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Abstract
Diagnosing unwanted behaviour in Multi-Agent
Systems (MASs) is a crucial task to assure the
correct operation of a system. A light-weight
technique inspired by the software-engineering-
oriented techniques, the we have coined Ex-
tended Spectrum-based Fault Localisation for
Multi-Agent Systems (ESFL-MAS) can be used
to shorten the diagnose cycle by reducing the test-
ing effort. As the technique relies on minimal in-
formation about the system, its diagnostic accu-
racy is inherently limited. In this paper, we study
the impact of different similarity coefficients that
are applied to the system execution spectra as we
try to assess the correct operation of an agent-
based application. The studied coefficients are
proposed in the literature and we study the impact
of them on the accuracy of spectrum-based fault
localisation applied to multi-agent systems. Our
experimental evaluation shows that three out of
42 (Jaccard, Ochiai, and Sorensen-Dice) have the
most effective and stable performance throughout
the variation of the number of passed and failed
events.

1 Introduction
Multi-agent systems (MASs) are built of autonomous enti-
ties that, ideally, are inherently robust due to their “loosely
coupled” feature that characterises these type of systems.
However, they are susceptible to unforeseen situations,
which may cause unexpected and, most of the times, unde-
sirable behaviours. Such unexpected behaviour may affect
the system’s availability and reliability at the operational
level. From this fact arises the necessity to endow multi-
agent systems with fault-tolerant characteristics. A crucial
phase in treating faults in any system is the process of recog-
nising and localising an unexpected event, known as diag-
nosis.

Current advances of fault-tolerance schemes applied to
MASs offer a limited level of fault diagnosis when deal-
ing with an agent-based system able to change its overall
behaviour over time. Although promising results have been

∗This project has been partially supported by FCT,
the Portuguese Agency for R&D (PhD Scholarship grant
SFRH/BD/66717/2009) and CAPES, the Brazilian Agency for
R&D (PhD Scholarship grant 9382-13-5).

registered in the literature, most of the suggested approaches
are based on some a priori knowledge or information about
the system. This condition cannot always be ensured in
real-world deployment of complex MASs because of the dy-
namism of the environment, the presence of legacy systems,
and so forth. Additionally, there are a few techniques that
test the MAS as a system running at the target operating en-
vironment [1]. We, in this first stage, focus on developing
a technique that diagnoses behavioural faults in order to be
applied in the testing-system level.

The similar drawback of relying on a priori informa-
tion to detect and diagnose faults is being addressed by the
software-engineering community aiming to shorten the test-
diagnose-repair cycle in many domains. Spectrum-based
fault localisation (SFL) is a promising technique that has
been shown to yield good results in terms of diagnostic ac-
curacy in software [2; 3]. The diagnosis process in SFL is
based on the analysis of the differences in program spectra
(an abstraction over program traces) for passed and failed
runs. Passed runs are executions of a program that were
correctly completed, whereas failed runs are executions in
which an error was detected. A program spectrum is charac-
terised by an execution profile that indicates the active parts
of a program during a run. Then, spectrum-based fault lo-
calisation entails identifying the part of the program whose
activity most correlates with the detection of errors.

An advantage of SFL is that it does not rely on a model
of the system under investigation and can be applied in
resource-constrained environments due to the relatively low
computational overhead [2]. These aspects elevate the tech-
nique as a good candidate for being implemented in MASs
deployment. To the best of our knowledge spectrum-based
techniques have not been employed within the MAS fault-
diagnosis research, apart from our recent preliminary at-
tempt published in a non-archival workshop, yet here we
discuss further results [4].

