
Debugging Spreadsheets: A CSP-based Approach
Rui Abreu and André Riboira
Dept. of Informatics Engineering

University of Porto
Porto, Portugal

rui@computer.org, andre.riboira@fe.up.pt

Franz Wotawa
Institute for Software Technology

Graz University of Technology
Graz, Austria

wotawa@ist.tugraz.at

Abstract—Despite being staggeringly error prone, spreadsheets
can be viewed as a highly flexible end-users programming
environment. As a consequence, spreadsheets are widely adopted
for decision making, and may have a serious economical impact
for the business. Hence, approaches for aiding the process of
pinpointing the faulty cells in a spreadsheet are of great value.
We present a constrain-based approach, CONBUG, for debugging
spreadsheets. The approach takes as input a (faulty) spreadsheet
and a test case that reveals the fault and computes a set of
diagnosis candidates for the debugging problem we are trying to
solve. To compute the set of diagnosis candidates we convert the
spreadsheet and test case to a constraint satisfaction problem.
From our experimental results, we conclude that CONBUG can
be of added value for the end user to pinpoint faulty cells.

Index Terms—Spreadsheets; Debugging; Constraints.

I. INTRODUCTION

Spreadsheet tools, such as Microsoft Excel1, iWork’s Num-
bers2, and OpenOffice’s Calc3, can be viewed as programming
environments for non-professional programmers [1]. These so-
called “end-user” programmers vastly outnumber professional
ones: the US Bureau of Labor and Statistics estimates that
more than 55 million people will be using spreadsheets and
databases at work on a daily basis by 2012 [1]. Despite
this trend, as a programming language, spreadsheets lack
support for abstraction, testing, encapsulation, or structured
programming. As a consequence, spreadsheets are error-prone.
As a matter of fact, numerous studies have shown that existing
spreadsheets contain redundancy and errors at an alarmingly
high rate [2], [3]. As an example disastrous financial conse-
quences due to spreadsheet calculating errors, the Board of the
West Baraboo Village, USA, found out on December 9, 2011
that they will be paying $400,0000 more on the estimated total
cost for the 10-year borrowing than originally projected4.

In the software engineering domain, constraints have been
used for various purposes like verification [4], debugging [5],
[6], program understanding [7] as well as testing [8], [9].
Some of the proposed techniques use constraints to state
specification knowledge like pre- and post-conditions. Others
use constraints for modeling purposes or extract the constraints

1http://office.microsoft.com/en-gb/excel/
2http://www.apple.com/iwork/numbers/
3http://www.openoffice.org/product/calc.html
4http://www.wiscnews.com/baraboonewsrepublic/news/local/article 7672b6c6-

22d5-11e1-8398-001871e3ce6c.html

directly from the source code. In this paper, we use constraints
obtained from the spreadsheets directly.

In this paper, we propose a constraint-based approach for
debugging spreadsheets, dubbed CONBUG. ConBug’s pre-
liminaries ideas have been explained in [10]. The approach
takes as input a spreadsheet and the set of user expectations,
and produces as output a set of diagnosis candidates. User
expectations express the cells that, according the user, reveal
failures on the spreadsheet. Diagnosis candidates are expla-
nations for the misbehavior in user expectations (an example
of a diagnosis candidate is cell B1 and cell C4 are faulty,
i.e., explain the faulty observed value in, e.g., cell A100). We
describe how the approach works and its efficiency using three
in-vitro spreadsheets plus a real spreadsheet taken from the
large EUSES Spreadsheet Corpus5.

II. BASIC DEFINITIONS

In order to be self contained, we briefly introduce the basic
definitions that are relevant for this paper. The paper deals
with fault diagnosis based on models of spreadsheets, i.e., an
approach to (semi-) automatically pinpoint faulty cells in the
spreadsheet is proposed. In this paper we assume a spreadsheet
programming language L with syntax and semantics similar
to, e.g., Microsoft Excel. Moreover, we assume correctness of
standard functions φ provided by the spreadsheet (e.g., SUM,
AVERAGE). In Figure 1, an example of a spreadsheet program
is given as running example. The spreadsheet implements a 3-
inverter circuit (see Figure 1(a)) with a defective cell, namely
B5 (see Figure 1(b)).

