version of each program as
error detection reference. We characterize a run as ‘failed’ if its
output differs from the corresponding output of the correct ver-
sion, and as ‘passed’ otherwise.

3.3. Evaluation metric

As spectrum-based fault localization creates a ranking of blocks
in order of likelihood to be at fault, we can retrieve how many
blocks we still need to inspect until we hit the faulty block. If other
blocks have the same similarity coefficient as the fault location, we
use the average ranking position for these blocks. In those cases
where the fault spans multiple locations, we verified that there is
one block that is involved in the fault, and that is executed in all
failed runs. This is the block that our evaluation metric is based
on for the multiple-location faults. Repairing the fault at just this
location would lead to iterative testing and debugging, but in our
experiments we assume that the program is bug-free after the first
iteration.

For all j 2 f1; . . . ;Ng, let sðjÞ denote the similarity coefficient cal-
culated for block j. Specifically, let f be the index of the block that is
known to contain the fault, and let sðf Þ denote the similarity coef-
ficient calculated for this block. Then, assuming that on average,
half of the blocks j with sðjÞ ¼ sðf Þ are inspected before block f is
found, the number of blocks that need to be inspected in total is gi-
ven by

s ¼ jfjjsðjÞ > sðf Þgj þ jfjjsðjÞP sðf Þgj � 1
2

: ð4Þ

We define accuracy, or quality of the diagnosis as the effective-
ness to pinpoint the faulty block. This metric represents the frac-
tion of all blocks that need not be considered when searching for
the fault by traversing the ranking. It is defined as

qd ¼ 1� s
N � 1

� �
: ð5Þ

In the remainder of this paper, values for qd will be expressed as
percentages.
4. Similarity coefficient impact

At the end of Section 2.3 we reduced the problem of spectrum-
based fault localization to finding resemblances between binary
vectors. The key element of this technique is the calculation of a
similarity coefficient. Many different similarity coefficients are
used in practice, and in this section we investigate the impact of
the similarity coefficient on the diagnostic accuracy qd.

For this purpose, we evaluate qd on all faults in our benchmark
set, using nine different similarity coefficients. We only report the
results for the Jaccard coefficient of Eq. (1), the coefficient used in
the Tarantula fault localization tool as defined in Eq. (2), and the
Ochiai coefficient of Eq. (3). We experimentally identified the latter
as giving the best results among all eight coefficients used in a data
clustering study in molecular biology (da Silva Meyer et al., 2004).
Table 3 contains the details of the coefficients that are involved in
this study, and that have not already been introduced in Section
2.3. For brevity, the block index j as an argument to the counter
functions a11; . . . ; a00 has been omitted.

In addition to the coefficient sT of Eq. (2), the Tarantula tool uses
a second coefficient, which amounts to the maximum of the two
fractions in the denominator of Eq. (2). This second coefficient is
interpreted as a brightness value for visualization purposes, but
the experiments in (Jones and Harrold, 2005) indicate that sT can



Table 3
Additional similarity coefficients evaluated; see da Silva Meyer et al. (2004) for
references.

Sorensen–Dice 2�a11
2�a11þa01þa10

Anderberg a11
a11þ2�ða01þa10Þ

Simple-matching a11þa00
a11þa01þa10þa00

Rogers and Tanimoto a11þa00
a11þa00þ2�ða01þa10Þ

Ochiai II a11 �a00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða11þa01Þ�ða11þa10Þ�ða00þa01Þ�ða00þa10Þ
p

Russel and Rao a11
a11þa01þa10þa00

Fig. 3. Diagnostic accuracy qd .

2 In our experimental setup, we do not consider effects that carry over from one run
to another, so conversely, if an error is detected, the fault is always active.
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be studied in isolation. For this reason, we have not taken the
brightness coefficient into account.

Fig. 3 shows the results of this experiment. It plots qd, as defined
by Eq. (5), for the Tarantula, Jaccard, and Ochiai coefficients, aver-
aged per program of our benchmark set. See (Abreu et al., 2006b)
for more details on these experiments.

An important conclusion that we can draw from these results is
that under the specific conditions of our experiment, the Ochiai
coefficient gives a better diagnosis: it always performs at least as
good as the other coefficients, with an average improvement of
4% over the second-best case, and improvements of up to 30% for
individual faults. This effect can be explained as follows.

First, note that if a11 ¼ 0, all three coefficients evaluate to 0, so
blocks that are not executed in failed runs rank lowest. For the case
that a11 > 0, the rankings produced by the Tarantula, Jaccard, and
Ochiai coefficients are the same as the ranking produced by the
respective coefficients below, where the block index j as an argu-
ment to the coefficients and counter functions a11 and a10 has been
omitted for brevity

s0T ¼
1

1þ cT � a10
a11

; s0J ¼
a11

cJ þ a10
; s0O ¼

a11

1þ a10
a11

:

