
An Evaluation of Similarity Coefficients for Software Fault
Localization∗

Rui Abreu Peter Zoeteweij Arjan J.C. van Gemund
Software Technology Department

Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

P.O. Box 5031, NL-2600 GA Delft, The Netherlands
{r.f.abreu, p.zoeteweij, a.j.c.vangemund}@tudelft.nl

Abstract
Automated diagnosis of software faults can improve the ef-
ficiency of the debugging process, and is therefore an im-
portant technique for the development of dependable soft-
ware. In this paper we study different similarity coeffi-
cients that are applied in the context of a program spectral
approach to software fault localization (single program-
ming mistakes). The coefficients studied are taken from the
systems diagnosis / automated debugging tools Pinpoint,
Tarantula, and AMPLE, and from the molecular biology
domain (the Ochiai coefficient). We evaluate these coeffi-
cients on the Siemens Suite of benchmark faults, and as-
sess their effectiveness in terms of the position of the actual
fault in the probability ranking of fault candidates produced
by the diagnosis technique. Our experiments indicate that
the Ochiai coefficient consistently outperforms the coeffi-
cients currently used by the tools mentioned. In terms of the
amount of code that needs to be inspected, this coefficient
improves 5% on average over the next best technique, and
up to 30% in specific cases.

Keywords: Software reliability, automated debugging, soft-
ware fault diagnosis, fault localization, program spectra.

1 Introduction
Software reliability can generally be improved through ex-
tensive testing and debugging, but this is often in conflict
with market conditions: software cannot be tested exhaus-
tively, and of the bugs that are found, only those with
the highest impact on the user-perceived reliability can be

∗This work has been carried out as part of the TRADER project under
the responsibility of the Embedded Systems Institute. This project is par-
tially supported by the Netherlands Ministry of Economic Affairs under
the BSIK03021 program.

solved before the release. In this typical scenario, testing
reveals more bugs than can be solved, and debugging is the
bottleneck for improving reliability. Automated debugging
techniques can help to reduce this bottleneck. These tech-
niques give a diagnosis for errors that are detected during
the execution of a program, which can help programmers to
locate their root causes, and thus to reduce the effort spent
on manual debugging.

Diagnosis techniques, which include automated debug-
ging, can be classified as white box or black box, depend-
ing on the amount of knowledge that is required about the
system under study. An example of a white box technique
is model-based diagnosis (see, e.g., [6, 7]), where a diagno-
sis is obtained by logical inference from a formal model
of the system, combined with a set of run-time observa-
tions. While white box approaches to software diagnosis
exist (see, e.g., [14, 17, 18, 19]), software modeling is ex-
tremely complex. Hence, most software diagnosis tech-
niques are black box. The subject of this paper is a specific
automated debugging technique, namely software fault lo-
calization through the analysis of program spectra. Because
this technique requires practically no information about the
system being diagnosed, it can be classified as a black box
diagnosis technique.

Program spectra can be seen as projections of traces of
software activity. Typically, this projection is much more
compact than a trace, which makes program spectra an
attractive technique in resource-constrained environments,
such as embedded systems. The technique studied in this
paper is based on analyzing the differences between pro-
gram spectra obtained for correct behavior of the software,
and program spectra obtained for faulty behavior of the soft-
ware. An essential part of this analysis is the computation
of a measure of similarity between different vectors in the
program spectra data and a vector that contains information

about the detected errors. Different application reports of
the technique are now emerging in the literature, but all use
different similarity measures.

In this paper we investigate the influence of the similar-
ity measure on the quality of the diagnosis. To this end we
apply the fault localization technique on a benchmark set of
software faults known as the Siemens Suite. We obtain mul-
tiple diagnoses for every fault in the suite, each of them for a
different similarity measure. These similarity measures are
taken from existing diagnosis tools in the areas of recovery
and automated debugging, and from the molecular biology
domain. A diagnosis for a particular measure of similarity
consists of a list of possible locations for the fault ranked
in order of similarity. Our evaluation is based on the posi-
tion of the (known) location of the fault in this ranking. In
particular, the contributions of the paper are the following.

