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Abstract: Logic reasoning approaches to fault diagnosis account for the fact that a component cj may
fail intermittently by introducing a parameter gj that expresses the probability the component exhibits
correct behavior. This component parameter gj , in conjunction with a priori fault probability, is used in
a Bayesian framework to compute the posterior fault candidate probabilities. Usually, information on gj

is not known a priori. While proper estimation of gj can have a great impact on the diagnostic accuracy,
at present, only approximations have been proposed. We present a novel framework, BARINEL, that
computes exact estimations of gj as integral part of the posterior candidate probability computation.
BARINEL’s diagnostic performance is evaluated for both synthetic systems and the Siemens software
benchmark. Our results show that our approach is superior to approaches based on classical persistent
fault models as well as previously proposed intermittent fault models.
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1. INTRODUCTION

In model-based fault diagnosis (MBD) approaches faults are
typically assumed to be persistent. However, in many practical
situations faults manifest themselves intermittently, such as
in copiers where sometimes sheets may be blank, or where a
worn roller sometimes slips and causes a paper jam De Kleer
et al. [2008]. Intermittent behavior is also relevant in software
fault diagnosis, which is the primary context of this paper.
Although software is supposed to be inherently deterministic,
intermittent component models are often essential. This can
be due to non-determinism (e.g., race conditions) caused by
design faults related to properly dealing with concurrency. A
more compelling reason is the modeling abstraction typically
applied, where, for example, the software component’s input
and output values are abstracted in the model, such that a
component’s (abstracted) output may differ for the same (ab-
stracted) input. Although a weak fault model (that does not
stipulate particular faulty behavior) admits any output behav-
ior, applying classical (persistent fault) diagnosis to software
components that do not consistently exhibit failures results in
severely degraded diagnostic performance (as is also shown in
this paper).

A model for intermittent behavior De Kleer [2007] was in-
troduced as an extension of the GDE framework De Kleer and
Williams [1987], De Kleer et al. [1992]. Essentially, next to the
prior probability pj that a component cj is at fault, a parameter
gj is used to express the probability that a faulted component
exhibits correct (good, hence g) behavior. The model is incor-
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porated into the standard, Bayesian framework that computes
the posterior probability of diagnosis candidates based on ob-
servations De Kleer and Williams [1987], De Kleer [2006].

The intermittency framework has been shown to yield signif-
icantly better results (e.g., in the diagnosis and replanning of
paper sheet paths in copiers with intermittent component fail-
ures Kuhn et al. [2008], and in software fault diagnosis Abreu
et al. [2008a]), compared to an approach based on a classi-
cal, persistent fault model. An important problem in using
the intermittency model, however, is the estimation of gj , as
calibration data on correct and incorrect component behavior
is typically not available. Estimating gj for each component
cj would be straightforward when (sufficient) system obser-
vations are available where only that single, intermittent com-
ponent is involved De Kleer [2007]. However, in a multiple-
fault context usually only system observations are available in
which multiple components are involved. Consequently, iso-
lating to what extent each individual component contributes to
the observed failure behavior is less straightforward. However,
as the influence of gj in the computation of the posterior
probability of each diagnostic candidate is significant, exact
knowledge of each gj can be critical to overall diagnostic
accuracy.

In De Kleer et al. [2008] as well as in Abreu et al. [2008a,b]
strategies have been proposed to estimate the gj in a multiple-
fault context. However, the approaches are essentially based
on an approximation. In this paper, we present a novel ap-
proach to the estimation of the gj in conjunction with a new
Bayesian approach towards the computation of the posterior
candidate probabilities using an intermittent fault model that
generalizes over classical, persistent MBD approaches. The
approach represents a departure from the current Bayesian
framework as used in current diagnosis approaches (e.g.,



De Kleer et al. [2008] and Abreu et al. [2008a]) in the sense
that (1) the resulting gj are exact, maximum likelihood esti-
mators instead of approximations, and (2) the computation of
the posterior candidate probabilities is an integral byproduct
of the gj estimation procedure.

The paper makes the following contributions

• we present our new approach for the candidate probabil-
ity computation which features the algorithm to compute
the gj . The approach is coined BARINEL 1 , which is the
name of the software implementation of our method;
• we compare the accuracy and complexity of our method
to the current approaches in De Kleer et al. [2008]
and Abreu et al. [2008a] for observations series that are
synthetically generated for known gj setpoints;
• we describe the application of our approach to spectrum-
based software multiple-fault diagnosis and evaluate the
diagnostic performance using the well-known Siemens
suite of benchmark programs.

