
Prioritizing Tests for Fault Localization
through Ambiguity Group Reduction

Alberto Gonzalez-Sanchez1 Rui Abreu2 Hans-Gerhard Gross1 Arjan J.C. van Gemund1

1Delft University of Technology, Software Technology Department
Mekelweg 4, 2628 CD Delft, The Netherlands

Email: {a.gonzalezsanchez,h.g.gross,a.j.c.vangemund}@tudelft.nl
2University of Porto, Departament of Informatics Engineering

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Email: rui@computer.org

Abstract—In practically all development processes, regression
tests are used to detect the presence of faults after a modification.
If faults are detected, a fault localization algorithm can be used
to reduce the manual inspection cost. However, while using test
case prioritization to enhance the rate of fault detection of the
test suite (e.g., statement coverage), the diagnostic information
gain per test is not optimal, which results in needless inspection
cost during diagnosis.

We present RAPTOR, a test prioritization algorithm for fault
localization, based on reducing the similarity between statement
execution patterns as the testing progresses. Unlike previous
diagnostic prioritization algorithms, RAPTOR does not require
false negative information, and is much less complex. Exper-
imental results from the Software Infrastructure Repository’s
benchmarks show that RAPTOR is the best technique under
realistic conditions, with average cost reductions of 40% with
respect to the next best technique, with negligible impact on
fault detection capability.

I. INTRODUCTION

Regression testing is a time-consuming but rather important
task for improving software reliability after a software change.
Literature shows how source code changes are bound to
introduce regressions in up to a 70% of cases [27]. Given the
significant cost associated with regression tests, test prioritiza-
tion has emerged as a predominant technique to reduce testing
cost. Prioritized regression test suites aim at detecting failures
as soon as possible in order to reduce testing effort (Ct) [14],
[15], [21], [24], [28], [35], [38], [43]. The sooner failures
are found, the sooner debugging can commence. Automatic
fault localization techniques [4], [26], [3], [42], [45], [29]
use the information obtained during regression testing (e.g.,
test coverage and failure information) to produce a ranking
of source code statements likely to be the root cause of
the observed failures. This ranking is used to minimize the
diagnostic work the developer has to perform when inspecting
the program to find the faults (“inspection cost”, Cd) [1], [4],
[26].

Previous work in the combination of test prioritization
and diagnosis [25], [44] has shown that, while traditional

prioritization techniques minimize Ct by merely reducing the
delay between testing and debugging, they do not maximize
diagnostic information, and therefore increase inspection effort
Cd. The reason is that traditional test prioritization aims at high
code coverage, whereas obtaining a refined diagnosis requires
partially revisiting already covered code to further exonerate
or indict suspect statements. In order to minimize overall cost,
one must consider a test prioritization strategy that takes into
account the combined cost of testing and debugging, Ct+Cd

1.
Recently, a diagnostic test prioritization technique (i.e., test

prioritization technique that maximizes the diagnostic informa-
tion gain per test) has been proposed [17], [19] to solve this
problem. The current approach to diagnostic test prioritization
is based on the information gain heuristic (IG). Although
in theory its diagnostic effectiveness is optimal [17], it does
have a number of drawbacks that restrict its applicability in
practice. First, its performance depends heavily on the precise
estimation of a number of parameters (fault density and false
negative test rate) that are very expensive to obtain, as well
as very error-prone. This has been shown to severely impact
on the quality of the IG heuristic [17], [19]. Second, the
algorithmic complexity of IG is exponential, due to the fact
that more than one fault may be present in the system. Finally,
unlike traditional test prioritization techniques, in IG-based
diagnostic test prioritization the tests are selected on-line,
based on the actual pass/fail results of previously executed
tests (which varies per regression cycle). On-line calculations
impose a large overhead in the test process if test cases are
relatively short.

In this paper we introduce a novel, off-line diagnostic test
prioritization algorithm that solves the above problems. In
particular, our paper makes the following contributions:

• We present RAPTOR (gReedy diAgnostic Prioritization
by ambiguiTy grOup Reduction), a low-complexity di-
agnostic test prioritization algorithm that can be used

1The addition is not necessarily arithmetic as inspection cost typically
involves labor by the diagnostician

off-line, which does not require any additional input
parameters, and can consider variance in test costs.

• We evaluate the performance of RAPTOR for the Siemens
set as well as for 5 larger programs available from
the Software Infrastructure Repository (SIR) [12]. All
programs are extended to accommodate multiple faults.

In the above experiments we compare the performance of
RAPTOR to the contemporary test prioritization algorithms
ADDST [35], FEP [35], ART [24], the IG-based diagnostic
test prioritization algorithm SEQUOIA [17], and to random
prioritization (RND), our baseline.

To the best of our knowledge, a diagnostic approach to
off-line test prioritization has not been described before. Our
results show that RAPTOR can deliver a performance, in terms
of inspection cost reduction per unit of test cost, superior
to ADDST, FEP, ART, and RND, and, in some cases, even
to the theoretical optimum, SEQUOIA. Improvements are, on
average, 40% better with respect to the next best technique,
and 55% better than the baseline (RND).

The paper is organized as follows. In the next section
we present the basic idea behind diagnostic prioritization. In
Section III we present related prioritization and diagnosis tech-
niques. In Section IV RAPTOR is presented. In Section V we
present experimental performance results. Section VI discusses
these results and the threats to their validity. Related work is
discussed in Section VII. In Section VIII, we conclude and
discuss future work.

II. DIAGNOSTIC PRIORITIZATION

Before going into the specific details of our diagnostic
prioritization algorithm, we first explain why traditional test
prioritization conflicts with the goal of fault localization. Let us
consider the faulty program in Table I. We provide a test suite
with 8 tests that provide full statement coverage. The following
inputs are needed for test prioritization and diagnosis:
• A finite set C = {c1, . . . , cj , . . . , cM} of M compo-

nents (typically source code statements) of which Mf =
0, . . . ,M can be faulty.

• A finite set T = {t1, . . . , ti, . . . , tN} of N tests with
binary outcomes oi, where oi = 1 if test ti failed, and
oi = 0 otherwise. Each test has a cost Ct(i).

• A N ×M coverage matrix, A = [aij], where aij = 1
if test ti involves component cj , and 0 otherwise. Each
row is called “spectrum”, and each column is called
“signature”.

These inputs are represented in the example program of
Table I. For the sake of code readability, the coverage matrix
is shown transposed. For exposition clarity, we use a simplified
way of diagnosis. We assume that, if a test fails, the statements
that were covered become suspects, and if it passes, the
covered statements are exonerated.