Here cT ¼ a11þa01
a10þa00

and cJ ¼ a11 þ a01, both of which are constant for all
blocks, and do not influence the ranking. Coefficient s0T is derived
from sT by dividing the numerator and denominator by a11

a11þa01
. Coef-

ficient s0O is derived by squaring sO, dividing the denominator of the
resulting fraction by the constant a11 þ a01, and dividing the numer-
ator and denominator by a11. Note that for a11 > 0, none of these
operations modify the rankings implied by the Tarantula and Ochiai
coefficients. The expression for s0J is identical to that for sJ except for
the introduction of cJ .
By thus rewriting the coefficients, it becomes apparent that the
rankings implied by the Tarantula, Jaccard, and Ochiai coefficients
depend only on a11 and a10, i.e., the involvement of a block in
passed and failed runs. It can also be seen that for a10 ¼ 0, it follows
that s0T ¼ 1, which implies that all blocks that are exclusively active
in failed runs rank with the same, and highest sT . This explains the
improvement of Jaccard and Ochiai over Tarantula, because these
coefficients both take a11 into account for ranking the blocks that
have a10 ¼ 0. The improved performance of the Ochiai coefficient
over the Tarantula and Jaccard coefficients can be explained by
observing that increasing a11 both increases the numerator, and
decreases the denominator of s0O, whereas to s0T and s0J , only one
of these effects applies. As a result, compared to the other coeffi-
cients, Ochiai is much more sensitive to presence in failed runs
than to presence in passed runs. This is well-suited to fault diagno-
sis because the execution of faulty code does not necessarily lead
to a failure, while failures always involve a fault.
5. Observation quality impact

Before reaching a definitive decision to prefer one similarity
coefficient over another, as suggested by the results in Section 4,
we want to verify that the impact of this decision is independent
of specific conditions in our experiments. Because of its relation to
test coverage, and to the error detection mechanism used to charac-
terize runs as passed or failed, an important condition in this respect
is the quality of the error detection information used in the analysis.

In this section we define a measure of quality of the error obser-
vations, and show how it can be controlled as a parameter if the
fault location is known, as is the case in our experimental setup.
Thus, we verify the results of the previous section for varying
observation quality values. Investigating the influence of this
parameter will also help us to assess the potential gain of more
powerful error detection mechanisms and better test coverage on
diagnostic accuracy.

5.1. A measure of observation quality

Correctly locating the fault is trivial if the column for the faulty
part in the matrix of Fig. 2 resembles the error vector exactly. This
would mean that an error is detected if, and only if the faulty part
is active in a run. In that case, any coefficient is bound to deliver a
highly accurate diagnosis. However, spectrum-based fault localiza-
tion suffers from the following phenomena.

� Most faults lead to an error only under specific input conditions.
For example, if a conditional statement contains the faulty con-
dition v < c, with v a variable and c a constant, while the correct
condition would be v 6 c, no error occurs if the conditional
statement is executed, unless the value of v equals c.

� Similarly, as we have already seen in Section 2.1, errors need not
propagate all the way to failures (Morell, 1990; Voas, 1992), and
may thus go undetected. This effect can partially be remedied by
applying more powerful error detection mechanisms, but for
any realistic software system and practical error detection
mechanism there will likely exist errors that go undetected.

As a result of both phenomena, the set of runs in which an error
is detected will only be a subset of the set of runs in which the fault
is activated.2 We propose to use the ratio of the size of these two
sets as a measure of observation quality for a diagnosis problem.
Using the notation of Section 2.3, we define
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qe ¼
a11ðf Þ

a11ðf Þ þ a10ðf Þ
; ð6Þ

where f is the known location of the fault, as in Section 3.3. This va-
lue can be interpreted as the unambiguity of the passed/failed data
in relation to the fault being exercised, which may be loosely re-
ferred to as ‘‘error detection quality”, hence the symbol qe. In the
remainder of this paper, values for qe will be expressed as
percentages.

A problem with the qe measure is that no information on unde-
tected errors is available: a10ðf Þ counts both the undetected errors,
and the number of times the fault location was activated without
introducing an error. This can be summarized as follows, where
X, E, and D denote activation of the fault location, the occurrence
of an error, and detection of an error, respectively:
X
 E
 D
0
 0
 0
 a00(f)

1
 0
 0
 a10(f)

1
 1
 0

1
 1
 1
 a11(f)
Even though the ratio of the two contributions to a10ðf Þ is un-
known, it can still be influenced in our experimental setup. We will
now describe our procedure for doing so.
5.2. Varying qe

Subject to various factors such as the nature of the fault, the
similarity coefficient used in the diagnosis, the design of the test
data, but also the compiler and the operating system, each faulty
version of a program in our benchmark set has an inherent value
for qe, which can be evaluated by collecting spectra and error
detection information for all available test cases, and performing
the diagnosis of Section 2.3. For the Siemens set, this inherent va-
lue for qe ranges from 1.4% for schedule2 to 20.3% for tot_info,
whereas for space this value is measured to be 50.9% on average
for our selection of test suites.

We can construct a different value for qe by excluding runs that
contribute either to a11ðf Þ or to a10ðf Þ as follows.

� Excluding a run that activates the fault location, but for which
no error has been detected lowers a10ðf Þ, and will increase qe.

� Excluding a run that activates the fault location and for which an
error has been detected lowers a11ðf Þ, and will decrease qe.

Excluding runs to achieve a certain value of qe raises the ques-
tion of which particular selection of runs to use. For this purpose
we randomly sample passed or failed runs from the set of available
runs to control qe within a 99% confidence interval. We verified
that the variance in the values measured for qd is negligible.