In order to state the debugging problem, we assume a
spreadsheet Π ∈ L containing (at least) a cell that does
not behave as expected. In the context of this paper such a
spreadsheet Π is faulty when there exist input values (cells)
from which the spreadsheet computes output values (cells)
differing from the expected values. The input and correct
output values are provided to the spreadsheet by means of
a test case. For defining test cases we introduce variable6

environments (or environments for short). An environment is
a set of pairs (x, v) where x is a variable and v its value. In
an environment there is only one pair for a variable. We are
now able to define test cases formally as follows.

5http://esquared.unl.edu/wikka.php?wakka=EUSESSpreadsheetCorpus
6In this paper we use the term variable and cell interchangeably.

(a) 3-inverter circuit

(b) A defective spreadsheet of the 3-inverter circuit

Fig. 1. Running Example: A faulty spreadsheet

Definition 1 (Input/Output cell): An input cell is a cell that
does have an influence on other cells of the spreadsheet.
Conversely, an output cell is a cell that does not influence
any other cell in the spreadsheet.

Definition 2 (Test case): A test case for a spreadsheet Π ∈
L is a tuple (I,O) where I is the input variable environment
specifying the values of all input cells used in Π, and O the
output variable environment (not necessarily specifying values
for all output variables).

For example a (failing) test case for the spreadsheet program
from Figure 1 is IΠ : {B2 = TRUE} and OΠ : {B4 =
TRUE;B5 = TRUE}. This particular test case is the one
depicted in the spreadsheet of Figure 1.

Definition 3 (Failing test case): A test case is failing if
there is at least one output cell that differs from the expected
value.
For the program from Figure 1 the test case (IΠ, OΠ) is a
failing test case. For input IΠ the program returns {B4 =
TRUE;B5 = FALSE} which contradicts the expected
output OΠ : {B4 = TRUE;B5 = TRUE}. Formally, we
define passing and failing as follows:

¬(Π passes test case(I,O))⇔ Π fails test case (I,O)

Again, note that not all values have to be specified. However,
it is necessary that all specified values for the output cells are
returned as expected. A cell for which no value is specified in
O can have an arbitrary value.

Definition 4 (Test suite): A test suite TS for a spreadsheet
Π ∈ L is a set of test cases of Π.

A spreadsheet is said to be correct with respect to TS if
and only if the program passes all test cases. Otherwise, we
say that the program is incorrect or faulty.

If deemed incorrect, the faulty cells have to be found in
order to fix the spreadsheet. The action of pinpointing the
faulty locations is called debugging.

Definition 5 (Debugging problem): Let Π ∈ L be a pro-
gram and TS its test suite. If T ∈ TS is a failing test case of
Π, then (Π, T) is a debugging problem.

A solution to the debugging problem is the identification and
correction of a part of the spreadsheet (set of cells) responsible
for the detected misbehavior. We call such a program part an
explanation. There are many approaches that are capable of
returning explanations including [11], [12], [13], [14], [15] and
[5], [16] among others. In this paper, we follow the debugging
approach based on constraints, i.e., [5], [16]. In particular, the
approach makes use of the program’s constraint representation
to compute possible fault candidates. So, debugging is reduced
to solving the corresponding constraint satisfaction problem
(CSP).

Definition 6 (Constraint Satisfaction Problem (CSP)): A
constraint satisfaction problem is a tuple (V,D,CON) where
V is a set of variables defined over a set of domains D
connected to each other by a set of arithmetic and boolean
relations, called constraints COM . A solution for a CSP
represents a valid instantiation of the variables V with values
from D such that none of the constraints from CON is
violated.

Note that the variables used in a CSP are not necessarily
cells used in a spreadsheet. We discuss the representation
of programs as a CSP in the next section. Afterwards we
introduce an algorithm for computing diagnosis candidates
given a CSP debugging problems. This algorithm only states
cells as potential explanations for a failing test cases ; no
information regarding how to correct the program is given.