• We recognize that several existing tools are implemen-
tations of the same technique: fault diagnosis through
the comparison of program spectra, which allows us to
compare the techniques.

• We identify a measure of similarity between the pro-
gram spectra that yields an average performance im-
provement of 5% under the specific conditions of our
experiments, in terms of the amount of code that must
be inspected. Improvements up to 30% are measured.

The remainder of the paper is organized as follows. In
Section 2 we introduce some basic concepts and terminol-
ogy, illustrate the fault localization technique, and review
related work. In Section 3 we introduce the similarity co-
efficients that we evaluate and compare. In Section 4 we
describe our experimental setup, which includes a descrip-
tion of the benchmark suite. The results of our experiments
are discussed in Section 5. We conclude in Section 6.

2 Preliminaries

In this section we introduce program spectra, and describe
how they are used for diagnosing software faults. We also
give an overview of related work in the automated debug-
ging area. First we introduce the necessary terminology.

2.1 Terminology

As defined in [2], we use the following terminology.

• A failure is an event that occurs when delivered service
deviates from correct service.

• An error is a system state that may cause a failure.

• A fault is the cause of an error in the system.

void RationalSort(int n, int *num, int *den)
{ /* block 1 */

int i,j,temp;

for (i=n-1; i>=0; i--) {
/* block 2 */
for (j=0; j<i; j++) {

/* block 3 */
if (RationalGT(num[j], den[j],

num[j+1], den[j+1])) {
/* block 4 */
temp = num[j];
num[j] = num[j+1];
num[j+1] = temp;

}
}

}
}

Figure 1. A faulty C function for sorting rational
numbers

In this paper we apply this terminology to simple computer
programs that transform an input file to an output file in a
single run. Specifically in this setting, faults are bugs in
the program code, and failures occur when the output for a
given input deviates from the specified output for that input.

To illustrate these concepts, consider the C function in
Figure 1. It is meant to sort, using the bubble sort algorithm,
a sequence of n rational numbers whose numerators and de-
nominators are stored in the parameters num and den, re-
spectively. There is a fault (bug) in the swapping code of
block 4: only the numerators of the rational numbers are
swapped while the denominators are left in their original
order. In this case, a failure occurs when RationalSort
changes the contents of its argument arrays in such a way
that the result is not a sorted version of the original. An er-
ror occurs after the code inside the conditional statement is
executed, while den[j] 6= den[j+1]. Such errors can
be latent: if we apply RationalSort to the sequence
〈 4
1 , 2

2 , 0
1 〉, an error occurs after the first two numerators are

swapped. However, this error is “canceled” by later swap-
ping actions, and the sequence ends up being sorted cor-
rectly. Note that faults do not automatically lead to errors,
not even latent ones: no error will occur if the sequence is
already sorted, or if all denominators are equal.

The purpose of diagnosis is to locate faults. Diagnosis
applied to computer programs is known as debugging. The
automated methods that we study here have wider applica-
bility, but in the context of this paper they fall in the cate-
gory of automated debugging techniques.

Error detection is a prerequisite for diagnosis. We must
know that something is wrong before we can try to locate
the fault. Failures constitute a rudimentary form of error
detection, but many errors remain latent and never lead to a

Figure 2. Block count spectrum

failure. An example of a technique that increases the num-
ber of errors that can be detected is array bounds checking.
Failure detection and array bounds checking are both ex-
amples of generic error detection mechanisms, that can be
applied without detailed knowledge of a program. Other ex-
amples of mechanisms in this category are the detection of
NULL pointer handling, malloc problems, and deadlock
detection in concurrent systems. Examples of program spe-
cific mechanisms are precondition and postcondition check-
ing, and the use of assertions.

