
PETTool: A Pattern-Based GUI Testing Tool

Marco Cunha†, Ana C. R. Paiva†, Hugo Sereno Ferreira†‡ and Rui Abreu†
†Department of Informatics Engineering

Faculty of Engineering, University of Porto, Portugal

‡INESC Porto
Porto, Portugal

e-mail: {ei05048,apaiva,hugosf}@fe.up.pt , rui@computer.org

Abstract— Nowadays, the usage of graphical user interfaces
(GUIs) in order to ease the interaction with software applica-
tions is preferred over command line interfaces. Despite recent
advances in software testing, GUIs are still tested in a complete
ad-hoc, manual fashion, with little support from (industrial)
testing tools. Automating the process of testing GUIs has addi-
tional challenges when compared to command-line applica-
tions. This paper presents an approach for GUI (semi-
automated) testing which uses knowledge of the common beha-
viour of a GUI. To do so, the most common aspects in a GUI
are identified and then a suite of test cases is automatically
generated and executed. To validate our approach, we have
run it against well known web-based applications, such as
GMail.

Keywords - Software testing, Graphical User Interfaces,
patterns.

I. INTRODUCTION
Graphical User Interface (GUI) software testing is the

process of testing a software application with a graphical
front-end to guarantee that it meets its specification. Given
the myriad of possible (human-computer) interactions in
such a user interface, GUI software testing is a rather expen-
sive, cumbersome phase of the whole software development
cycle. For instance, a form containing n interface controls
requires a factorial number (n!) of test cases to test all possi-
ble combinations [11].

In GUI software testing, a good test suite must not only
cover all functionality of the system but also ensure that the
GUI itself is fully exercised (i.e., tested thoroughly). Creat-
ing such a test suite is overly difficult because the software
tester has to deal with the (i) domain size as well as (ii) the
action sequences. To illustrate the importance of these points
for GUI testing, as an example, consider the fact that even a
very small program, such as Microsoft WordPad1, has 325
possible GUI operations [6]. Action sequencing is also a
problem because some functionality of the system requires a
deterministic sequence of GUI events.

Given these GUI’s idiosyncrasies, manually generating a
comprehensive suite of test cases is extremely difficult (not
to say insurmountable). Hence, these issues have driven the
GUI testing problem domain towards (semi/full) automation.

User-computer interaction – viz. graphical user interfaces
(GUIs) – represents the primary conduit through which a
user “perceives” the system. This area has been actively

1 WordPad is a basic word processor shipped with almost all versions of
Microsoft Windows. It is much simpler than Microsoft Word.

studied by giving particular focus on what is defined as
“usability”, and several pattern languages exist to describe
the reusable elements of user-computer interaction [10].
Most of today GUIs are built around these patterns, and thus
their behaviour is expected to vary only slightly.

It is this specific property of GUIs that pushed us to ex-
tend the notion of testing to a “pattern-based testing”. As
said above, approaching the problem of testing by aiming for
completeness would require either a formal model of the
underlying application, or exhaustive analysis. Other ap-
proaches, such as unit-testing, often require access to the
source-code (or at least to a public API). But if we take into
account that most GUI behaviour is recurrent, we are able to
devise recurrent schemes to test that behaviour. These ele-
ments would constitute a catalog of patterns for GUI testing,
which although not aiming for completeness, it specifically
targets common, recurrent behaviour of software.

In this paper, we present a pattern-based approach for
(semi-)automating GUI testing, dubbed PETTOOL. The
approach identifies patterns of GUI behaviour and, for each
one, provides generic GUI testing solutions based on known
software testing techniques. These generic solutions establish
a map between the inputs of the testing tool and the GUI
controls where the tests will then be executed. Finally, after
running the real GUI against a set of automatically generated
test suite, the tool generates a report with the observed re-
sults (pass/fail information, error/successful messages are
included in such report). We have tested our approach
against well-known webmail applications, such as GMail,
and a real estate agency website.

This paper is organized as follows. We start off by pre-
senting a motivational example for pattern-based GUI testing
in Section II. In Section III we motivate how test patterns can
be used to automate GUI testing. In Section IV we propose a
solution towards automating GUI testing, and we describe
some case studies in Section V. Related Work is given in
Section VI. In Section VII we conclude and discuss future
work.

II. MOTIVATIONAL EXAMPLE
One common artifact in both applications and websites is

the authentication form. The purpose of the authentication
form is to serve as a user access controller, and is typically
composed by two text boxes (username and password) and
one button to validate the data entered.