In this paper, we follow a paradigm shift and propose an
extension of the SFL technique called, Extended Spectrum-
based Fault Localisation for Multi-Agent Systems (ESFL-
MAS) in order to diagnose agents’ behavioural faults when
testing the overall system operation. Similar to the original
approach, our proposal was used for shortening the diag-
nosis cycle for identifying agents that jeopardise the over-
all performance of a MAS-based application. We study the
limitation of the current SFL and thus augment some of its
features to support diagnosis in a multi-agent system. More-
over, a similarity coefficient ranks potential faulty agents
that most contribute to the failure of the whole system. As



the similarity coefficient influences the ESFL-MAS perfor-
mance, we study the impact of different similarity coeffi-
cients in the MAS context. We evaluate 42 similarity co-
efficients on a comprehensive example to demonstrate the
approach by instantiating a well-known toy-problem in the
area of MAS known as the gold miners problem within a
grid environment [5]. The gold-miners scenario encom-
passes key characteristics of both a logistic problem and a
non-hierarchical MAS. The main contributions of our work
are the following: (i) we discuss the limitation to use tra-
ditional SFL in agent-based systems and propose an exten-
sion to this technique to comply agents’ features, (ii) and
show that for the purpose of multi-agent systems the Jac-
card, Ochiai, and Sorensen-Dice similarity coefficients out-
performs the other coefficients when varying the number of
passed and failed observations.

The remainder of the paper is organised as follows. The
related work is discussed in Section 2 to reinforce our re-
search challenges. In Section 3 we introduce an illustrative
case of the Spectrum-based Fault Localisation technique.
Section 3 introduces a formalisation of the spectrum-based
diagnosis extension to be applied in MAS and, moreover,
Section 4 describes the experimental setup and, in Section
5, we present and analysis the obtained results. At last, in
Section 6 we conclude this work and suggest future research
directions.

2 Related Work
Our work concerns diagnosis techniques in general, and,
more specifically, diagnosis of faulty agents in a system.
The diagnosis process is triggered by a detected deviation
from the expected behaviour of a given system; this process
aims to identify the origin of the failure, i.e. to discover
all contributors for the unexpected event. Due to their an-
thropological and social features, the multi-agent commu-
nity has proposed specific approaches to diagnose different
types of fault in multi-agent systems.

Our analysis of related work in this area is twofold: fault-
based diagnosis and model-based diagnosis [6]. The first
relies on experts to model all known faults in a given do-
main; conversely, the second starts from a system’s model
(i.e. its structure and behaviour) while any abnormality is
classified as a fault.

Albeit fault-based diagnosis is not recommended for
multi-agent systems because synergy among agents is un-
predictable, the literature presents architectures based on
such an approach. Horling et al.’s [7] diagnosis system con-
ducts identification and recovery processes through a prede-
fined failure-causal graph; when the system fails, a suitable
node is triggered and therefore, based on the failure’s fea-
tures, others correspondent nodes are activated, and thus the
agent further reorganises its own tasks to recover to a non-
faulty state. Similarly, Dellarocas and Klein [8] designed
a domain-independent exceptions handling for agent-based
systems using a sentinel-based approach. It introduces a
knowledge base of generic exceptions. Agents, however,
must also register their model so faults can be known in ad-
vance. The diagnosis process uses heuristic classification
to search in a predefined tree for possible causes based on
detected symptoms. Hence, in those proposals, agents very
much depend on specific run-time conditions and actions
previously taken. Unlikely to black-box approaches, fault-
model techniques require a previous knowledge of possible

faults.

The model-based diagnosis approach has also been ap-
plied to agent-based systems. For instance Roos et al. [9]
address diagnoses where models are spatially distributed;
each single agent has a local model which combines knowl-
edge of all agents as well. However, this method trades off
diagnosis precision over the capability of local-minimal di-
agnosis. Authors focus on how to effectively merge knowl-
edge and co-ordinate components, whereas our work con-
centrates on how to minimise the knowledge usage.

A few approaches more tackle execution, monitoring, and
diagnosis of plans in multi-agent systems. In [10], authors
introduce the notion of plan diagnosis which considers the
plan performed by agents as the system to be diagnosed; in
their follow-up work, Jonge et al. [11] complement the plan
diagnosis with the definition of secondary diagnosis. More
precisely, the primary plan diagnosis clears the set of actions
that leads to failure, whereas the secondary plan diagnosis
underlies causes for such a failure. Towards the same di-
rection, Micalizio [12] proposes an extended model of ac-
tions, yet demonstrating further interest in the whole pro-
cess (from identification to recovery) with partial observable
plans; the author has recently integrated the agent plan diag-
nosis with recovery processes through a conformal planner
which guarantees a backup plan whenever it is possible [13].
Conversely to diagnosing failures in agent plans that are de-
fined in advance, faulty behaviours depend on the context of
each agent (or the system) to be detected and thus, besides
the plan analysis, all the surroundings should contribute to
the diagnosis, which the above works have not considered.