2.2 Program Spectra
A program spectrum [16] is a collection of data that pro-
vides a specific view on the dynamic behavior of software.
Typically, this data is collected at run-time, and consist of a
number of counters of specific events. For example, block
count spectra count how often every block of code is ex-
ecuted during a run of a program. In this case, a block of
code is a C language statement, where we do not distinguish
between the individual statements of a compound statement,
but where we do distinguish between the cases of a switch
statement1. So in Figure 1, the three assignments inside the
body of the conditional statement constitute a single block.

To illustrate the concept of a program spectrum, suppose
that the function RationalSort of Figure 1 is called
from the following main function, to sort the sequence
〈 2
1 , 3

1 , 4
1 , 1

1 〉, which it happens to do correctly.

int main()
{ /* block 0 */

int num[] = { 2, 3, 4, 1 };
int den[] = { 1, 1, 1, 1 };

RationalSort(4, num, den);
return 0;

}

Running this program would result in the block count
spectrum represented by the histogram in Figure 2.
Blocks 0 and 1, the bodies of functions main and
RationalSort, are both executed once. Blocks 2 and 3,

1This is a slightly different notion than a basic block, which is a block
of code that has no branch.

the bodies of the two loops in RationalSort are exe-
cuted four and six times, respectively. To sort the array in
our example program we need to make three exchanges, and
block 4, the if branch of the conditional statement, is exe-
cuted three times. Block 5 has not been shown in Figure 1,
but it represents the body of the RationalGT function. It
is executed six times: once on every iteration of the inner
loop.

If we are only interested in whether a block is executed
or not, but not in the number of times it is executed, we can
use binary flags instead of counters, and block count spectra
revert to block hit spectra. Beside block count/hit spectra,
many other forms of program spectra are used in practice.
See [8] for an overview. In this paper we work with fine-
grained block hit spectra.

2.3 Fault Diagnosis
Program spectra can be used for fault diagnosis by com-
paring spectra for runs in which an error has been detected
(usually called failed runs), to spectra for runs in which no
error has been detected (usually called passed runs), and
analyzing the differences. Using block spectra, this may
identify those blocks that are executed primarily in failed
runs. These blocks are then also likely to contain the fault
that causes the error. As we already pointed out, some form
of error detection is needed to be able to make this classifi-
cation of spectra, and failure detection provides a rudimen-
tary form of error detection. We will now demonstrate the
approach using our RationalSort example.

Suppose we apply RationalSort to the two se-
quences S1 = 〈 1

4 , 1
3 , 1

2 , 1
1 〉 and S2 = 〈 3

1 , 2
2 , 4

3 , 1
4 〉. The for-

mer sequence is already sorted, and the program will pass,
but the latter sequence will result in a failure, which is a
clear indication that an error has occurred. The block hit
spectra for the two runs are as follows (’X’ denotes a hit).

block
input 0 1 2 3 4 5 error
S1 X X X X X
S2 X X X X X X X

The difference between the two block hit spectra (correctly)
identifies block 4 as the most likely location of the fault:
while all other blocks are executed in both runs, block 4
only occurs in the run where the error is detected.

Of course, this example is contrived in many ways: the
number of runs and blocks is small, no latent errors have
occurred, no routine in the program has multiple call sites,
etc. However, it serves to illustrate the basic principle. The
block hit spectra of the various runs constitute a binary ma-
trix, whose columns correspond to the blocks of the pro-
gram. A column vector identifies in which runs a block has
been activated. In some of the runs an error is detected.
This information constitutes another column vector, the er-

ror vector. This vector can be seen as a hypothetical block
of code that is responsible for all observed errors. Fault di-
agnosis essentially consists in identifying the block whose
column vector resembles the error vector most. This last
part, and particularly the measure, or coefficient, of similar-
ity used to compare column vectors to the error vector, is
the primary focus of this paper.

2.4 Related Work
The diagnosis approach described in Sections 2.2 and 2.3
has appeared in various guises in literature. Three systems
are of particular interest, because the similarity coefficient
that is used in the diagnosis is clearly described. They are
Pinpoint, Tarantula, and AMPLE.