III. CSP REPRESENTATION OF SPREADSHEETS

There are some differences between the conversion of
ordinary sequential programs into their corresponding con-
straint representation. In [17], [16] the authors introduce the
conversion based on two intermediate steps, i.e., removing
loops and providing a static single assignment form, before the
final compilation to constraints. In the domain of spreadsheets
this intermediate steps are not necessary because there are
usually no loops allowed directly in the spreadsheet language
and the fact that every cell is only allowed to be defined once.
Hence, there is no need for loop removal and the static single
assignment form.

In the constraint conversion of a spreadsheet Π ∈ L the
stored equations in cells are mapped to constraints including
also the encoding of the debugging problem. For this purpose
we introduce a special boolean variable AB(S) for a cell S,
that states the incorrectness of the cell S. The constraint model
of a cell comprises corresponding constraints or-connected
with AB(S). Let S ∈ Π and let CS be the constraint encoding
of the content stored in cell S in the constraint programing
language. We model S in CON as follows:

AB(S)∨ CS

Hence the CSP representation of a program Π is given by the
tuple

(VΠ, D,CON)

where VΠ represents all non-empty cells of a program Π,
defined over the domains D = {Integer,Boolean}.

Algorithm 1 Algorithm COMPUTEEXPRESSION

Inputs: An expression Eexpr and an empty set M for storing
the MINION constraints

Output: A set of representing the expression stored in M ,
and a variable or constant where the result of the
conversion is finally stored

1 if Eexpr is a variable or constant then
2 return Eexpr
3 else
4 Eexpr is of the form E1expr ψ E2expr
5 Let aux1 = COMPUTEEXPRESSION (E1expr)
6 Let aux2 = COMPUTEEXPRESSION (E2expr)
7 Generate a new MINON variable result and create

MINON constraints accordingly to the given operator ψ,
which define the relationship between aux1, aux2, and
result, and add them to M

8 return result
9 end if

What we discuss now is the conversion of the content of
a cell into a set of constraints. Let us assume that a cell
S comprises a constant or expression FS . E.g., a cell A3
might contain a value 100 or a function A2 + 5. The idea
of the conversion now is to map the cell and its content to
an assignment statement of the form S = FS and to convert
this assignment statement to its constraint representation in the
same fashion as in [17], [16]. In order to be self contained we
discuss this representation in the context of our implemented
prototype. In our implementation we model the CSP to repre-
sent the debugging problem in the language of the MINION
constraint solver [18]. MINION is an out of the box, open
source constraint solver. Its syntax requires a little effort in
modeling the constraints than other constraint solvers, e.g.,
it does not support different operators on the same constraint.
Because of this drawback sometimes complex constraints have
to be split into two or three more simpler constraints. However,
because of this characteristic, MINION, unlike other constraint
solver toolkits, does not have to perform an intermediate
transformation of the input constraint system. MINION of-
fers support for almost all arithmetics, relational, and logic
operators such as minus, plus, multiplication, division, less,
and equal over integers. Furthermore, it also requires that all
expressions used in a MINION program to be limited to one
operator.

Because of the syntactical limitations of MINON we have
to convert an assignment statement with an expression Eexpr
on the right-side comprising more than one operator into a
sequence of MINON statements. The idea behind the conver-
sion is straightforward. A constant or variable is represented
by itself. For an expression of the form E1expr ψ E2expr we
convert E1expr and E2expr separately, and assign a new in-
termediate variable for each converted sub-expression. The
COMPUTEEXPRESSION algorithm (see Algorithm 1) imple-
ments the conversion.

As an example, the expression A1 + B2 - C2 is
converted to the following MINION constraints using
COMPUTEEXPRESSION where aux1 and aux2 represent new
variables introduced during conversion.

sumleq([A1,B2],aux1)
sumgeq([A1,B2],aux1)
weightedsumleq([1,-1],[aux1,C2], aux2)
weightedsumgeq([1,-1],[aux1,C2], aux2)

In this example the MINION constraints sumleq and
sumgeq are used to represent the plus operator, and
weightedsumleq and weightedsumgeq together with
the given list of signs are for representing the minus operator.

For convenience we assume a function CONVERT that
implements the conversion of spreadsheets into MINION
constraints as discussed in this section. Hence, CONVERT
takes the spreadsheet as input and returns a set of MINION
constraints as output. We use this function in the next section,
where we discuss an algorithm for debugging spreadsheets
using constraints.