To the best of our knowledge, this approach has not been de-
scribed before. The results from the synthetic experiments, as
well as from the application to real software systems, confirm
that our new approach has superior diagnostic performance to
all Bayesian approaches to intermittent systems known to date.

The paper is organized as follows. In the next section we de-
scribe the current Bayesian approach using persistent and in-
termittent models. In Section 3 we describe our new approach
to fault diagnosis. Sections 4 and 5 present experimental re-
sults for synthetic observations and real codes, respectively.
Section 6 describes related work, while Section 7 concludes
the paper.

2. PRELIMINARIES

In this section we introduce existing concepts and definitions.

2.1 Basic Definitions

Definition 1. A diagnostic system DS is defined as the triple
DS = 〈SD ,COMPS ,OBS〉, where SD is a propositional
theory describing the behavior of the system, COMPS =
{c1, . . . , cM} is a set of components in SD , and OBS is a
set of observable variables in SD .

With each component cj ∈ COMPS we associate a health
variable hj which denotes component health. The health states
of a component are healthy (true) and faulty (false). In Sec-
tion 3 this definition will be extended.

Definition 2. An h-literal is hj or ¬hj for cj ∈ COMPS .

Definition 3. An h-clause is a disjunction of h-literals contain-
ing no complementary pair of h-literals.

Definition 4. A conflict of (SD ,COMPS ,OBS ) is an h-
clause of negative h-literals entailed by SD ∪OBS.

Definition 5. Let SN and SP be two disjoint sets of com-
ponents indices, faulty and healthy, respectively, such that
COMPS = {cj | j ∈ SN ∪ SP } and SN ∩ SP = ∅. We
define d(SN , SP ) to be the conjunction:

1 BARINEL stands for Bayesian AppRoach to dIagnose iNtErmittent fauLts.

A barinel is a type of caravel used by the Portuguese sailors during their

discoveries.

(
∧

j∈SN

¬hj) ∧ (
∧

j∈SP

hj)

A diagnosis candidate is a sentence describing one possible
state of the system, where this state is an assignment of the
status healthy or not healthy to each system component.

Definition 6. A diagnosis candidate for DS given an observa-
tion obs over variables in OBS , is d(SN , SP ) such that

SD ∧ obs ∧ d(SN , SP ) 2⊥

In the remainder we refer to d(SN , SP ) simply as d, which
we identify with the set SN of indices of the negative literals.
A minimal diagnosis is a diagnosis that is not subsumed
by another of lower fault cardinality (number of negative h-
literals, |d|).

Definition 7. A diagnostic report D = {d1, . . . , dk, . . . , dK}
is an ordered set of all K diagnosis candidates, for which

SD ∧ obs ∧ dk 2⊥

2.2 Computing Diagnoses

The Bayesian approach serves as the foundation for the deriva-
tion of diagnostic candidates, i.e.,

• deducing whether a candidate diagnosis dk is consistent
with the observations, and

• the posterior probability Pr(dk) of that candidate being
the actual diagnosis.

With respect to (1), rather than computing Pr(dk) for all
possible candidates, just to find that most of them have
Pr(dk) = 0, search algorithms are typically used instead,
such as CDA* Williams and Ragno [2007], SAFARI Feldman
et al. [2008], or just a minimal hitting set (MHS) algorithm
when conflict sets are available, e.g. De Kleer and Williams
[1987], but the Bayesian probability framework remains the
basis. In this section we will briefly describe the contemporary
approach to the derivation of candidates and their posterior
probability. In the following, we assume weak fault models.

Consider a particular process, involving a set of components,
that either yields a nominal result or a failure. For instance, in
a logic circuit a process is the sub-circuit (cone) activity that
results in a particular primary output. In software a process is
the sequence of software component activity (e.g., statements)
that results in a particular return value. The result of a process
is either nominal (pass) or an error (fail).

Definition 8. Let Sf = {cj |cj involved in a failing process},
and let Sp = {cj|cj involved in a passing process}, denote the
fail set and pass set, respectively.