Multi-agent diagnosis has a different branch called social
diagnosis that is concerned with determining coordination
failures within a team of agents. Kalech and Kaminka [14;
15] achieve such by modelling hierarchy of behaviours
while agents refresh their beliefs akin teammates. Through a
matrix-based representation of coordination among agents,
the system detects a fault and therefore diagnosis uses the
aforementioned model to determine the abnormal agent or
set of agents. In recent endeavours [16], they allow non-
binary constraints and improve efficiency to large-scale and
more realistic teams. This set of works is robust and scal-
able in collaborative MASs; however, their matrix-based
model focused on the coordination failures rather than on
how these influence the MAS overall performance.

The closer that the SFL has been applied to agent-based
systems were in the work [17] where authors propose a
spectrum-based technique to pinpoint concurrency faults in
code blocks. Yet, to the best of our knowledge and after
a careful review of the current literature, no work imple-
ments spectrum-based diagnosis specific to MAS. Addition-
ally, all the community’s efforts in the MAS community as-
sume some kind of a priori model, for instance, the correct
(or faulty) behaviour of agents including their possible ac-
tions. Consequently, these diagnosis techniques very much
rely on how precise their knowledge is, thus increasing its
dependency on the design process that is error-prone as well.
To the contrary, we propose a spectrum-based fault diagno-
sis for multi-agent that collects dynamic information about
the system rather than about predefined models, therefore
decoupling the fault diagnosis from the design phase.



3 Spectrum-based Fault Localisation
Before describing our modifications to the SFL to localise
faults in MASs, we illustrate the related concepts consider-
ing an implementation of the arc-tangent function in Table 1.
It is meant to calculate the arc-tangent with two arguments,
which are used to output the phase of a complex number.
Analysing the signs of the input values, the function tests a
sequence of cases and returns the angle in radians. For the
sake of illustration, a fault is injected in the sign of one con-
dition in instruction 6 of code in Table 1: the arctan(x/y)
is subtracted instead of being summed to π. An error occurs
after the code inside the conditional statement is executed
while y >= 0 and x < 0. Note that this fault can be latent
in the system and only leads to errors under certain condi-
tions.

The SFL collects data that provide a specific view of the
dynamic behaviour of a monitored software [18]. When ap-
plied to procedural software, this data is collected at run-
time and consists of a number of hit flags of a specific com-
ponent; in our case, each statement of the code has an asso-
ciated hit. To illustrate the concept of a program spectrum,
observe Table 1; running this program results in the spec-
trum matrices where • (and ◦) represent that statement was
(and was not) executed by the respective test case.

The set of test cases generates two types of programme
spectra: ones with detected errors (called failed runs) and
others without detected errors (called passed runs). These
program spectra can be used for fault diagnosis by com-
paring both types of spectra and then analysing their dif-
ferences. Throughout the observation of outputs, the pro-
cess generates a vector of errors for each test case. We will
demonstrate the approach through our arc tangent example.

Suppose we apply the inputs: t0 = ⟨−4,−1⟩, t1 = ⟨5, 0⟩,
and t2 = ⟨2,−3⟩. The first and second inputs trigger state-
ments without any fault and the program will pass these test
cases. Yet, the last input will result in a failure represented
by the error vector. The complete spectra for all test cases
are as portrays Table 1. The difference between all spec-
tra correctly identifies statement result = arctan(y/x) - π as
the most likely location of the fault; this occurs because the
previous statement is executed when the error is detected.