Diagnostic performance is expressed in terms of a cost
metric Cd that measures the excess effort incurred in finding all
statements at fault (inspection effort) [4]. Cd measures wasted
effort, independent of the number of faults Mf in the program,

T
C Program: Character Counter t1 t2 t3 t4 t5 t6 t7 t8

function count(char * s) {
int let, dig, other, i; A (transposed)

c1 while(c = s[i++]) { 1 1 1 1 1 1 1 1
c2 if (’A’<=c && ’Z’>=c) 1 1 1 1 1 1 0 1
c3 let += 2; // FAULT 1 1 1 1 1 1 0 0
c4 elsif (’a’<=c && ’z’>=c) 1 1 1 1 1 0 0 1
c5 let += 1; 1 1 0 0 1 0 0 0
c6 elsif (’0’<=c && ’9’>=c) 1 1 1 1 0 0 0 1
c7 dig += 1; 0 1 0 1 0 0 0 0
c8 elsif (isprint(c)) 1 0 1 0 0 0 0 1
c9 other += 1; 1 0 1 0 0 0 0 1
c10 printf("%d %d %d\n", 1 1 1 1 1 1 1 1

let, dig, other);}
Test case outcomes F F F F F F P P

TABLE I
EXAMPLE PROGRAM AND INPUTS FOR TEST PRIORITIZATION AND

DIAGNOSIS

to enable an unbiased evaluation of the effect of Mf on Cd.
Thus, regardless of Mf , Cd = 0 represents an ideal diagnosis
technique (all Mf faulty statements on top of the ranking, no
effort wasted on inspecting other statements to find they are
not faulty), while Cd = M −Mf represents the worst case
(inspecting all M −Mf healthy statements until arriving at
the Mf faulty ones).

A. Example

A traditional prioritization heuristic, such as the additional
statement coverage heuristic (ADDST) [35] tries to maximize
covered code in as few tests as possible. Once all the code
is covered, the algorithm restarts with the remaining tests.
Such algorithm would start by selecting t1, which fails. If
we tried to apply diagnosis after this test, a large number of
source code statements would have to be inspected, since all
but statement c7 are covered. Assuming random inspection,
Cd = (9 − 1)/2 = 4 statements in average. If we would
execute one more test, ADDST would select t2. Since it also
fails, c8 and c9 are no longer suspects and inspection effort
would drop to Cd = (7 − 1)/2 = 3 on average. After t3, c5
is also exonerated and Cd = (6 − 1)/2 = 2.5 on average.
Executing the next two ADDST tests, t4 and t5, would not
provide any new diagnostic information, since they cover all
the current suspects. Executing t8 as the last test (pass) would
finally enable a perfect diagnosis since the only non-covered
suspect is c3.

On the other hand, RAPTOR, the diagnostic prioritization
algorithm presented in this paper would initially select t5 since
it provides a better balance between covered and non-covered
statements. As it fails, only the 6 covered statements become
suspects. This means that, after just one test, Cd = 2.5, already
equal to ADDST after 3 tests. RAPTOR tries to increase the
difference between the current suspects, and chooses t8 as
second test, which passes. The set of suspects is reduced to
only c3 and c5, and Cd = 0.5. Test t6 is selected next, to
differentiate between those, and fails, indicating that the fault
must be c3. The remaining tests do not change the result.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6 7

C
d
 /

 (
M

 -
 M

f)

Ct

ADDST
RAPTR

Fig. 1. Advantage of diagnostic prioritization

B. Measurement

Whereas both algorithms detect the presence of a fault
after the first test, RAPTOR produces much more diagnostic
information per test, and the overall cost combination Ct+Cd

is significantly reduced. To measure how good a specific
prioritization algorithm is for fault localization, we need to
measure the evolution of Cd per test case choice. Previous
work [25], [44] measured the relative difference between Cd

at fixed percentages of the test suite and the Cd after applying
100% of the test suite, following the formula

RelativeExpense(n%) =
Cd(n%)− Cd(100%)

Cd(100%)

In [25], the first sample is taken after a 10% of the test
cases have been executed, which corresponds to approximately
25 tests in their experimental setting. However, previous
experiments [2] have shown that the most gains in inspection
cost happen in the first ∼ 20 tests. Therefore, we use a
continuous measure, instead of discrete samples, to evaluate
this continuous process without running the risk of missing
important details or biasing the results.

Our effectiveness measure can be seen as a continuous
variant of RelativeExpense, and uses the area difference
between Cd(n) (i.e., Cd as a function of the number of applied
tests) and Cd(100%), according to

S =

N∑
n=1

(
Cd(n− 1)− Cd(N)

M −Mf
· Ct(n)

)
(1)

where Ct(n) corresponds to the cost of the n-th test. A similar
measurement is used in [17], [19]. Figure 1 illustrates the
evolution of inspection cost Cd per unit of test cost Ct for
both scenarios, and the area S (shaded).

The effectiveness of ADDST in our example corresponds
to S = 1

9 · (4.5 + 4+ 3+ 2.5 + 2.5 + 2.5) = 2.1, whereas the
effectiveness of RAPTOR corresponds to S = 1

9 · (4.5+ 2.5+
0.5) = 0.83, a 60% cost reduction.

III. RELATED TECHNIQUES

In general terms, testers will apply one of the prioritization
algorithms to obtain an ordered test suite. The tests in this
ordered suite will be executed one by one recording the test
outcomes, until, e.g., the available testing time is exhausted.
If failures have occurred, a diagnosis algorithm is used to
locate the faults causing the failures, producing a diagnosis.

Since we cannot directly measure the diagnostic quality of the
information provided by the ordered test suite, we will use two
well-known diagnostic techniques and infer conclusions based
on the quality of the two different diagnoses they produce. In
the following we introduce basic concepts on test prioritization
algorithms as well as on the diagnosis techniques considered.

A. Test Prioritization

Traditionally, test cases have been prioritized with the goal
of enhancing their fault detection ability, i.e., the rate at which
failures are produced. Diagnostic test prioritization, a recent
development, proposes to prioritize tests with the goal of fault
localization, i.e., the rate at which diagnostic quality improves.

Random: this is the most straightforward prioritization
criterion, which orders test cases according to random per-
mutations of the original test suite. It is used as baseline in
many prioritization experiments [15], [35], [38].

Add-Statement: In additional statement coverage prioriti-
zation (ADDST) [15], [35], test cases are selected iteratively in
terms of the additional coverage they yield, taking into account
all the test cases that were already executed. The algorith-
mic complexity (time and space) of ADDST prioritization is
O(N ·M) per selected test.

Fault-exposing Potential: FEP is a coverage-based prior-
itization algorithm that assigns each statement a confidence
value [35]. As high confidence is assigned to a statement
that has been exercised by a number of (passing) tests, those
statements need less coverage in subsequent tests. FEP has
O(M ·N) time complexity.

Adaptive Random Testing: ART is a hybrid
random/coverage-based algorithm [24]. ART selects its
next test case in two steps. First, it samples tests randomly
until one of the samples does not add additional coverage.
Second, it selects the test which maximizes a distance
function with the already selected test cases. The best-case
time complexity is O(N2) per selected test, while the
worst-case time complexity is O(N2 ·M).

Information Gain: Unlike all the previous techniques,
Information gain (IG) is a diagnostic prioritization technique.
IG orders test cases dynamically (on-line), based on the
improvement of diagnostic quality, based on an information-
theoretical measurement of the quality of the current diagnosis
D, the probability of the test passing or failing, and the quality
of the diagnosis if the test passes or fails. IG is based on
information theory, in terms of entropy [11]. The complexity
of IG is O(N · 2M) for multiple faults. An approximate
solution with near-optimal performance, dubbed SEQUOIA,
can perform IG test selections in O(M ·N) time [17].

B. Fault Localization

Although there is a large number of different fault local-
ization techniques (see Section VII), in our work we will
consider two well-known coverage-based techniques: Bayesian
diagnosis (well-known from Model-Based Diagnosis, an area
within AI), and statistical approaches such as Tarantula [26],
and Ochiai [3].