Pinpoint [3] is a framework for root cause analysis on
the J2EE platform. It is developed in the context of the Re-
covery Oriented Computing project [15], and is targeted at
large, dynamic Internet services, such as web-mail services
and search engines. It combines the technique of the pre-
vious section with a specific form of error detection, based
on information coming from the J2EE framework, such as
caught exceptions, and errors visible to users, such as HTTP
errors. This makes the approach self-contained in the sense
that no external characterization of traces is needed.

The Tarantula system [12, 13] has been developed for
the C language, and applies the technique of the previous
section to statement hit spectra. Compared to block hit
spectra, the higher resolution of statement hit spectra may
give a more detailed diagnosis in presence of statements
that alter the flow of control inside a block, namely break,
continue, return, and goto. Tarantula comes with a
graphical user interface, that interprets the calculated value
for the similarity coefficient as a color index, used to visual-
ize the suspiciousness of program statements. Tarantula re-
lies on external error detection for the classification of runs
as passed or failed: whereas Pinpoint uses information from
the J2EE framework for this classification, this information
is input data for Tarantula. In other words, Tarantula imple-
ments only the diagnosis, and has to be complemented by
adding a method of error detection.

AMPLE (Analyzing Method Patterns to Locate Errors)
[5] is a system for identifying faulty classes in object-
oriented software. It collects hit spectra of method call
sequences, which are subsequences of a given length that
occur in a full trace of incoming or outgoing method calls,
received or issued by individual objects of a class. Each call
sequence is assigned a weight, which captures the extent to
which its occurrence or absence correlates with the detec-
tion of an error, i.e., it is a combined measure of similarity
and inverted similarity. These weights are averaged over all
call sequences of a class, leading to a class weight. Classes
with a high weight are most likely to contain the fault that
causes the detected error. Although the calculation of the

error
N blocks detection

M spectra

x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

. . .
...

xM1 xM2 . . . xMN

e1

e2

...
eM

s1 s2 . . . sN

Figure 3. The ingredients of fault diagnosis

sequence weights in AMPLE can be explained as an ap-
plication of the technique of Section 2.3, the diagnosis is
at class level, and the calculated coefficients are used only
to collect evidence about classes, not to identify suspicious
method call sequences.

Concluding, we can observe that three existing tools for
diagnosis and automated debugging rely on an analysis of
program spectra. Program spectra themselves were intro-
duced in [16], where hit spectra of intra-procedural paths
are analyzed to diagnose year 2000 problems. The distinc-
tion between count spectra and hit spectra is introduced in
[8], where several kinds of program spectra are evaluated in
the context of regression testing. As we already mentioned
in the introduction, in the context of computer programs,
fault localization based on the analysis of program spectra is
an automated debugging technique. An example of a differ-
ent (black box) technique in that category is Delta Debug-
ging [20], which compares the program states of a failing
and a passing run, and actively searches for failure-inducing
circumstances in the differences between these states.

3 Similarity Analysis
At the end of Section 2.3 we reduced the problem of fault
diagnosis based on block hit spectra to finding resemblances
between binary vectors: M different runs of the same soft-
ware, for example, on different inputs, yield M block hit
spectra. These spectra constitute the rows of an M ×N bi-
nary matrix, whose columns correspond to the N blocks of
the program. In some of the M runs an error is detected.
Other runs complete without an error. This information
yields another binary column vector, which can be thought
of as to correspond to a hypothetical block of code that is
responsible for all errors. For each block of the program, we
evaluate the similarity sj of its column vector with the col-
umn vector of error detection information. The block with
the highest similarity is most likely to contain the fault (see
Figure 3).

In the field of data clustering, similarity measures
for binary, nominally scaled data, such as the vectors
x1j , . . . , xMj and e1, . . . , eM that we want to compare, are
called similarity coefficients. Using the notation of [11], we

can express such similarity coefficients using four counters
of pairs of values that can occur on any position i in these
two vectors:

values:
counter xij ei

a11 1 1
a10 1 0
a01 0 1
a00 0 0

For example, a11 is the number of positions i in which the
j-th column vector and the error vector share an entry 1, i.e.,
the number of spectra in which block j was recorded to be
executed, and for which an error has been detected. These
four counters sum up to the number of spectra M .