Clearly, this example has small number of test cases
and statements; however it fully illustrates the manner SFL
works. In a nutshell, the spectrum is a binary matrix whose
columns represents the test case by which a (for our ex-
ample) statement is activated. The error vector constitutes
information about failure events in execution of test cases.
Fault diagnosis consists in identifying the statement whose
spectrum most resembles the error vector. Such a compari-

Table 1: Jaccard Scores of Statements
Statements t0 t1 t2 Jaccard Value

1 if(x == 0 and y == 0) • • • 0.333
2 printf(“Undefined”); ◦ ◦ ◦ 0
3 else if(x > 0) • • • 0.333
4 result = arctan(y/x); ◦ ◦ ◦ 0
5 else if(y >= 0 and x < 0) • • • 0.333

/*Bug: sign ’-’ instead of ’+’*/
6 result = arctan(y/x) - π; ◦ ◦ • 1.000
7 else if(y < 0 and x < 0) • • ◦ 0
8 result = arctan(y/x) - π; • ◦ ◦ 0
9 else if(y > 0 and x == 0) ◦ • ◦ 0

10 result = (π/2); ◦ • ◦ 0
11 else if(y < 0 and x == 0) ◦ ◦ ◦ 0
12 result = -(π/2); ◦ ◦ ◦ 0
13 print(“%d\n”, result); • • • 0.333

Test Results X X ×

son is measured by the similarity coefficient, which will be
studied in this paper and represented in this example by the
Jaccard Value column.

Not explored in our work, but definitely interesting to pur-
sue, is a hybrid approach combines SFL with model-based
diagnosis (using generic models that can automatically be
inferred from the application) in order to further improve
diagnosis [19; 20].

4 Extending SFL for Multi-Agent Systems
The spectrum-based diagnosis is a simple, yet effective tech-
nique that demands for minimal information concerning the
system to be diagnosed. All the aforementioned features
motivate its use in an agent-based application; as a matter
of fact, multi-agent diagnosis should not rely on a priori
knowledge related to either its structure or the undergoing
interactions. This happens because one of the most interest-
ing characteristics of MASs is the dynamism of the system
and its ability to adapt to new conditions.

We inspired by works in the area of testing and debugging
of software, propose this extension of the spectrum-based
fault localisation to tackle testing issues for MASs. Note
that here we use the spectrum to diagnose agents in a higher
level, i.e. in their behaviour level. We see the agent as a
black box where the diagnosis technique does not have ac-
cess to the source code. This higher level enables the ESFL-
MAS to test off line the overall operation in the system ex-
posed to different circumstances. The designer might recre-
ate relevant scenarios and, compared with a standard one,
the ESFL-MAS pinpoint the possible faulty agent. Thus,
before to deploy the MAS, we can test different scenarios
ensuring minimal performance. Below we discuss the three
main points to detail the implemented modifications of the
original SFL, presented in form of question.

Is one set of test cases enough to analyse MAS be-
haviour? There are two facets to be considered in this
matter. First, normal object-oriented software produces an
output after a single execution whereas the MAS must run
throughout several time steps so we can truly see its emerg-
ing behaviour. That is, for each test case, we must run the
MAS during a time frame to take into consideration its evo-
lution. Second, a single execution per test case also lim-
its our view of the system’s behaviour as agents are au-
tonomous and their activation paths (i.e. choices) might
differ in different executions of the same test case. There-
fore, we must execute several rounds of the same test case
to cover as many paths as possible to assure robustness.

In a higher level of abstraction, what would be the in-
formation in a spectrum? This is crucial information
as it discloses the activation states (dynamic behaviour) of
the agents in the system. Based on this information the
faulty agent is identified. However, the types of spectrum so
far used in object-oriented and procedural software devel-
opment do not meet agent-oriented software requirements.
For instance, if we choose a block-hit spectrum and apply
it to our problem, the X matrix is going to be full of 1’s
because agents are persistent entities and are always active.
As so, we introduce a metric-based spectra, i.e. all agents
are assessed by a metric and the 0’s and 1’s values indicate
whether or not the agent is above a performance threshold,
respectively.



How to simply assess the agent and overall perfor-
mances? The technique should assess whether or not the
MAS-based application works under its normal operational
levels. We understand that such an assessment must rely on
how effectively the overall system fulfils its requirements;
in other words, how it performs the tasks it was built to exe-
cute. A direct solution for evaluating performance might use
a domain-based metric that sets a threshold (e.g. a multi-
agent system controlling an automotive shop-floor should
produce 10 cars per hour). When the productivity is above
this threshold the value expresses that the run has passed,
otherwise it is deemed to have failed.