Statistical Fault Diagnosis: In statistical fault diagnosis,
the likelihood a component is at fault is quantified in terms
of similarity coefficients (SCs). A SC measures the statistical
similarity between statement cj’s test coverage (a1j , . . . , aNj)
and the observed test outcomes, (o1, . . . , oN). Similarity is
computed by means of four counters npq(j) that count the
times aij and oi form the combinations (0, 0), . . . , (1, 1),
respectively, i.e.,

npq(j) = |{i | aij = p ∧ oi = q}| p, q ∈ {0, 1} (2)

For instance, n10(j) and n11(j) are the number of tests in
which cj is executed, and which passed or failed, respectively.
The four counters sum up to the number of tests N . In this
paper we will consider the Ochiai SC, given by

Ochiai: lj =
n11(j)√

(n11(j)+n01(j))·(n11(j)+n10(j))
(3)

A great advantage of SCs is their ultra-low computational
complexity compared to probabilistic approaches. Despite
their lower diagnostic accuracy [4] SCs have, therefore, gained
much interest.

In our example system, after executing all the tests in the
test suite, the counters for c3 are n11(3) = 6, n10(3) = 0,
n01(3) = 0, n00(3) = 2. Its likelihood being the faulty one
according to Ochiai is l3 = 1.0. The remaining statements
all have lower likelihoods, as they all have n10(j) > 0 or
n01(j) > 0. For example, for c2, n11(2) = 6, n10(2) = 1,
n01(2) = 0, n00(2) = 1, and its Ochiai similarity is l2 = 0.92.

Bayesian Diagnosis: Bayesian diagnosis is an alternative
diagnostic technique founded on probability theory, aimed
at obtaining a set of fault candidates D = 〈d1, . . . , dk〉.
Each candidate dk is a subset of the statements which, when
simultaneously at fault, explain the observed failures. For
instance, d = {c1, c3, c4} indicates that c1 and c3 and c4
are faulty, and no other statement. Many algorithms exist to
compute D [10], [31].

The candidates returned by Bayesian fault diagnosis are or-
dered according to their probability of being the true diagnosis
Pr(dk). Initially, the probability of each candidate depends on
the estimated probability of each of its statements being faulty,
(pj , prior fault probability). After test case ti is executed,
the probability of each candidate is updated depending on the
outcome oi of the test, following Bayes’ rule:

Pr(dk|oi) =
Pr(oi|dk)
Pr(oi)

· Pr(dk) (4)

In this equation, Pr(dk) represents the prior probability of
candidate dk before the test is executed. Pr(oi) is a normal-
ization value that represents the residual probability of the
observed outcome, and Pr(oi|dk) represents the probability
of the observed outcome oi produced by a test ti, if that can-
didate dk was the actual diagnosis. This depends on the false
negative rate (FNR), of the statements in dk. In software fault
localization, FNR is related to the concepts of testability [40],
and coincidental correctness [41]. A more detailed description
of Bayesian diagnosis can be found in [11], [4], [16].

To diagnose the example system in Table I, for simplicity
we will assume here that all statements have equal prior
probability pj = 0.1 (software has a much lower prior
probability, this is just an example), and we assume 0% FNR,
i.e., faults will always cause a failure. The initial probability
for d3 = {c3}, is Pr(d3) = 0.11 · 0.99 = 0.038. A more
complex candidate such as d3,5 = {c3, c5} has an initial
probability equal to Pr(d3,5) = 0.12 · 0.98 = 0.004. After
all tests are executed, the diagnosis is composed by 4 can-
didates Pr(d3|o1, o2, . . .) = 0.89, Pr(d3,5|o1, o2, . . .) = 0.09,
Pr(d3,7|o1, o2, . . .) = 0.09, and Pr(d3,5,7|o1, o2, . . .) = 0.01.
Hence, Cd = 0.

IV. RAPTOR

The IG heuristic for diagnostic prioritization requires very
precise estimations of the false negative rate of test cases to
be able to predict their failure probability. Estimating FNR
is a costly and error-prone calculation. Experiments with real
programs showed that errors in the FNR estimations can have
disastrous results [17]. The enormous investment in parameter
estimation and the overhead incurred in the testing process
totally outweighs the benefits of IG diagnostic prioritization.
Furthermore, since IG requires knowing the outcome of the
previous test case, IG test sequences cannot be pre-calculated
off-line, introducing an overhead in the testing process.

For these reasons, we present an alternative, off-line diag-
nostic prioritization algorithm, RAPTOR (gReedy diAgnostic
Prioritization by ambiguiTy grOup Reduction), that, while
not being theoretically optimal, produces competitive results.
Furthermore, since it is not affected by FNR estimation errors,
its results are in many cases better than IG.

A. Ambiguity

Since the basic working principle of any coverage-based di-
agnostic algorithm is analyzing the differences and similarities
between the signatures of each of the statements of the system
under test (each of the columns in the test coverage matrix A)
and the failure pattern of the system (the test outcomes oi),
we can use the maximization of these differences to devise a
new, simpler diagnostic test prioritization heuristic.

Any individual statement belonging to a group of statements
with identical columns (signatures) cannot be uniquely identi-
fied as faulty. Such a group is termed an ambiguity group [39].
The example system in Table I has two ambiguity groups:
{1, 10} and {8, 9}.

Let AG = {g1, g2, . . . , gL} be the ambiguity groups gener-
ated by the matrix A, or a subset of it. The residual diagnostic
effort should a fault occur in a given group gi corresponds to
the expected diagnostic effort if the developer would randomly
pick statements in gi for inspection: E[Cd] =

|gi|−1
2 . To keep

the heuristic simple, we assume faults are distributed uni-
formly through the program’s code. Therefore the probability
of group gi occurring is Pr(gi) =

|gi|
M .

The value of the diagnostic ambiguity heuristic can be
defined by averaging the effort in each group gi, by the

probability of the system containing a fault belonging to each
of the ambiguity groups.

G(AG) =

L∑
i=1

|gi|
M
· |gi| − 1

2
(5)

where M is the total number of statements in the system.
The complete matrix in Table I produces the set AG =
{{1, 10}, {8, 9}} whose ambiguity is G(AG) = 2

10 ·
1
2 + 2

10 ·
1
2 = 0.2.

B. Ambiguity Reduction

Since G(AG) estimates the residual diagnostic effort Cd,
it can be seen as an estimation of diagnosis quality, and
its value can be used to construct an alternative heuristic to
IG. Each test that is executed breaks each ambiguity group
into two smaller ambiguity groups, one corresponding to the
statements in the ambiguity group that are covered by the
test, and one corresponding to the statements that are not
covered. Groups of size 1 are discarded. Using G(AG) has the
advantage that it does not require knowing the test outcomes,
i.e., can be performed off-line, nor requires estimation of
failure probabilities (unlike IG), nor does it need additional
input parameters, e.g., FNR.

The ambiguity reduction heuristic is defined as the differ-
ence in ambiguity caused by appending one more test to the
test matrix, according to

AR(A, ti) = G(AG(A))−G(AG(A||ti)) (6)

where the function AG returns the set of ambiguity groups of
a test matrix, and the || operator appends test ti to A.

C. Algorithm

Algorithm 1 details the implementation of the RAPTOR
algorithm, which computes a sequence that optimizes the
evolution of ambiguity in a greedy, incremental way.

Algorithm 1 RAPTOR

function RAPTOR(T)
A← ∅
while T 6= ∅ do

ti ← argmaxi∈T

AR(A, ti)

Ct(i)
if AR(A, ti) > 0 then . Any improvement?