IV. DEBUGGING

Debugging of a spreadsheet requires the existence of a
failing test case. This means that in addition to the set of
constraints CON , we must add an extra set of constraint
encoding a failing test case (I,O). For all (x, v) ∈ I the
constraint x0 = v is added to the constraint system. For all
(y, w) ∈ O the constraint y = w is added. Let CONTC denote
the constraints resulted from converting the given test case.
Then, the CSP corresponding to the debugging problem of a
program Π is now represented by the tuple

(VΠ, D,CON ∪ CONTC)

Again, for convenience, we assume a function
CONVERT TEST that implements the conversion of the
failing test case into MINION constraints as outlined. Hence,
CONVERT TEST takes the the failing test case as input and
returns a set of MINION constraints as output.

Let CONΠ be the constraint representation of a spread-
sheet Π and CONT the constraint representation of a failing
test case T . The debugging problem formulated as a CSP
comprises CONΠ together with CONT . Note that in CONΠ

assumptions about correctness or incorrectness of cells are
given, which are represented by a variable AB assigned to
each statement. The algorithm for computing bug candidates
calls the MINION CSP solver using the constraints and asks
for a return value of AB as a solution. The size (cardinality)
of the solution corresponds to the size of the bug, i.e., the
number of statements that must be changed together in order
to explain the misbehavior. We assume that single cell bugs are
more likely than bugs comprising more cells. Hence, we ask
the constraint solver for smaller solutions first. If no solution
of a particular size is found, the algorithm increases the size
of the solutions to be searched for and iterates calling the
constraint solver. This is done until either a solution is found

Algorithm 2 Algorithm CONBUG

Inputs: A spreadsheet Π and a failing test case T
Output:Diagnostic Report D
1 D ← ∅
2 CONΠ ← CONVERT(Π)
3 CONT ← CONVERT TEST(T)
4 i← 1
5 while i ≤ CELLS(Π) do
6 D ← MINION(CONΠ, CONT , i)
7 if D 6= ∅ then
8 return D
9 else

10 i← i+ 1
11 end if
12 end while
13 return D

or the maximum size of a bug, which is equivalent to the
number of statements in Π, is reached.

In summary, the automatic fault localization approach pro-
posed in the paper comprises 3 main phases. The first phase
comprises the conversion of a spreadsheet Π ∈ L into the
corresponding set of MINION constraints (line 2 in Algo-
rithm 2). The second phase is the conversion of the failing
test case into the corresponding set of MINION constraints
(line 3 in Algorithm 2). Finally, the third phase comprises
the computation of diagnosis candidates, i.e., cells of the
spreadsheet that might cause the revealed misbehavior, from
the constraint representation of a spreadsheet Π ∈ L (lines
4 to 12 in Algorithm 2). Eventually, the algorithm returns the
empty set if no diagnosis candidates are found (i.e., no solution
is found for the CSP problem).

V. CASE STUDY

This section details how the approach works using four
different faulty spreadsheets. The first case is a spreadsheet
that represents the inverter problem introduced before. The
second case is a spreadsheet that represents an adaptation
from the example used in [17], which describes an automatic
approach for software debugging. The third case is a sample
spreadsheet that mimics a common user made spreadsheet,
with a faulty formula to calculate the cardiac output of a
human. Finally, the fourth case is a spreadsheet from EUSES
Spreadsheet Corpus modified to have a faulty cell.

The first spreadsheet is converted into the following MIN-
ION model (the spreadsheet itself is presented in Section II):

MINION 3
VARIABLES
BOOL b2
BOOL w
BOOL b4
BOOL b5
BOOL ab[3]
SEARCH
VARORDER [ab]
PRINT ALL
CONSTRAINTS

watched-or({element(ab, 0, 1), diseq(w, b2)})
watched-or({element(ab, 1, 1), diseq(b4, w)})
watched-or({element(ab, 2, 1), eq(b5, w)})
#TEST CASE
eq(b2,1)
eq(b4,1)
eq(b5,1)
#SD
watchsumgeq(ab, 1)
watchsumleq(ab, 3)
EOF

Executing the MINION solver with such model yields one
diagnosis candidate (cell B5 is faulty). Thus, CONBUG points
out that there is just one solution for the model, solution that
represents the faulty cell for this specific spreadsheet and test
case.