Approaches for fault diagnosis that assume persistent, weak
fault models often generate candidates based on fail sets (aka
conflict sets), essentially using an MHS algorithm to derive
minimal candidates. Recent approaches that allow intermit-
tency also take into account pass sets. A fail set indicts compo-
nents, whereas a pass set exonerates components. The extent
of indictment or exoneration is computed using Bayes’ rule.
In the following we assume that a number of pass and fail
sets have been collected, either by static modeling (e.g., logic
circuits, where each primary output yields a pass or fail set) or
by dynamic profiling (e.g., software, where each run yields a
pass or fail set, both known as a spectrumAbreu et al. [2007]).



Definition 9. Let N denote the number of passing and failing
processes. Let Nf and Np, Nf + Np = N , denote the number
of fail and pass sets, respectively. Let A denote the N ×
M activity matrix of the system, where aij denotes whether
component j was involved in process i (aij = 1) or not
(aij = 0). Let e denote the error vector, where ei signifies
whether process i has passed (ei = 0) or failed (ei = 1).

The observations (A, e) are input to the Bayesian probability
update process.

Ranking Diagnoses Let Pr(j) = pj denote the prior prob-
ability that a component cj is at fault. Assuming components
fail independently the prior probability of a candidate dk is
given by

Pr(dk) =
∏

j∈SN

Pr({j}) ·
∏

j∈SP

(1 − Pr({j}))

For each observation obsi = (Ai∗, ei) the posterior prob-
abilities are updated according to Bayes rule (naive Bayes
classifying)

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
· Pr(dk)

The denominator Pr(obsi) is a normalizing term that is iden-
tical for all dk and thus needs not be computed directly.
Pr(obsi|dk) is defined as

Pr(obsi|dk) =

{

0 if obsi ∧ dk |=⊥
1 if dk → obsi

ε if dk → {obs1, . . . , obsi, . . . , obsN}

As mentioned earlier, rather than updating each candidate
only candidates derived from an MHS algorithm are updated
implying that the 0-clause need not be considered.

Many policies exist for ε De Kleer [2006]. Three policies

can be distinguished. The first policy, denoted ε(0) equals the
classical MBD policy for persistent, weak faults, and is defined
as follows

ε(0) =











EP

EP + EF

if ei = 0

EF

EP + EF

if ei = 1
(1)

where EP = 2M and EF = (2|dk| − 1) · 2M−|dk| are the
number of passed and failed observations that can be explained
by diagnosis dk, respectively. A disadvantage of this classical
policy is that pass sets, apart from making single faults more
probable than multiple faults, do not help much in pinpointing
the faults, in particular for weak fault models which do not
rule out any candidates (the 2M term in Eq. 1). In addition,
there is no way to distinguish between diagnoses with the
same cardinality, because the terms are merely a function of
the cardinality of the diagnosis candidate.

The next two, intermittent policies account for the fact that
components of pass sets should to some extent be exoner-
ated. In the following we distinguish between two policies,

ε(1) De Kleer [2007] and ε(2) Abreu et al. [2008a] which are
defined as

ε(1) =

{

g(dk) if ei = 0
1− g(dk) if ei = 1

ε(2) =

{

g(dk)m if ei = 0
1− g(dk)m if ei = 1

where m =
∏

j∈dk
[aij = 1] is the number of faulty compo-

nents according to dk involved in process i. Note that a term
g(dk) is used rather than the real individual component inter-
mittency parameters gj . As mentioned earlier, this is due to the
fact that obtaining gj from pass and fail sets where multiple
intermittent failures are involved was far from trivial. Instead,
an “effective” intermittency parameter g(dk) is estimated for
the candidate dk by counting how many times components of
dk are involved in pass and fail sets. In both strategies g(dk) is
approximated by

g(dk) =

∑

i=1..N

[(
∨

j∈dk

aij = 1) ∧ ei = 0]

∑

i=1..N

[
∨

j∈dk

aij = 1]

where [·] is Iverson’s operator Iverson [1962] ([true] = 1],
[false] = 0]).

Policy ε(2) is a variant of ε(1), which approximates the prob-
ability

∏

j∈dk
gj that all m components in dk exhibit good

behavior by g(dk)m assuming that all components of dk have
equal g values. This takes into account the fact that the fail-
ure probability changes when multiple intermittent faults are
involved.

3. BARINEL APPROACH

In this section we present our approach to compute the gj and
the associated, posterior candidate probabilities Pr(dk) given
a set of observations (A, e). In our approach we

• determine the real gj instead of g(dk), and
• apply the gj in an improved epsilon policy to compute

Pr(dk).