Figure 1 presents the information of the multi-agent sys-
tem P handled by the ESFL-MAS and Algorithm 1 intro-
duce the proposed algorithm. The definitions are

• n ∈ N is the number of agents in the multi-agent sys-
tem and Agl is an agent l where 1 6 l 6 n.
• T is a set of test cases: T = {T1, · · · , Tm|m ∈ N},

where m is the number of test cases.
• Test case Ti considers a set of q ∈ N environmental

variables that all agents can perceive.
• C ∈ N is the number of executions per test case and
0 < j 6 C is the current execution index.
• K ∈ N is the total number of time step in a given exe-

cution and 0 < k 6 K is the current time step index.
• XTi,j is the spectrum matrix for the test case Ti and

execution j. The whole tensor X has dimensionality
of m × C × K × n. A element xTi,j,k,l represents
the performance of the agent Agl at time step k and its
value is defined by the function

xTi,j,k,l =

{
0 if pk,Agl ≥ thrAgl

1 if pk,Agl < thrAgl

where pk,Agl is the measure performance of the agent
Agl at k and thrAgl is a expected performance for the
agent.
• E is a set of boolean elements where each element ek

represents the performance of the system at time step k
and its value is defined by the function

ek =

{
0 if pk,MAS ≥ thrMAS

1 if pk,MAS < thrMAS

where pk,MAS is the measure performance of the MAS
at k and thrMAS is the expected performance of the
MAS.

In a nutshell, the algorithm first initialises the variables
and vectors with proper values (line 2-11); then it runs the
MAS for the set of test cases and executions which builds
the space of information and the error vector (line 12). For
each agent and spectrum, the algorithm analyses the combi-
nation of agent’s and system’s performances to add in their
respective counters (lines 13-29). ESFL-MAS produces a

T
T1

T2

...
Tm

×C

XTi,j
x11 x21 · · · xn1

x12 x22 · · · xn2

...
...

. . .
...

x1K x2K · · · xnK


Ag1 Ag2 · · · Agn

ETi,j
e1
e2
...
eK


Figure 1: Information of MAS P to ESFL-MAS

tuple of counters ⟨aef , aep, anf , anp⟩ for each block of the
multi-agent system P such that: aef and aep represent the
number of test cases that covered the block and returns a
failed and passed testing results, respectively; whereas anf
and anp denote the number of test cases that do not execute
the block and return a failed and passed testing results, re-
spectively. At last, the similarity of each agent is calculated
through the counter vector. The algorithm returns a sorted
list with ascending order of the most probable faulty agents.

The set of information of T test cases and C execu-
tions per test case constitute a 4-dimensional tensor (m ×
C × K × n), where the metric-based spectrum is a ma-
trix XTi,j . Also, its columns and lines correspond respec-
tively to n different agents of the multi-agent system and

Algorithm 1: ESFL-MAS Algorithm
Input: Multi-Agent System P , set of test cases T ,

number of executions per test case C, and
similarity coefficient s

Output: Diagnosis report D
1 begin
2 m←− |T |
3 n←− Get_NumOfAgents(P)
4 D ←− ∅
5 for j = 0 to n do
6 a11 (j)←− 0
7 a10 (j)←− 0
8 a01 (j)←− 0
9 a00 (j)←− 0

10 S [j]←− 0 // Similarity s of agent
j

11 end
12 (X,E)←− Run_MAS(P , T , C)
13 for i = 0 to m do
14 for j = 0 to C do
15 K ←− Get_NumTimeSteps(X [i, j])

for k = 0 to K do
16 for l = 0 to n do
17 if x [i, j, k, l] = 1 ∧ e [i, j, k] = 1

then
18 a11 (l)←− a11 (l) + 1
19 else if

x [i, j, k, l] = 0∧ e [i, j, k] = 1 then
20 a01 (l)←− a01 (l) + 1
21 else if

x [i, j, k, l] = 1∧ e [i, j, k] = 0 then
22 a10 (l)←− a10 (l) + 1
23 else if

x [i, j, k, l] = 0∧ e [i, j, k] = 0 then
24 a00 (l)←− a00 (l) + 1
25 end
26 end
27 end
28 end
29 end
30 for i = 0 to n do
31 S [i]←− s (a11 (i) , a10 (i) , a01 (i) , a00 (i))
32 end
33 D ←− Sort(S)
34 return D
35 end



K time step per execution as we have assumed a discrete
time. The information concerning the time step in which an
under-performance of the system was detected constitutes
another vector named E. This vector represents a hypothet-
ical part of the MAS that is responsible for observing all
failure events.