Fig. 2. Example Spreadsheet with a traditional software port

The second case study is the adaptation to a spreadsheet of
the example used in [17] (see Figure 2). The spreadsheet is
modeled using the following constrains:

CONSTRAINTS
watched-or({element(ab,0,1), product(2,b1,b4)})
watched-or({element(ab,1,1), product(2,b2,b5)})
watched-or({element(ab,2,1), sumgeq([b4,b5],b7)})
watched-or({element(ab,2,1), sumleq([b4,b5],b7)})
watched-or({element(ab,3,1), product(b4,b4,b8)})
#TEST CASE
eq(b1,1)
eq(b2,2)
eq(b7,8)
eq(b8,4)

And the solver identifies one solution for the model, i.e.,
identifies the potential faulty cell (B7, third variable of the
array): As in [17] (which used a similar problem as a software
program), our approach properly identifies the faulty cell.

The third case study is a spreadsheet that tries to mimic
traditional end-user made spreadsheets. This spreadsheet cal-
culates the Cardiac Output based on the input of three values
and two formulas (see Figure 3).

Fig. 3. Example Spreadsheet that calculates the Cardiac Output

Cell B9 is faulty: it multiplies cells B4 and B6, and should
be multiplying cells B4 and B5. The value in cell B10, one of

the output cells, is not as expected. The following model was
built to represent this problem:

CONSTRAINTS
watched-or({element(ab,0,1), difference(b4,b6,b9)})
watched-or({element(ab,1,1), product(b9,b6,b10)})
#TEST CASE
eq(b4,120)
eq(b5,50)
eq(b6,72)
eq(b9, 70)
eq(b10,5040)

The model submitted to MINION properly identifying the
faulty cell (B9, first variable of the array).

Finally, we have used a spreadsheet from the EUSES
Repository to test CONBUG concept in a real end-user made
spreadsheet (see Figure 4).

The spreadsheet was edited to contain a fault on the formula
of the cell D20. This leads to an unexpected output on cell
D23. Because the constraint list of this spreadsheet model is
too long, it is not presented here. After executing the model in
MINION, one obtains a diagnosis candidate which identifies
correctly the faulty cell (D20, third variable of the array).

On the reported case studies the results were rather precise:
our approach managed to properly find the root cause of the
observed failure. We now present the performance regarding
the run-time of our tests:

• Inverter Problem: 6 constraints in 0.15 seconds
• Example from [17]: 9 constraints in 0.16 seconds
• Cardiac Output Spreadsheet: 7 constraints in 0.17 seconds
• Spreadsheet from EUSES: 32 constraints in 0.17 seconds

These results show that CONBUG can be used to debug faulty
(real) spreadsheets. The results were obtained using a Sony
Vaio VGN-FW51ZF laptop, using Ubuntu Linux 10.10 (64
bit version) and MINION 0.12.

VI. RELATED WORK

The work presented in this paper is based on model-based
diagnosis [19], namely its application to (semi-)automatic
debugging (e.g., [20]). In contrast to previous work, the work
presented of this paper, however, does not use logic-based
models of programs but, instead, a constraint representation
and a general constraint solver. A similar approach to the
one of this paper has been presented recently in [21] to aid
debuggers in pinpointing software failures. Moreover, in [22] a
model-based approach, using an extended hitting-set algorithm
and user-specified or historical test cases and assertions, to
calculate possible error causes in spreadsheets is presented.

GoalDebug [23] is a spreadsheet debugger for end users.
Whenever the computed output of a cell is incorrect, the user
can supply an expected value for a cell, which is employed
by the system to generate a list of change suggestions for
formulas that, when applied, would result in the user-specified
output. In [23] a thorough evaluation of the tool is stated.
GoalDebug employs a similar constraint-based approach as
the one presented in this paper. Moreover, it also suggests a
list of changes to fix the spreadsheet (which is not currently
supported by CONBUG).

Spreadsheet testing is closely related to debugging. In the
WYSIWYT system users can indicate incorrect output values
by placing a faulty token in the cell. Similarly, they can
indicate that the value in a cell is correct by placing a correct
token [24]. When a user indicates one or more program failures
during this testing process, fault localization techniques [25]
direct the user’s attention to the possible faulty cells. Similar
to our approach, WYSIWYT provides no help with regard to
how to change erroneous formulas. In contrast to CONBUG,
WYSIWYT also collects user input about correct cell values
and employs this information in the fault localization analysis.

