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ABSTRACT 
Resuming past work on coverage-based fault localization, we find 
that empirical assessments of its accuracy are subject to so many 
imponderables that they are of limited value. To improve on this 
situation, we have compiled a comprehensive list of threats to be 
considered when attempting such assessments in the future. In ad-
dition, we propose the establishment of theoretical lower and up-
per bounds of fault localization accuracy that depend on proper-
ties of the subject programs (including their test suites) only. We 
make a suggestion for a lower bound and show that well-known 
fault locators do not uniformly perform better. 
Categories and Subject Descriptors: D.2.5 [Software Engi-
neering]: Testing and Debugging—Debugging Aids 
General Terms: Measurement, Performance, Experimentation 
Keywords��Fault localization, Threats to validity 

1. INTRODUCTION 
Ever since the first publications on coverage-based fault local-

ization [8, 9, 15, 22], an empirical evaluation of the diagnostic ac-
curacy, or of the (theoretical) effort of localizing a fault, has been 
a conditio sine qua non. Although accuracy measures, which are 
usually based on rankings of program elements to be inspected in 
search for a fault, may be questioned as indicators of the useful-
ness of fault locators [21], they are certainly necessary for evalu-
ating their performance, in a theoretical setting at least. Since util-
ity depends on performance (who would deny the value of a fault 
locator with perfect accuracy?), we assume that researchers will 
continue to try and improve the accuracy of fault localization, 
unless a theoretical upper bound for the accuracy is found which 
makes fault localization unappealing for practical application. 
Since such a bound is currently not in sight, we will likely see 
empirical assessments of fault localization accuracies in the scien-
tific literature for some time to come. 

In this paper, we summarize the problems and pitfalls that we 
have encountered during our own attempts to get the evaluation of 
fault locators right. In the organization of our presentation, we do 
not separate between our own observations and those made by 
others (to which we give references whenever we are aware of 
them); where observations coincide, the results presented here 
should be seen as independent support for, or reproduction of, the 

results obtained by others. A contribution that, as we believe, 
stands out alone however is the establishment of an absolute 
lower bound of the accuracy of fault locators, for which we show 
that some fault locators established in the literature fail to perform 
better in a significant number of cases. With this, we hope to set a 
useful frame of reference for the ad hocery that we are seeing in 
the evaluation of fault locators until this day. 

The remainder of this paper is organized as follows. Section  2 
sets the stage by introducing the terms and definitions on which 
our work rests. Section  3 describes the setup for the experiments 
we have conducted to identify and quantify the threats to validity 
and value that are the subject of this paper, and which are de-
scribed in Section  4 and  5, resp. Section  6 briefly summarizes re-
lated work. 

NB: In this paper, the adequacy of any particular fault locator, 
or the superiority of one fault locator over another, is not the topic 
— our objective is to show how performance is generally suscep-
tible to the design of the evaluations assessing it. 

2. TERMS AND DEFINITIONS 
We introduce and define a number of terms as we will use 

them in this work. Other work may define or use the same terms 
differently. 

A test case is a repeatable execution of some part of a pro-
gram, supplying it with specified input and matching its observ-
able behaviour (including its output) with the expected behaviour. 
A test suite is a collection of test cases whose result is independ-
ent of the order of their execution. 

A proband (elsewhere called a subject [4] or an object pro-
gram [16, 29]) is a program together with its test suite that we use 
for evaluating the performance of coverage-based fault locators. 

The granularity of fault localization defines the units of the 
probands to which faults are ascribed. Typical granularities found 
in the literature are class [10] method [27], block [1, 2], branch 
[24], or statement [15]. A unit under test (UUT) is a unit of the 
proband (at the chosen granularity level) that is covered by at 
least one test case. 

A test coverage matrix (TCM) is a mathematical abstraction of 
a test suite and the UUTs it covers. The abstraction has the form 
of a binary matrix whose rows correspond to the UUTs and whose 
columns correspond to the test cases. Each element of the matrix 
indicates whether a test case covers (i.e., executes) a UUT (1) or 
not (0). Figure 1 shows a generic TCM in which the test cases 
have been divided (by permutation of columns) into failed and 
passed ones.1 

                                                 
1 [1–3] uses the transposed matrix, and expresses the division of 
test cases into passed and failed ones as a separate error vector. In 
this paper, we stick to the presentation used by [15–18]. 
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A failed test coverage matrix (FCM) reduces a TCM to the 
columns corresponding to failed test cases, and to the rows that 
are covered by these test cases. Note that neither a TCM nor a 
FCM has rows or columns whose elements are all 0. 

We refer to as coverage-based fault localization any activity 
that points to potential faults in a proband, solely using informa-
tion contained in a TCM or some subset thereof (including a 
FCM).  

2.1 Basic Assumptions of Coverage-Based 
Fault Localization 

The feasibility of coverage-based fault localization rests on a 
number of assumptions. 
1. Faults are intermittent, i.e., faulty UUTs are covered by both 

failing and passing test cases. (This is sometimes also called 
coincidental correctness [28].) 

2. Every failed test case executes at least one fault whose execu-
tion causes the failure. 

3. The prior probability distribution of faultiness is unknown 
(and therefore not exploited by fault localization). 

4. For the purpose of measuring the performance of a fault loca-
tor, we assume that upon inspection, a programmer always 
recognizes a faulty UUT as such, and recognizes no UUT con-
sidered to be correct in the context of the evaluation — falsely 
or rightly — as faulty. 
While not all of these assumptions may hold in practice, reject-

ing any of them means questioning the adequacy of coverage-
based fault localization, which is not the topic of this paper. 

2.2 Fault Localization Modes 
In the single-fault case, accuracy of fault locators is usually 

evaluated by visiting the UUTs in the order suggested by the loca-
tor, until the fault is found. When evaluating the accuracy of fault 
locators in presence of multiple faults, we distinguish two modes: 
1. one-at-a-time mode: one fault is identified and fixed, and then 

the fault localization process is repeated (including a re-run of 
the test suite and a re-computation of the TCM); and 

2. many-at-a-time mode: as many faults are identified and fixed 
as are known to be contained in the program, before the fault 
localization process is repeated. 

The question of how many faults are known to be contained in a 
program turns out to be a tricky one: while the total number of 
faults will be known in an evaluation setting in which the faults 
themselves are known, in a practical application of fault localiza-
tion it will not be (so that an evaluation should not be based on the 
localization of all existing faults, at least not at a time; cf. Section 
 4.4.3).  

2.3 Accuracy Measures 
The diagnostic accuracy of a fault locator is usually measured 

in two steps:  
1. by computing a ranking of UUTs from a TCM and  

2. by determining the position of the first fault (in the one-at-a 
time mode) or the position of the first n faults (in the many-at-
a-time mode) in that ranking.  

Note that for the second step, the faulty UUTs must be known. In 
the many-at-a-time mode, the TCM may be partitioned into inde-
pendent smaller ones first so as to localize faults in each partition 
separately, which may lead to better localization results [3, 17, 18, 
26, 27].  