Spectrum-based diagnosis essentially consists in iden-
tifying the agent whose column resembles the under-
performance vector the most. The similarity coefficient
quantifies these resemblances and, assuming the high sim-
ilarity with the under-performance vector, indicates a high
probability for the corresponding agent to have caused the
detected “failure;” in other words, it ranks the agents with
respect to their likelihood of containing faults. However,
there are also other aspects of MASs that are not fully taken
into account by ESFL-MAS, such as: interacting agents,
cascading effects of a faulty agent, and so forth. To handle
all these elements at once is too much for one work; though,
we are aware of them and will study solutions for all these
issues.

5 Experimental Setup
To assess the effectiveness of the various similarity coeffi-
cients in the context of spectrum-based fault localisation in
multi-agent systems, we are evaluating the ranking of the
faulty agent computed using ESFL-MAS with several sim-
ilarity coefficients. Our paper is inspired by works which
compares the fault localisation capabilities of 42 similar-
ity coefficients for C programs and spreadsheets respec-
tively [21; 22]; however, in contrast to them, our focus is on
multi-agent systems. For the sake of clarity and due to the
lack of space, we refer the interested reader elsewhere [21]
for more details about these coefficients as this paper will
not present all of them.

We consider a widely-used scenario for agent, used in
Agent Contest 2007, in order to experiment and evaluate the
impact of the coefficient in the ESFL-MAS. This is the gold-
miners scenario and to explain it we quote their description:

“Teams of gold miners find themselves explor-
ing the same area, avoiding trees and bushes and
competing for the gold nuggets spread around the
woods. The gold miners of each team coordinate
their actions in order to collect as much gold as
they can and to deliver it to the trading agent lo-
cated in a depot where the gold is safely stored.” 1

Our test suite uses only one team of gold miners per sce-
nario as, for now, we do not want to introduce any dynamic
environmental changes.

There are two main reasons to choose the gold miners
scenario. First, though in a first look the chosen scenario
seems simple, it has most features of pick-delivery problems
present in domains such as transportation, supply-chain,
and networks; additionally, from the multi-agent structure,
it complies non-hierarchical solutions commonly used to
manage peer-to-peer networks and traffic control. Second,
all components of the system (including model of the world,
agents, and interaction protocols) were tested and validated
by the MAS community; and this is important to our case
because we have higher confidence that only our injected
faults will contribute to our results.

1https://multiagentcontest.org/2007. Page accessed at 2014-08-
04

We use the agents implementation based on the JASON
agent-oriented platform for MAS development [23] to cre-
ate our test suite. Some modifications were made in the
original application so we were able to inject a faulty agent
in the scenario. The faults focus on behavioural facets of
agents and they may have different origins; for instance, the
agent misinterprets a perception and thus takes an erroneous
action. The system is composed by 20 agents and 400 gold
nuggets. We randomly generate 5 test cases as they are part
of the ESFL-MAS input (see Section 4). Each of the test
cases corresponds to a set of initial positions for: all agents,
the depot, and all gold nuggets; also the test cases were ex-
ecuted 75 times each, with time limit of 1000 steps per exe-
cution.

Additionally, we collect information about agents’ perfor-
mance in order to build the run-time profile of the system,
i.e. the spectrum. These spectra reflect the dynamic be-
haviour of the agents in the system and how they fulfil their
tasks. The gold-miners example might be seen as rudimen-
tary version of a logistic problem and thus, the average time
of completed shipments (e.g. delivered gold nuggets) for
each individual agent can be used as metric for such domain.
Indeed it is able to disclose evidence of agents’ performance
as it maintains the generality and simplicity of the proposed
logistic problem [24]. Likewise, the metric used to establish
the performance of the system, according a given thresh-
old, is the average time between two shipments to the depot.
However, we can use whatever other metric that reflects the
system’s “productivity.”