A← A||ti
T ← T \ {i}

else
A′ ← RAPTOR(T)
return A||A′

return A

The algorithm receives the set of test cases and their cov-
erage as input, together with the test cost. At every iteration,
a test ti is selected, such that it maximizes the reduction of
ambiguity per unit of test cost. The test that produces the
highest improvement is appended to the result (operator ||) and
removed from the set of free tests. Since the algorithm may
reach a point where no test can produce any improvement,

the algorithm checks for this case and, if detected, starts
recursively with the remaining tests, and appends the resulting
A′ to A. This policy is also used in [35]. An alternative policy
also proposed in [35] would be to simply randomly order the
remaining tests.
G(AG) can be computed in at most O(M) time, and the set

of ambiguity groups can be computed incrementally in O(M)
time from the previous set. Since these two functions have
to be repeatedly used for each of the remaining free tests, the
complexity per text choice, i.e., for the loop of RAPTOR equals
O(MN), a complexity similar to ADDST prioritization. Ex-
ecution time measurements confirm our complexity analysis.
On an 8-core 2.6 GHz. Xeon machine with 32Gb of memory,
test selection for M = 1000, N = 1000 test matrices takes
less than 1 second.

1) Example: RAPTOR would prioritize the tests in our
example test suite as follows.

Initially, there is no distinction between statements,
they all belong to the same ambiguity group
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}, and G(AG) = 4.50.

If we executed test t1, the ambiguity group will be bro-
ken to {{1, 2, 3, 4, 5, 6, 8, 9, 10}, {7}} ({7} is discarded as
it is a single statement) with ambiguity G(AG) = 9

10 ·
8
2 = 3.6 On the other hand, if we execute t5, we obtain
{{1, 2, 3, 4, 5, 10}, {6, 7, 8, 9}} and ambiguity G(AG) = 6

10 ·
5
2 + 4

10 ·
3
2 = 2.1 which represents a larger reduction of

ambiguity (t6 also provides the same reduction).
The second test chosen by RAPTOR is t8. The set

{1, 2, 3, 4, 5, 10} is split into two ambiguity groups, one for
the covered statements, {1, 2, 4, 10}, and one for the not
covered, {3, 5}. The same applies to the {6, 7, 8, 9} group,
split in {6, 8, 9} and {7}. This new state has a total ambiguity
G(AG) = 4

10 ·
3
2 + 2

10 ·
1
2 + 3

10 ·
2
2 = 1.00

Table II shows the sequence of tests chosen by RAPTOR to-
gether with the evolution of the ambiguity groups and the value
of diagnostic ambiguity. The ’(R)’ symbol indicates when the
set of ambiguity groups is reset to {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}
because no test can further reduce the ambiguity.

V. EMPIRICAL EVALUATION

In this section we compare the performance of RAPTOR to
RND, ART, ADDST, FEP, and SEQUOIA. The prioritization
performance of each algorithm is assessed by the effectiveness
formula in Equation 1. Finally, we also study the trade
off between fault detection and fault localization made by
RAPTOR.

A. Subject Programs

We perform our experiments using the well-known Siemens
benchmark set [22], as well as the flex, grep, gzip,
sed, and space programs (obtained from SIR [12]). Every
program has a correct version, and a set of test inputs is also
provided, which were created with the intention of providing
full test coverage. Table III provides more information about
the programs used in the experiments, where M corresponds
to the number of lines of code.

Test oi Ambiguity Groups G(AG) D Cd

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 4.5 〈{}, {1}, {2}, {3}, {4}, {5}, {6}, . . . , {1, 2}, {1, 3} . . . {1, 2, 3} . . .〉 4.5
t5 1 {1, 2, 3, 4, 5, 10}, {6, 7, 8, 9} 2.1 〈{1}, {2}, {3}, {4}, {5}, {10}, {1, 2}, {1, 3} . . . {3, 5} . . . {1, 2, 3} . . .〉 2.5
t8 0 {1, 2, 4, 10}, {3, 5}, {6, 8, 9}, {7} 1.0 〈{3}, {5}, {3, 5}, {3, 7}, {5, 7}, {3, 5, 7}〉 0.5
t6 1 {1, 2, 10}, {3}, {4}, {5}, {6, 8, 9}, {7} 0.6 〈{3}, {3, 5}, {3, 7}, {3, 5, 7}〉 0.0
t7 0 {1, 10}, {2}, {3}, {4}, {5}, {6, 8, 9}, {7} 0.4 〈{3}, {3, 5}, {3, 7}, {3, 5, 7}〉 0.0
t2 1 {1, 10}, {2}, {3}, {4}, {5}, {6}, {7}, {8, 9} 0.2 (R) 〈{3}, {3, 5}, {3, 7}, {3, 5, 7}〉 0.0
t4 1 {1, 2, 3, 4, 6, 7, 10}, {5, 8, 9} 2.4 〈{3}, {3, 5}, {3, 7}, {3, 5, 7}〉 0.0
t3 1 {1, 2, 3, 4, 6, 10}, {7}, {5}, {8, 9} 1.6 (R) 〈{3}, {3, 5}, {3, 7}, {3, 5, 7}〉 0.0
t1 1 {1, 2, 3, 4, 5, 6, 8, 9, 10}, {7} 1.6 〈{3}, {3, 5}, {3, 7}, {3, 5, 7}〉 0.0

TABLE II
EVOLUTION OF AMBIGUITY GROUPS AND D FOR THE RAPTOR HEURISTIC FOR OUR EXAMPLE SYSTEM

Program Name Mutants LOC(M) N Program Type
pt print_tokens 491 539 4,130 Lexical Analyzer
p2 print_tokens2 294 489 4,115 Lexical Analyzer
re replace 757 507 5,542 Pattern Recognition
sc schedule 281 397 2,650 Priority Scheduler
s2 schedule2 212 299 2,710 Priority Scheduler
tc tcas 208 174 1,608 Altitude Separation
ti tot_info 396 398 1,052 Information Measure
sp space 6,283 9,126 500 ADL Parser
gz gzip 20,811 6708 211 Compressor
se sed 11,050 9014 184 Stream Editor
gr grep 17,707 13,287 809 String Matching
fl flex 15,574 14,194 107 Lexer Generator

TABLE III
PROGRAMS USED FOR EVALUATION

To obtain a realistic fault sample size, we have extended the
subject programs with versions (mutants) for which we seeded
random combinations of multiple faults similar to the ones
in Siemens. These additional faults are obtained by applying
mutation techniques [5], [32] to the reference implementation
of each program. The mutants were generated by a modified
version of Zoltar, a spectrum-based fault localization tool
set [23]. As each program includes a correct version, we
use the output of the correct version as oracle. For each
program, 100 faulty versions seeded with 1 and 3 random
mutation faults were created. For each of the faulty versions,
5 repetitions were made, to a total of 500 prioritized test suites
per program.

B. Input Parameters

For our study, coverage matrices A were obtained by
instrumenting each of the programs at statement level with
Zoltar. It must be taken into account that the coverage of
a test input can vary between regression cycles. This will
not affect diagnostic accuracy as diagnosis is performed a
posteriori when the updated coverage is already available.
However, it can affect the accuracy of prioritization heuristics
such as FEP, ART, IG or RAPTOR because the coverage of a
test case is needed a priori. If using the coverage information
from a previous test run, the coverage can deviate (usually
slightly). This deviation should be taken into account, by
using techniques for estimating the updated coverage of a
test input [9]. This situation is generally overlooked in test
prioritization literature [15], [24], [35].