Note that for decreasing qe, i.e., obscuring the fault location,
we have another option: setting failed runs to ‘passed.’ In our
experiments we have tried both options, but the results were
essentially the same. The results reported below are generated
by excluding failed runs. Conversely, setting passed runs that
exercise the fault location to ‘failed’ is not a good alternative
for increasing qe: this may obstruct the diagnosis as we cannot
be certain that an error occurs for a particular data input. More-
over, it may allocate blame to parts of the program that are not
related to the fault. Thus, excluding runs is always to be pre-
ferred as this does not compromise observation consistency.
This way, we were able to vary qe from 1% to 100% for all
programs.
5.3. Similarity coefficients revisited

Using the technique for varying qe introduced in Section 5.2 we
revisit the comparative study of similarity coefficients in Section 4.
Fig. 4 shows qd for the three similarity coefficients, and values of qe

ranging from 1% to 100%. In this case, instead of averaging per pro-
gram in our benchmark set, as we did in Fig. 3, we arithmetically
averaged qd over all 162 faulty program versions to summarize
the results (this is valid because qd is already normalized with re-
spect to program size). As in Fig. 3, the graphs for the individual
programs are similar, only having different offsets.

These results confirm what was suggested by the experiment in
Section 4. The Ochiai similarity coefficient leads to a better diagno-
sis than the other eight, including the Jaccard coefficient and the
coefficient of the Tarantula tool. Compared to the Jaccard coeffi-
cient the improvement is greatest for lower observation quality.
As qe increases, the performance of the Jaccard coefficient ap-
proaches that of the Ochiai coefficient. The improvement of the
Ochiai coefficient over the Tarantula coefficient appears to be
consistent.

Another observation that can be made from Fig. 4 is that all
three coefficients provide a useful diagnosis (qd around 80%) al-
ready for low qe values (qe ¼ 1% implies that only around 1% of
the runs that exercised the faulty block actually resulted in a failed
run). The diagnostic accuracy increases as the quality of the error
detection information improves, but the effect is not as strong as
we expected. This suggests that more powerful error detection
mechanisms, or test sets that cover more input conditions will
have limited gain. In the next section we investigate a possible
explanation, namely that not only the quality of observations,
but also their quantity determines the diagnostic accuracy.

6. Observation quantity impact

To investigate the influence of the number of runs on the accu-
racy of spectrum-based fault localization, we evaluated qd while
varying the numbers of passed ðNPÞ and failed runs ðNFÞ that are in-
volved in the diagnosis, across the benchmark set. Since all inter-
esting effects appear to occur for small numbers of runs, we have
focused on the range of 1–100 passed and failed runs. Although
the number of available runs in the Siemens set ranges from
1052 (tot_info) to 5542 (replace), the number of runs that fail
is comparatively small, down to a single run for tcas version 8.
The situation is comparable for space, with only seven out of
13,585 runs failing for version 33. For this reason, even in the range
1–100, some selections of failed runs are not possible for some of
the faulty versions.

Fig. 5 shows two representative examples of such evaluations,
where we plot qd according to the Ochiai coefficient for NP and
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NF varying from 1 to 100. For each entry in these graphs, we aver-
aged qd over 50 randomly selected combinations of NP passed runs
and NF failed runs, where we verified that the variance in the mea-
sured values of qd is negligible. Apart from the apparent monotonic
increase of qd with NF , we observe that for version 1 of print_to-
kens2, qd decreases when more passed runs are added (Fig. 5a),
while qd increases for version 2 of schedule (Fig. 5b).

Given a set of faulty program versions that all allow failed runs
to be selected up to a given value for NF , we can average the mea-
sured values for qd again over these versions. This summarizes sev-
eral graphs of the kind shown in Fig. 5. This way, in Fig. 6 we plot
the average qd using the Ochiai coefficient for 1 6 NF 6 30 and
1 6 NP 6 100, projected on the NF � qd plane. The ticks on the ver-
tical bars in the graph indicate the minimum, maximum, and aver-
age observed for the 100 values for NP . With this limited range for
NF we can still use 110 of the 162 versions in the benchmark set,
whereas for NF 6 100, we can only use 60. We verified that for
NF 6 15, for which we can use 128 versions, the results are
essentially the same.
A first conclusion that we draw from Fig. 6 is that overall, add-
ing failed runs improves the accuracy of the diagnosis. However,
the benefit of having more than around 10 runs is marginal on
average. In addition, because the measurements for varying NP

show little scattering in the projection, we can conclude that on
average, NP has little influence.

Inspecting the results for the individual program versions con-
firms our observation that adding failed runs consistently im-
proves the diagnosis. However, although the effect does not
show on average, NP can have a significant effect on qd for individ-
ual runs. As shown in Fig. 5, this effect can be negative or positive.
This shows more clearly in Figs. 7 and 8, which contain cross sec-
tions of the graphs in Fig. 5 at NF ¼ 6. To factor out any influence of
NF , we have created similar cross sections at the maximum number
of failed runs. Across the entire benchmark set, we found that the
effect of adding more passed runs stabilizes around NP ¼ 20.