The above general evaluation scheme leaves two main degrees 
of freedom: 
1. how to deal with ties, i.e., how to rank UUTs that have re-

ceived the same score, where one of them is faulty and the 
subject of localization (called a critical tie in [30] or an ambi-
guity group in [13]); and 

2. how to convert the rank of the faulty UUT to a measure of ac-
curacy. 
While the first works evaluating coverage-based fault locators  

always ranked the faulty UUT of a critical tie last [16], more re-
cent work has assumed a random ordering, and therefore uses the 
expected value �n�1��2 for the position of the culprit instead [4, 
27, 30]2. In the multiple fault case, when k faulty UUTs are 
among a critical tie of n UUTs with identical coefficient, the ex-
pected value is given by 
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For the assessment of fault locator performance, ranks of 
faulty UUTs are usually converted to some measure of accuracy. 
Relatively frequent are measures that put the rank into relation to 
the program size (in units of the chosen granularity), either as the 
percentage of units that need not be inspected to identify a fault 
[9, 16, 21, 22], or as the percentage of units that need be inspected 
[2]. However, searching the explanation for failed test cases in 
code that is not covered by any test case, or even not covered by 
any failed test case, not only makes little sense per se (cf. As-
sumption  2 in Section  2.1), but also makes accuracy correlate in-
versely with overall test coverage, warping all evaluations based 
on probands whose test coverage is less than 100% (see Section 
 4.1 for evidence of this).3 These problems are avoided by using 
                                                 
2 [4] also showed that assuming the last position introduces a bias, 
which is avoided by using the expected value. 
3 Note that the coverage of the Siemens test suite, which is often 
used in evaluations, is 100%. 
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Figure 2: Similarity coefficients underlying the fault locators 
used in this paper. T is suspiciousness of Tarantula [18], T* 
multiplies suspiciousness with confidence [18], and O is the 
Ochiai similarity coefficient used by [1–3, 25, 27]. The free 
variables a and m are introduced in Figure 1; i is the index of a 
UUT in a TCM. 

UUTs  TEST CASES 
  f a i l e d p a s s e d 

  t1 … tm tm+1 … ta 
u1  x1,1 … x1,m x1,m+1 … x1,a 
…  … … … … … … 
un  xn,1 … xn,m xn,m+1 … xn,a 

Figure 1: General structure of a test coverage matrix (TCM) 
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absolute measures of accuracy, such as the rank of the faulty UUT 
(which also better reflects the real effort required [21]). 

3. EXPERIMENTAL SETUP 
The setup of the experiments used in Sections  4 and  5 to dem-

onstrate that the threats identified in this paper are evident, largely 
follows the setup discussed in detail in [27]. The following briefly 
repeats the cornerstones, going into detail only where we differ. 

Our probands together with measures of qualities relevant for 
our endeavour are given in Table 1 (see “Downloads” at the end 
of this paper for their sources). Units where counted using the 
Eclipse Java Search facility; this provided more accurate counts 
than any metrics tool that we tried (whose counts did in fact vary 
widely, presenting a threat in its own right; see Section  4.5). The 
list excludes the Apache Commons Collections library used in 
[27], because it made massive use of abstract tests (see Section 
 4.3 for the problems this causes), and adds 4 new probands. As 
has been pointed out in [27], obtaining usable probands is a very 
time-consuming (and overall rather frustrating) process; the value 
of a suite of probands such as that of Table 1 should therefore not 
be underestimated. 

To compute TCMs we used the JUnit test suites that came with 
the probands, and JUnit 4 as the test runner. As entry point for 
running the test suite, we used the AllTests() suite (in case of 
Jaxen: JaxenTests()) if present, and else the test packages. We ex-
plicitly made sure that no test case was run twice in the same exe-
cution of a test suite. 

We used the granularity of methods (rather than the more 
common statements). Methods have the advantage of providing a 
natural context of each fault, of being cognitive units directly re-
lated to a failed test case (via the call graph), and of being the 
natural skip/step into units of contemporary debuggers (so that the 
programmer’s choice which UUTs to skip or to debug into can be 
guided by the output of the fault locator). 

The fault locators used are similarity-coefficient based [3]. 
They use the coefficients shown in Figure 2. The selection of T 
(Tarantula) and O (Ochiai) was mainly influenced by their popu-
larity (both are frequently used in evaluations; see, e.g., [1–4, 11, 
15, 16]); T*, to the best of our knowledge defined and evaluated 
here for the first time, was added to show that the performance of 
similarity coefficients can, to a certain extent, be designed (cf. 
Sections  4.1 and  4.4.1). 

From the rankings produced by computing the coefficients, we 
computed two accuracy measures: absolute wasted effort, deter-
mined as the number of UUTs that need to be inspected in vain 
before a faulty UUT is found, and relative wasted effort (intro-

duced in [3]), computed as the fraction of all methods (as the units 
of granularity) of a proband that are inspected in vain before the 
fault is found. For tie breaking, we use the expected value as de-
scribed in Section  2.3. For reasons given in [21, 27], in particular 
because using relative wasted effort introduces the bias mentioned 
in Section  2.3 and demonstrated in Section  4.1, absolute wasted 
effort will mostly be used; it will be referred to only as wasted ef-
fort. 

Faulty versions of the probands were obtained using fault in-
jection (see Section  4.2 for the justification). For this, the fault in-
jectors shown in Table 2 were employed: we added to the first 
four, which were previously used in the evaluation of mutation 
analysis itself [5] and in the mutation-based evaluation of fault lo-
cators [4, 20], two fault injectors used in our own previous work 
[27], mainly because we suspected that they provoke different 
faulty behaviour and that this impacts accuracy (Section  4.2.2). 

Each fault injector was used to create as many as possible, but 
no more than 100 random injections of a single fault into each 
proband such that the injection made at least one test case of the 
proband fail. This gave us up to 600 detectable fault injections per 
proband. In the single fault case, all injections were used to pro-
duce one faulty version of the proband each; in the multiple fault 
cases, we used the geometric progression 2, 4, 8, 16, 32 for n, the 
number of faults, and randomly drew 1000 samples of n injections 
for each n, making sure that in each sample, the faults were lo-
cated in different methods. Note that this procedure does not pro-
duce an equal probability distribution of the faultiness of UUTs; 
instead, larger methods (containing more statements) are likely to 
be faulty more often. While assuming such a probability distribu-
tion to be realistic may appear simplistic, the alternative, an equal 
number of fault injections in each method, would mean that many 
aberrant control flows would never be provoked, simply because 
the smallest method of a proband limits the number of faults in-
jected into all larger ones. 