The key idea underlying our approach is that for each candi-
date dk we compute the gj for the candidate’s faulty compo-
nents that maximizes the probability Pr(e|dk) of the observa-
tions e occurring, conditioned on that candidate dk (maximum
likelihood estimation for naive Bayes classifier dk). For a
given process i, in terms of gj the epsilon policy is given by

ε =















∏

j∈dk∧aij=1

gj if ei = 0

1−
∏

j∈dk∧aij=1

gj if ei = 1

Thus, gj is solved by maximizing Pr(e|dk) under the above
epsilon policy, according to

G = arg max
G

Pr(e|dk)

where G = {gj|j ∈ dk}. This approach implies that for a
particular candidate dk the optimum gj values may differ with
those for another candidate d′k for the same components.

Generalizing over persistent and intermittent faults, with each
candidate dk each component cj is associated with a com-
puted gj value (which from now on we will denote hj for
health) which ranges from 0 (persistently failing) to 1 (healthy,
i.e., faulty without any failure). Consequently, each candi-
date diagnosis need only specify the set of component health
states hj , which represents a real-valued generalization over
the classical binary “normal/abnormal” entries. For example,
for an M = 4 component system our framework might



yield the double and triple-fault candidates {0.33, 1, 1, 0}, and
{0.5, 0.66, 1, 0}, respectively, each of which has gj that opti-
mally explain the observations e, but differ for the same j (e.g.,
0.33 vs. 0.5).

Our approach, of which the implementation is coined BARINEL,
is described in Algorithm 1 and comprises three main phases.
In the first phase (line 2) a list of candidates D is computed
from (A, e) using a low-cost, heuristic MHS algorithm called
STACCATO that returns an MHS of limited size (typically, 100
multiple-fault candidates), yet capturing all significant proba-
bility mass van Gemund et al. [2008].

In the second phase dk is computed for each candidate in D
(lines 3 to 14). First, GENERATEPR derives for every candi-
date dk the probability Pr(e|dk) for the current set of observa-
tions e. As an example, suppose the following measurements
(ignoring healthy components):

c1 c2 e Pr(ei|{1, 2})
1 0 1 1− g1

1 1 1 1− g1 · g2

0 1 0 g2

1 0 0 g1

As the four observations are independent, the probability of
obtaining e given dk = {1, 2} equals

Pr(e|dk) = g1 · g2 · (1− g1) · (1− g1 · g2)

Subsequently, all gj are computed such that they maximize
Pr(e|dk). To solve the maximization problem we apply a sim-
ple gradient ascent procedure Avriel [2003] (bounded within
the domain 0 < gj < 1).

In the third and final phase, the diagnoses are ranked according
to Pr(dk|(A, e)), which is computed by EVALUATE according
to the usual, posterior update

Pr(dk|(A, e)) =
Pr(e|dk)

Pr(obs)
· Pr(dk)

where Pr(dk) is the prior probability that dk is correct, Pr(obs)
is a normalization factor, and Pr(e|dk) is the probability that e
is observed assuming dk correct.

In the following we illustrate that for single-fault candidates,
the maximum likelihood estimator for g1 equals the health
state h1 =

∑

i ei/N , which is the intuitively correct way
to estimate g1 (and has also been the basis for the previous
approximation of g(dk) shown in Section 2). Consider the
following (A, e) (only showing columns of c1 rows where c1

is hit), e, and the probability of that occurring (Pr):

c1 e Pr(ei|dk)
1 0 g1

1 0 g1

1 1 1− g1

1 0 g1

where g1 is the true intermittency parameter (g1 = 3
4 ).

Averaging e yields the estimate h1 = 3
4 . To prove this is a

perfect estimate, we show that h1 maximizes the probability of
this particular e (or any permutation with 1 fail and 3 passes)
to occur. As Pr(e|{1}) is given by Pr(e|{1}) = g3

1 · (1 −
g1), the value of g1 that maximizes Pr(e|{1}) is indeed 3

4 .

Consequently, the estimate for g1 is h1 = 3
4 .