Returning to the influence of the similarity coefficient once
more, Figs. 7 and 8 further indicate that the superior performance
of the Ochiai coefficient is consistent also for varying numbers of
runs. We have not plotted qd for the other coefficients in Fig. 5,
but we verified this observation for all program versions, with NP

and NF varying from 1 to 100.
From our experiments on the impact of the number of runs we

can draw the following conclusions. All of these are in the context
of our benchmark set, which has the important characteristic that
most faults involve a single location in the source code. First,
including more failed runs is safe because the accuracy of the diag-
nosis either improves or remains the same. This is observed due to
the fact that failed runs add evidence about the block that is
causing the program to fail, and hence causing it to move up in
the ranking. Our results show that the optimum value for NF is in
the order of 10 runs. To what extent this result depends on
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characteristics of the fault or program is subject to further investi-
gation. Second, while stabilizing around NP ¼ 20, the effect of
including more passed runs is unpredictable, and may actually de-
crease qd. In fact, qd decreases only if the faulty block is touched of-
ten in passed runs, as spectrum-based fault localization works
under the assumption that if a block is touched often in passed
runs, it should be exonerated. Besides, a large number of runs
can apparently compensate weak error detection quality: even
for small qe, a large amount of runs provides sufficient information
for good diagnostic accuracy, as shown in Fig. 4. Lastly, the number
of runs has no influence on the superiority of the Ochiai coefficient.

7. An industrial case study

While the benchmark problems are well suited for studying the
influence of parameters such as the similarity coefficient, and the
quality and quantity of the observations, they give little indication
on the accuracy of spectrum-based fault localization for large-scale
codes, and the kind of problems that are encountered in practice.
For this reason, in this section and the next we report our experi-
ence with implementing SFL for an industrial software product,
namely the control software of a particular product line of hybrid
analog/digital LCD television sets. These experiments are done in
the context of the TRADER project (Embedded Systems Institute,
2009), whose goal is to improve the user-perceived reliability of
consumer electronics systems with embedded software. In this sec-
tion we describe the experimental platform, and our implementa-
tion of SFL for it. The actual experiments are described in Section 8.

7.1. Platform

One of the products of the main industrial partner in the TRA-
DER project, NXP Semiconductors, is the TV520 platform for build-
ing hybrid analog/digital LCD television sets, which in turn serves
as the basis for televisions sets manufactured by NXP’s customers.
The TV520 platform comprises one or two proprietary CPUs for
audio and video signal processing, plus a MIPS CPU running the
control software (under Linux). More details on TV520 can be
found on the NXP website (NXP).

Our experiments are performed on development versions of
television sets based on TV520. All problems that we diagnosed
are in the control software of the sets, which is responsible for
tasks such as

� decoding the remote-control input,
� navigating the on-screen menu,
� coordinating the hardware (e.g., the tuner),
� coordinating the audio and video processing on the proprie-

tary CPUs, based on an analysis of the signals,
� teletext3 decoding, viewing, and navigation.

The control software comprises roughly one million lines of C
code (configured from a much larger code base of software compo-
nents), and 150,000 blocks, as defined in Section 2.2. Porting the
SFL tooling to the proprietary CPUs is part of our ongoing work.

7.2. Space efficiency

In a regular computing environment, storing all program spec-
tra for a series of test cases is no problem, and this is how we
implemented spectrum-based fault localization for the experi-
ments reported in the previous sections. In the embedded domain,
however, memory is typically a scarce resource, and storing all
3 A standard for broadcasting information (e.g., news, weather, TV guide) in text
pages, popular in Europe.
spectra to be post-processed at diagnosis time is usually not an op-
tion. As an indication, the 64 MB that is available for our experi-
ments is shared with the application binaries and variables, and
depending on the usage scenario, only approximately 10 spectra
can be stored in the remaining space, using a byte for each flag. By-
tes are the smallest data unit that can be transferred to/from mem-
ory directly. There is a potential problem when different bytes in
the same word are updated from within different threads. How-
ever, due to an extra layer of virtual threads running on top of
the operating systems threads, the probability that two blocks that
are mapped on the same word are executed in parallel is negligible
in practice, and we chose to ignore this issue.

Fortunately, although the available storage space is quite limited,
the set of spectra that a diagnosis is based on contains much more
information than needed, and can easily be compacted at run-time.
In the end, the only information that is needed to generate the rank-
ing are the four sets of counters a00ðjÞ; . . . ; a11ðjÞ, introduced in Sec-
tion 2.3, and the space required to store these is linear in the size
of the program, not in the number of test cases. To avoid having to
store the actual spectra, we can update the counters right after a
run has finished, and the passed/failed verdict has become available:

� For a passed run, and all blocks j: if block j has been active,
increment a10ðjÞ, otherwise increment a00ðjÞ.

� For a failed run, and all blocks j: if block j has been active,
increment a11ðjÞ, otherwise increment a01ðjÞ.

After thus having processed the program spectrum of a passed
or failed run, the spectrum itself can be discarded. Any time after
processing at least one failed run, the diagnosis can be performed
by evaluating the similarity coefficient of choice for all blocks,
and by ranking the blocks based on their calculated coefficients.

In our implementation, we use a small circular buffer to cache
recently recorded spectra until they can be processed on a low pri-
ority thread (see Fig. 9). Two pointers cycle through this buffer: i1,
pointing to the current spectrum, where the system activity is
being recorded, and i2, pointing to the first spectrum whose contri-
butions must still be added to the sets of counters a00ðjÞ; . . . ; a11ðjÞ.
While in theory, spectra can be overwritten if insufficient idle time
is available for processing spectra of previous runs, this is not a
problem in our experiments, and spectra are cleaned up almost
immediately after they are cached by advancing i1. However, if
runs are delimited automatically, it may be necessary to tune the
rate at which spectra are generated to the size of the buffer.

7.3. Implementation

As we describe in Section 3.2, the spectra are obtained via
instrumentation. Compared to the experiments on the benchmark
set, additional, but nonfundamental difficulties that are encoun-
tered in the NXP development environment are the following.
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� Although the code base is ANSI-C compliant, several
GNU extensions that are inserted by the preprocessor
cannot be handled by the Front parser, which is not
normally applied to preprocessed code, and require a work-
around.