There are several spreadsheet analysis tools that try to
reason about the units of cells to find inconsistencies in
formulas, e.g., [26], [27]. The tools differ in the rules they
employ and also in the degree to which they require users
to provide additional input. Most of these approaches require
the user the annotate the spreadsheet cells with additional
information, except the UCheck system [28], which by ex-
ploiting techniques for automated header inference [26], can
perform unit analysis fully automatically. However, none of
these approaches provide any further help to the user to correct
the errors once they are detected. Other approaches aimed at
minimizing the occurrence of errors in spreadsheet include
code inspection [29] and adoption of better spreadsheet design
practices [30]. However, none of these approaches focus on
debugging of spreadsheets.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, CONBUG, a a constraint-based approach for
debugging (automatically) spreadsheets was proposed. The
approach takes as input a spreadsheet and the set of user
expectations (specifying the input and output cells and their
expected values), and produces as output a set of diagnosis
candidates. Diagnosis candidates are explanations for the
misbehavior in user expectations (an example of a diagnosis
candidate is cell B1 and cell C4 are faulty, i.e., explain the
faulty observed value in, e.g., cell A100). We have used three
small spreadsheets plus a somewhat more realistic spreadsheet
taken from the large EUSES Spreadsheet Corpus to show that
the approach is light-weight and efficient.

This line of research raises a number of research questions
that require further investigation. First and foremost, our
intention is to release the approach in a plug-in for spreadsheet
applications. As such, and keeping in mind that the target
audience are end-users, we plan the devise a natural, intuitive
way to visually display the diagnostic information. Second, we
plan to combine this work with mutation of spreadsheets [31]
to be able to give advice to users on how to fix the buggy
spreadsheet. Third, we plan to study the applicability and
efficiency of other, more light-weight techniques to debug
spreadsheets. In particular, we will study the complexity-
efficiency trade-off using spectrum-based reasoning for fault
localization [20], which is amongst the best approaches for
software fault localization. Fourth, currently our approach only
deals with integer cells, we plan to extend our approach to
be able to handle, e.g., strings and floats. Finally, we also

Fig. 4. Example Spreadsheet from EUSES Repository

plan (that is actually on-going work) to evaluate the current
approach using a larger set of spreadsheets.

ACKNOWLEDGMENT

This work was supported by the Foundation for Science and Technology
(FCT), of the Portuguese Ministry of Science, Technology, and Higher Educa-
tion (MCTES), under Project PTDC/EIA-CCO/108613/2008, and the compe-
tence network Softnet Austria II (www.soft-net.at, COMET K-Projekt) funded
by the Austrian Federal Ministry of Economy, Family and Youth (bmwfj),
the province of Styria, the Steirische Wirtschaftsförderungsgesellschaft mbH.
(SFG), and the city of Vienna in terms of the center for innovation and
technology (ZIT).

REFERENCES

[1] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson,
G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state of the art in
end-user software engineering,” ACM Computing Surveys, 2011.

[2] D. Chadwick, B. Knight, and K. Rajalingham, “Quality control in
spreadsheets: A visual approach using color codings to reduce errors in
formulae,” Software Quality Journal, vol. 9, no. 2, pp. 133–143, 2001.

[3] M. Tukiainen, “Uncovering effects of programming paradigms: Errors
in two spreadsheet systems,” in Proc. PPIG’00, 2000, pp. 247–266.

[4] H. Collavizza and M. Rueher, “Exploring different constraint-based
modelings for program verification,” in Proc. CP’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 49–63. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1771668.1771676

[5] R. Ceballos, R. M. Gasca, and D. Borrego, “Constraint satisfaction
techniques for diagnosing errors in design by contract software,” ACM
SIGSOFT Software Engineering Notes, vol. 31, no. 2, 2006.

[6] F. Wotawa and M. Nica, “On the compilation of programs into their
equivalent constraint representation,” Informatica Journal, vol. 32, pp.
359–371, 2008.