Using the original implemented version of the gold-
miners as the correct version, we use its execution output
as error detection baseline for each test case. The time
step is labelled as “failed” if the output is below the corre-
sponding threshold established in the correct version, and as
“passed” otherwise. With this strategy, we detect when the
system underperforms deviating from the expected (desired)
behaviour. That is, we provide indications to the system de-
signer how to evaluate the agent’s blueprints.

We run the proposed fault localisation approach and ob-
tain a list of probable faulty agents, sorted by the likeli-
hood to generate an under-performance event (that is, the
computed value of the similarity coefficient, currently be-
ing used). Since agents with a high probability of exhibiting
a fault behaviour are more likely to be first in the ranking,
we use this indication to measure the quality of the diagno-
sis, also known as accuracy. As it is reported in [25], let
d ∈ {1, · · · , N} be the index of the block that we know
to contain the fault. For all j ∈ {1, · · · , N}, let sj denote
the similarity coefficient calculated for block j. Then the
ranking position is given by

τ =
|{j|sj > sd}|+ |{j|sj ≥ sd}| − 1

2
(1)

Abreu et al. have elsewhere [25] defined accuracy or
quality of the diagnosis as the effectiveness to identify the
faulty block. This metric represents the percentage of blocks
that need not be considered when searching for the fault by
traversing the ranking. It is defined as

qd =

(
1− τ

N − 1

)
∗ 100% (2)

In the remainder of this paper, values for qd will be ex-
pressed as percentages.



6 Observation of the ESFL-MAS Sensibility
One, when analysing the ESFL-MAS, instinctively recog-
nizes the main influence that both the similarity coefficient
and the metrics have in the technique’s performance. Nev-
ertheless, we start the ESFL-MAS sensibility analysis from
the similarity coefficients because there are previous works
in the software-engineering domain that could verify, at
some degree, the correctness of our results.

Sensitivity analysis intends to estimate the influence of
the number of passed and failed time steps on the accuracy
of the fault diagnosis. To do so, we evaluate qd while vary-
ing the number of passed (Np) and failed time steps (NF )
that are encompassed in the diagnosis process. Since the
ratio of failed and passed time steps is very small (nearly
0.02) and no previous experiment analysing the sensitivity
of ESFL-MAS have been performed, we study the impact
the number of executions has on the diagnostic accuracy qd
throughout all the range of available data; this means we
have chosen to vary the number of passed and failed time
steps in the range of 5-100% (with steps of 5%)of the total
number of passed and failed runs per spectrum.

We have observed that, even though similarity coeffi-
cients have been proposed for different purposes, in our ex-
periments some of them have similar responses. Figure 2
and 3 show two representative examples of sets of coeffi-
cients with the best performances. We plot qd according
to the several coefficients for NP and NF varying from 1-
100%. For each entry of these graphs, we average qd over
100 randomly selected combinations of NP passed runs and
NF failed runs, where we verify that the variance in the
measured values of qd is negligible.

The Figure 2 portrays the response of Jaccard [26],
Ochiai [27], and Sorensen-Dice [28] coefficients. All three
outperform all others coefficients regarding the stability of
their response throughout the whole range of NP and NF .
On the other hand, the group composed by Accuracy [29],
Least Contradiction [29], Rogers and Tanimoto [30], and
Simple-Matching [31] has the best maximum value for qd;
however, as it can be seen (Figure 4), the performance of
the aforementioned coefficients very much depends on both
NP and NF . This fact makes them poor candidates to be
applied when the effectiveness of either the fault detection
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Figure 2: Observation of sensibility of Jaccard, Ochiai, and
Sorensen-Dice
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Figure 3: Observation of sensibility of Accuracy, Least Con-
tradiction, Rogers and Tanimoto, and Simple-Matching

or the generated test cases is unknown, because the accuracy
can drop in average 20% when varying NP and almost 30%
when varying NF .