� Parallel build threads must be disabled, to ensure that unique
numbers are assigned to blocks.

� The possibilities for incremental builds are limited because
we have to set a maximum number of blocks.

� In addition to constraints on the available memory, discussed
in the previous section, CPU time is also a scarce resource, and
the TV520 architecture imposes various timing constraints on
different activities.

Regarding the last point, the sorting task that is involved in
ranking the approximately 150,000 blocks does not violate any of
the timing constraints. Although the block-level instrumentation
noticeably slows down the operation of the TV, enough CPU idle
time is available to support the extra load on the MIPS. This is
not the case for the proprietary CPUs though, and we have not
yet found a practicable solution to instrumenting the signal pro-
cessing software.

The spectrum bookkeeping illustrated in Fig. 9 is implemented
in a small software component that is added to the control soft-
ware. Communication with this component is via standard I/O,
using a PC and terminal emulator connected to the TV set. On
the terminal we can enter commands such as

� start a new run, and mark the previous run as passed,
� start a new run, and mark the previous run as failed,
� select a particular similarity coefficient,
� calculate the diagnosis, and print the n locations at the top of

the ranking,

where we consider a ‘‘run” to be any given period of activity of the
system. We used the Jaccard and Ochiai coefficients, introduced in
Section 2.3, but because of the highly accurate (manual) error
detection information involved in these experiments, the diagno-
ses were essentially the same. This confirms the observation made
in Section 5.3, that the performance of the former coefficient
approaches that of the latter as the quality of the error detection
information improves (see Fig. 4). Because of the superior perfor-
mance of these two coefficients, we have not included the Taran-
tula coefficient in this case study.
8. Experiments

We diagnosed four problems that were encountered during
the development of television sets based on the TV520 platform.
In the same way as the known location of a fault can be used to
evaluate the quality of the diagnosis for the benchmark experi-
ments, the location of the repairs that were made can be used as
an indication of diagnostic quality here.

Selecting the problems to use for this case study was more dif-
ficult than we anticipated when planning the experiment. Enough
problem reports and repairs are available, but in many cases we
could not reproduce the problem, for reasons such as

� the source tree having been removed from the version
repository,

� the version of the hardware for which the problem manifested
itself no longer being available,

� the problem residing in the streaming code on the proprietary
CPUs, for which our tooling is not yet available, and

� the problem being hard to reproduce in itself.
In Sections 8.1–8.4 below we give a description of the four prob-
lems, our approach to diagnose them, and the result delivered by
SFL. The quality of these diagnoses is discussed in Section 8.5.

8.1. NVM corrupted

8.1.1. Problem description
The TV sets that we used in our experiments contain a small

amount of non-volatile memory (NVM), whose contents are re-
tained without the set being powered. In addition to storing infor-
mation such as the last channel watched, and the current sound
volume, the NVM contains several parameters of a TV’s configura-
tion, for example to select a geographical region. These parameters
can be set via the so-called service menu, which is not normally
accessible to the user.

A subset of the parameters stored in NVM are so important for
the correct functioning of the set, that it has been decided to imple-
ment them with triple redundancy and majority voting. This pro-
vides a basic protection against memory corruption, since at least
two copies of a value have to be corrupted to take effect. The prob-
lem that we analyze here entails that two of the three copies of
redundant NVM parameters are not updated when changes are
made via the service menu.

8.1.2. Approach
To diagnose this problem, we extend our diagnosis component

such that once per second, it starts a new run. Knowing that the
problem manifests itself in NVM, we add a consistency check on
the redundant items to characterize the runs as passed or failed.
The runs are taken from a simple scenario where we first activate
the general menu-browsing functionality, to exonerate that part of
the code. Then we make several changes to nonredundant NVM
parameters, before changing the value of a redundant parameter,
and performing the diagnosis based on a single failed run. The
number of passed runs depends on the time to run the scenario,
which is in the order of one or 2 min.

8.1.3. Diagnosis
In the ranking produced by SFL, 96 blocks have the highest simi-

larity to the error vector. These blocks are in 10 files, one of which is
part of the NVM stack, making this the obvious place to continue the
diagnosis. Inside its component, this files’ functions access modules
for normal, and redundant access to NVM, which confirms that the
problem is in this area. The bug, however, resides in a routine that
is called at system initialization time to retrieve the status (redun-
dant, or not), of the individual NVM items to populate a table describ-
ing the NVM layout. Since this routine is always used at initialization,
while the problem does not yet manifest itself, there is no way that
SFL can associate it with the failures that occur later on, so in this
case, the actual diagnosis is indirect at best. In general, SFL based
on block-hit spectra cannot be expected to directly locate data-
dependent faults, or faults in code that is always executed. However,
debugging is usually an iterative process, and in this sense, zooming
in on the code that accesses the table describing the NVM layout can
still be seen as a valuable suggestion for where to look next. In
general, hit spectra of definition-use pairs (Harrold et al., 2000)
may provide more relevant information to diagnose data-dependent
problems, but in this particular case the diagnosis is hindered
because the fault occurs at initialization, and is always executed.

