Zoltar: A toolset for automatic fault localization’

Tom Janssen Rui Abreu

Arjan J.C. van Gemund

Embedded Software Lab
Delft University of Technology
The Netherlands
{t.p.m.janssen, r.f.abreu, a.j.c.vangemund}@tudelft.nl

ABSTRACT

Locating software components which are responsible for ob-
served failures is the most expensive, error-prone phase in
the software development life cycle. Automated diagnosis of
software faults can improve the efficiency of the debugging
process, and is therefore an important process for the de-
velopment of dependable software. In this paper we present
a toolset for automatic fault localization, dubbed Zoltar,
which hosts a range of spectrum-based fault localization
techniques featuring BARINEL, our latest algorithm. The
toolset provides the infrastructure to automatically instru-
ment the source code of software programs to produce run-
time data, which is subsequently analyzed to return a ranked
list of diagnosis candidates. Aimed at total automation (e.g.,
for runtime fault diagnosis), Zoltar has the capability of in-
strumenting the program under analysis with fault screeners
as a run-time replacement for design-time test oracles.

Categories and Subject Descriptors

D.2.5 [Software engineering]: testing and debugging—
debugging aids, diagnostics.

General Terms

Reliability, Experimentation.

1. FAULT LOCALIZATION

An important part of diagnosis and repair consists in lo-
calizing faults. Several tools for automated debugging/di-
agnosis implement an approach to fault localization based
on an analysis of the differences in abstraction of program
traces (aka program spectra [4]) for passed and failed runs.

*This work has been carried out as part of the TRADER
project under the responsibility of the Embedded Systems
Institute. This project is partially supported by the Nether-
lands Ministry of Economic Affairs under the BSIK03021
program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASE’09 — November 16 - 20, 2009, Auckland, New Zealand

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Passed runs are executions of a program that behaved as ex-
pected, whereas failed runs are executions in which an error
was observed.

A program spectrum is a collection of data that provides a
specific view on the dynamic behavior of software. This data
is collected at run-time, and typically consist of a number of
counters or flags for the different parts of a program. Many
different forms of program spectra exist [4], some of which
are supported by the Zoltar toolset [5] (such as spectra for
basic block hits, function hits, def-use pairs).

Error detection is a prerequisite for fault localization. We
must know that something is wrong before trying to lo-
cate the responsible fault. Failures constitute a rudimen-
tary form of error detection, but many errors remain latent
and never lead to a failure. Test oracles can provide error
detection at the development stage. An example of an oper-
ational stage technique that increases the number of errors
that can be detected is program instrumentation with in-
variants such as checks on null pointers and array bounds
checking. The Zoltar toolset supports instrumenting fault
screeners [1], which are generic program invariants that are
trained to be application specific.

The hit spectra of N runs constitute a binary N x M
activity matrix A, whose columns correspond to M different
parts of the program. The information in which runs an
error was detected constitutes another column vector e, the
error vector. The pair (A, e) serves as input for spectrum-
based fault localization approaches.

Two approaches to fault localization that take (A, e) as
their only input are supported by the Zoltar toolset. The
first is based on statistics. Under the assumption that a
high similarity to the error vector e indicates a high proba-
bility that the corresponding parts of the software cause the
detected errors, the calculated similarity coefficients rank
the parts of the program with respect to their likelihood of
containing the faults. The best performing coefficient is the
Ochiai coefficient [2] and is used by Zoltar by default. How-
ever, the tool set also provides several other coefficients [2],
such as the Tarantula coefficient [6].

The second, distinguishing, approach implemented in the
Zoltar toolset is a reasoning method, dubbed BARINEL [3].
BARINEL is a spectrum-based, logic reasoning approach to
fault localization, and is able to deduce multiple-fault candi-
dates. It returns a ranked list of diagnosis candidates based
on a posterior probability. The ranked list of multiple-fault
diagnosis candidates is subsequently translated to the or-
dered listing of program locations, similar to the statisti-
cal techniques. The BARINEL approach has been shown to

outperform the coefficient-based methods, even with single-
fault cases [3].

Spectrum-based fault localization techniques, such as the
ones provided by the Zoltar toolset, do not rely on a model of
the system under investigation, and can easily be integrated
with existing testing procedures. Due to the relatively small
overhead with respect to CPU time and memory require-
ments, they lend itself well for application within resource-
constrained environments. Research has shown that for small
programs (O(100) lines) 5—20% of the code remains to be in-
spected [2]. However, for large programs this fraction drops
to less than a percent [3], making these techniques an inter-
esting debugging aid.

2. ZOLTAR TOOLSET

The Zoltar toolset provides a blackbox method involving
three phases: (1) instrumentation, (2) data gathering, and
(3) data analysis.

With respect to the instrumentation phase, a program un-
der analysis is instrumented using the LLVM [7] framework.
The instrumentation phase also allows partial instrumenta-
tion of the program, in order to reduce run-time overhead
(see Figure 1 for an overview on the instrumentation phase).
The resulting instrumented executable has the same func-
tionality as the original plus functionality to generate spec-
trum information of runtime behavior. Additionally, vari-
ables in the program can be instrumented to train program
invariants, enabling automatic error detection.