Figure 4 depicts the impact of NF in the quality of di-
agnosis for NP = 50%. Inspecting the results for differ-
ent similarity coefficients confirms the stable response of
Jaccard and Ochiai coefficients, with a slightly better re-
sult from Jaccard. In addition, the Accuracy coefficient
equals both Jaccard’s and Ochiai’s performance near 70%
of NF , which means in average 25 time steps with under-
performance against 490 passed time steps. Across the en-
tire test bed , we found that some coefficients lose perfor-
mance while increasing the number of failed time steps. An
example is the Collective Strength [32] depicted in Figure 4.

From our experiments on the impact of the number of ex-
ecutions on the accuracy qd we can draw the following con-
clusions. As the technique is highly influenced by the num-
ber of passed time steps, the inclusion of more failed time
steps not always guarantee a better quality of diagnosis. The
best strategy to improve accuracy is to run the MAS with test
cases that could induce underperformance more frequently.
This supports how crucial are the test-cases selection for

Figure 4: Impact of NF on qd for NP = 50%



spectrum-based diagnosis. It is important to highlight that
these conclusions are within the context of our test bed, in
which we do not consider possible social interaction among
agents and only one agent had a fault.

7 Conclusions
Extended Spectrum-Based Fault Localisation aims to iden-
tify agents that may jeopardise the overall performance
through misdirected reasoning. The first appraisal described
is supposed to be used in the context of testing MAS in a
system level in order ensure expected behaviour in a set of
scenarios. Besides, not all aspects of MASs are covered in
this version, yet we achieve prominent results, giving a good
prospect for the ESFL-MAS application. Furthermore, we
analysed the impact on the diagnostic accuracy of varying
the number of observations (quantity) for different similar-
ity coefficients. The gold miners scenario [5], developed in
JASON agent-oriented platform, was adopted to perform all
analysis.

First of all, as the technique is highly influenced by
the number of “passed” time steps, the inclusion of more
“failed” time steps not always guarantee a better quality of
diagnosis qd. The best strategy to improve accuracy is to
run the MAS with test cases that could induce underperfor-
mance more frequent. This supports the relevance of test-
cases selection for spectrum-based diagnosis and steers your
work to investigate more deeply in the generation of sound
test cases for MAS. We need to acknowledge, that these con-
clusions are within the context of the discussed test bed, in
which we do not consider possible social interactions among
agents and where only one agent presents a faulty behaviour.

Along with the above conclusion, results sustain that for
Ochiai, Jaccard, and Sorensen-Dice coefficients the minimal
of 20% of test cases should have failed executions. This fact
must be taken into account by the designers when imple-
menting scenarios to test MAS. Moreover, as plotted in the
Figure 4, we see that for only 50% of “passed” time steps
and 20% of “failed” executions the ESFL-MAS is able to
strongly (80% accuracy) indicate the presence of unwanted
behaviours in some of the agents. From the designer point
of view, this is critical and useful results as he/she will ex-
perience a reduction of time spent on testing and debugging
phase.

The comparison of SFL to other diagnosis approaches re-
mains for future work. We did not compare to Kalech’s [16]
and Micalizio’s [13] works because a direct comparison is
not possible because both of them focus on a specific fea-
ture of MASs, which is team-mates for Kalech and plan of
actions for Micalizio. Although we intend to compare both
works in our test suite as well as in their empirical setups.

After the analysis described in this paper, future works
will address the study of several aspects of the ESFL-MAS
in order to establish correlations and degrees of influence
of its component on the quality and precision of diagno-
sis. We will investigate the impact of metric-based er-
ror detection in the accuracy qd also we intend to evalu-
ate the evolution of the accuracy qd as a function of de-
tection quality, aiming to obtain a better resolution on the
performance of the various similarity coefficients as well
as on the agents’ and system’s evaluation metrics. Hence,
we intend to move towards a more design-independent so-
lution. Moreover, it is also interesting to study the sensi-
tivity of our technique to different number erroneous time

steps so we can be able to state the minimum number of
errors that should be detected to assure the best expected
performance. Finally, we will test the ESFL-MAS in a
much more realistic scenarios with dynamic environments,
more agents, more interaction between agents taking advan-
tage of the existing benchmarks for MASs, as well as ex-
periment with the spectrum-based reasoning technique [33;
34] which reasons in terms of multiple faults.
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