In this paper we investigate the influence of the similar-
ity coefficient on the quality of the diagnosis by applying a
number of similarity coefficients known from the literature
on the same data, and comparing the resulting diagnoses.
We will evaluate the following similarity coefficients:

• Jaccard:
sj =

a11

a11 + a01 + a10
(1)

The Jaccard coefficient, which is well-known from the
field of data clustering (see, e.g., [11]), is used in the
Pinpoint framework [3].

• Tarantula:

sj =
a11

a11+a01
a11

a11+a01
+ a10

a10+a00

(2)

This coefficient is used in the Tarantula system [13,
12].

• AMPLE:

sj =| a11

a01 + a11
− a10

a00 + a10
| (3)

This coefficient is used by the AMPLE tool. In [5] it is
assumed that there is exactly one failing run, in which
case the denominator a01 + a11 equals 1.

• Ochiai:

sj =
a11√

(a11 + a01) ∗ (a11 + a10)
(4)

This coefficient is used in [4] for computing genetic
similarity in molecular biology.

In addition to the coefficient of Eq. (2), the Tarantula sys-
tem uses a second coefficient, which amounts to the max-
imum of the two fractions in the denominator of Eq. (2).
This second coefficient is interpreted as a brightness value
by its visualization system, but the experiments in [12] in-
dicate that the above coefficient can be studied in isolation.

For this reason, we have not taken the brightness coefficient
into account.

The AMPLE coefficient is used here outside its context.
It amounts to the relative difference between the number of
occurrences of a block in passed and failed runs, and hence
also takes absence of a block in failing runs into account.
This probably has little use without accumulating the cal-
culated values to a coarser-grained unit of diagnosis (cf.,
accumulating call sequence weights to class weights, see
Section 2.4), and therefore one should not project our re-
sults for this coefficient to the AMPLE tool.

Several other similarity coefficients are used in data clus-
tering (see [4] for a study in the context of molecular bi-
ology). Although all the coefficients presented in [4] were
used in our experiments, in this paper we have only included
the Ochiai coefficient, which gave the best results.

4 Experimental Setup
In this section we introduce the benchmark used in the ex-
periments and the technical details related to data acquisi-
tion. Finally we define quality of diagnosis as evaluation
metric.

4.1 Benchmark Set
Evaluating different similarity coefficient techniques re-
quires us to thoroughly test them. For this purpose we used
a set of test programs known as the Siemens suite [9]. The
Siemens suite is composed of seven programs. Every single
program has a correct version and a set of faulty versions
of the same program. Each faulty version contains exactly
one fault. However, the fault may span through multiple
statements and/or functions. Each program also has a set of
inputs. Those inputs were created with the intention to test
the full coverage of the programs. Table 1 provides more
information about the programs in the package (for more
detailed information refer to [9]). Although the Siemens
suite was not assembled with the purpose of testing fault di-
agnosis techniques, it is typically used by the research com-
munity as the set of programs to test their techniques.

In our experiments we were not able to use all the pro-
grams provided by the Siemens suite. Because we conduct
our experiments using block hit spectra, we can not use
programs which contain data-dependent faults, i.e., faults
that do not influence control flow. Versions 4 and 6 of
print tokens, version 38 of tcas, and version 10 of tot info
contain errors that are considered to be data dependent and
were therefore discarded. Version 9 of schedule2 and ver-
sion 32 of replace were not considered in our experiments
because no test case fails and therefore the existence of a
fault was never revealed. Furthermore, as we are compar-
ing ranking techniques, we decided to limit our experiment
to single site faults. Hence, versions 12, and 21 of replace,

Program Faulty Versions Blocks Test Cases Description
print tokens 7 110 4056 lexical analyzer

print tokens2 10 105 4071 lexical analyzer
replace 32 124 5542 pattern recognition

schedule 9 53 2650 priority scheduler
schedule2 10 60 2680 priority scheduler

tcas 41 20 1578 altitude separation
tot info 23 44 1054 information measure

Table 1. Description of the Siemens Suite

versions 10, 11, 15, and 40 of tcas, version 7 of schedule,
and version 1 of print tokens were also discarded because
the fault is extended to more than one site. In total, we
discarded 14 versions out of 132 versions provided by the
suite, using 118 versions in our experiments.