Proof Let h1 = n10(1)/(n10(1) + n11(1)). denote our intu-
itive estimation of g1. Let N ′ = n10(1) + n11(1) denote the

Algorithm 1 Diagnostic Algorithm: BARINEL

Inputs: Activity matrix A, error vector e,
Output: Diagnostic Report D

1 γ ← ǫ
2 D ← STACCATO((A, e)) ⊲ Compute MHS
3 ∀dk∈D Pr[dk]← 0
4 for all dk ∈ D do
5 expr← GENERATEPR((A, e), dk)
6 i← 0
7 while Pr[dk]i−1 − ξ ≤ Pr[dk]i ≤ Pr[dk]i−1 + ξ do
8 i← i + 1
9 for all j ∈ dk do

10 gj ← gj + γ · ∇expr(gj)
11 end for
12 Pr[dk]i ← EVALUATE(expr, ∀j∈dk

gj)
13 end while
14 end for
15 return SORT(D, Pr)

number of runs in which c1 is involved. Thus n10 = N ′ · g1

and n11 = N ′ · (1− g1), respectively. Consequently, Pr(e|dk)
is given by

Pr(e|dk) = hN ′·g1

1 · (1 − h1)
N ′·(1−g1)

Maximizing Pr(e|{1}) implies maximizing hg1

1 · (1−h1)
1−g1

as N ′ is independent of h1. The value h1 that maximizes this
expression is the one for which its derivative to h1 equals zero.
Consequently,

h1 ·g
h1−1
1 ·(1−g1)

1−h1−hg1

1 ·(1−h1) ·(1−g1)
(1−h1−1) = 0

which reduces to

h1 · (1− g1) = g1 · (1− h1)

yielding h1 = g1. 2

Finally, to illustrate the benefits of our approach, consider
the program spectra in Figure 1 (c1 and c2 faulty, ‘2’ means
that the component was actually responsible for the overall
failure). MHS computation yields

D = {{1, 2}, {2, 5}, {1, 5}, {4, 5}}

. As mentioned in the previous section, ε(0) does not distin-
guish between candidates with the same cardinality. Hence, as
they rank with the same probability, all candidates would have

to be inspected. This also holds for ε(1) since ∀dk∈D g(dk) =
Np

Np+Nf
= 1

6 . ε(2) distinguishes between the probabilities of

candidates with same cardinality, but it ranks {2, 5} at the first
place. BARINEL yields better results due to a better estimation
of the individual gs, ranking the true fault {1, 2} at the first
position.

c1 c2 c3 c4 c5 e
2 1 0 1 0 1
0 2 0 0 1 1
2 0 0 0 1 1
1 2 0 0 1 1
0 2 0 0 1 1
1 0 0 1 1 0

Fig. 1. Observation-matrix example

As the formulae that need to be maximized are simple and
bounded in the [0, 1] domain, the time/space complexity of our
approach is identical to the other reasoning policies presented
in Section 2 modulo a small, constant factor on account of the



gradient ascent procedure, which exhibits rapid convergence
for all M and C (see Section 5).

4. THEORETICAL EVALUATION

In order to assess the performance improvement of our frame-
work we generate synthetic observations based on sample
(A, e) generated for various values of N , M , and number
of injected faults C (cardinality). Component activity aij is
sampled from a Bernoulli distribution with parameter r, i.e.,
the probability a component is involved in a row of A equals
r. For the C faulty components cj (without loss of generality
we select the first C components) we also set gj . Thus the
probability of a component being involved and generating a
failure equals r · (1 − g). A row i in A generates an error
(ei = 1) if at least 1 of the C components generates a fail-
ure (or-model). Measurements for a specific (N, M, C, r, g)
scenario are averaged over 1, 000 sample matrices, yielding a
coefficient of variance of approximately 0.02.

We compare the accuracy of our improved Bayesian frame-
work with the classical framework in terms of a diagnostic
performance metric W , that denotes the excess work incurred
finding the actual components at fault. The metric is an im-
provement on metrics typically found in software debugging
which measure the debugging effort associated with a par-
ticular diagnostic method Abreu et al. [2007], Renieris and
Reiss [2003]. For instance, consider a 4-component program
with a unique diagnosis d1 = {1, 2, 4} with an associated
h1 = {0.33, 0.5, 1, 0.25}, where c1, c2 are actually faulty. The
first component to be verified / replaced is the non-faulty c4,
as its health is the lowest. Consequently, W is increased with
1
4 to reflect that it was inspected in vain.

The graphs in Figure 2 plot W versus N for M = 20, r = 0.6
(the trends for other M and r values are essentially the same,
r = 0.6 is typical for the Siemens suite), and different values
for C and g. The plots show that W for N = 1 is similar
to r, which corresponds to the fact that there are on average
(M −C) · r components which would have to be inspected in
vain. For sufficiently large N all policies produce an optimal
diagnosis, as the probability that healthy diagnosis candidates
are still within the hitting set approaches zero.