Despite being a very common practice, it has in fact
many possible implementations and outcomes. For example,

given an authentication failure, the interface could give no
feedback and remain in the form (perhaps the worst scenario
with respect to usability principles). Sometimes, it shows a
message inside the page (e.g., “Please enter your username”)
but these messages could be shown in a different window
and not in the main form. Another possibility consists in
disabling the submit button when the fields are not filled,
amongst others.

In GMail2 , whenever an error occurs, the message is
shown inside the form, below the field that has caused the
error. Nonetheless, other authentication interfaces might
have different behaviours. The authentication form in the
Webmail3 front-end used at the Faculty of Engineering of
University of Porto (FEUP)4 for instance, has a different
behaviour: error messages about missing information are
shown outside the form, but messages about invalid data are
shown inside it.

These are examples of how a simple and common me-
chanism such as the authentication form can have so many
differences between implementations. Despite the feature
under test being basically the same, and most of the expected
behaviour being just variants (and compositions) of common
outcomes, these differences lead to difficulties in reusing test
cases, hence reducing the efficiency of the testing process.

Our approach tries to use the knowledge of the most
common patterns in GUIs in order to create generic tests for
them (which, incidentally, reveal themselves as test patterns).

In the next sections, it will be shown how this approach
can be used to test some recurrent GUI behaviour such as the
authentication form.

III. GUI AND TEST PATTERNS
GUIs are typically composed by several GUI patterns. A
detailed catalog of patterns can be found in [8], [10]. In this
section, we will pick a subset of these patterns as depicted in
Fig. 1, and explain what strategies can be used to test them.

• FORM. A page with Data Entry Fields is supposed
to be filled by the user, and it is a fundamental user-
interface element of most applications and websites.
A form by itself does not have any generic testing
strategy, but it denotes a composition. Therefore, in
order to test a form it is necessary to identify its
components and their corresponding behaviour.

2 http://www.gmail.com

3 http://webmail.fe.up.pt

4 http://www.fe.up.pt

Each component can then be tested both individually
(e.g., to test if an invalid input is detected properly)
and in combination with other components (e.g., to
evaluate if some errors can be undetected when
combined).

• DATA ENTRY FIELD. Fields present are the pri-
mary means for a user to enter information. Data En-
try Fields can be defined as mandatory according to
the relevance of the information they collect. There-
fore, to test the behaviour of a Data Entry Field,
equivalence class partitioning with boundary value
analysis [2] can be used as a testing strategy, where
inputs are divided in classes. Elements from each
class must obey to some principles: (i) values from
the same class must lead to the same behaviour, (ii)
an error found with one element of the class could be
found by any other element of the class, (iii) testing
the application with one element of each class is
enough to be confident that it works properly. After
the class partitioning, the tester should use valid,
invalid, and boundary values for each class.

• AUTHENTICATION. An authentication mechanism
aims to allow users to prove they are who they say. It
is typically used in situations where access to infor-
mation is restricted or where the information to be
shown is different among users. Commonly, this pat-
tern is implemented by a GUI with two text-boxes
and a submit button. Therefore, the equivalence class
partitioning can also be used to test an Authentica-
tion pattern. In this case, three classes can be identi-
fied which leads to three tests: (i) the correct user-
name/password is entered, (ii) a wrong username is
entered and (iii) a valid username is entered but the
password is wrong.

• MASTER/DETAIL. Sometimes, there are pairs of
fields which are related, where one of these fields
changes its value range w.r.t another value chosen in
the other field. The latter is called the Master, and
the former Detail. Known uses of this pattern in-
clude registration forms where the user must select a
continent and then a country located in that conti-
nent. Every time the continent chosen changes, the
set of countries is updated accordingly. Once again,
equivalence class partitioning can be applied as a
testing strategy in this pattern. In order to check if
the pattern is well implemented, there are three tests
that can be made for a specific Master value: (i) the
Detail contains a specific value, (ii) the Detail con-
tains only a specific set of values and (iii) the Detail
does not contain a value.

The aforementioned strategies suggest that, for a particu-
lar user-interface, the number of tests generated is not so
related to the number of patterns, but more to the tests de-
fined in each pattern. For instance, if we only have one Data
Entry Field with two valid values and three invalid values,
five tests will be executed despite only one test strategy was
used.

Figure 1 Relation between patterns. A FORM is usually composed of
many DATA ENTRY FIELDS. Those fields are used to define higher
level patterns such as the MASTER/DETAIL and
AUTHENTICATION patterns.