4.2 Data Acquisition
Collecting Spectra For obtaining block hit spectra we in-
strumented the source code of every single program in the
Siemens suite. A function call was automatically inserted
in the beginning of every block of code to log its execution.
To automatically instrument the programs, we use a tool
called Front [1]. Moreover, the programs were compiled on
a Linux based environment with gcc-3.2.

Error Detection As for each program the Siemens suite
includes a correct version, we use the output of the correct
version of each program as error detection reference. We
characterize a run as ‘failed’ if its output differs from the
corresponding output of the correct version, and as ‘passed’
otherwise. As we explained in Section 2.1, failure detec-
tion is a rudimentary form of error detection where a faulty
program may well go undetected. Using the notation from
Section 3, we define error detection accuracy for a given
faulty block as

qe =
a11

a11 + a10
(5)

With our strategy to detect failing and passing runs, we
cannot expect good error detection accuracy. On average
per program, in the Siemens set the error accuracy ranges
from 1.2% (schedule2) to 21.1% (tot info). This implies
that measured diagnostic quality will be limited due to this
low error detection accuracy.

4.3 Evaluation Metric
For the purpose of this discussion, we define quality of
the diagnosis as the position that the faulty block has in
the ranking. The notion behind this measure is how many
blocks we still need to inspect until we identify the faulty
block. If there are two blocks that rank with the same coef-
ficient, we use the worst ranking position for both of them.

More precisely, let d ∈ {1, . . . , N} be the index of
the block that we know to contain the fault. For all j ∈
{1, . . . , N}, let sj denote the similarity coefficient calcu-
lated for block j. Then the diagnostic quality is given by

qd = |{j|sj ≥ sd}| (6)

5 Experimental Results

This section presents results obtained by applying the coef-
ficients of similarity described in Section 3 to the data col-
lected by the execution of the benchmark programs. Under
the assumption that a high similarity to the error vector of
Section 3 indicates a high probability of a block containing
a fault, the calculated coefficients of similarity result in a
ranking of blocks, sorted by likelihood of causing the er-
ror. The intention of this experiment is to find which of the
coefficient of similarity leads to the better diagnosis.

In Table 2 we show the average ranking position of
the actual fault for the different similarity functions (Equa-
tions (1) through (4)), per program. For each program we
run all the versions (faults) on all test cases, and rank the
blocks according to Equations (1) through (4). Per equa-
tion we determine the position qd of the faulty block in the
ranking, and average this number over all versions of the
program. We do not average over the seven programs be-
cause they have largely varying numbers of blocks.

One significant observation from this table is that the
Ochiai coefficient (Eq. (4)) consistently outperforms the
other techniques in terms of diagnostic quality. The Jaccard
coefficient and the coefficient used by Tarantula sometimes
happen to have the same quality of diagnosis. However, in
all except one of the situations where they differ we observe
that Jaccard is better than Tarantula’s coefficient. AMPLE’s
coefficient produces the worst quality of diagnosis except
for two programs where the quality was better than Jaccard
and the coefficient used by Tarantula. In one of these pro-
grams, the AMPLE coefficient yields similar quality com-
pared to the Ochiai coefficient. As noted in Section 2.4, we
are using the AMPLE coefficient outside its original con-
text, and hence, this does not imply that the AMPLE system
performs worse than the Tarantula system.