4. THREATS TO THE VALIDITY 

4.1 Heterogeneity of Probands 
In practice, programs and their test suites do not only vary 

greatly in terms of size (cf. Table 1), but also in terms of the qual-
ity of test suites that they provide. In fact, even in open source 
projects, test cases such as 

/** 

* Test the constructor. This is just for coverage 

*/ 

@Test public void testConstructor() { 

 new CalendarUtils(); 

} 

Table 1: Probands used in this paper 
PROBAND AND UNITS† UUTS TCS UUTS/TC 
VERSION NUMBER # # # # V§ 
Daikon 4.6.4 14387 1936 157 30 84 
Eventbus 1.4 859 338 91 32 22 
Jaxen 1.1.5 1689 961 695 186 81 
Jester 1.37b 378 152 64 15 12 
JExel 1.0.0b13 242 150 335 21 14 
JParsec 2.0 1011 893 510 40 39 
AC Codec 1.3 265 229 188 7 7 
AC Lang 3.0 5373 2075 1666 8 11 
Eclipse Draw2d 3.4.2 3231 878 89 82 65 
HTML Parser 1.6 1925 785 600 142 93 
mean 2936 840 440 56 43 
standard deviation 4107 658 463 58 33 
† here: total number of methods, not counting JUnit test methods 
§ standard deviation 

Table 2. Fault injectors (mutation operators) used
NAME FUNCTION 
Negate Decision (ND) negate condition in an if or while state-

ment 
Replace Constant (RC) replace integer constant C by 0, 1, �1, 

C�1 or C�1 
Delete Statement (DS) delete a statement 
Replace Operator (RO) replace an arithmetic, relational, logi-

cal, bitweise logical, incre-
ment/decrement or arithmetic-
assignment operator by an operator 
from the same class (adapted to Java) 

Assign Null (AN) replace rhs of assignment with null 
Return Null (RN) replace return expression with null 
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(from JExel, CalendarUtilsTest.java) are not uncommon. (In this 
particular case, the constructor was not even implemented, so that 
the value of the test case for fault localization is zero.) Other pro-
bands contain mostly generated stubs for test cases (JHotDraw is 
an example of this) and are therefore useless for fault localization. 

Even when excluding inept probands, the result of fault local-
ization still depends considerably on their selection. Table 3 con-
trasts the accuracy results for each proband of Table 1 and each of 
our chosen three fault locators, applied to all single fault versions 
(obtained as described in Section  3). As can be seen, both abso-
lute and relative wasted effort vary widely with the proband, con-
sistently across all three used fault locators. In fact, both for abso-
lute and relative wasted effort, outcome varies more per proband 
than it varies per fault locator.  
Consequence   Unless classes of probands with similar properties 
(similar TCM sizes and structures) can be identified (e.g., librar-
ies, frameworks, applications), averages will likely be not repre-
sentative of any individual proband, and thus of limited value for 
the assessment of accuracy for practical purposes (cf. also [12]). 
As an immediate consequence, we decided to break down all data 
presented in paper per proband, except Table 5, where this would 
have exceeded space limits. 

Table 3 also shows how the relationship between absolute and 
relative accuracy (here: wasted effort) depends on the individual 
proband. For instance, while Daikon is by far the worst proband 
for demonstrating accuracy in absolute terms, it fares quite well 
when relative accuracy is used. This is caused by the fact that in 
Daikon, only 13% of all methods are covered by JUnit test cases. 
Conversely, the worst project for relative accuracy, JExel, per-
forms much better in absolute terms — its test coverage is 62%. 
This demonstrates how relative wasted effort is biased towards 
low coverage (cf. Section  2.3). 

The reason why both T* and O perform so much better than T 
is that they contain a factor rewarding UUTs that are covered by 
larger fractions of failed test cases (see Figure 2). In fact, in the 
single fault case the faulty UUT must be covered by all failed test 
cases (Assumption  2 of Section  2.1), and indeed, for all and only 
the UUTs covered by all failed test cases this factor is 1.4 

                                                 
4 This property is also exploited in [3] to come up with the opti-
mal similarity for single fault programs, which are however not 
representative of real programs. 

4.2 Faulty Versions and Fault Injection 
The previous section gave a first impression of the variability 

in fault localization accuracy. An even higher variability must be 
expected when localization accuracy is broken down to individual 
faults: Some faults may be ranked at first position, while others 
may be ranked down low. In absence of probands with numbers 
of faulty versions (of real faults) large enough to arrive at stable 
averages, fault injection seems inevitable, even if it comes with its 
own threats. Before turning to the threats of fault injection, we in-
quire into the number of faulty versions needed to obtain repre-
sentative results. 

4.2.1 Influence of Sample Size 
Generally, not all test case failure inducing faults can be in-

jected into a program — their number will be too large. There-
fore, a selection needs to be made. However, this selection may 
not be representative and therefore, particularly if used by many 
evaluations (such as the Siemens suite), may introduce a bias to-
wards the unrepresentative.  

To demonstrate the effect of sample size (that is, the number of 
faulty versions used in an evaluation) on the result of the evalua-
tion, we repeated evaluations based on 10, 100, and 300 randomly 
chosen faulty versions of each proband, collecting the mean and 
standard deviation of the average accuracy (in terms of wasted ef-
fort using T*). The results for 10 repeats are shown in Table 4. As 
can be seen, the mean varies randomly (e.g., from 21.6 to 17.6 to 
19.6 for Draw2d), converging to the values of Table 3 (whose 
sample size is 600). This observation is corroborated by the stan-
dard deviation, suggesting that a sample size of 10 largely leads to 
random results, while a sample size of 300 is already fairly stable, 
even for the largest project, Daikon. 
Consequence   In absence of a reliable statistical model for com-
puting required sample (“poll”) sizes, that is, how many different 
faulty versions need to be randomly created so that the results are 
representative within a reasonable margin of error, we suggest 
that experiments like the above are performed first. If the varia-
tion is too large, sample size should be increased.  

4.2.2 Choice and Distribution of Injectors 
As the left of Table 5 shows, the choice of injector has a con-

siderable impact on diagnostic accuracy, suggesting that the fre-
quency distribution of injector use in generating the faulty version 
will influence outcome. Thus, if equal distribution is not possible 
(probands usually provide different numbers of opportunities for 
injection for different injectors), outcomes are not comparable. 

Table 3. Dependence of outcome on probands and accuracy 
measure 
PROBAND WASTED EFFORT 
 absolute relative 
 T T* O T T* O 
Daikon 111.3 92.2 93.1 0.8% 0.6% 0.6%
Eventbus 13.0 3.9 4.7 1.5% 0.5% 0.5%
Jaxen 47.8 7.4 14.6 2.8% 0.4% 0.9%
Jester 4.4 2.1 2.5 1.2% 0.6% 0.7%
JExel 13.1 3.3 5.8 5.4% 1.3% 2.4%
JParsec 15.1 1.8 2.7 1.5% 0.2% 0.3%
AC Codec 5.8 2.5 2.9 2.2% 1.0% 1.1%
AC Lang 3.0 0.7 0.9 0.1% 0.0% 0.0%
Draw2d 31.6 19.0 20.6 1.0% 0.6% 0.6%
HTML Parser 19.7 4.1 5.6 1.0% 0.2% 0.3%
mean 26.5 13.7 15.3 1.7% 0.5% 0.7%
std. dev. 31.1 26.7 26.6 1.4% 0.4% 0.6%
 