[7] S. Woods and Q. Yang, “Program understanding as constraint satis-
faction: Representation and reasoning techniques,” Automated Software
Eng., vol. 5, pp. 147–181, April 1998.

[8] A. Gotlieb, B. Botella, and M. Rueher, “Automatic test data generation
using constraint solving techniques,” in Proc. ISSTA’98, pp. 53–62.

[9] ——, “A CLP framework for computing structural test data,” in Proc.
CL’00. London, UK: Springer-Verlag, 2000, pp. 399–413.

[10] R. Abreu, A. Riboira, and F. Wotawa, “Constraint-based debugging of
spreadsheets,” in Ibero-American Conference on Software Engineering
(CibSE’12), 2012.

[11] B. Peischl and F. Wotawa, “Automated source-level error localization in
hardware designs,” IEEE Des. Test, vol. 23, pp. 8–19, January 2006.

[12] R. Abreu, W. Mayer, M. Stumptner, and A. J. C. van Gemund, “Refining
spectrum-based fault localization rankings,” in Proc. SAC’09. ACM
Press.

[13] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy of
spectrum-based fault localization,” in Proc. TAIC PART’07. IEEE CS,
September 2007, pp. 89–98.

[14] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proc. ICSE’09. Wash-
ington, DC, USA: IEEE Computer Society, 2009, pp. 364–374.

[15] W. Mayer, “Static and hybrid analysis in model-based debugging,” Ph.D.
dissertation, School of Computer and Information Science, University
of South Australia, 2007.

[16] F. Wotawa, M. Nica, and I.-D. Moraru, “Automated debugging based
on a constraint model of the program and a test case,” The journal of
logic and algebraic programming, vol. 81, no. 4, 2012.

[17] M. Nica, S. Nica, and F. Wotawa, “On the use of mutations and testing
for debugging,” Software : Practice & Experience, 2012.

[18] I. P. Gent, C. Jefferson, and I. Miguel, “Minion: A fast, scalable,
constraint solver,” in Proc. ECAI’06. IOS Press, 2006, pp. 98–102.

[19] R. Reiter, “A theory of diagnosis from first principles,” Artificial
Intelligence, vol. 32, no. 1, pp. 57–95, April 1987.

[20] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “Spectrum-based
multiple fault localization,” in Proc. ASE’09. IEEE CS, 2009.

[21] F. Wotawa, J. Weber, M. Nica, and R. Ceballos, “On the complexity of
program debugging using constraints for modeling the program’s syntax
and semantics,” in Proc. CAEPIA’09, 2009, pp. 22–31.

[22] D. Jannach and U. Engler, “Toward model-based debugging of spread-
sheet programs,” in Proc. JCKBSE’10, Kaunas, Lithuania, 2010, pp.
252–264.

[23] R. Abraham and M. Erwig, “Goaldebug: A spreadsheet debugger for
end users,” in Proc. ICSE’07, 2007, pp. 251–260.

[24] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld, T. R. G.
Green, and G. Rothermel, “WYSIWYT testing in the spreadsheet
paradigm: an empirical evaluation,” in Proc. ICSE’00. ACM, 2000,
pp. 230–239.

[25] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prabhakararao,
M. Fisher, II, and M. Main, “End-user software visualizations for fault
localization,” in Proc. SoftVis’03. ACM, 2003, pp. 123–132.

[26] R. Abraham and M. Erwig, “Header and unit inference for spreadsheets
through spatial analyses,” in Proc. VLHCC’04. IEEE CS, 2004.

[27] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi, “A type
system for statically detecting spreadsheet errors.” IEEE CS, 2003.

[28] R. Abraham and M. Erwig, “Ucheck: A spreadsheet type checker for
end users,” J. Vis. Lang. Comput., vol. 18, pp. 71–95, February 2007.

[29] R. R. Panko, “Applying code inspection to spreadsheet testing,” J.
Manage. Inf. Syst., vol. 16, pp. 159–176, September 1999.

[30] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring classsheet
models from spreadsheets,” in Proc. VL/HCC’10, 2010, pp. 93–100.

[31] R. Abraham and M. Erwig, “Mutation operators for spreadsheets,” IEEE
TSE, vol. 35, no. 1, pp. 94–108, 2009.