Tarantula Jaccard Ochiai AMPLE
print tokens 10.5 7.3 1.0 2.0
print tokens2 20.0 17.5 13.9 16.4

replace 12.2 11.6 7.6 12.7
schedule 3.0 2.9 1.6 11.3

schedule2 31.3 31.1 25.1 34.7
tcas 8.8 8.8 7.9 9.8

tot info 11.0 9.6 7.1 13.2

Table 2. Average fault ranking position

Figure 4. Percentage of blocks to be inspected

As said, automated fault diagnosis aims to decrease fault
localization effort. In this respect, a good measure of qual-
ity is the percentage of blocks a programmer has to inspect
until he/she finds the bug, assuming that the programmer
would inspect the code according to the ranking created
by the diagnosis technique. This percentage is defined by
the average rank of the fault divided by the total number of
blocks, and is shown in Figure 4. From this figure it is im-
mediately clear that, under the specific conditions of our ex-
periments, the Ochiai coefficient is superior. Using this co-
efficient of similarity, in the worst case of this experiment,
the software developer is still ‘obliged’ to inspect 40% of
the code to find the fault. In the best case, only 1% needs to
be inspected. The Ochiai coefficient presents improvements
ranging from 2.4% to 10% on average per program over the
Jaccard coefficient (second-best technique). Per faulty ver-
sion, improvements up to 30% were measured. Overall, this
coefficient decreases the percentage of blocks of code to be
inspected by 5%.

Figure 4 also shows that all of the coefficients work
poorly for some programs, for instance schedule2 and tcas.
The poor ranking is mainly due to dependent blocks, i.e.,
blocks that are always executed when the faulty block is
also executed. Hence, these blocks will rank in the same
position, worsening the quality of diagnosis qd.

6 Conclusions and Future Work

In this paper we studied the influence of different similar-
ity coefficients for fault diagnosis using program hit spec-
tra at the block level. We conclude that using this type
of program spectra the Ochiai coefficient consistently out-
performs those used in Pinpoint (Jaccard), Tarantula, and
AMPLE. Apart from the performance improvement (rang-
ing from 2.6% to 10%), the fact that this similarity coeffi-
cient is outside the software fault diagnosis domain is some-
what unexpected, and suggests that further improvements
may even exist.

Specifically for the Tarantula system, our experiments
seem to suggest that its diagnostic capabilities can be im-
proved by switching to the Ochiai coefficient. Tarantula
uses statement hit spectra, which give more detailed infor-
mation than our block hit spectra, but this will only lead to a
different diagnosis in in case of the C constructs mentioned
in Section 2.4. Apart from this, our approach is the same as
that of Tarantula, and our results should be applicable.

Furthermore, the experiments also revealed some ver-
sions yielding less effective rankings. The possible causes
for poor rankings are, mainly, when the faulty block is al-
ways exercised in passed and failed runs (for instance, the
main function), deleted code, and dependent blocks as ex-
plained in the previous section.

Future work will address the following issues. Unlike
the rudimentary error detection mechanism used in this re-
search we will investigate the influence of qe on qd in order
to obtain a more general picture on the performance of the
various similarity coefficients. Furthermore, we intend to
extend our study to multiple faults. Finally, we will involve
a much larger code base in our study. In a recent study of a
mega-LOC industrial code (Philips TV software, in the con-
text of the TRADER project [10]), we found that all tech-
niques behaved extremely well (sometimes with qd = 1 out
of 65K blocks), which is partly due to an ideal error de-
tection mechanism. This suggests that the Siemens suite
may be not entirely representative for real-world (embed-
ded) software.

Acknowledgments

We gratefully acknowledge the feedback from the discus-
sions with our TRADER project partners from Philips Re-
search, Philips Semiconductors, Philips TASS, Philips Con-
sumer Electronics, Design Technology Institute, Embedded
Systems Institute, IMEC, Leiden University and Twente
University.

References
[1] L. Augusteijn. Front: a front-end generator for

Lex, Yacc and C, release 1.0. http://front.
sourceforge.net/, 2002.