Table 4. Dependence of the outcome on sample size
PROBAND MEAN AND STANDARD DEVIATION OF WASTED 

EFFORT OF T* FOR 10 SAMPLES OF SIZE 
 10 100 300 
 � V � V � V 
Daikon 105.0 65.0 91.2 8.1 92.3 1.4 
Eventbus 3.4 1.7 3.7 0.8 3.9 0.2 
Jaxen 7.2 4.8 7.5 0.8 7.5 0.7 
Jester 2.7 1.3 2.0 0.3 2.1 0.1 
JExel 1.9 2.8 3.5 0.8 3.3 0.4 
JParsec 1.6 1.0 1.7 0.5 1.7 0.3 
AC Codec 1.8 1.4 2.4 0.5 2.5 0.2 
AC Lang 0.6 0.4 0.7 0.2 0.7 0.1 
Draw2d 21.6 7.6 17.6 2.0 19.6 0.8 
HTML Parser 2.8 2.1 3.9 1.3 4.1 0.5 
mean 14.9 8.8 13.4 1.5 13.8 0.5 
std. dev. 30.6 18.8 26.4 2.3 26.7 0.4 
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One explanation of why and how different injectors impact ac-
curacy differently is found in the right of Table 5: while there is a 
general tendency of fault injectors to reduce the coverage of test 
cases, it is not equally distributed. As was to be expected, replac-
ing an expression with null (injectors AN and RN) leads to the 
greatest reductions in coverage (measured as the percentage by 
which coverage is reduced), which can, to a significant part, be 
ascribed to an increase of the number of unexpected exceptions, 
causing a greater than average decrease in coverage. A similarly 
large increase in the number of exceptions, leading to a compara-
ble reduction in coverage, is caused by negating a decision (ND), 
which typically includes guards (such as tests for not null before 
dereferencing, instanceof before downcasts, etc.). Additionally, 
negating a condition of an if statement without and else branch 
leads to a shorter trace, reducing coverage. While in general this 
should impact the diagnostic accuracy positively (since there are 
fewer UUTs to select from), one should be aware that the results 
are not representative of faults that affect coverage differently. 
For instance, the introduction of statements will likely increase 
coverage. 
Consequence   Given the different profiles of the different fault 
injectors, one should consider evaluating fault localization accu-
racy separately for each fault injector. Otherwise, their frequency 
of use must be clearly documented. Also, it seems that in the con-
text of evaluating coverage-based fault localization accuracy, the 
question of whether injected faults are representative of real faults 
[4, 20] is strongly influenced by the question of whether they 
have the same effect on coverage. 

4.2.3 Faults Violating Basic Assumptions 
As discussed in Section  2.1, coverage-based fault localization 

rests on a number of basic assumptions. As we found out during 
the debugging of our experiments, however, fault injection may 
produce faulty versions of programs that violate these assump-
tions, which may have a significant impact on evaluation. In par-
ticular, we found that Assumption  2 can be violated. 

A test case not executing a faulty unit may nevertheless fail if 
it depends on state it does not control. This may happen, for in-
stance, if the test depends on a static field whose value is either 
set by previous test cases (which would be a fault in test suite de-
sign, since tests should be independent of the order of their execu-
tion; cf. Section  2) or is set by a method invoked during static ini-
tialization performed at class loading time. Indeed, if a statically 
initializing expression calls a method and if a fault is injected into 
this method, this faultiness (or, rather, its effect on the static fields 
of the class) may lead to the failure of test cases that never exe-
cute the method. We call these test case failures spurious (since 

they cannot be ascribed to the test case’s UUTs as taken from the 
TCM). 

Table 6 shows the number of spurious failures introduced by 
our fault injection procedure, and how it affects accuracy in terms 
of wasted effort. As can be seen, the relatively few spurious fail-
ures in most probands have a noticable impact on accuracy any-
way, which is explained by the fact that the failure of a test case 
not covering a fault will not contribute to increasing its similarity 
coefficient and, hence, its rank. Given that spurious failures vio-
late the assumptions of coverage-based fault localization, we have 
excluded them in all evaluations except that of Table 6. One 
should be aware, however, that while doing so is easy in the con-
text of evaluation, it will not be in practical applications of fault 
localization, where the locations of faults are generally unknown. 
Consequence   Unless one is willing to accept the existence of 
spurious failures (and to regard the corresponding poor perform-
ance of fault locators as real), one has to make sure that test cases 
are completely self-contained, that is, do not depend on external 
(including static) factors.  

4.2.4 Accidental Fault Injection into Test Cases 
When using a test framework such as JUnit, in which test cases 

are coded as specially tagged, but otherwise normal, methods, 
faults may be accidentally injected into test cases. While this can 
be easily excluded for the tagged entry methods, and also for code 
in dedicated test directories, it works no longer if test cases use 
helper methods that are not automatically classifiable as such, or 
use production code in their assertions, or use mock objects, etc. 

On the other hand, that a test case fails does not necessarily 
mean that its covered UUTs are flawed — it can also mean that 
the test case itself is faulty. In that case, searching the culprit in 
the UUTs only is useless and affects localization accuracy ad-
versely. Instead, one could argue that localizing the fault in the 
tests contributes to assessing fault localization accuracy just like 
localizing any other, “regular” fault, so that distinguishing be-
tween test methods and tested methods is pointless. 

However, methods representing test cases are different from 
other methods in that they are executed only once in the run of a 
test suite, and are thus uniquely associated with a failure or a pass. 
This may lead to extreme rankings (at either end of the scale) — 
in particular, in case of a failure it may give a test method a higher 
rank than any of the methods it tests (which may also be executed 
by passing test cases). Since such a ranking would likely be con-
sidered an evaluation artefact, we excluded test methods from 
both injection and tracing. However, since there is no automated 
way of telling test helper methods from methods under test, the 

Table 5. Dependence of outcome on choice of Fault Injectors
IMPACT ON COVERAGE WASTED EFFORT 

overall exceptions only 
FAULT 
INJECTOR 

T T* O '§ V† #$ ' V 
ND 28.3 12.7 14.5 28% 9% 2510 39% 13%
RC 14.6 4.1 6.8 27% 20% 1707 34% 19%
DS 34.3 20.1 22.5 21% 10% 683 32% 14%
RO 28.1 11.8 14.8 22% 8% 1391 32% 13%
AN 20.7 10.7 11.3 35% 8% 1394 37% 8%
RN 13.3 3.7 4.4 33% 7% 7670 39% 10%
mean 23.2 10.5 12.4 28% 10% 2559 35% 13%
std. dev. 7.7 5.6 5.9 5% 5% 2348 3% 3%
§ mean reduction in coverage per test case caused by injector 
† standard deviation of ' 
$ number of exceptions thrown that were not expected by the test cases 

Table 6. Number of spurious failures and how this impacts ac-
curacy of T* 

WASTED EFFORT 
spurious failures  

PROBAND SPURIOUS 
FAILURES 

# included excluded 
Daikon 23 125.1 92.2 
Eventbus 160 5.8 3.9 
Jaxen 8 11.3 7.4 
Jester 0 2.1 2.1 
JExel 20 6.6 3.3 
JParsec 27 4.3 1.8 
AC Codec 1 2.5 2.5 
AC Lang 10 2.6 0.7 
Draw2d 20 23.8 19.0 
HTML Parser 27 4.9 4.1 
mean 29.6 18.9 13.7 
std. dev. 44.5 35.9 26.7 
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former were included. Unfortunately, for the very same reason we 
were not able to investigate the effect this had on accuracy. 