IV. IV. PETTOOL
Currently, PETTOOL5 is capable to generate and execute

tests for some patterns such as the FORM, the DATA
ENTRY FIELD the AUTHENTICATION and the
MASTER/DETAIL. The current architectural structure of
the tool is the one presented in the Fig. 2.

Controls inside GUIs (e.g., textboxes) may be used by
patterns. For instance, a Data Entry Field needs a control
which allows user to enter the needed information. GUIs also
have forms that contain behaviour patterns. For example, in a
registration form, there are always Data Entry Fields.

Associated with each behavioural pattern there is a set of
tests that must be executed to exercise its functionality. Each
test is related to valid or invalid inputs, so different tests
might expect different behaviours. In order to allow different
outcomes for different tests, there is a set of Expected Beha-
viours associated with each behavioural pattern. Those beha-
viours define what is expected to happen in a certain situa-
tion (e.g., when testing the Authentication pattern with
wrong inputs, it is possible to specify that the expected beha-
viour is to remain in the same form).

In order to present how PETTool combines different pat-
terns to generate the tests, the authentication form will be
used as an example. This example contains the form, two
instances of the Data Entry Field and the Authentication
patterns. According to the test strategy defined in the pre-
vious section, the tests that must be executed are present in
Table I.

 The first four tests are related to the Data Entry Field
patterns. In this case, since both username and password are
mandatory, it is only necessary to test two cases in each data
entry field: valid information entered and field left blank. In
this scenario, invalid information does not need to be tested
since the authentication pattern is the one responsible to
check user information. The last three tests are related to the

5 Acronym for PattErn Testing Tool.

authentication pattern. It is possible to see that test 4 and test
7 are redundant. In this case, PETTool identifies both data
entry fields as components of the authentication pattern,
skips the test 4 and maintains test 7. Next section will show
how PETTool can be used to test two common GUI patterns,
namely AUTHENTICATION and MASTER/DETAIL, and
how test results are presented.

V. CASE STUDIES
This section presents how PETTool can be used to test

the authentication form of GMail and a MASTER/DETAIL
pattern in the website of a real estate agency called ERA6.

A. GMail
In order to test the authentication form of GMail, the tes-

ter has to point out the form which is going to be tested
(click on the ”Select” button labeled 1.1 in Fig. 3 and then
click on the GMail form labeled 1.2) and point out the sub-
mit button (click on the ”Select” button labeled 2.1 and then
click on the ”Sign in” button labeled 2.2).

Afterwards, the tester needs to identify the behaviour pat-
terns within such form. GMail’s authentication form has two
mandatory Data Entry Fields: Username and Password.
When the Username field is left blank, the GMail shows a
message: “Enter your email address.”. The same happens
with the Password field, however, the message shown is
different: “Enter your password.”. The behaviour expected
when the authentication succeeds and when it does not suc-
ceed (e.g., because one of the fields is left blank or because
the input values do not correspond to a valid user) can be
described using the PETTool (Fig. 4). In GMail, when wrong
data is entered, the text “The username or password you
entered is incorrect.” is shown inside the form, otherwise the
user is redirected to another page. The tester has to provide
both a valid and invalid login data. This information is used
to test the three possible scenarios of this pattern: (i) valid
user information, (ii) valid login with wrong password and
(iii) invalid login. Associated with each of the previous pat-
terns there is a Response Time. This is a way to indicate how
long the tool must wait before checking the test results. For
instance, GUIs usually take longer to check invalid user
information than to respond to an empty login. This way, the
tests can be (i) faster and (ii) be used to check the response
time of the GUI under certain circumstances. After perform-
ing these configuration steps, the tool generates test cases

6 http://www.era.pt/pg_home.aspx?&lang=uk

Figure 2 Architectural Structure of PETTool

TABLE I Tests for an authentication form
Tests generated

 Data Entry Field Patterns Authentication Patterns
1 2 3 4 5 6 7

Login
Field

Valid
Value

- - Valid
Value

Valid
Value

Invalid
Value

Valid
Value

Password
Field

- Valid
Value

- Valid
Value

Invalid
Value

Valid
Value

Valid
Value Figure 3 Instantiation of the FORM Pattern in GMail.

automatically. In the Fig. 5 it can be seen an example of an
error report where all the executed tests have passed except
one. The PETTool does not give support to choose the pat-
tern to use in each case. It purely depends on the expertise of
the tester. However, the behaviour patterns are so common
that it should be straightforward to identify them. The confi-
guration steps need to be performed only once because the
information gathered is saved and can be reused in following
tests’ configurations and in the several executions of the
automatically generated tests.