[2] A. Avižienis, J.-C. Laprie, B. Randell, and C. E.
Landwehr. Basic concepts and taxonomy of depend-
able and secure computing. IEEE Trans. Dependable
Sec. Comput., 1(1):11–33, 2004.

[3] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large,
dynamic internet services. In Proceedings of the 2002
International Conference on Dependable Systems and
Networks, pages 595–604, Washington, DC, USA,
2002. IEEE Computer Society.

[4] A. da Silva Meyer, A. A. Franco Farcia, and
A. Pereira de Souza. Comparison of similarity coeffi-
cients used for cluster analysis with dominant markers
in maize (Zea mays L). Genetics and Molecular Biol-
ogy, 27(1):83–91, 2004.

[5] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight
defect localization for Java. In A. P. Black, editor,
ECOOP 2005 : 19th European Conference, Glasgow,
UK, July 25–29, 2005. Proceedings, volume 3568 of
LNCS, pages 528–550. Springer-Verlag, 2005.

[6] J. de Kleer, A. K. Mackworth, and R. Reiter. Charac-
terizing diagnoses and systems. Artificial Intelligence,
56:197–222, 1992.

[7] J. de Kleer and B. C. Williams. Diagnosing multiple
faults. Artif. Intell., 32(1):97–130, 1987.

[8] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi.
An empirical investigation of program spectra. In
Proceedings of the SIGPLAN/SIGSOFT Workshop on
Program Analysis For Software Tools and Engineer-
ing, PASTE ’98, Montreal, Canada, June 16, 1998,
pages 83–90, 1998.

[9] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proceed-
ings of the 16th international conference on Software
engineering, pages 191–200, Sorrento, Italy, 1994.
IEEE Computer Society Press.

[10] Embedded Systems Institute. Trader project website.
http://www.esi.nl/trader/.

[11] A. K. Jain and R. C. Dubes. Algorithms for cluster-
ing data. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1988.

[12] J. A. Jones and M. J. Harrold. Empirical evalua-
tion of the tarantula automatic fault-localization tech-
nique. In Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineer-
ing, pages 273–282, New York, NY, USA, 2005. ACM
Press.

[13] J. A. Jones, M. J. Harrold, and J. Stasko. Visualiza-
tion of test information to assist fault localization. In
Proceedings of the 24th International Conference on
Software Engineering, Orlando, Florida, USA, May
2002, pages 467–477. ACM Press, 2002.

[14] W. Mayer and M. Stumptner. Approximate modeling
for debugging of program loops. In Proceedings of
the Fifteenth International Workshop on Principles of
Diagnosis, Carcassonne, June 2004.

[15] D. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tet-
zlaff, J. Traupman, and N. Treuhaft. Recovery Ori-
ented Computing (ROC): Motivation, definition, tech-
niques, and case studies. Technical Report UCB/CSD-
02-1175, U.C. Berkeley, March 2002.

[16] T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with ap-
plications to the year 2000 problem. In M. Jazayeri
and H. Schauer, editors, Proceedings of the Sixth Eu-
ropean Software Engineering Conference (ESEC/FSE
97), volume 1301 of LNCS, pages 432–449. Springer–
Verlag, 1997.

[17] M. Stumptner. Using design information to identify
structural software faults. In Proceedings of the 14th
Australian Joint Conference on Artificial Intelligence,
volume 2256 of LNCS, pages 473–486, London, UK,
2001. Springer-Verlag.

[18] F. Wotawa. On the relationship between model-based
debugging and program slicing. Artificial Intelligence,
135(1-2):125–143, 2002.

[19] F. Wotawa, M. Strumptner, and W. Mayer. Model-
based debugging or how to diagnose programs au-
tomatically. In T. Hendtlass and M. Ali, editors,
IAE/AIE 2002, volume 2358 of LNCS, pages 746–757.
Springer-Verlag, 2002.

[20] A. Zeller. Isolating cause-effect chains from computer
programs. In Proceedings of the 10th International
Symposium on the Foundations of Software Engineer-
ing (FSE-10), Charleston, South Carolina, November
2002. ACM Press, 2002.