Regarding the input parameters of Bayesian diagnosis. It is
safe to assume equal-valued priors pj = 0.01 (10 defects/K-
LOC), since priors have been shown not to be very critical to

diagnostic performance [4]. On the other hand, the accuracy of
the diagnosis itself depends on accurate FNR estimations [4],
[10]. In our experiments, we will derive FNR information
from testability, by using a simplified propagation, infection,
execution (PIE) technique [40] used also in [16], [35].

C. Fault Localization Effectiveness

We compare diagnostic prioritization effectiveness in terms
of diagnostic effectiveness S, according to Equation 1.

1) Statistical Diagnosis (Ochiai SC): Table IV presents
the numerical results in terms of the S score and relative
percentage with respect to RND. The best techniques with
95% statistical confidence in the Bonferroni mean separation
test are highlighted in boldface.

The SEQUOIA column is obtained by using the test order
produced by SEQUOIA, discarding its internal Bayesian diag-
nosis and performing a new diagnosis using the similarity co-
efficient. It can be seen how SEQUOIA’s effectiveness appears
to be extremely poor, in contrast with its performance when
using Bayesian diagnosis as shown in the following section.
This is caused by the fact that similarity coefficients do not
exploit all the information available.

It can also be seen how RAPTOR consistently provides an
improvement in the efficiency for all programs with only one
fault, and is the best in all cases but one (tcas). On average,
RAPTOR provides 54% reduction in terms of S with respect
to RND’s baseline performance in the single-fault case, and
45% in the multiple-fault case. When compared to the next
best technique, ART, RAPTOR provides 38% reduction in the
single fault case on average, and 15% reduction in the multiple
fault case. For multiple faults, RAPTOR’s superiority is still
clear, although there are some cases where the performance
of RAPTOR is severely affected because the distribution of the
faults is very biased, as will be explained in Section VI.

For the Siemens programs, ADDST and FEP perform
extremely poorly even when compared to RND. However, for
the SIR programs the trend reverses, producing much better
results. The root causes for the low effectiveness of RAPTOR
for tcas, and the striking difference between the effectiveness
of ADDST for Siemens and SIR programs will be analyzed
in Section VI.

2) Bayesian Diagnosis: We now evaluate the effectiveness
of RAPTOR and other techniques in terms of Bayesian fault
diagnosis. Table V presents the numerical results, in terms of
the S score. Again we present the reduction percentage with

Ochiai, Mf = 1
RND ART ADDST FEP RAPTOR SEQUOIA

pt 3.86 2.46 -36% 10.06 161% 12.09 214% 1.56 -60% 7.05 83%
p2 4.90 3.21 -35% 8.43 72% 14.69 200% 2.25 -54% 6.48 32%
re 4.64 5.19 12% 10.99 137% 12.01 159% 3.44 -26% 10.31 122%
sc 6.19 6.34 2% 17.85 188% 17.71 186% 3.77 -39% 12.06 95%
s2 1.77 2.11 19% 8.15 361% 9.03 411% 1.30 -26% 6.63 275%
tc 3.81 3.21 -16% 11.53 203% 13.02 242% 3.47 -9% 5.20 37%
ti 2.20 1.91 -13% 4.96 126% 7.93 261% 1.68 -24% 7.57 245%
sp 13.20 10.61 -20% 8.21 -38% 9.20 -30% 7.55 -43% 14.95 13%
gz 12.98 7.11 -45% 2.81 -78% 2.88 -78% 2.43 -81% 12.60 -3%
se 10.83 5.35 -51% 4.15 -62% 4.32 -60% 1.83 -83% 12.03 11%
gr 12.05 8.44 -30% 8.18 -32% 9.71 -19% 6.43 -47% 15.02 25%
fl 4.47 1.71 -62% 1.40 -69% 1.55 -65% 0.94 -79% 3.71 -17%

Ochiai, Mf = 3
RND ART ADDST FEP RAPTOR SEQUOIA

pt 4.52 2.01 -55% 9.70 115% 6.64 47% 3.33 -26% 7.74 71%
p2 4.96 2.45 -51% 4.77 -4% 6.07 22% 1.42 -71% 5.42 9%
re 4.38 4.77 9% 5.65 29% 7.07 61% 2.49 -43% 12.94 195%
sc 7.55 5.20 -31% 1.29 -83% 9.22 22% 7.37 -2% 9.94 32%
s2 2.78 1.27 -54% 7.31 163% 4.51 62% 2.88 3% 1.29 -54%
tc 2.37 2.27 -4% 13.10 453% 13.79 482% 3.68 55% 5.86 147%
ti 6.73 4.59 -32% 3.13 -54% 4.50 -33% 1.15 -83% 6.81 1%
sp 12.91 8.76 -32% 6.60 -49% 7.97 -38% 5.76 -55% 18.77 45%
gz 5.28 3.52 -33% 2.14 -59% 3.71 -30% 2.35 -56% 4.22 -20%
se 6.79 3.26 -52% 2.81 -59% 4.78 -30% 1.77 -74% 8.96 32%
gr 10.95 4.72 -57% 7.39 -33% 7.96 -27% 4.26 -61% 14.26 30%
fl 3.62 2.33 -36% 3.60 -1% 4.26 +18% 2.32 -36% 1.42 -61%

TABLE IV
EFFECTIVENESS (S) IN TERMS OF STATISTICAL DIAGNOSIS (OCHIAI)

respect to RND, and the scores in boldface correspond to the
top techniques with 95% confidence following the Bonferroni
mean separation test.

Combined with Bayesian diagnosis, SEQUOIA is no longer
among the worst performing algorithms but among the best,
showing the perfect match between the heuristic and the
diagnosis algorithm. However, it can be seen how RAPTOR’s
effectiveness is on par and even surpasses SEQUOIA, the
theoretical optimum, both in the single-fault and multiple-
fault case. This is due to the fact that the IG heuristic used in
SEQUOIA is largely affected by errors in the FNR estimations,
whereas RAPTOR is not.

On average, RAPTOR provides a 40% reduction of S in the
single fault case with respect to the baseline set by RND. In the
multiple fault case, the reduction with respect to RND is 55%.
When compared to the next best technique, ART, RAPTOR
achieves a reduction of 13% for single faults, and 39% for
multiple faults.

Identical to what happened in the similarity coefficient case,
there is a noticeable difference in the effectiveness of FEP and
ADDST, between the Siemens and SIR programs, which will
be explained in Section VI.

D. Fault Detection (APFDc)

We evaluate the techniques in terms of their fault detection
performance, by using the APFDc metric [13]. This informa-
tion is useful to understand the modest trade-off between the
test prioritization goals of fault detection and fault localization.
Consistently with previous literature [24], [35], we will use
only single-fault data.

