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ABSTRACT
Automatic techniques for helping developers in finding the
root causes of software failures are extremely important in
the development cycle of software. In this paper we study
a dynamic modeling approach to fault localization, which is
based on logic reasoning over program traces. We present a
simple diagnostic performance model to assess the influence
of various parameters, such as test set size and coverage,
on the debugging effort required to find the root causes of
software failures. The model shows that our approach un-
ambiguously reveals the actual faults, provided that suffi-
cient test cases are available. This optimal diagnostic per-
formance is confirmed by numerical experiments. Further-
more, we present preliminary experiments on the diagnostic
capabilities of this approach using the single-fault Siemens
benchmark set. We show that, for the Siemens set, the
approach presented in this paper yields a better diagnostic
ranking than other well-known techniques.

Categories and Subject Descriptors
D.2.5 [Software engineering]: testing and debugging—
debugging aids, diagnostics.

General Terms
Reliability, Experimentation, Measurement.

Keywords
Test data analysis, software fault diagnosis, program spec-
tra, model-based diagnosis.

1. INTRODUCTION
Automated diagnosis of software faults can drastically in-

crease debugging efficiency, improving reliability and time-
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to-market. In the model-based diagnosis (MBD) domain
there have been a number of approaches to automated de-
bugging [13, 17] that reason over a model of the program.
Given a compositional, behavioral model of the program
under analysis and a set of (real-world) input/output obser-
vations, MBD infers which components are likely to explain
the differences between the model and the real world. A
drawback of this approach is that model extraction is based
on static program analysis, which limits useful information
to compile-time, prohibiting the use of, e.g., (input) data
dependent conditional control flow information at run-time,
as well as run-time error detection.

Currently, we study a model-based diagnosis approach
that uses dynamic information to extract a model of pro-
gram behavior [1], which is inspired by spectrum-based soft-
ware localization (SFL) approaches [2, 10, 11, 12], which are
based on analyzing run-time traces of component activity.
As model-based diagnosis traditionally considers multiple
faults [4, 5, 6, 7], diagnoses of multiple-fault programs are
returned as fault sets. In contrast, SFL (and most of the
above automated debugging approaches), just return a sin-
gle list of all individual components, ranked in order of the
extent to which their behavior is statistically similar to the
occurrence of failures.

For example, consider a triple-fault (sub)program with
faulty components c1, c2, and c3. Whereas under ideal test-
ing circumstances our multiple-fault approach would sim-
ply produce one single multiple-fault diagnosis {{1, 2, 3}} (in
terms of component indices), an SFL approach would pro-
duce multiple single-fault diagnoses like {{1}, {2}, {3}, {4},
{5}, . . .}. Although the higher statistical similarity of the
first three items direct the debugging effort in the proper di-
rection, the former, multiple-fault diagnosis unambiguously
reveals (1) the actual triple fault, and (2) the fact that ex-
actly three developers can be deployed efficiently (debugging
parallelism [9]). Although in practice, such an “optimal”
multiple-fault diagnosis cannot always be deduced (due to
limited test set size and coverage) this potential optimality
is the major rationale behind our multiple-fault approach.

In this paper we provide a more detailed rationale for
the above “optimality” of our dynamic, spectrum-based,
multiple-fault approach. More specifically,

• We present a diagnostic performance model for a prob-
abilistic program model with parameters such as the
number of faults, components, and test runs.

• We show that for any program (model) there exists a
test set (spectra) that unambiguously reveals the ac-
tual fault (the “optimality” argument).
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Figure 1: Observation Matrix O

• We present initial experiments with our observation-
based approach using the Siemens set. As this bench-
mark only contains programs with single-faults, our
approach was only evaluated in this context.

The paper is organized as follows. In the next section
we present the concepts and definitions used in this paper.
Section 3 presents the basic principles of model-based diag-
nosis. In Section 4 our observation-based approach for fault
diagnosis is described. Our analytical performance model
is presented in Section 5. The diagnostic performance on
the Siemens set is evaluated in Section 6. We conclude and
discuss future work in Section 7.