8.2. Scrolling bug

8.2.1. Problem description
The TV has several viewing modes to watch content with differ-

ent aspect ratios. In 16:9 viewing mode, only part of a 4:3 image is
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displayed on screen, and the ‘‘window” through which the image is
watched can be positioned using the directional buttons on the re-
mote control (scrolling). The problem considered here entails that
after scrolling in a vertical direction, switching to dual-picture
mode and back re-centers the screen. Continuing to scroll after this
re-centering has occurred makes the screen jump back to the posi-
tion that it had before entering dual-picture mode, and scrolling
continues from that position. It should be noted that in dual-pic-
ture mode, one of the two screen halves displays the original pic-
ture, and the other half displays teletext.

8.2.2. Approach
To diagnose this problem, we rerun the above scenario as

follows:

1. enter 4:3 mode, and switch to dual-picture and back,
2. enter 16:9 mode, and scroll up and down,
3. demonstrate the problem in both vertical scrolling directions,
4. switch to teletext and back.

The runs are defined by the various actions such as scrolling,
selecting the viewing modes, etc., leading to approximately 20
runs, two of which are marked as failed. Because we do not know
where exactly the problem occurs, the two failed runs both involve
two key-presses: one to switch back from dual-picture mode
(which re-centers the picture), and another to scroll (which makes
the picture jump).

8.2.3. Diagnosis
The repair of this problem involves three locations, and one of

these is right on top of the ranking produced by SFL, sharing the
first place with four other blocks. The second location is in the
top 13 of the ranking, with the second-highest similarity, but the
third location is much further down: so many other blocks have
the same similarity that effectively, SFL cannot find it. However,
all three fixes are in the same file, and the third fix is a natural
extension of the other two.

Given the small number of locations that have to be examined
before we hit two of the locations where this problem is repaired,
we consider this diagnosis quite accurate. However, the last step of
the scenario, where we exonerate the teletext functionality, ap-
pears to be essential for getting a good result consistently. Why
the first step of the scenario, which also activates teletext in one
of the two screen halves, is not sufficient, is still subject of further
investigation.

8.3. Pages without visible content

8.3.1. Problem description
In the particular product line where this problem manifests it-

self, it is possible to highlight a word on a teletext page, and then
search the whole database of teletext pages for the current channel
for other occurrences of that word. However, the teletext standard
provides for pages with invisible content, through which, for exam-
ple, certain control messages can be broadcast: the characters are
there, but a special flag marks them invisible to the user. The prob-
lem that we investigate here entails that the word search function
also finds occurrences of a word on invisible pages, and that hitting
such an occurrence locks up the search functionality.

8.3.2. Approach
To diagnose this problem we use a scenario where we activate

the relevant teletext browsing functionality, including the word
search, and where we start new runs after, for example, changing
the page, navigating to words of interest, and finding new occur-
rences of those words. We manually mark runs as passed or failed
depending on whether the TV enters the locked-up state, or not. In
the end, we could not improve the diagnosis by using more than a
single failed run, and around 10 passed runs.

8.3.3. Diagnosis
Because this particular problem is still under investigation at

NXP, it is not possible to evaluate the quality of the diagnosis based
on the locations of the fixes. However, several code locations at the
top of the ranking generated by SFL involve statements whose exe-
cution depend on whether a page contains invisible content. We
expect that this could well serve as a reminder that pages can have
invisible content, and that this information provides a good sug-
gestion on the nature of a possible fix.

8.4. Repeated tuner settings

8.4.1. Problem description
Some broadcasters’ signals contain regional information in a

protocol that is recognized by many television sets, and which
specifies, for example, a preferred order for the television channels.
The problem that we investigate here entails that after an installa-
tion (finding all channels) is performed in presence of this regional
information, tuning twice in a row to an analog signal at the same
frequency results in a black screen.

8.4.2. Approach
There are two ways in which the same frequency can be set

repeatedly: by entering the same channel number on the re-
mote-control twice, and by switching from an analog channel to
an external video source (which does not change the tuner fre-
quency) and back. We run a scenario where we demonstrate the
problem in both ways, on both a single-digit and a two-digit chan-
nel, and where we also include several examples of changing the
channel without triggering the problem. The general strategy is
to start a new run after each channel change, and to mark the pre-
vious run as passed or failed depending on whether the problem
manifests itself, or not, resulting in 4 failed runs, and depending
on the exact scenario, around 15 passed runs.

8.4.3. Diagnosis
The repairs for this problem involve modifications in 13 code

blocks, all in the same file. Although none of the exact locations ap-
pears at a high position in the ranking generated by SFL, depending
on the exact scenario, typically 11 other blocks are found at the
highest level of similarity, 10 of which are from the file where
the problem has been repaired, making this the obvious place to
start debugging. Given the fact that over 1800 C files are involved
in the build, with approximately a dozen files related to low-level
tuner functionality, this can be considered a reasonably accurate
diagnosis. We have not been able to exploit the information that
the problem only occurs after an installation in presence of the re-
gional information.

8.5. Evaluation

These experiments demonstrate that the integration of SFL in an
industrial software development process is feasible: although
much more time was invested in these experiments, the estimated
costs for an analysis are 2 h for building the application binary of
the control software with instrumentation enabled, plus another
few hours for running the experiments, and analyzing the data. If
automated error detection is required, as we described for the
NVM corruption in Section 8.1, some more time must be reserved
for writing the special-purpose error detectors. In any case, run-
ning the analysis within a working day is feasible, and in some
debugging scenario’s this can be a sensible investment. In addition



Table 4
Diagnostic accuracy for the industrial test cases; total numbers of blocks and files are
150,000 and 1800, respectively.