Bayes, Mf = 1
RND ART ADDST FEP RAPTOR SEQUOIA

pt 3.79 2.62 -31% 10.12 167% 13.00 243% 2.20 -42% 1.60 -58%
p2 3.23 1.83 -43% 6.46 100% 14.23 340% 1.03 -68% 1.51 -53%
re 2.70 1.88 -30% 3.87 43% 3.99 48% 1.61 -40% 2.88 7%
sc 1.57 2.00 27% 7.39 369% 11.79 650% 1.30 -17% 1.69 7%
s2 2.41 2.02 -16% 7.91 229% 10.95 355% 2.37 -2% 1.02 -58%
tc 3.00 2.39 -20% 8.82 194% 10.49 249% 3.60 20% 10.02 234%
ti 1.28 1.32 3% 6.38 401% 8.52 568% 4.97 290% 3.88 205%
sp 7.13 5.77 -19% 2.51 -65% 3.25 -54% 3.24 -55% 3.06 -57%
gz 8.08 4.06 -50% 1.54 -81% 1.75 -78% 1.55 -81% 2.24 -72%
se 5.72 3.00 -48% 2.04 -64% 2.23 -61% 1.38 -76% 1.93 -66%
gr 6.21 3.86 -38% 3.04 -51% 3.57 -43% 2.70 -57% 3.91 -37%
fl 3.40 1.69 -50% 1.09 -68% 1.12 -67% 1.18 -65% 1.41 -59%

Bayes, Mf = 3
RND ART ADDST FEP RAPTOR SEQUOIA

pt 5.71 6.37 11% 25.69 350% 27.38 379% 3.31 -42% 5.49 -4%
p2 8.56 6.51 -24% 21.09 146% 27.77 224% 3.81 -55% 5.74 -33%
re 10.95 8.84 -19% 10.36 -5% 11.79 8% 5.08 -54% 5.12 -53%
sc 13.07 9.25 -29% 9.72 -26% 21.83 67% 4.95 -62% 5.81 -56%
s2 11.78 9.07 -23% 9.79 -17% 19.81 68% 3.06 -74% 2.70 -77%
tc 4.44 3.94 -11% 13.16 196% 14.88 235% 7.66 72% 12.53 182%
ti 3.00 2.20 -27% 3.65 22% 10.06 235% 1.31 -56% 4.43 48%
sp 12.48 10.04 -20% 7.48 -40% 6.64 -47% 7.03 -44% 8.33 -33%
gz 14.07 7.14 -49% 2.03 -86% 1.95 -86% 2.64 -81% 3.69 -74%
se 10.88 6.49 -40% 3.40 -69% 4.62 -58% 3.39 -69% 3.82 -65%
gr 10.78 8.22 -24% 3.68 -66% 3.77 -65% 4.87 -55% 6.52 -40%
fl 9.90 5.04 -49% 3.63 -63% 4.09 -59% 3.41 -66% 3.26 -67%

TABLE V
EFFECTIVENESS (S) IN TERMS OF BAYESIAN DIAGNOSIS

Table VI shows the results in terms of the improvement
percentage of the APFDc metric with respect to RND. The
values in boldface represent the best technique, with 95%
confidence using the Bonferroni mean separation test.

Consistent with previous literature [24], [35], it can be seen
how ADDST and FEP are the best performing techniques,
especially in the Siemens programs. For the larger SIR pro-
grams, however, RAPTOR has the best performance, tied with
ADDST.

Both observations are consistent with our previous find-
ings [19] indicating that prioritizing for fault localization
(independently of the specific heuristic) tends to lower failure
rates in some test suites. This reduced performance is not
a very serious problem in practice, given the 2% difference
between ADDST and RAPTOR. Only schedule2 presents
a significant reduction of 9% for RAPTOR with respect to
ADDST. However, the increased test effort is completely
outweighed by the large savings in inspection cost.

RND ART ADDST FEP RAPTOR SEQUOIA
pt 0.93 0.96 +3% 0.98 +5% 0.96 +2% 0.97 +4% 0.97 +4%
p2 0.94 0.96 +2% 0.98 +5% 0.99 +6% 0.96 +3% 0.98 +5%
re 0.89 0.89 +0% 0.88 -1% 0.92 +3% 0.92 +2% 0.93 +4%
sc 0.95 0.95 -0% 0.91 -4% 0.95 -0% 0.93 -2% 0.94 -1%
s2 0.92 0.93 +1% 0.93 +1% 0.90 -2% 0.87 -5% 0.92 +0%
tc 0.81 0.84 +3% 0.80 -2% 0.79 -3% 0.85 +5% 0.80 -1%
ti 0.97 0.97 -0% 0.99 +2% 0.98 +0% 0.96 -2% 0.99 +1%
sp 0.70 0.76 +9% 0.79 +13% 0.77 +11% 0.82 +17% 0.79 +13%
gz 0.74 0.86 +16% 0.95 +29% 0.95 +29% 0.96 +29% 0.95 +29%
se 0.75 0.90 +19% 0.94 +24% 0.94 +25% 0.97 +30% 0.94 +24%
gr 0.75 0.81 +8% 0.83 +11% 0.81 +8% 0.85 +14% 0.82 +9%
fl 0.94 0.98 +4% 0.98 +4% 0.98 +4% 0.99 +5% 0.99 +5%

TABLE VI
FAULT DETECTION PERFORMANCE (APFDc)

VI. DISCUSSION

In this section we discuss the threats to the validity of our
results, analyze the reasons for the behavior of the techniques,
and introduce some criteria aimed at choosing the right tech-
nique under varying circumstances.

A. Threats to Validity

The external validity of the results obtained with the
Siemens programs can be questioned given their small sizes.
In order to strengthen the validity of our results we provided
validation experiments with larger programs such as the SIR
tools, showing that indeed, for larger matrices the behavior of
techniques is different.

The fact that we seeded artificial faults into our programs
is a second threat to the external validity of our results.
From the point of view of the representativeness of mutation
faults, they have become usual in test prioritization and fault
diagnosis literature [35], [41], since it is almost impossible to
obtain a sample of real faults that is representative. From the
fault density point of view, we restricted the experiment to 3
simultaneous faults to keep fault density to a realistic level.

A number of other threats to the validity of our experiments
have been discussed throughout the paper. The motivation and
construct validity of the S metric was discussed in Section II.
Using two different diagnosis techniques to measure efficiency
was motivated in Section V. The threats to validity derived
from how we determine the algorithm input parameters, espe-
cially the usage of up-to-date coverage information, the prior
fault probabilities and false negative rates, all were covered in
Section V.

B. Technique Analysis

It can be seen in our results that there are significant
differences in the effectiveness of each technique depending
on the program. There is also a noticeable difference between
the Siemens programs and the SIR programs that influences
the behavior of ADDST, transforming it from the worst of all
techniques, to a very competitive one.

To explain the difference in the effectiveness of ADDST
and FEP between Siemens and SIR programs, it is necessary
to explain the relationship between coverage and information
gain. For simplicity of exposition, let us assume that there is
only one fault in the system, and that the fault will produce a
failure whenever covered (FNR=0%). Let us also assume that
the coverage of a test case is uniformly distributed throughout
the program. In this situation, the fault will always be at the
top of the suspect ranking, possibly tied to other candidates. In
this simplified case, the information gain that a test provides
is determined by the reduction of the size of the top-ranked
suspect set. Assuming there are |D| top-ranked suspects, a test
of coverage density ρ will reduce the top-ranked set to |D| · ρ
statements if it fails, and |D| · (1− ρ) if it passes.