2. CONCEPTS & DEFINITIONS
In this section we introduce basic concepts and definitions

used throughout this paper.
A program that is being diagnosed comprises a set of M

components (statements in the context of this paper), which
is executed using N test cases that either pass of fail. Pro-
gram (component) activity is recorded in terms of program
spectra, which are abstractions of program traces.This data
is collected at run-time, and typically consists of a number
of counters or flags for the different components of a pro-
gram. In the context of this paper we use the so-called hit
spectra, which indicate whether a component was involved
in a (test) run or not.

Both spectra and pass/fail information is input to tradi-
tional SFL, as well as to our reasoning technique. The com-
bined information is expressed in terms of the N × (M + 1)
observation matrix O (see Figure 1). An element oij is equal
to 1 if component j was observed to be involved in the execu-
tion of run i, and 0 otherwise. The element oi,m+1 is equal
to 1 if run i failed, and 0 if run i passed. The rightmost
column of O is also denoted as e (the error vector).

For j ≤ M , the row Oi∗ indicates whether a component
was executed in run i, whereas the column O∗j indicates in
which runs component j was involved. From O it is also
possible to derive the probability r that a component is ac-
tually executed in a run (testing code coverage), and the
probability g that a faulty component is actually exhibit-
ing good behavior (testing fault coverage, also known as the
“goodness” parameter g from MBD [4]).

Programs can have multiple faults, the number being de-
noted C (fault cardinality). A diagnosis candidate is ex-
pressed as the set of indices of those components whose
combined faulty behavior is logically consistent with the ob-
servations O and therefore must be considered as a collective
candidate. A diagnosis is the ordered set of diagnostic can-
didates D = {d1, . . . , dk}, all of which are an explanation
consistent with observed program behavior (O), ordered in
probability of being the program’s actual multiple fault con-
dition. An example multiple-fault diagnosis is the diagnosis
{d1} = {{1, 2, 3}} given in the Introduction. For brevity, we
will often refer to diagnostic candidates as diagnoses as well,

(y1,y2) 3inv(bool x) {

1. w = !x
2. y1 = !w;

3. y2 = w; //fault: negation missing
return (y1,y2); }

Figure 2: A defective function

as it is clear from the context whether we refer to a single
diagnosis candidate or to the entire diagnosis.

3. MODEL-BASED DIAGNOSIS
In this section we briefly describe the principles underlying

model-based diagnosis as far as relevant to this paper. The
purpose of diagnosis is to identify the system components
that are the root cause of observed failures. We consider a
system of M components, that applies some system function
y = F (x, h), where x and y represent observations of system
input and output, respectively, and where h = (h1, . . . , hm)
indicates the health state of the system. The health states
of a component are healthy and faulty. Diagnosis can be
understood as solving the inverse problem h = F

−1(x, y),
i.e., find the combinations of component health states that
explain the observed output for a given input. As the inter-
nals of the system are not observable, the diagnosis problem
differs from component testing problems.

To put MBD into perspective with respect to this pa-
per, consider the simple program function in Figure 2 which
is composed of three inverting statements (with a fault in
statement 3), resembling a binary circuit example often used
within the model-based community (e.g., see [14]). The
function takes one input (x = x), and returns two outputs
(y = (y1, y2)). A weak model of each inverter statement is
given by the logical proposition

h ⇒ y = ¬x

which only specifies nominal (required) behavior (a strong

model would also include a proposition specifying faulty be-
havior, which requires more modeling / specification effort).

Given the data dependency of the program, the intercon-
nection topology of the three inverting components is easily
obtained, yielding the (combined) program model

h1 ⇒ w = ¬x

h2 ⇒ y1 = ¬w

h3 ⇒ y2 = ¬w

3.1 Computing Diagnoses
Consider the observation obs = ((x, y1, y2) = (1, 1, 0)). It

follows

h1 ⇒ ¬w

h2 ⇒ ¬w

h3 ⇒ w

which equals

(¬h1 ∨ ¬w) ∧ (¬h2 ∨ ¬w) ∧ (¬h3 ∨ w)

Resolution yields

(¬h1 ∨ ¬h3) ∧ (¬h2 ∨ ¬h3)

also known as conflicts [6], meaning that (1) at least c1 or
c3 is at fault, and (2) at least c2 or c3 is at fault.