B. ERA
In order to test the MASTER/DETAIL behaviour, the

tester must start by pointing out the form under test.
The real estate agency ERA has two instances of the

MASTER/DETAIL pattern: (i) District and Commune and
(ii) Commune and Parish.

The tester must point out the corresponding Master field
and corresponding Detail field for each pattern instance. The
tool allows defining three different kinds of tests as ex-
plained in section III. In table II there is an example of a test
suite that can be defined for the District and Commune
MASTER/DETAIL pattern.

When the tests are run, PETTool sets the Master to the
specified value and then checks the Detail value. If the Detail
obeys to the defined restrictions the test succeeds, otherwise
an error is reported.

In this case study, there is a composite relation between
the two instances of the Master/Detail pattern. The values
that can be tested in the Commune and Parish Master/Detail
pattern depend on the values set for the District field in the
District and Commune Master/Detail pattern. For instance, if
the tester wants to check if a Commune called Matosinhos
contains a Parish called Lavra, PETTool needs to set the
District to Porto in order to be able to set the Commune to
Matosinhos. The PETTool allows to define composite rela-
tions between Master/Detail patterns and, when this happens,
the tool tries to find automatically the value for the first Mas-
ter field that allows testing the other instance of the Mas-
ter/Detail pattern. This process is recursive so, after gather-
ing the information related to the composition among several
Master/Details the PETTool finds a way to test them in se-
quence.

VI. RELATED WORK
Model Based Testing (MBT) has been widely investi-

gated for API testing (e.g., [3], [4]), and therefore MBT-
based approaches are more common for API than for GUI
testing. However, approaches applying MBT for GUI testing
do exist, e.g., Memon’s work [1], [5], and Paiva’s work [9].
They differ in the kind of model they use and in the coverage
of the test criteria used to guide the test case generation
process.

The tool developed by Memon (GUITAR) generates test
cases from an Event Flow Graph (EFG) model. Nodes in the
EFG represent events, and directed edges represent the
event-flow relationship between two events. An edge be-
tween events e1 and e2 indicates that event e2 may be in-
voked immediately after event e1. Concerned with the effort
required to construct the EFG, Memon developed a GUI
ripping tool to extract the EFG from an existing GUI [5]. In
his following work [1], Memon generates a subgraph of the
EFG by removing nodes and edges that are not observed in
the usage information obtained from the application’s real
users. Then, the subgraph is augmented with probabilistic
info (PEFG) in each node (event) that describes the occur-
rence probability of an event. Test cases are generated as
event sequences that contain (i) at least one highly probable
event, (ii) sequences that consider the probability of a whole
path or (iii) sequences that traverse the least likely paths in
the PEFG to reveal rarely-encountered faults that otherwise
would be difficult to find.

The GUI Mapping tools developed by Paiva [9] is an ex-
tension of the model-based testing tool Spec Explorer7, de-
veloped by Microsoft Research. The GUI model is written in
Spec# with state variables to model the state of the GUI and
methods to model the user actions on the GUI. Spec Explorer
generates a finite-state machine (FSM) by exploration of the
Spec# model and then test cases are generated from the FSM
according to coverage criteria like full transition coverage.
To run tests automatically over a GUI some additional (in-

7 http://research.microsoft.com/en-us/projects/specexplorer/

Figure 4 Expected Success behaviour of Authentication Pattern

Figure 5 Test Results

TABLE II TESTS FOR MASTER/DETAIL PATTERN
Tests

District Constraint type Commune
Porto Contains Matosinhos

Lisboa Does not Contain Porto
Ilha do Corvo Contains Only Corvo

termediate) code is needed to simulate the user actions on
interactive GUI controls. The GUI Mapping Tool generates
such code automatically based on the mapping between
model actions and GUI controls where corresponding real
actions occur. Although the intermediate code is generated
automatically, Paiva states that the effort needed for the
construction of Spec# GUI models is too high. Following
this work, she also developed a GUI reverse engineering
process to extract a preliminary model from an executable
GUI. This model is completed afterwards and validated in
order to generate test cases. Another attempt to reduce the
time spent with GUI model construction was described in [7]
where a visual notation (VAN4GUIM) is designed and trans-
lated to Spec# automatically. The aim was to have a visual
front-end that could hide formalism details from testers.