Case Estimated qd (%) Inspect

NVM corrupt 99.96* 96 blocks, 10 files
Scrolling bug >99.99 5 blocks
Invisible pages >99.99 12 blocks
Tuner problem 99.97 2 files

* Indirect, see Section 8.1.
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to that, opportunities for integrating SFL with automated testing
schemes still have to be explored.

Of the four cases that we have considered thus far, one diagno-
sis is quite good (the scrolling bug), and in the other three cases,
SFL provides a useful suggestion, where in the case of the NVM cor-
ruption, this suggestion is indirect because of the data dependen-
cies involved. In Table 4 we give an estimate of the quality of the
diagnosis in terms of qd, as defined in Section 3.3. For the NVM cor-
ruption, this is based on the 96 blocks and 10 files on top of the
ranking, as described in Section 8.1. For the scrolling bug we use
the highest-ranking location where a repair has been made. In case
of the teletext lock-up at invisible pages, we use the rank of the
block that directs our attention to the flag for invisible content.
For the tuner problem, the estimate is based on two out of approx-
imately 1800 files, instead of blocks, as discussed in Section 8.4. Be-
cause of the high percentages involved, we have also included an
indication of the amount of code that must be investigated, based
on the number of blocks with an equal or higher calculated similar-
ity coefficient.

While the estimates in Table 4 are debatable, the experiments
demonstrate that spectrum-based fault localization scales well,
and that it can be applied as a practicable tool in industrial soft-
ware development. Note that while the estimated qd values in Ta-
ble 4 clearly indicate the power of SFL on large codes, these
numbers are not indicative for the added value for an experienced
developer. For example, as we discussed in Section 8.4, an NXP
developer would immediately concentrate on the dozen of files re-
lated to low-level tuner functionality, lowering qd to just over 95%
of files that do not have to be investigated. Nevertheless, SFL con-
firms such a decision as well as improves on it in terms of qd.

These experiments are part of the ongoing work to transfer the
techniques that have been developed in the TRADER project to NXP
Semiconductors. They were initiated after a first successful trial
(Zoeteweij et al., 2007), with the purpose of demonstrating the
technique on a number of problems that have been filed in recent
development history. In the end, we expect that the transfer will
lead to instrumentation for SFL being included as a standard option
in the build scripts of NXP Semiconductors, accompanied by guide-
lines for when and how to use the technique.

9. Related work

Program spectra themselves were introduced in (Reps et al.,
2000), where hit spectra of intra-procedural paths are analyzed
to diagnose year 2000 problems. The distinction between count
spectra and hit spectra is introduced in (Harrold et al., 2000),
where several kinds of program spectra are evaluated in the con-
text of regression testing.

In Section 1, we already mentioned three practical diagnosis/
debugging tools (Chen et al., 2002; Dallmeier et al., 2005, 2002)
that are essentially based on spectrum-based fault localization.
Pinpoint (Chen et al., 2002) is a framework for root cause analysis
on the J2EE platform and is targeted at large, dynamic Internet ser-
vices, such as web-mail services and search engines. The error
detection is based on information coming from the J2EE frame-
work, such as caught exceptions. The Tarantula tool (Jones et al.,
2002) has been developed for the C language, and works with
statement hit spectra. AMPLE (Dallmeier et al., 2005) is an Eclipse
plug-in for identifying faulty classes in Java software. However,
although we have recognized that it uses hit spectra of method call
sequences, we did not include its weight coefficient in our experi-
ments because the calculated values are only used to collect evi-
dence about classes, not to identify suspicious method call
sequences.

Diagnosis techniques can be classified as white box or black
box, depending on the amount of knowledge that is required about
the system’s internal component structure and behavior. An exam-
ple of a white box technique is model-based diagnosis (see, e.g., de
Kleer and Williams, 1987), where a diagnosis is obtained by logical
inference from a formal model of the system, combined with a set
of run-time observations. White box approaches to software diag-
nosis exist (see, e.g., Wotawa et al., 2002), but software modeling is
extremely complex, so most software diagnosis techniques are
black box. Since the technique studied in this paper requires prac-
tically no information about the system being diagnosed, it can be
classified as a black box technique.

Examples of other black box techniques are Nearest Neighbor
(Renieris and Reiss, 2003), dynamic program slicing (Agrawal
et al., 1993; Liu et al., 2005), Delta Debugging (Zeller, 2002), and
D-slicing (Groce, 2004). The Nearest Neighbor technique first se-
lects a single failed run, and computes the passed run that has
the most similar code coverage. Then it creates the set of all state-
ments that are executed in the failed run but not in the passed run.
Dynamic program slicing narrows down the search space to the set
of statements that influence a value at a program location where
the failure occurs (e.g., an output variable). Sober is a statistical
debugging tool which analysis traces fingerprints and produces a
ranking of predicates by contrasting the evaluation bias of each
predicate in failing cases against those in passing cases. Delta
Debugging compares the program states of a failing and a passing
run, and actively searches for failure-inducing circumstances in the
differences between these states. In Gupta et al. (2005) Delta
Debugging is combined with dynamic slicing in four steps: (1) Del-
ta Debugging is used to identify the minimal failure-inducing in-
put; step (2) computes the forward dynamic slice of the input
variables obtained in step 1; (3) the backward dynamic slice for
the failed run is computed; (4) finally it returns the intersection
of the slices given by the previous two steps. This set of statements
is likely to contain the faulty code. D-slicing is a model-based auto-
mated approach, based on distance metrics for program executions
traces, for assisting developers to isolate faulty parts of a program.
Basically, with the help of a (correct) counter-example the tech-
nique tries to isolate the minimal difference that induces a transi-
tion from a correct to a faulty execution trace.