4.3 Tracing 
To obtain TCMs, some kind of tracing is required. Obviously, 

tracing must not interfere with test suite execution, which is usu-
ally not the case unless this execution depends on timing condi-
tions (tracing usually slows execution down). However, the prob-
lems of tracing that we have observed are of a different nature. 

If a test framework such as JUnit is used, the identification of 
executed test cases may be surprisingly difficult. This is due to 
the use of abstract tests, theories [23], and parameterized tests. 

In JUnit, abstract tests are concrete test methods defined in an 
abstract superclass that invoke abstract stubs overridden in con-
crete subclasses. Since test methods are inherited by subclasses, 
JUnit executes these test cases once per subclass; yet, for the 
tracer, this appears like the execution of one big test case. Simi-
larly, JUnit theories [23] and parameterized tests comprise several 
test cases under the umbrella of one test method. In a TCM, this 
materializes as a single column (test case), potentially with in-
creased coverage, that either succeeds or fails as a whole. Obvi-
ously, in the general case this single test case contributes less to 
fault localization than dividing it into its components would do, 
thereby yielding worse accuracy results than could be achieved. 

Unfortunately, there is no way of dividing such multi-test 
cases automatically, and because of countless complications that 
we encountered, we aborted our attempts to do it manually for the 
Apache Commons Collections library, whose tests are almost en-
tirely of the problematic kind. Therefore, we cannot present num-
bers suggesting how abstract tests and their kin affect fault local-
ization accuracy. 
Consequence   Possible peculiarities of the test suites and test 
frameworks should be carefully considered; if present, averaging 
may be contraindicated. 

4.4 Multiple Faults 
In practice, assuming only a single fault in a program is unreal-

istic. Thus, any evaluation of the performance of a fault locator 
under the single fault assumption has limited practical value. On 

the other hand, increasing the number of faults poses its own 
threats to the validity of evaluations.  

4.4.1 Fake Accuracy 
As the number of faults increases, one (the first) should be eas-

ier detected even without the help of a fault locator, simply be-
cause the density of faults increases. This may lead to fake fault 
locator accuracy. On the other hand, fault locators rewarding the 
capability of a single UUT to explain all failed test cases (such as 
T* and O; cf. Section  4.1) may be confounded by the presence of 
many faults, and hence perform worse. Both effects can be ob-
served in Figure 3 (but note that focusing on the first fault means 
selection of the smallest wasted effort; Figure 5, which shows the 
average wasted effort with growing numbers of faults for the case 
of T*, is more in line with the above theoretical considerations, 
demonstrating an initial increase overlaid by a growing decrease). 
Consequence   Evaluations of the accuracy of fault locators in 
finding the first fault should also evaluate the dependence on the 
number of faults present in the program. 

4.4.2 Fault Masking 
For evaluations in many-at-a-time mode, one injected fault 

may mask another injected fault in that it causes the other fault to 
get no longer executed (while it would be executed were it not for 
the first fault; note that avoiding this in the generation process of 
faulty versions is hard). The number of faults that a TCM actually 
covers (and that can reasonably be located) may therefore be 
smaller than the number of faults actually present in a proband. 
Table 7 shows how the number of masked faults increases with 
the number of faults injected in our probands. Unfortunately, we 
have no way of assessing the impact of masked faults on localiza-
tion accuracy, as they may not even occur in the TCMs. 
Consequence   Because of the possible existence of masked 
faults, evaluations should not depend on the localization of all 
faults injected into the probands. How many faults should be lo-
calized is addressed by the following threat. 

4.4.3 Present vs. Derivable Numbers of Faults 
Since in practice it is unknown how many faults precisely are 

covered by a FCM (or a TCM for that matter; see above), it is un-
realistic to measure the performance of a fault locator in identify-
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Figure 3: Dependence of the wasted effort for finding the first fault on the number of injected faults 
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ing all (non-masked) faults at once — who would expect a pro-
grammer to search for further faults when it is unclear whether 
there are actually more? Thus, to be realistic, an evaluation in 
many-at-a-time mode can only involve localization of as many 
faults as there is evidence of. The question that arises, then, is, for 
how many of the contained faults does a FCM provide evidence? 

Taking Assumption  2 in Section  2.1 as a starting point, namely 
that every failed test case must cover at least one fault, a mini-
mum number of faults that can be derived from a FCM is given by 
the maximum number of test cases in the FCM whose coverages 
(as sets of UUTs) are mutually disjoint (an instance of the maxi-
mum set packing problem; see Figure 4 for an example). Table 7 
shows the average minimum number of faults (computed using a 
greedy algorithm approximating maximum set packing) and how 
it depends on the number of injected faults. As can be seen, the 
number of known faults is considerably smaller than the number 
of injected faults (it drops to less than one third on average for 32 
injected faults) and also than the number of non-masked faults 
(less than half on average for 32 injected faults). At the same 
time, the effort wasted, per fault, on locating the known number 
of faults (in many-at-a-time mode) decreases (see also Figure 5). 
Given that the known number of faults is significantly smaller 
than the number of injected, non-masked faults, this effect can be 
ascribed to an increased density of faults (see above). 
Consequence   When evaluating the accuracy of fault locators in 
many-at-a-time mode, one should limit the search to the number 
of faults that can be deduced from the FCM alone (without know-
ledge of how many faults have been injected or executed). 

4.5 Uncontrollable Factors 
As already noted in Section  3, tools used in the evaluation 

process may be inaccurate. For instance, obtaining accurate meas-
ures of the probands (such as their size) depends on the definition 
of the metric (which varies from tool to tool and is sometimes un-
clear) and on the quality of its implementation; obtaining correct 
TCMs depends on the tracing tool used; and so on. Also, the pro-
grams written specifically for the evaluation may be flawed 
which, so the state of the art, cannot be excluded. 

Last but not least, despite all care taken, an evaluation process 
may be subject to random factors. For instance, improper paral-
lelization, either in the probands or in the evaluation environment, 
may be a source of randomness, for example when data races oc-
cur (we actually experienced problems of this kind with running 
the HTML Parser test suites in Eclipse). Also, a coverage-based 
fault locator that is sensitive to the ordering of the rows or col-
umns of a TCM may produce random results if the TCM is stored 
internally using hash maps or sets. Since some of these effects 
may be caused by the environment, they may be impossible to 
rule out with certainty. 