For small gj W converges more quickly than for large gj

as computations involving the faulty components are much
more prone to failure, while for large gj the faulty components
behave almost similarly, requiring more observations (larger
N ) to rank them higher. For increasing C more observations
are required (N ) before the faulty components are isolated.
This is due to the fact that failure behavior can be caused
by much more components, reducing the correlation between
failure and particular component involvement.

The plots confirm that ε(0) is the worst performing policy,
mainly due to the fact that it does not distinguish between
diagnosis with the same fault cardinality. Only for C = 1 the

ε(2) and ε(1) policies have equal performance to BARINEL,
as for this trivial case the approximation for gj is equal.
For C ≥ 2 the plots confirm that BARINEL has superior
performance, demonstrating that an exact estimation of gj

is quite relevant. In particular, the other approaches steadily
deteriorate for increasing C.

5. EMPIRICAL EVALUATION

In this section we assess the diagnostic capabilities of our
approach for real programs. For this purpose, we use the well-
known Siemens set Do et al. [2005], which contains 132 faulty
versions (lines of code M - components in this context -
vary between 174 and 549) of 7 C programs with extensive
test suites (between 1, 052 and 5, 542 test cases). Table 1
summarizes the characteristics of the Siemens set, where M
corresponds to the number of lines of code (components in
this context).

For our experiments, we have extended the Siemens set with
program versions where we can activate arbitrary combina-
tions of faults. For this purpose, we limit ourselves to a se-
lection of 102 out of the 132 faults, based on criteria such as
faults being attributable to a single line of code, to enable un-
ambiguous evaluation. The observation matrices are obtained
using the GNU gcov 2 profiling tool.

Using this extended Siemens set, the diagnostic quality -
quantified by W - of BARINEL is compared to the three ε
strategies outlined in Section 2.2. Table 2 presents a summary
of the diagnostic quality of the different techniques.

Similar to Section 4, we aimed at C = 5 for the multiple
fault-cases, but for print tokens insufficient faults are
available. All measurements except for the four-fault version
of print tokens are averages over 100 versions, or over
the maximum number of combinations available, where we
verified that all faults are active in at least one failed run.

In agreement with in the previous section, the results for soft-
ware systems confirm that BARINEL outperforms the other
approaches, especially considering the fact that the vari-
ance of W is higher (coefficient of variance up to 0.5 for
schedule2) than in the synthetic case (1,000 sample ma-
trices versus up to 100 matrices in the Siemens case). Only
in 4 out of 21 cases, BARINEL is not on top. Apart from
the obvious sampling noise, just mentioned, this is due to
particular properties of the programs. For schedule2 with

C = 2 and C = 5, ε(0) is better due to the fact that almost all
failing runs involve all faulty components (highly correlated
occurrence). Hence, the program effectively has a single fault

spreading over multiple lines, which favors ε(0) since it ranks
candidates with cardinality one first. For tcas with C = 2
and C = 5, ε(2) marginally outperforms BARINEL (by less
than 0.5%) which we attribute to the fact that the program is
almost branch-free and small (M = 174) combined with the
sampling noise (σW of 5% for tcas).

In these experiments the average time cost of BARINEL is
2.8ms/obs, the differencewith the othermethods (0.2ms/obs)
being due to the (unoptimized) gradient ascent procedure.

6. RELATEDWORK

As mentioned earlier, in many model-based diagnosis ap-
proaches (e.g., GDEDeKleer andWilliams [1987]GDE+ Struss
and Dressler [1989], CDA* Williams and Ragno [2007], SA-
FARI Feldman et al. [2008]) faults are modeled to be per-
sistent. Consequently, they may not work optimally when
components fail intermittently. Recently, a model for inter-
mittent behavior was introduced as an extension of the GDE

2 http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
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(c) C = 5 and g = 0.1

0%

10%

20%

30%

40%

50%

60%

 0  10  20  30  40  50  60  70  80  90 100

W

N

ε
(0)

ε
(1)

ε
(2)

  BARINEL

(d) C = 1 and g = 0.5
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(e) C = 2 and g = 0.5
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(f) C = 5 and g = 0.5
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(g) C = 1 and g = 0.9
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(h) C = 2 and g = 0.9
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(i) C = 5 and g = 0.9