Except for Pinpoint (Chen et al., 2002), all other researchers
used a reference program as error detector to study their tech-
niques. Although this program is typically available during regres-
sion testing, there are several situations where a reference program
is simply not there. This is the case when a new system or new
functionality is developed. The experiments reported in Section 8
are representative for this situation. In this case, errors were indi-
cated manually, or by an assert-like check that was added to the
software under diagnosis. Another example of a situation where
no reference system is available is when a product has passed
the testing stage, and is released on the market. For this situation,
in (Abreu et al., 2008a; Abreu et al., 2008b) generic program invari-
ants were successfully used as error detectors for spectrum-based
fault localization. The authors concluded that the diagnostic qual-
ity of this fully automated approach equals the one obtained when
the reference program is used. The investigated program invariants
are the bitmask (Abreu et al., 2008a), range (Abreu et al., 2008a;
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Abreu et al., 2008b), and the Bloom filter (Abreu et al., 2008b)
invariants. Given that the performance overhead of generic pro-
gram invariants is small, they are attractive to be used in the con-
text of resource constraint systems, as the one we used in our
industrial experiments, allowing to create self-diagnosing systems.

Regarding our observation that for the benchmark faults in the
Siemens set and space program, the diagnostic quality does not
change significantly when using more than 20 passed runs and
10 failed runs, in (Yu et al., 2008) the effect of several test-suite
reduction strategies on the accuracy of spectrum-based fault local-
ization is studied. The SFL variants taken into account in this study
include Tarantula, and the Jaccard and Ochiai coefficients. To our
knowledge, no other evaluations of the diagnostic quality of simi-
larity coefficients in the context of varying observation quality and
quantity exist. Furthermore, we are not aware that any of the other
techniques mentioned above have successfully been applied for
diagnosing software faults in resource-constrained systems.
10. Conclusions and future work

Reducing fault localization effort greatly improves the test–
diagnose–repair cycle. In this paper, we have investigated the
influence of different parameters on the accuracy of the diagnosis
delivered by spectrum-based fault localization. Our starting point
was a previous study on the influence of the similarity coefficient,
which indicated that the Ochiai coefficient, known from the biol-
ogy domain, can give a better diagnosis than eight other coeffi-
cients, including those used by the Pinpoint (Chen et al., 2002)
and Tarantula (Jones and Harrold, 2005) tools.

By varying the quality and quantity of the observations on
which the fault localization is based, we have established this re-
sult in a much wider context. We conclude that the superior per-
formance of the Ochiai coefficient in diagnosing single faults in
the Siemens set and the space program is consistent, and does
not depend on the quality or quantity of observations. We expect
that this result is also relevant for the Tarantula tool, whose anal-
ysis is essentially the same as ours.

In addition, we found that even for the lowest quality of obser-
vation that we applied (qe ¼ 1%, corresponding to a highly ambig-
uous error detection), the accuracy of the diagnosis is already quite
useful: around 80% for all the programs in our benchmark set,
which means that on average, only 20% of the code remains to be
investigated to locate the fault. Furthermore, we conclude that
while accumulating more failed runs only improves the accuracy
of the diagnosis, the effect of including more passed runs is unpre-
dictable. With respect to failed runs we observe that only a few
(around 10) are sufficient to reach near-optimal diagnostic perfor-
mance. Adding passed runs, however, can both improve or degrade
diagnostic accuracy. In either case, including more than around 20
passed runs has little effect on the accuracy. The fact that a few
observations can already provide a near-optimal diagnosis enables
the application of spectrum-based fault localization methods with-
in continuous (embedded) processing, where only limited observa-
tion horizons can be maintained.

In addition to our benchmark studies on the Siemens set and
space, we have also evaluated spectrum-based fault localization
on a large-scale code in the area of embedded software in con-
sumer electronics. These experiments have convinced us that SFL
scales well, and that it can be applied as a useful tool in an indus-
trial software development environment.

In future work, we plan to study the influence of the granularity
(statement, function level) of program spectra on the diagnostic
accuracy of spectrum-based fault localization. Furthermore, we in-
tend to investigate the accuracy improvement of integrating static
and dynamic program slicing (see, e.g., Agrawal et al., 1993) within
our technique. Finally, our study was conducted using C programs
with a single fault. Regarding the latter restriction, Spectrum-based
fault localization naturally extends to the multiple-fault case by
iteratively applying the technique until all faults are repaired
(see, e.g., Jones et al., 2002). However, we recently applied mod-
el-based diagnosis techniques to derive multiple-fault explana-
tions directly from program spectra and pass/fail information
(see Abreu et al. (2008c) for an account of the approach), and fur-
ther investigation is in progress to compare the debugging effort
implied by the two approaches on multiple-fault programs.
Regarding the restriction to the C programming language, we ex-
pect the technique to work well on other programming paradigms
and languages. From our current set of tools, the primary task
would be to port the instrumentation step, and work is currently
underway to implement it for the LLVM platform (Lattner and
Adve, 2004), which has front-ends for various programming lan-
guages. This tool will be made available from http://www.fdir.-
org/sfl.
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