Under these conditions, it is shown in [18], that diagnostic
information gain can be modeled by

IG(ρ) = −ρ log2 ρ− (1− ρ) log2(1− ρ) (7)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

C
d
 /
 (

M
-M

f)

Testing Cost

schedule (Mf=3)

RND
ART

ADDST
FEP
RAP
SEQ

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

C
d
 /
 (

M
-M

f)

Testing Cost

space (Mf=3)

RND
ART

ADDST
FEP
RAP
SEQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
e
l.
 F

re
q
u
e
n
c
y

Row-wise ρ

schedule

IG(ρ)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
e
l.
 F

re
q
u
e
n
c
y

Row-wise ρ

space

IG(ρ)

Fig. 2. Impact of coverage density distribution

which is optimal for ρ = 0.5 (50% coverage probability, which
also corresponds to 50% failure probability in this case).

In real test matrices coverage density ρ is not uniform, but
varies for each test. The plot in Figure 2 depicts the evolution
of Cd and coverage density histogram of two programs from
our evaluation. The IG curve is added as reference. Techniques
like ADDST and FEP, designed to maximize coverage, will
tend to select test cases with a very high ρ (thus, a high failure
probability) if they are available, which will fall past the IG
maximum (0.5). This is the case for the schedule program.
This affects their effectiveness greatly, as can be seen in our
results. However, when there are no tests past the IG maximum
(very sparse matrices), as is the case for space and the other
SIR programs, ADDST and FEP are indirectly choosing tests
that are close to the optimum by maximizing coverage.

This coverage distribution also explains the difference in
the APFDc score between Siemens and the SIR programs. For
the Siemens set, RAPTOR and SEQUOIA lower the coverage,
whereas for the SIR programs, they both maximize it, as
ADDST does, hence the similar scores.

The bad results of RAPTOR for the tcas program are due to
the program’s nature and some subtle assumptions underlying
RAPTOR. First, tcas has 174 lines of code but only 9
ambiguity groups, which severely impacts the performance
of any similarity coefficient and makes any improvement in
effectiveness very small. Second, our sample of seeded faults
in tcas and tot_info are not uniformly distributed in
the code, making RAPTOR less optimal. SEQUOIA, being a
dynamic technique, can adapt to this non-uniformity, but the
errors in the FNR estimation (which affect the IG heuristic)
neutralize the gain.

C. Choice of Technique

We now analyze the factors that influence the decision to
test for failures or faults from the first test, and to use either
RAPTOR, SEQUOIA, or an alternative.

Wait for the first failure? We have seen in our evaluation
that the fault detection cost, i.e., the test effort it takes to detect

In
s
p

e
c
ti
o

n
 c

o
s
t

Testing cost

(c)

(a)(b)

1st Failure

DIAGN
ADDST

Fig. 3. Prioritization techniques and usage scenarios

the first failure, can be slightly increased when using diagnos-
tic test prioritization. The first question is whether to perform
diagnostic test prioritization from test 0, or only after the
first failure, since RAPTOR and SEQUOIA have a moderately
decreased fault detection capability. The most conservative
solution, especially if the introduction of a fault is unlikely, is
to initially use ADDST or FEP, and switch to diagnostic test
prioritization if a failure occurs. This corresponds to scenario
(a) in Figure 3. However, if the probability of introducing
a fault during development is high (some projects can have
up to 70% probability [27]), it is better to start directly
with diagnostic test prioritization since the tests executed
until the first failure is found provide the most valuable
diagnostic information. The increased test cost (the first failure
occurs slightly later) is greatly outweighed by the much more
substantial gains in terms of diagnostic performance per unit
of test effort. Therefore, even if it takes slightly longer to
detect a fault, the reduction in the inspection effort required
to precisely locate the fault greatly compensates for this. This
corresponds to scenario (b). Furthermore if coverage density ρ
is very low, diagnostic prioritization and FEP or ADDST will
provide similar fault detection and localization capabilities to
SEQUOIA or RAPTOR. This corresponds to scenario (c).

RAPTOR or SEQUOIA? If using low-cost similarity coeffi-
cients, RAPTOR is the clear choice. However, since SEQUOIA
can potentially provide better results than RAPTOR combined
with Bayesian diagnosis, it is necessary to consider the advan-
tages and disadvantages of each technique.

1) Computational cost: Even though RAPTOR and SE-
QUOIA have a similar order of complexity, RAPTOR
is based on fast bit-wise operators, whereas SEQUOIA
is based on expensive floating point operations, and
requires expensive prior parameter determination. Fur-
thermore, it must be taken into account that SEQUOIA
must perform on-line prioritization, as the tests are
executed, potentially introducing a significant overhead.

2) FNR estimation quality: the IG heuristic used in
SEQUOIA can be severely affected by poor FNR esti-
mations. If the variance of the samples used to estimate
each hj is high (as is the case for tcas), one should
not consider SEQUOIA.

3) Ambiguity and non-uniformity: a test matrix with very
few and very large ambiguity groups, or a system with
extremely biased fault distribution can cause problems to
a static algorithm like RAPTOR. If the FNR estimation
quality is good enough, one could opt for SEQUOIA.

Otherwise, the best would be to opt for a random
approach such as ART or RND.

VII. RELATED WORK

The influence of test-suite extension, reduction, modifica-
tion, and prioritization on fault detection and diagnosis has
received considerable attention [20], [25], [44]. All the works
cited study the effect of prioritization and reduction techniques
that were designed for fault detection, on fault localization.
RAPTOR, on the other hand, is designed with fault localiza-
tion effectiveness in mind, to optimize the improvement of
diagnostic accuracy per unit of test effort.

Baudry et al. [7] propose Test for Diagnosis (TfD) to evalu-
ate the quality of a test suite for diagnosis. Their measurement
is based also on ambiguity groups (dynamic basic blocks
(DBB), in their work). However, their heuristic is focused
exclusively on the number of ambiguity groups, not on their
size. This may lead to needlessly sparse matrices (e.g., a
diagonal matrix in their terms has ideal TfD fitness, but at
excessive test cost). Our algorithm recursively dissects ambi-
guity groups using a much more sophisticated goal function.
As a result, tests are selected that offer higher diagnostic
performance per test, optimizing the coverage overlap in tests
which allows deducing the defect locations in less tests.
Finally, our algorithm handles multiple defects while [7] only
considers single faults, a highly unrealistic assumption in large
systems.

Test case prioritization’s most common goal is to increase
failure detection rate [21], [43]. Multiple coverage-based prior-
itization techniques have been proposed and studied [14], [24],
[28], [35], including techniques that take testing cost variance
into account [13], [38], [46]. RAPTOR fundamentally differs
from the above prioritization techniques in that its main goal
is not to optimize the rate of failure detection, but to also
minimize debugging effort.

Automated fault-localization techniques aim at minimizing
residual diagnostic effort when failures occur during the testing
phase. Statistical approaches include [1], [26], [29], [30], [34],
[42]. A recent, probabilistic approach of acceptable complexity
is [4]. Other approaches to fault localization include [6], [36],
[41]. All the above approaches do not address test sequencing
to optimize diagnostic accuracy, and are essentially similar to
RND.

Sequential diagnosis aims at finding the test sequence that
optimizes diagnostic performance based on the current test
outcomes, applied to hardware systems [33]. If the system
can have multiple faults, sequential diagnosis complexity
becomes exponential, and can only be approximated [17],
[37]. The intelligent probing mechanism by Brodie et al. [8]
uses a similar measurement of ambiguity as RAPTOR, for test
matrix reduction (minimal set of probes), applied to computer
networks.