Table 7. Dependence of the number of masked and known faults on the total number of injected faults, and effect on wasted effort 
(using T*) per located fault 
PROBANDS NUMBER OF FAULTS INJECTED 
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Daikon 1.8 93.1 1.5 84.4 3.2 71.0 2.2 61.2 5.4 49.7 3.2 40.6 8.9 36.2 4.7 28.5 14.2 21.0 7.0 18.4
Eventbus 2.0 20.0 1.2 6.5 3.8 25.5 1.6 8.2 6.9 18.6 2.2 7.9 12.1 10.6 3.0 5.9 19.5 5.7 4.4 3.8 
Jaxen 1.9 103.6 1.1 32.1 3.6 99.1 1.3 44.7 6.3 71.6 1.6 36.5 9.5 44.7 2.2 25.9 13.3 27.0 3.0 17.6
Jester 1.9 8.9 1.5 6.3 3.7 10.9 2.3 7.6 6.6 9.3 3.3 7.0 11.2 6.3 4.8 5.3 17.2 3.7 6.9 3.6 
JExel 1.9 14.9 1.3 6.6 3.6 13.2 1.8 8.2 6.7 8.5 2.5 7.5 11.7 4.7 3.4 4.9 18.9 2.5 5.3 2.9 
JParsec 2.0 38.3 1.7 26.1 4.0 45.6 2.8 39.7 7.9 40.7 4.7 37.0 15.4 28.0 8.1 26.8 29.7 18.2 13.9 17.1
AC Codec 2.0 6.9 1.9 6.5 3.9 9.7 3.6 8.5 7.7 10.0 6.5 7.7 15.0 8.2 10.8 5.6 27.9 5.4 17.0 3.8 
AC Lang 2.0 6.5 2.0 5.4 4.0 9.4 3.9 7.6 8.0 10.0 7.4 8.1 15.8 11.6 13.8 7.8 31.3 12.7 24.9 7.1 
Draw2d 1.8 55.2 1.2 27.2 3.5 64.9 1.4 36.3 6.1 52.0 1.9 34.0 9.9 32.2 2.6 23.9 14.7 18.3 3.4 15.0
HTML Parser 2.0 81.1 1.4 39.4 3.7 77.2 2.0 70.6 6.8 50.9 3.0 61.4 11.5 30.4 4.7 41.8 19.3 16.3 7.6 23.0
mean 1.9 42.9 1.5 24.0 3.7 42.6 2.3 29.3 6.8 32.1 3.6 24.8 12.1 21.3 5.8 17.6 20.6 13.1 9.3 11.2
std.dev. 0.1 35.9 0.3 23.5 0.2 31.7 0.8 23.2 0.8 22.2 1.9 18.5 2.4 13.8 3.7 12.6 6.3 7.9 6.7 7.3 
 

 0 1 0 1 1 1 0  
 1 0 0 1 0 0 0  
 0 0 1 0 0 0 0  
 0 1 0 1 0 0 1  
 0 1 0 0 1 1 0  
 1 0 0 1 0 1 0  

Figure 4. FCM providing hard evidence for 4 faults; test cases 
constituting a maximum set packing are highlighted. 
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Figure 5: Dependence of wasted effort per known fault on 
number of injected faults for T* (logarithmic scales) 
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Consequences   To detect random factors, every evaluation 
should be repeated by their authors several times in an identical 
setting. If random factors exist, but cannot be avoided, their effect 
must be quantified or, if possible, eliminated by averaging over 
repeats. 

5. THREATS TO THE VALUE 
Even results that are valid within the scope in which they have 

been obtained may be of limited value, for the following reasons. 

5.1 Unrealistic Assumptions 
One threat to the value of an empirical assessment of fault lo-

calization is that the assumptions underlying the evaluation are 
too strong to accord with practice. For instance, Assumption  2 in 
Section  2.1, while easy to ensure in an evaluation setting in which 
all (injected) faults are known, is difficult to guarantee in practice, 
so that fault locators will be applied to test suites with spurious 
failures (cf. Section  4.2.3). Also, while one might argue that test 
suites with interdependencies between individual test cases or 
with external dependencies should not be used, they are used in 
practice, where fault localization is ultimately to be applied. 

5.2 Language Idiosyncrasies 
Not only the individual probands, but also their programming 

languages and test frameworks have an impact on outcome (cf. 
the discussions of Sections  4.2.4 and  4.3). While this does not in-
validate studies that are carried out in — and for — a particular 
language and testing environment, their value is limited in that 
their results cannot be carried over to other environments. Note 
that this also holds for the experiments reported on here (which 
are based on Java and JUnit); yet, that evaluations are subject to 
idiosyncrasies of the environment seems universally valid. 

5.3 Unset Expectations 
The accuracy of fault locators is usually not assessed relative 

to some gold standard that suggests what a good result is. Taking 
user expectations as a surrogate here may be interesting from a 
pragmatic point of view, but it is less helpful in a research context 
in which boundaries are still being pushed. Indeed, an observation 
such as “programmers will stop inspecting statements, and transi-
tion to traditional debugging, if they do not get promising results 
within the first few statements they inspect” [21, p. 207] does not 
tell much about the performance of a fault locator (other than it 
obviously failed to meet user expectation), unless it is clear how 
difficult it really is to locate the given faults. A more objective 
measure of performance would be desirable here. 

So, what does it mean if a given fault locator produces a 
wasted effort of x in a given setting? Surely, we can compare per-
formances (but, given the above threats to the validity, it should 
be clear that most assessments are not comparable), but what does 
it mean in absolute terms? In fact, even an evaluation showing 
that the wasted effort is (close to) zero does not mean much with-
out knowing how difficult it was to achieve — given an ideal test 
suite, a perfect diagnostic accuracy may be easily obtained. 

What we really need to judge the performance of a fault loca-
tor are lower and upper bounds, that is, a range of accuracies that 
we can reasonably expect. By analogy, when presented with a 
new algorithm, how else do we judge its performance if not by 
comparing it to one that is easily achieved (e.g., O�n2� in the case 
of sorting) and the theoretical optimum (e.g., O�n�log n�)? 

5.3.1 Lower Bounds 
In a single-fault setting, Assumptions  2 and  3 of Section  2.1 di-

rectly provide a lower bound of the accuracy that needs to be 
passes by a fault locator to be useful: if its wasted effort is on av-

erage greater than �n�1��2�1, where n is the number of UUTs 
covered by the failed test case with the lowest coverage (and 1 is 
subtracted because the measure is wasted effort), it is useless, 
since one could use a random inspection order of the n UUTs in-
stead. In particular, if the shortest failed test case covers only a 
single UUT, the lower bound of wasted effort is 0. In a multi-fault 
setting, if for some reason it were known that the failed test case 
covers k faulty units, the fault locator should perform better than 
�n�1���k�1��1 (see Section  2.3); however, firm knowledge of this 
fact cannot usually be expected.5 Table 8 therefore shows how 
fault locators T, T*, and O fare in a single fault setting, compared 
to �n�1��2�1 as the lower bound (where n is defined as above). As 
can be seen, on average T performs better than the lower bound in 
half of all probands, and even for probands for which this is not 
the case, it still performs better in 59% of all localizations (aver-
aged over these probands). Thus, by comparison with the lower 
bound, T is a reasonable fault locator. Somewhat surprisingly, 
however, even though both T* and O perform significantly better, 
both perform worse than the lower bound in non-negligible num-
bers of cases, indicating that there is room for improvement. 