The minimal diagnoses are given by the minimal hitting

set [15], over the above conflicts, yielding

¬h3 ∨ (¬h1 ∧ ¬h2)

Thus either c3 is at fault (single fault), or c1 and c2 are
at fault (double fault), as well as a number of other double
faults (¬h2∨h3, ¬h1∨h3), and a triple fault (¬h1∨h1∨h3),
which, however, are subsumed by the previous two minimal

diagnoses due to the weak model.

3.2 Ranking Diagnoses
The fact that models do not always specify all possible

behavior (e.g., weak models) and that usually only limited
observations are available, typically leads to diagnoses with
many solutions. However, not all solutions are equally prob-
able, allowing them to be ranked in according to the prob-
ability of being the actual fault state.

For each diagnosis candidate the probability that it de-
scribes the actual system fault state depends on the extent to
which that candidate explains all observations. Let Pr({j})
denote the a priori probability that a component cj is at
fault. Although this value is typically component-specific,
in the above inverter example we assume Pr({j}) = p (where
we arbitrarily set p = 0.01). Assuming components fail in-
dependently, and in absence of any observation, the prior
probability a particular diagnosis dk is correct is given by
Pr(dk) = p|dk| · (1− p)M−|dk|. In order to compute the pos-
terior probability given an observation we use Bayes’ rule

Pr(dk|obs) =
Pr(obs|dk)

Pr(obs)
· Pr(dk)

The denominator Pr(obs) is a normalizing term that is iden-
tical for all dk and thus needs not be computed directly.
Pr(obs|dk) is defined as

Pr(obs|dk) =

8

<

:

0 if dk and obs are inconsistent
1 if dk logically follows from obs
ε if neither holds

In the context of model-based diagnosis, many policies exist
for ε [4]. In the above example, we define ε = 1/dx where
dx is the number of observations that can be explained by
diagnosis dk. Returning to the example of Section 3.1, as
there are 4 possible observations that can be explained by
{3}, and 8 that can be explained by {1, 2}, it follows (see [1])

Pr(obs|{3}) =
1

4
; Pr(obs|{1, 2}) =

1

8

Hence, the diagnostic report is as follows

dk Pr(dk)
{3} 0.995
{1, 2} 0.005

Thus the most probable cause of the observed failure is c3

being faulty. Consequently, debugging would start with the
actual faulty statement.

4. OBSERVATION-BASED MODELING
The above approach is dependent on the existence of a

model of the program. Even if a model was available for each
component (statement), only for the simplest of programs
(such as our example programs) a program model could be
extracted based on static dependence analysis. However, if

our program would involve conditional control flow, compi-
lation into a set of propositions is not straightforward, effec-
tively prohibiting such a model-based reasoning approach.
In this section we present our observation-based diagnosis
approach, where a model is generated from the observation
matrix. This model is used to compute the set of valid diag-
noses, which will then be ranked according to the likelihood
that they explain the failures.

4.1 Computing Diagnoses
Unlike the MBD approaches mentioned earlier, which stat-

ically deduce information from the program source, we use
O as the only, dynamic source of information, from which
both a model, and the input-output observations are de-
rived. Apart from the fact that we exploit dynamic informa-
tion, this approach also allows us to apply a generic compo-
nent model, avoiding the need for detailed functional mod-
eling, or relying, e.g., on invariants or pragmas for model
information.

Abstracting from particular component behavior, each com-
ponent cj is modeled by the weak model

hj ⇒ (xj ⇒ yj)

where hj models the health state of cj and xj , yj model its
input and output variable value correctness (i.e., we abstract
from actual variable values, in contrast to the earlier exam-
ple). This weak model implies that a healthy component cj

translates a correct input xj to a correct output yj . How-
ever, a faulty component or a faulty input may lead to an
erroneous output.