Both MBT and pattern-based testing, which we present in
this paper, aim at reducing the effort required to construct a
behavioural GUI model. Although both approaches can be
augmented with already available models such models are
difficult to reuse because they are frequently application
dependent due to so many tiny details that can vary between
GUIs - even for GUIs implementing the same behaviour. In
our current approach, we tried to capture the common beha-
viour while maintaining the possibility to configure small
variances in order to increase the degree of reuse and, in
consequence, diminish the GUI modeling effort. Therefore,
our approach reduces the effort of creating a model as well
as the effort of creating/generating test cases.

VII. CONCLUSIONS & FUTURE WORK
GUIs have brought considerable benefits to the end-

users: the interface design follows certain standards, thus
reducing the users’ learning curve for using new software
applications. Although the sophistication of GUIs hides the
underlying complexity from the user, testing GUI applica-
tions is considerably more difficult than command-line ones.
Therefore, there is the need to ease software testing and to
(semi-)automate the process of test generation and execution.

Exploiting the fact that the behaviour of GUIs is recur-
rent and following certain patterns, in this paper, we present
a pattern-based approach for (semi-)automating GUI testing,
dubbed PETTOOL. The approach identifies patterns of GUI
behaviour and, for each one, provides a generic GUI testing
solution based on known software testing techniques. Given
a GUI under test and user input on what to test and how the
GUI should behave, the tool automatically devises a test
strategy and tests the GUI. Our proof-of-concept approach
has been tested against web-based applications, such as
GMail, and this paper reports our findings.

Our tests suggest that the effort required to test a GUI is
not proportional to the number of tests but to the number of
patterns. This way, it is possible to generate and execute a
large number of tests based on a reduced number of patterns.

Since this approach is recent, there are many ways in
which PETTool can be improved. The main aspect is related
to the scope of the tool. There are still many patterns that can

be tested. The implementation of those patterns would allow
PETTool to be used in many more circumstances. GUI test-
ing difficulties also need to be improved in PETTool. Since
an error may lead to an unexpected state, in some occasions
the tool cannot recover from that error. This requires an
indication by the tester of how can the tool return to a well
known state. However, since there might be unexpected
errors, this process is not trivial. It would also be interesting
to find a way to relate the multiple forms, for instance to test
the authentication form and, after success, test another form
automatically. This would increase the automation of the
whole test execution.

REFERENCES
[1] P. Brooks and A. M. Memon. Automated GUI testing guided

by usage profiles. In Proceedings of the 22nd IEEE
International Conference on Automated Software Engineering
(ASE’07), Washington, DC, USA, 2007. IEEE CS.

[2] I. Burnstein. Practical Software Testing: A Process-oriented
Approach. Springer Inc., 2003.

[3] A. Hartman and K. Nagin. The agedis tools for model based
testing. In UML Modeling Languages and Applications,
volume 3297 of Lecture Notes in Computer Science, pages
277–280. Springer, 2004.

[4] J. Jacky, M. Veanes, C. Campbell, and W. Schulte.
Modelbased Software Testing and Analysis with C#.
Cambridge University Press, 2007.

[5] A. Memon, I. Banerjee, and A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for testing. In
WCRE ’03: Proceedings of the 10th Working Conference on
Reverse Engineering, Washington, DC, USA, 2003. IEEE CS.

[6] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a goal-
driven approach to generate test cases for GUIs. In
Proceedings of the International Conference on Software
Engineering (ICSE’99), New York, NY, USA, 1999. ACM.

[7] R. M. L. M. Moreira and A. C. R. Paiva. Visual abstract
notation for GUI modelling and testing - VAN4GUIM. In J.
Cordeiro, B. Shishkov, A. Ranchordas, and M. Helfert,
editors, ICSOFT (SE/MUSE/GSDCA). INSTICC Press, 2008.

[8] P. F. Oy. Ui pattern factory. http://uipatternfactory.com/,
accessed in April 2010.

[9] A. Paiva, J. C. P. Faria, N. Tillmann, and R. F. A. M. Vidal. A
model-to-implementation mapping tool for automated
modelbased GUI testing. In Proceedings of the 7th
International Conference on Formal Engineering Methods
(ICFEM’05), pages 450–464, 2005.

[10] M. vanWelie. Welie.com - Patterns in interaction design. http:
//www.welie.com/patterns/index.php, accessed in May 2010.

[11] L. J. White. Regression testing of GUI event interactions. In
Proceedings of the 1996 International Conference on
Software Maintenance (ICSM ’96), pages 350–358,
Washington, DC, USA, 1996. IEEE CS.