In many-at-a-time mode, the same lower bound is applicable in 
principle, but varies with the number of faults to be detected at a 
time. If this number is the evident number of faults computed by 
maximum set packing (as in Section  4.4.3), the test cases consti-
tuting the packing can be used directly to compute a lower bound 
for each fault as �ni �1��2 (where ni is the number of UUTs cov-
ered by test case ti; note that each test case in the packing must 
cover one fault, which is the one to be detected). If n, the number 
of faults to be detected at a time, is less, a tighter lower bound can 
be established, by searching n non-overlapping failed test cases 
under the additional constraint that the coverages of the test cases 
should be as small as possible (a weighted set packing problem).  

Since it has been observed that applying coverage-based fault 
locators to complete TCMs leads to poor results in many-at-a-
time mode (e.g., [17, 18, 27]; but cf. Section  4.4.1 for how this ef-
fect is counteracted by increasing the numbers of faults signifi-
cantly), we do not locate all known faults in a single FCM (as we 
did in Table 7). Instead, we first transform each FCM into a block 
diagonal matrix as described in [26, 27], giving us n partitions in 

                                                 
5 Instead, if we have some estimate of the total number of faults in 
a program, we can compute a probability of the fact that the faulty 
test case covers k faulty UUTs. However, since the test case was 
chosen for its small coverage, chances are low that it covers more 
than one fault, so that we will leave it at that. 

Table 8. Accuracy of fault locators compared to a theoretical 
lower bound (L. B.) in a single-fault setting 
Proband L. B. T T* O 
 w. e. '† �)§ w. e. ) w. e. ) 
Daikon 126.5 15.3 19% 34.3 4% 33.4 5% 
Eventbus 11.7 -1.4 32% 7.8 7% 7.0 10%
Jaxen 63.8 16.0 33% 56.5 5% 49.3 17%
Jester 6.1 1.8 24% 4.0 6% 3.6 11%
JExel 10.7 -2.4 45% 7.4 6% 4.9 16%
JParsec 11.9 -3.2 34% 10.1 3% 9.2 7% 
AC Codec 4.5 -1.4 62% 1.9 21% 1.5 27%
AC Lang 2.6 -0.3 31% 1.9 4% 1.7 7% 
Draw2d 45.9 14.2 31% 26.9 5% 25.3 8% 
HTML Parser 51.0 31.3 25% 46.9 2% 45.4 6% 
mean 33.5 7.0 34% 19.8 6% 18.1 11%
std.dev. 37.5 11.0 11% 19.0 5% 17.7 6% 
† difference in wasted effort; ! 0 means better, � 0 means worse 
§ fraction of times locator performed worse than lower bound 
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which faults can be located independently. In each partition, we 
locate one fault (using T*), and contrast the wasted effort so ob-
tained with that suggested by the lower bound as defined above. 
The results of this experiment are shown in Table 9. As can be 
seen, while T* still performs better than the lower bound for 2 in-
jected faults (yielding 1.4 partitions on average across all project 
averages), accuracy drops consistently towards and below the 
lower bound for higher numbers. Thus, like for the single-fault 
case, our (theoretical) lower bound suggests that there is (this time 
significant) room for improvement (see Figure 6).  

Surely, this experiment does not only shed light on the per-
formance of T*, but also on the used partitioning algorithm. In 
fact, as can be seen by comparing the number of known faults 
from Table 7 with the number of partitions from Table 9, better 
partitioning seems possible. However, we did not compare the al-
gorithms described in [17, 27] with the lower bound obtained 
from a block diagonal matrix here, since they depend on addi-
tional assumptions [27], which makes their evaluation difficult. 

NB: Both for the one-at-a-time (Table 8) and for the many-at-
a-time mode (Table 9), the specified lower bound depends on 
qualities of the probands (programs and test suites) exclusively so 
that it is valid across all fault locators. 

5.3.2 Upper Bounds 
Upper bounds of fault locator performance seem more difficult 

to establish. Intuitively, a fault locator cannot extract more infor-
mation out of a FCM than it contains. For instance, if all rows of a 
FCM are identical, a fault locator cannot perform better than a 
random selection from the units explaining a failure. More gener-
ally, it could be argued that the best achievable performance of 
any coverage-based fault locator depends on the entropy of the 
TCM to which it is applied. How precisely this is the case is not 
obvious, though. 

Note that like for the lower bounds, we are looking for an ab-
solute upper bound of fault localization accuracy, i.e., one that 
depends on qualities of the probands alone. Establishing lower 
and upper bounds of diagnostic accuracy for a specific fault loca-
tor is a different question, one that should be addressed by the re-
searchers suggesting use of their fault locators. 

6. RELATED WORK  
We are not the first to question the validity and value of cover-

age-based fault localization studies. Ali, Andrews, Dhandapani 
and Wang have tested some underlying assumptions, but mostly 
found that they hold [4]. In particular, no evidence has been found 
that fault injection via mutation should not be used [4, 20]. Our 
focus has been much broader, however. A recent study [12] sup-
ports our observation that large, randomly drawn corpuses (sets of 
probands) are inevitable to achieve (external) validity. And yet, 
no matter how valid results may be, Parnin and Orso have ques-
tioned the sanity of advocating coverage-based fault localization 
[21], based on a first empirical user study; however, we maintain 
that achieving high accuracy in automated fault localization is too 
important a goal to be given up early. 

On a more technical side, the general adequacy of coverage-
based fault localization is challenged by the confounding effects 
of existing program dependences. For instance, the fault in a con-
dition of an if-then-else statement may lead to the execution of 
the else branch in all failed test cases, ranking the statements in 
this branch higher than the faulty condition, which is also exe-
cuted by passing test cases. Recent work [6, 14] has therefore fo-
cused on reducing confounding biases using additional informa-
tion (such as program dependence graphs) not contained in the 
pure TCMs, on which our work rests exclusively.  