As each row in O specifies which components were in-
volved, we interpret a row as a “run-time” model of the
program as far as it was considered in that particular run.
Consequently, O is interpreted as a sequence of typically dif-
ferent models of the program, each with its particular input
and output correctness observation. The overall approach
can be viewed as a sequential diagnosis that incrementally
takes into account new program (and pass/fail) evidence
with increasing N . A single row On,∗ corresponds to the
(sub)model

hm ⇒ (xm ⇒ ym), for m ∈ Sn

xsi
= ysi−1 , for i ≥ 2

xs1 = true

ys′ = ¬en

where Sn = {m ∈ {1, . . . , M} | onm = 1} denotes the well-
ordered set of component indices involved in computation
n, si denotes the ith element in this ordering, (i.e., for i ≤
j, si ≤ sj), and s′ denotes its last element. The resulting
component chain logically reduces to

^

m∈Sn

hm ⇒ ¬en

For example, consider the row (M = 5)

c1 c2 c3 c4 c5 e
1 0 0 1 0 1

This corresponds to a model where components c1, c4 are
involved. As the order of the component invocation is not
given (and with respect to our above weak component model



is irrelevant), we derive the model

h1 ⇒ (x1 ⇒ y1)

h4 ⇒ (x4 ⇒ y4)

x4 = y1

x1 = true

y4 = ¬en

In this chain the first component c1 is assumed to have cor-
rect input (x1 = true, typical of a proper test), its output
feeds to the input of the next component c4 (x4 = y1), whose
output is measured in terms of en (y4 = ¬en). This chain
logically reduces to

h1 ∧ h4 ⇒ false

If this were a passing computation (h1 ∧ h4 ⇒ true) we
could not infer anything (apart from the exoneration when
it comes to probabilistically rank the diagnosis candidates
as explained in next section). However, as this run failed
this yields

¬h1 ∨ ¬h4

which, in fact, is a conflict. In summary, each failing run in
O generates a conflict

_

m∈Sn

¬hm

As in MBD, the conflicts are then subject to a hitting set
algorithm that generates the diagnostic candidates.

To illustrate this concept, again consider the example pro-
gram. For the purpose of the spectral approach we assume
the program to be run two times where the first time we
consider the correctness of y1 and the second time y2. This
yields the observation matrix O below

c1 c2 c3 e
1 1 0 0 obs1

1 0 1 1 obs2

From obs2, it follows

¬h1 ∨ ¬h3

which equals the first conflict from the earlier MBD ap-
proach, and the diagnosis trivially comprises the two sin-
gle faults ¬h1 and ¬h3. Compared to the MBD approach,
the second conflict (¬h2 ∨ ¬h3) is missing due to the fact
that no knowledge is available on component behavior and
component interconnection. Although this suggests that the
dynamic approach yields lower diagnostic performance, note
that the example program does not have conditional control
flow, and hence is ideally suitable to static analysis.

4.2 Ranking Diagnoses
The probability computation is generally based on the

MBD approach as explained in the previous section. Al-
though for each component the a priori fault probability
Pr({j}) is typically dependent on code complexity, design,
etc., we will simply assume Pr({j}) = p (p = 0.01 in the
context of this paper). Again, assuming components fail in-
dependently, the prior probability a particular diagnosis dk

is correct is given by Pr(dk) = p|dk| · (1 − p)M−|dk|. Similar
to the incremental compilation of conflicts per run we com-
pute the posterior probability for each candidate based on

the pass/fail observation obs for each sequential run using
Bayes’ rule as described in Section 3.2

Pr(dk|obs) =
Pr(obs|dk)

Pr(obs)
· Pr(dk)

where Pr(obs|dk) is defined as

Pr(obs|dk) =

8

<

:

0 if dk and obs are inconsistent
1 if dk logically follows from obs
ε if neither holds

As in software components it is quite usual that a faulty
component exhibits correct behavior, we use the “goodness”
parameter g introduced earlier in the ε strategy, according
to

ε =



g(dk)t if run passed
1 − g(dk)t if run failed

where t is the number of faulty components (according to dk

involved in the run (the rationale being that the more faulty
components are involved, the more likely it is that the run
will fail), and where g is estimated by [4]

g(dk) =

X

i=1..N

[(
_

j∈dk

oij = 1) ∧ ei = 0]

X

i=1..N

[
_

j∈dk

oij = 1]

where [·] is Iverson’s operator ([true] = 1], [false] = 0]). Note
that the hitting set computation is inherently considered by
the 0-clause in the probability update. As the hitting set
can be determined first, the probability computation need
only be performed on the diagnostic candidates contained
in this set.