Fig. 2. Wasted effort W [%] for several settings

Program Faulty Versions M N Description

print tokens 7 539 4,130 Lexical Analyzer

print tokens2 10 489 4,115 Lexical Analyzer

replace 32 507 5,542 Pattern Recognition

schedule 9 397 2,650 Priority Scheduler

schedule2 10 299 2,710 Priority Scheduler

tcas 41 174 1,608 Altitude Separation

tot info 23 398 1,052 Information Measure

Table 1. The Siemens benchmark set

print tokens print tokens2 replace schedule schedule2 tcas tot info

M / N 539 / 4,130 489 / 4,115 507 / 5,542 397 / 2,650 299 / 2,710 174 / 1,608 398 / 1,052

C 1 2 4 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5

#matrices 4 6 1 10 43 100 23 100 100 7 20 11 9 35 91 30 100 100 19 100 100

ε(0) 13.7 18.2 22.8 21.6 26.1 30.8 16.2 25.1 33.8 17.2 23.5 28.6 29.3 26.6 28.9 28.0 26.9 28.7 14.0 18.2 21.5

ε(1) 1.2 2.4 5.0 4.2 7.6 14.5 3.0 5.2 12.5 0.8 1.6 3.0 22.8 31.4 38.3 16.7 24.2 30.5 5.1 8.7 17.4

ε(2) 1.2 2.4 4.8 5.1 8.9 15.5 3.0 5.2 12.4 0.8 1.5 3.1 21.5 29.4 35.6 16.7 24.1 30.5 6.1 11.7 20.9

BARINEL 1.2 2.4 4.4 1.9 3.4 6.6 3.0 5.0 11.9 0.8 1.5 3.0 21.5 28.1 34.9 16.7 24.5 30.7 5.0 8.5 15.8

Table 2. Wasted effort W [%] on combinations of C = 1 . . . 5 faults for the Siemens set

framework De Kleer [2007], later extended by Abreu et al.
[2008a,b]. Our approach improves on the approximations
within these works, providing superior results. Furthermore,
unlike MBD approaches we only assume a very abstract com-
ponent model without even considering static system intercon-
nection topology.

In logic (model-based) reasoning approaches to automatic
software debugging, the model is typically generated from
the source code - see Mayer and Stumptner [2008] for an
evaluation of severalmodels. Themodel is generated bymeans
of static analysis techniques and is extremely complex. While
at this detailed level intermittency is not an issue, the level
of detail is such that the associated diagnostic complexity
prohibits application to programs larger than a few hundred

lines of code. As an indication, the largest program used
in Mayer and Stumptner [2008] is tcas (172 lines of code
only).

Our dynamic approach towards determining component in-
volvement and system failure (i.e., through (A, e)) is in-
spired by statistical approaches to automatic software debug-
ging, known as spectrum-based fault localization (each row
in A is a spectrum). Well-known examples include the Taran-
tula tool Jones and Harrold [2005], the Nearest Neighbor
technique Renieris and Reiss [2003], and the Ochiai coeffi-
cient Abreu et al. [2007]. These approaches rank components
in terms of the statistical similarity of component involvement
and observed program failure behavior. While attractive from
complexity-point of view, the approaches do not consider mul-



tiple faults. Furthermore, the similarity metric has little value
other than for ranking, in contrast to our probability metric.

7. CONCLUSIONS

Intermittent fault models can be crucial when modeling com-
plex systems. Estimating the probability that a faulty compo-
nent exhibits correct behavior is an important step for logic
reasoning approaches to properly handle intermittent failures.
In contrast to previous work, which merely approximates such
probabilities for particular diagnosis candidates, in this paper
we present a novel approach (BARINEL) to compute the exact
probabilities per component at a complexity that is only a
constant factor greater than previous approaches.

We have compared the diagnostic performance of BARINEL

with the classical (Bayesian) reasoning approach, as well as
with three intermittent reasoning approaches. Synthetic exper-
iments have confirmed that our approach consistently outper-
forms the previous approaches, demonstrating the significance
of maximum likelihood estimation over approximation. Ap-
plication to the Siemens benchmark also suggest BARINEL’s
superiority (17 wins out of 21 trials), while the exceptions are
caused by component clustering in combinationwith sampling
noise.

Future work includes (1) extending the activity matrix from
binary to integer, allowing us to exploit component involve-
ment frequency (e.g., program loops), (2) reducing the cost of
gradient ascent by introducing quadratic convergence, and (3)
applying BARINEL to intermittent hardware.
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