The set of similarity coefficients that can be used in coverage-
based fault localization is virtually unlimited. Zhang et al. per-
formed a comprehensive comparative analysis [32], but as we 

Table 9. Accuracy of fault localization using block diagonal partitioning of the TCM and T* compared to a lower bound in many-
at-a-time mode, localizing one fault per partition  
PROBAND 2 4 8 16 32 
 # p.$ l. b. '† )§ # p. l. b. ' ) # p. l. b. ' ) # p. l. b. ' ) # p. l. b. ' ) 
Daikon 2.0 93.4 10.9 23% 3.8 49.7 -4.0 39% 7.1 31.2 -2.1 48% 12.7 22.2 0.2 53% 21.4 11.0 0.3 47%
Eventbus 1.0 7.3 2.9 20% 1.1 4.2 1.0 21% 1.1 2.1 -0.3 35% 1.2 1.3 -1.4 59% 1.4 0.5 -1.6 77%
Jaxen 1.9 47.4 30.4 16% 3.3 32.0 6.0 30% 5.4 19.0 -1.4 40% 7.7 9.2 -7.2 56% 10.6 3.0 -9.1 77%
Jester 1.3 4.8 1.8 19% 1.5 2.9 0.2 32% 1.7 2.0 0.1 33% 2.2 1.4 0.2 32% 3.4 1.0 0.1 40%
JExel 1.5 5.9 3.0 17% 2.1 3.0 -0.2 28% 3.0 1.5 -1.0 35% 4.2 0.8 -0.5 34% 5.9 0.5 -0.1 37%
JParsec 1.1 6.2 2.3 19% 1.2 2.1 -3.4 46% 1.3 0.8 -6.7 64% 1.5 0.5 -6.0 71% 1.8 0.5 -3.6 80%
AC Codec 1.0 4.0 1.9 22% 1.0 3.8 1.7 20% 1.1 2.7 1.1 22% 1.1 1.7 0.6 22% 1.3 0.8 0.3 24%
AC Lang 1.3 2.5 1.7 6% 1.4 2.4 1.6 6% 1.9 2.1 1.3 7% 2.6 1.8 0.9 10% 4.1 1.3 0.5 16%
Draw2d 1.4 30.9 9.4 24% 2.0 17.2 -6.5 48% 2.8 9.0 -11.0 64% 4.0 4.3 -8.8 78% 5.7 2.1 -6.2 80%
HTML Parser 1.1 33.8 20.9 16% 1.3 11.3 -10.4 34% 1.7 3.9 -19.8 55% 2.4 1.6 -16.0 74% 4.1 1.2 -6.4 83%
mean 1.4 23.6 8.5 18% 1.9 12.8 -1.4 30% 2.7 7.4 -4.0 40% 4.0 4.5 -3.8 49% 6.0 2.2 -2.6 56%
std. dev. 0.3 27.7 9.3 5% 0.9 15.2 4.5 12% 1.9 9.5 6.4 17% 3.5 6.4 5.3 22% 5.8 3.0 3.3 25%
$ number of partitions 
† difference in wasted effort; ! 0 means better, � 0 means worse 
§ fraction of times locator performed worse than lower bound 
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Figure 6: Performance of T* compared to lower bound, and 
how it depends on the number of faults injected; measured as 
savings in wasted effort per partition (cf. Table 9 for how 
number of partitions depends on number of injected faults). 
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have shown, the performance of fault locators depends on many 
factors, some of which (such as number of faults present) even 
having the potential to invert comparative performance rankings. 
[30] evaluates three different tie breaking strategies (to be used 
when several UUTs, one of them being faulty, share the same 
rank); however, each examined strategy defines itself a ranking 
and is therefore subject to the same criticisms. 

Given that performing empirical evaluations is subject to at 
least the pitfalls comprised in this paper, theoretical evaluations of 
diagnostic accuracy promise more reliable results. Naish et al. 
have designed a sample program that serves as a model to the 
fault localization problem [19]. Using this model, they show 
which different similarity coefficients must have the same accu-
racy in the single fault case, and which must perform best. Xie et 
al. have performed a theoretical analysis of similarity coefficients 
(called risk evaluation formulas) for arbitrary probands [29] — 
they show that a group of five out of 30 similarity coefficients 
must outperform the rest, but their reasoning likewise relies on 
certain strong assumptions (such as presence of a single fault 
only) that we must reject as unrealistic for practical application. 

Entropy (which we hope to be the key to setting up an upper 
bound for diagnostic accuracy) has been used already for priori-
tizing the execution of test cases [13, 31]: Intuitively, when re-
sources are limited, as soon as the execution of a test case has 
flagged the presence of a fault, execution order of the remaining 
test cases should reflect their expected diagnostic information 
gain. Surely, accuracy can be increased as long as pending test 
cases can add information, but how information content — or en-
tropy — translates to an achievable diagnostic accuracy seems 
still an open question. 

7. CONCLUSION 
Not surprisingly, the outcome of evaluations of the accuracy of 

coverage-based fault locators depends on many factors. Every 
comprehensive evaluation should therefore take as many factors 
into account as possible. The result is then a multidimensional ta-
ble that, for presentation and human interpretation, needs to be 
projected to a lower dimensionality by using suitable aggregations 
(usually averaging). Where projections are obtained by setting the 
sample size for one or more dimensions to 1 (e.g., by basing the 
evaluation on a single proband, or by considering the single fault 
case only) one should be aware that the obtained results are by no 
means generalizable to larger sample sizes. 

Maybe the most striking result is that the outcome of fault lo-
calization depends more on the proband than it depends on the 
fault locator itself. For relative assessments of fault locators, it is 
therefore imperative that they are evaluated on the exact same 
probands. Often enough, this causes technical problems, for in-
stance because the probands are not publically available (at least 
not in the same version that has been used in the evaluation; for 
instance, the faulty versions may be unavailable, which is usually 
the case when they have been generated using automated fault in-
jection) or because the other fault locator was implemented in a 
different environment than the current one, subjecting it to differ-
ent influences that are difficult to detect and avoid. However, 
most of these problems are accidental, since it would be easy (and 
would comply with good scientific practice) to store and make 
available the FCMs on which the fault locators have been evalu-
ated. Factually, however, this is not (yet) the case so that relative 
comparisons remain questionable. 

One of the more positive results that we obtained is that the 
simple lower bound for localization accuracy that we defined in 
Section  5.3.1 seems useful — it shows that established fault loca-
tors do not perform as well as one could rightfully expect, if not in 
the average case, in non-negligibly many cases at least. 

Overall, however, empirical evaluations can only be a best ef-
fort. Attempts to independently reproduce results should therefore 
be rewarded by the community, for instance by accepting corre-
sponding reports — even if containing only little novelty — as 
scientific contributions. At the same time, concerted efforts 
should be made to eliminate all sources of error, for instance by 
verifying and standardizing all used tools. 

A more personal conclusion is that doing evaluations of the 
given kind is an arduous undertaking. While we estimate the total 
computing time for all experiments here described at around 225 
hours on contemporary PCs, this does not count the many repeats 
of experiments that became necessary for instance because we 
picked the wrong performance indicators, did the wrong aggrega-
tion, or because we had discovered bugs in our programs. Our fi-
nal resume thus coincides with Brook’s Law of Prototypes [7] 

“Plan to throw one away, you will anyhow.” 
acknowledging that the following riposte (found ibid.) is also true:  

“If you plan to throw one away, you will throw 
away two.”  

8. DOWNLOAD 
To foster reproducibility and comparability, we have made all 

TCMs and algorithms used to compute the presented data avail-
able through www.feu.de/ps/prjs/EzUnit/eval/ISSTA13. The web-
site also contains descriptions of the data formats used, as well as 
descriptions of where the probands can be obtained and how they 
have been modified. 
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