Similar to the model-based diagnosis approach presented
in Section 3, c3 is also more probable to be the root cause of
the failure (Pr({3}) = 0.8) because it has only been executed
in a failed computation (whereas c1 was also involved in a
passed computation, which exonerates it from being at fault,
having Pr({1}) = 0.2).

5. ANALYTIC MODEL
In this section we derive a simple, approximate model to

assess the influence of various parameters on the wasted de-
bugging effort W . It is defined as the effort that is wasted
on inspecting a component that was not faulty. In our com-
putation of W we assume that after each inspection, the
test set is rerun, possibly leading to a new ranking (without
the most recently removed fault). For example, suppose a
triple-fault program (M = 6, and c1, c2, and c3 faulty) for
which the following diagnosis D = {{1, 2, 6}, {3, 4, 5}} is ob-
tained. This diagnosis induces a wasted effort of W = 33%
as c6 in the first candidate is inspected in vain, as well as,
on average two out of three inspections in the second candi-
date (in this example we assumed that rerunning the test set
didn’t change the second candidate). In contrast to related
work, we measure W instead of effort so that the perfor-
mance metric’s scale is independent of the number of faults
in the program.

The evaluated parameters are number of components M ,
number of test cases N , testing code coverage r, testing fault
coverage g, and fault cardinality C. Consider the example
O in Figure 3(a), with M = 5 components of which the first
C = 2 components are faulty. As a faulty component can
still produce correct behavior which does not not cause a
run to fail, we use an extended encoding where ‘1’ denotes



a component that is involved, and ‘2’ denotes a (faulty)
component whose involvement actually produced a failure
(and consequently a failing run).

c1 c2 c3 c4 c5 e

1 0 1 0 1 0
0 2 1 0 0 1
0 2 1 1 0 1
1 1 1 1 0 0
2 1 0 1 0 1

(a) Example O

c1 c2 c3 c4 c5 e

0 2 1 0 0 1
0 2 1 1 0 1
2 1 0 1 0 1

(b) O’s failed runs only

Figure 3: Observation Matrix Example

In the following we focus on the hitting set since its con-
stituents are primarily responsible for the asymptotic behav-
ior of W . Although their individual ranking is influenced by
component activity in passed runs, the hitting set itself is
exclusively determined by the failing runs. Thus, we con-
sider the sub-matrix shown in Figure 3(b).

From Figure 3(b) it can be seen that the first 2 columns
together form a hitting set of cardinality 2 (which corre-
sponds to our choice C = 2). This can be seen by the fact
that in each row there is at least one set member involved,
i.e., there is a so-called “chain” of c1 and/or c2 involvement
that is “unbroken” from top row to bottom row.

While this chain exists by definition (given the fact that
both are faulty there is always at least one of them involved
in every failed run), other chains may also exist, and may
cause W to increase. This occurs when those chains per-
tain to diagnostic candidates of equal or lower cardinality
(B) than C. Generally, two types of chain can be distin-
guished: (1) chains (of cardinality B < C) within the faulty
components set, called internal chains, and (2) chains (of
cardinality B ≤ C) completely outside the faulty compo-
nents set, called external chains. In the above example after
N = 2 (so considering only the first two failed runs), there
is still one internal chain (corresponding to single fault c2),
and two external chains (corresponding to single fault {3},
and double fault {3, 4}). As their probability will be higher
(due to the a priori probability computation) they will head
the ranking. With respect to the internal fault this does not
significantly influence W since this indicates a true faulty
component (the real double fault {1, 2} being subsumed by
{2}). Consequently, there is no wasted debugging effort.
With respect to {3} however, this fault will induce wasted
effort. After N = 3 both single faults has disappeared (both
chain of ‘1’s have been broken during the third failing run),
while the double fault c3, c4 is still present. From the above
example it follows that (1) W is primarily impacted by exter-
nal chains, and (2) the probability of a B cardinality chain
still “surviving” decreases with the number of failing runs.
The latter is the reason why in the limit for N → ∞ all ex-
ternal (and internal) chains will have disappeared, exposing
the true fault as only diagnosis.