VIII. CONCLUSIONS & FUTURE WORK

In this paper we presented a diagnostic test prioritization
algorithm, RAPTOR, that selects test cases by their ability to

produce a refined diagnosis (fault localization) rather than to
produce a failure as early as possible (fault detection). Our
results show that RAPTOR’s test prioritization can significantly
improve the reduction of inspection cost per unit of test cost,
when compared to random (RND), adaptive-random (ART),
statement coverage (ADDST, FEP), and IG-based (SEQUOIA)
prioritization. When using similarity coefficients, RAPTOR
provides a 38% and 15% average reduction in S with respect
to the next-best (ART) for single and multiple faults, respec-
tively. In the case of Bayesian diagnosis, RAPTOR achieves
a 13% and 39% average reduction of S with respect to the
next-best (ART) for single and multiple faults, respectively.
Given its negligible sacrifice in fault detection capability,
RAPTOR can be used as the sole test prioritization strategy
during regression testing in many cases, especially when the
probability of introducing defects is high.

Future work focuses on modeling the influence of program
and test suite characteristics on diagnosability. An understand-
ing of these factors will allow us to define new criteria for the
creation of new diagnostic test suites or to improve existing
ones.

ACKNOWLEDGEMENTS

This project is partially supported by the Dutch Ministry
of Economic Affairs under the BSIK03021 program and the
POSEIDON project of the Embedded Systems Institute (ESI),
Eindhoven, The Netherlands.

REFERENCES

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund. A
practical evaluation of spectrum-based fault localization. Journal of
Systems and Software, 82(11):1780–1792, 2009.

[2] R. Abreu, P. Zoeteweij, and A. van Gemund. An observation-based
model for fault localization. In Proc. WODA’08.

[3] R. Abreu, P. Zoeteweij, and A. van Gemund. On the accuracy of
spectrum-based fault localization. In Proc. TAIC PART’07.

[4] R. Abreu, P. Zoeteweij, and A. van Gemund. Spectrum-based multiple
fault localization. In Proc. ASE’09.

[5] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proc. ICSE’05.

[6] G. K. Baah, A. Podgurski, and M. J. Harrold. The probabilistic program
dependence graph and its application to fault diagnosis. In Proc.
ISSTA’08.

[7] B. Baudry, F. Fleurey, and Y. L. Traon. Improving test suites for efficient
fault localization. In Proc. ICSE’06.

[8] M. Brodie, I. Rish, and S. Ma. Intelligent probing: a cost-effective
approach to fault diagnosis in computer networks. IBM Syst. J., 41:372–
385, 2002.

[9] P. K. Chittimalli and M. J. Harrold. Recomputing coverage information
to assist regression testing. IEEE Trans. Softw. Eng., 35(4):452–469,
2009.

[10] J. de Kleer. Diagnosing multiple persistent and intermittent faults. In
Proc. IJCAI’09.

[11] J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artif. Intell.,
1987.

[12] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact. Emp. Soft. Eng. J., 10(4), 2005.

[13] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating varying
test costs and fault severities into test case prioritization. In Proc.
ICSE’01.

[14] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky. Selecting
a cost-effective test case prioritization technique. Soft. Quality Control,
2004.

[15] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE TSE, 28(2), 2002.

[16] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. J. van Gemund.
An empirical study on the usage of testability information to fault
localization in software. In Proc. SAC’11.

[17] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. J. van Gemund.
Spectrum-based sequential diagnosis. In Proc. AAAI’11. (To appear).

[18] A. Gonzalez-Sanchez, H.-G. Gross, and A. J. van Gemund. Modeling
the diagnostic efficiency of regression test suites. In Proc. TEBUG’11
(ICST’11 Workshop).

[19] A. Gonzalez-Sanchez, E. Piel, R. Abreu, H.-G. Gross, and A. J. van
Gemund. Prioritizing tests for software fault localization. Software:
Practice and Experience, 2011. Accepted for publication.

[20] D. Hao, L. Zhang, H. Zhong, H. Mei, and J. Sun. Eliminating harmful
redundancy for testing-based fault localization using test suite reduction:
An experimental study. In Proc. ICSM’05.

[21] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling
the size of a test suite. ACM TSEM, 2(3), 1993.

[22] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria.
In Proc. ICSE ’94.

[23] T. Janssen, R. Abreu, and A. J. C. van Gemund. ZOLTAR: A toolset for
automatic fault localization. In Proc. ASE’09 - Tool Demonstrations.

[24] B. Jiang, Z. Zhang, W. Chan, and T. Tse. Adaptive random test case
prioritization. In Proc. ASE’09.

[25] B. Jiang, Z. Zhang, T. H. Tse, and T. Y. Chen. How well do test case
prioritization techniques support statistical fault localization. In Proc.
COMPSAC’09.

[26] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proc. ICSE’02.

[27] S. Kim, E. Whitehead, and Y. Zhang. Classifying software changes:
Clean or buggy? IEEE TSE, 34(2):181 –196, march-april 2008.

[28] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for regression
test case prioritization. IEEE TSE, 33(4), 2007.

[29] B. Liblit. Cooperative debugging with five hundred million test cases.
In Proc. ISSTA’08.

[30] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: Statistical
model-based bug localization. In Proc. ESEC/FSE-13.

[31] W. Mayer and M. Stumptner. Evaluating models for model-based
debugging. In ASE’08.

[32] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An experimental determination of sufficient mutant operators. ACM
TOSEM, 5:99–118, April 1996.

[33] V. Raghavan, M. Shakeri, and K. R. Pattipati. Test sequencing algorithms
with unreliable tests. IEEE TSMC, 29(4), 1999.

[34] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor
queries. In Proc. ASE’03.

[35] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE TSE, 27(10), 2001.

[36] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight fault-
localization using multiple coverage types. In Proc. ICSE’09.

[37] M. Shakeri, V. Raghavan, K. R. Pattipati, and A. Patterson-Hine.
Sequential testing algorithms for multiple fault diagnosis. IEEE TSMC,
2000.

[38] A. M. Smith and G. M. Kapfhammer. An empirical study of incorpo-
rating cost into test suite reduction and prioritization. In Proc. SAC’09.

[39] G. Stenbakken, T. Souders, and G. Stewart. Ambiguity groups and
testability. IEEE Trans. on Instr. and Meas., 38(5):941 –947, Oct. 1989.

[40] J. M. Voas. Pie: A dynamic failure-based technique. IEEE TSE,
18(8):717–727, 1992.

[41] X. Wang, S. Cheung, W. Chan, and Z. Zhang. Taming coincidental
correctness: Coverage refinement with context patterns to improve fault
localization. In Proc. ICSE’09.

[42] W. Wong, T. Wei, Y. Qi, and L. Zhao. A crosstab-based statistical
method for effective fault localization. In Proc. ICST’08.

[43] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of
effective regression testing in practice. In Proc. ISSRE’97.

[44] Y. Yu, J. A. Jones, and M. J. Harrold. An empirical study of the effects
of test-suite reduction on fault localization. In Proc. ICSE’08.

[45] A. Zeller. Isolating cause-effect chains from computer programs. In
Proceedings of Symposium on the Foundations of Software Engineering
(FSE’02).

[46] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei. Time-aware test-case
prioritization using integer linear programming. In Proc. ISSTA ’09.