5.1 Number of Failing Runs
As the number of failing runs is key to the behavior of W ,

in the following we first compute the fraction of failed runs f
out of the total of N runs, given r and g. Consider C faulty
components. Let f denote the probability of a run failing.
A run passes when none of the C components induces a fail-
ure, i.e., does not generate a ‘2’ in the matrix. Since the
probability of the latter equals 1− r · (1− g) and generating
a ‘2’ requires (1) being involved (probability r) and (2) pro-
ducing a failure (probability (1 − g)), the probability of not

generating a ‘2’ in the matrix equals (1− r · (1−g)). Conse-
quently, the probability a run passes equals (1−r ·(1−g))C ,
yielding

f = 1 − (1 − r · (1 − g))C

This implies that for high g (and/or low r) a very large
number of runs N is required to generate a sufficient number
NF = f · N of failing runs in order to eliminate competing
chains of equal of lower cardinality B. As r also affects the
number of external chains which, however, is not affected by
g, the effect of g can be seen orthogonal to r in that it only
impacts the number of failed runs through f . Consequently,
g and N are related in that a high g is compensated by a,
possible huge, increase in N . In the sequel, we therefore
only focus on the effect of r.

5.2 Behavior for Small Number of Runs
While for large N the determination of W depends on the

probability that competing chains will have terminated, for
small N a more simple derivation can be made. Consider
the case of a single failing run (NF = f · N = 1). From the
first (failing) row (k = 1) in the above example (Figure 3(b))
it can be seen that there are generally r · (M − C) external
single-fault (B = 1) chains (c3 and c5) that induce wasted
effort. As W denotes the ratio of wasted effort it follows

W =
r · (M − C)

M
(1)

which for large M approaches r. This is confirmed by the
experiments discussed later.

After the second failed run (k = 2) the probability a B = 1
chain survives two failing runs equals r2 (i.e., the probability
of two ‘1’s for a particular component). Consequently, the
number of B = 1 chains equals r2 · (M − C), which, in
general, decreases negative-exponentially with the number
of (failing) runs (f · N). For B = 2 the situation is less
restrictive as any combination of ‘1’s of the first and second
row qualifies as a double-fault chain. As on average there are

M ′ = br ·(M−C)c ‘1’s per row there are
`

M′

2

´

double-faults.
After the third failing run (k = 3) the number of surviv-

ing B = 1 chains equals r3 · (M − C), whereas the num-

ber of triple faults equals
`

M′

3

´

. As for sufficiently large M
the higher-cardinality combinations outnumber the lower-
cardinality combinations, W is dominated by the combina-
tions that have the same cardinality as the fault cardinality
C. Consequently, assuming NF ≤ C it follows that the num-
ber of C-cardinality chains that compete with the actual C-

cardinality diagnosis is approximated by
`

M′

C

´

. However, if
there are more combinations than M−C these combinations
will overlap in terms of component indices. As W does not
measure wasted effort on a component that was already pre-
viously inspected (and subsequently removed from the next
diagnosis), the average number of “effective” C-cardinality
chains will never exceed M

C
(as there are C indices per candi-

date). Hence, the number of competing C-cardinality chains

is approximated by min( M
C

,
`

M′

C

´

).

5.3 Behavior for Large Number of Runs
For large NF the trend of W can also be approximated

from the probability that competing chains will still have
survived after NF runs, which we derive as follows. Consider
a B-cardinality external chain. At each row there is a proba-
bility that this chain does not survive. Similar to the deriva-



tion of f we consider the probability that all B components
involved in the chain have a ’0’ entry, which would termi-
nate that particular chain. This probability equals (1−r)B .
Hence, the probability that a B-cardinality chain does not
break per run equals 1 − (1 − r)B. Consequently, the prob-
ability that a chain survives NF failing runs equals

(1 − (1 − r)B)NF

Similar to the derivation for small NF , we only consider C-
cardinality chains. The largest number of competing chains

at the outset equals
`

M′

C

´

. As there always exists an NF for

which this number is less than M
C

(in the asymptotic case we
consider only a few chains) the number of competing chains
after NF runs is given by

(1 − (1 − r)C)NF ·

 

M ′

C

!

Consequently, W is approximated by

W ≈
(1 − (1 − r)C)NF ·

`

M′

C

´

M
(2)

We observe a negative-exponential (geometric) trend with
NF (N) while C postpones that decay to larger NF (N) as
the term 1 − (1 − r)C approaches unity for large C.

In the following we asymptotically approximate the num-
ber of failing test runs NF needed for an optimal diagnosis
(i.e., W approaches 0). Considering Eq. (2) a single diagno-
sis is approximately reached for

(1 − (1 − r)C)NF ·

 

M ′

C

!

= W · M

which can be modeled as (1 − (1 − r)C)NF = K. It fol-
lows NF = − log K/ log 1 − (1 − r)C . Since for sufficiently
large C the term 1 − (1 − r)C approaches unity, and since
log 1 − ε ≈ −ε it follows that NF ∼ log K/(1 − r)C . As
(1− r) < 1 it follows NF ∼ log K · ((1− r)−1)C of which the

second term increases exponentially with C. Since K =
`

M′

C

´

for large M this term also increases exponentially with C.
However, as the term is included in a logarithm, the effect
of this term is less than the previous. In the next section we
numerically verify the exponential trend of N .

5.4 Experimental Validation
In this section we experimentally validate the predictions

of the model just outlined. For that purpose, an observation
matrix generator was implemented, which takes into account
the following parameters: N , r, g, and C.

The graphs in Figure 4 plot W versus N , for C = 1, C = 2
and C = 5, respectively. Each measurement represents an
average over 1,000 sample matrices with M = 20 (see [1] for
plots with other M, r, and g values). The plots show that
W for N = 1 is similar to r as predicted in Eq. (1), while
for sufficiently large N all techniques produce an optimal
diagnosis. Besides, from the plots we verify that the higher
C the more runs N are needed to attain optimal diagnostic
performance. As an example, for g = 0.1, r = 0.4, and C =
1, 10 runs would be enough for a perfect diagnosis, whereas
for C = 5, 250 runs would be needed. For small g almost
each run that involves the faulty component yields a failure
(f ≈ 1), already producing near-perfect diagnoses for only
small N . For high g the transition between the small-NF
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(c) g = 0.9 and r = 0.6

0%

20%

40%

60%

80%

100%

 0  10  20  30  40  50  60  70  80  90  100

W
 (

%
)

N

C = 1
C = 2
C = 5

(d) g = 0.9 and r = 0.4

Figure 4: W vs. N

behavior and large-NF behavior is visible. As the negative-
exponential trend with NF is clear from the analytical model
we have determined the value of N (NF ) for which our C-
cardinality fault remains as the only candidate, i.e., a perfect
multiple-fault diagnosis. Table 1 shows the values of N (NF )
where optimality is reached for different values of C and
g. Apart from a scaling due to g one can clearly see the
exponential impact of C on NF and N .

g 0.1 0.9

C 1 2 3 4 5 1 2 3 4 5

N∗ 13 31 90 120 250 200 300 500 1000 1700
NF 5 19 71 111 245 12 36 84 219 459

Table 1: Optimal N∗ for perfect diagnosis (r = 0.6)

6. EXPERIMENTAL EVALUATION
In this section we report our first experiments with the

Siemens set, which only contains programs with single faults.

6.1 Experimental Setup
To study the diagnostic performance of the observation-

based modeling approach, we use a set of programs widely
used in the field, called the Siemens set [8]. It is composed
of seven different programs. Every single program has a
correct version and a set of faulty versions of the same pro-
gram. Each faulty version contains exactly one fault. Each
program also has a set of inputs that ensures full code cover-
age. Due to space limitations we do not provide the details
of the programs (for detailed information see [8]). In total
the Siemens set provides 132 programs. However, as no fail-
ures are observed in two of these programs, namely version 9
of schedule2 and version 32 of replace, they are discarded.
Besides, we also discard versions 4 and 6 of print tokens

because the faults in this versions are global variables in an
header file and the profiling tool (GNU gcov) used in our ex-
periments does not log the execution of these statements.
In summary, we discarded 4 versions out of 132 provided by
the suite, using 128 versions in our experiments.

For compatibility with previous work in fault localization,
we use the effort/score metric [2, 12] which is the percentage
of statements that need to be inspected to find the fault -
in other words, the rank position of the faulty statement
divided by the total number of statements. Note that some
techniques such as in [12] do not rank all statements in the
code, and their rankings/effort are therefore based on the
program dependence graph (PDG) of the program [16].



6.2 Experimental Results
Table 2 presents the cumulative percentage of faults found

when a certain debugging effort is spent. The results for
observation-based modeling (ObM) were obtained by lim-
iting the (hitting) set of valid diagnoses to single-fault ex-
planations. The values for Sober [12] (a similar technique
is presented in [11], which is not included in our compari-
son because Sober consistently outperforms it [12]), Taran-
tula [10], and Ochiai [2] were obtained by running them in
our own environment, those for Cause Transitions (CT) are,
however, directly cited from [3].

Clearly, the ObM approach consistently outperforms all
other techniques, requiring less effort to find more faults.
For example, the ObM approach was able to assist the pro-
grammer in finding the faulty location for 18% of the faulty
versions (i.e., roughly 23 versions) by examining less than
one percent of the source code. This represents an improve-
ment over Ochiai of about 4% (6 versions), 6% over Taran-
tula (8 versions), 10% over Sober and 13% over CT. If 10%
of the code would be inspected, ObM would lead to find
60% of the faults, whereas only 49% would be found with
Sober. Note that CT is always the worst performing tech-
nique. However, it relies only on two runs to explain the
failure, whereas our approach needs several failed runs to
compute a meaningful minimal hitting set.

Effort Tarantula Ochiai Sober CT ObM

< 1 12 14 8 5 18
< 10 46 52 49 26 60
< 20 60 65 65 38 71
< 30 72 78 72 51 81
< 40 79 80 72 53 83
< 50 80 83 81 60 93
< 60 90 96 84 63 99
< 70 96 99 85 71 100
< 80 98 100 90 75 100
< 90 100 100 92 82 100
≤ 100 100 100 100 100 100

Table 2: Cumulative percentage of faults found

Although initial experiments seem to suggest that the ap-
proach can be of added value to help developers pinpointing
the root causes of different failures (i.e., programs with mul-
tiple faults), we refrain from generalizing (and comparing
with other techniques) because more experimentation is re-
quired.

7. CONCLUSIONS AND FUTURE WORK
In this paper we studied a model-based diagnosis approach

which uses dynamic information, namely abstraction of pro-
gram traces, to generate a (dynamic, sub-) model of the
program under analysis. The model, along with the set of
traces for pass/fail executions is used to reason about the
observed failures. In contrast to most approaches to soft-
ware fault diagnosis, which present diagnosis candidates as
single explanations [2, 10, 12], our approach also contains
multiple fault explanations in the diagnostic ranking (typi-
cal of model-based approaches [13, 17]).

We have analytically and empirically demonstrated that
the observation-based approach will reveal the true faulty
state of the program as an unambiguous, multiple-fault di-
agnosis explanation for failures, given sufficient test cases
are provided. The analytical model also reasons about the
influence of several parameters on the diagnostic accuracy
of the approach. Studied parameters are number of faults,
components, and test runs.

Furthermore, we applied the approach to the widely-used
Siemens set of programs, which is a set containing programs

with single-faults. In this context, our approach clearly out-
performs several other well-known techniques.

Future work includes the following. As an intrinsic charac-
teristic of model-based diagnosis approaches, the one in this
paper generally finds multiple-fault diagnosis candidates as
possible solutions. Therefore, we plan to study the diag-
nostic performance of our approach in such context for real
programs, as well as the possibility of exploiting such infor-
mation to efficiently engage several developers to repair the
defect(s) in parallel. Furthermore, we plan to implement a
statistics-directed approach for reducing the time complex-
ity of the hitting set computation, allowing a fair (time)
comparison with other approaches. Finally, we intend to
study the impact of real program characteristics on our ap-
proach, such as test suite size and defect location/type.
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