By ey e bl

livm-link "

Instrument

instrumented partial byte code “

Iivm-link

lle

e code m external libs
s
instrumented executable ¥ analyzelib

Figure 1: Instrumentation Phase

Running the instrumented program on test inputs results
in the gathering of runtime data, which consists of the pro-
gram spectra of different runs. This data is extended with
the pass/fail status of each run, which can be either set
manually, or generated automatically using automatic error
detection. We have measured the run-time overhead to be
5% on average on our experiments with the Siemens bench-
mark set of programs [2].

The gathered data is essentially the pair (A, e) to be used
as input for the fault localization techniques. This results
in a ranking of fault locations, where the top rankings con-
sists of locations most likely to contain the fault. The tech-
niques provided by the Zoltar toolset are of low complexity
(e.g., the BARINEL technique, the most expensive technique
in the toolset, takes 41s to yield the diagnostic ranking for
a 10KLOC-program). Refer to [3] for a detailed comparison
of the techniques provided by Zoltar. Moreover, Zoltar pro-
vides tools to instrument a program, examine the program
spectra, edit the program invariants of the instrumented pro-
gram, and to visualize diagnostic results within the original
source code (see [5] for detailed info).

3. RELATED WORK

Automatic software fault localization has been an active
area of research for the past years, and several tools are pub-
licly available. Similar to the Zoltar toolset, the following
techniques do not use any prior knowledge of the system to
produce the set of diagnosis candidates. Sober [9] and the
Cooperative bug isolation [8] are statistical debugging tool
which analysis traces fingerprints and produces a ranking of
predicates by contrasting the evaluation bias of each predi-
cate in failing cases against those in passing cases. Delta
Debugging [11] compares the program states of a failing
and a passing run, and actively searches for failure-inducing
circumstances in the differences between these states. The
Tarantula tool [6] is a statistics-based technique that takes
as input abstraction of program traces and computes a list
of diagnosis candidates. The Tarantula technique is also
provided by the Zoltar toolset.

Although some other approaches to fault localization ex-
ist, such as model-based approaches [10], we refrain from
discussing them here because (1) space constraints, and (2)
as opposed to our diagnostic tool and the other approaches
described in the previous paragraph, these approaches take
not only observations, but also use previous knowledge of
the program (e.g., a model) to reason over observed failures.

4. CONCLUSIONS

This paper describes Zoltar, a toolset for automatic soft-
ware fault localization. The toolset as well as a comprehen-
sive tutorial can be obtained from www.fdir.org/zoltar.
Furthermore, refer to [3] for detailed information on the fea-
turing technique provided by our toolset.

Adding a new techniques to the toolset is straightforward
due to the design of the toolset [5], and that would provide
researchers a common ground to compare their approaches.
We plan to add other techniques to the toolset.

5[‘1] }BEE&E&E&EZEBSZ, P. Zoeteweij, and A. J. C. van

Gemund. On the performance of fault screeners in software
development and deployment. In Proc. of ENASE’08.
(2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the
accuracy of spectrum-based fault localization. In Proc. of

TAIC PART07.

R. Abreu, P. Zoeteweij, and A. J. C. van Gemund.
Spectrum-based multiple fault localization. In Submitted to
ASE’09.

[4] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi.
An empirical investigation of the relationship between
spectra differences and regression faults. Software Testing,
Verifation and Reliability, 10(3):171-194, 2000.

(5] T. Janssen, R. Abreu, and A. van Gemund. The Zoltar
toolset v1.0. http://www.fdir.org/zoltar, 2009.

6] J. A. Jones and M. J. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In Proc.
ASE’05.

[7] C. Lattner and V. S. Adve. LLVM: A compilation
framework for lifelong program analysis & transformation.
In Proc. CGO’04.

[8] B. Liblit. Cooperative debugging with five hundred million
test cases. In Proc. ISSTA’08S.

[9] C. Liu, L. Fei, X. Yan, J. Han, and S. Midkiff. Statistical
debugging: A hypothesis testing-based approach. TSE.

[10] W. Mayer and M. Stumptner. Evaluating models for
model-based debugging. In Proc. ASE’08.

[11] A. Zeller. Isolating cause-effect chains from computer
programs. In Proc. FSE’02.

3

APPENDIX
A. TOOL PRESENTATION

To illustrate the fault localization process using the Zoltar
toolset, and more specifically the BARINEL approach, we
consider three different programs, and we investigate var-
ious types of bugs. First, we consider a small thread-based
program with two mutex related bugs. This illustrates the
basic concepts and show the value of the toolset for this
rather difficult to debug but common kind of fault. Sec-
ond, we investigate two problems in mplayer, a program of
realistic size. In particular, we investigate a GUI related
bug and a problem which is caused due to corrupted input
data. Finally, we investigate a fault multiplicity of five in
the well-known space program.

A.1 textVal

Consider the example textVal program of which the pseudo-

code is given in Figure 2. It calculates a value based on the
number of occurrences of different types of characters within
a text. For demonstration purposes this program is delib-
erately created using three separate threads, each scanning
for a different type of character and incrementing a shared
value.

/* shared data x/
int val;

/* function for updating val */
void updateVal(int d) {

int tmp = val;

tmp += d;

val = tmp;

}

/* thread for reading letters x/
void *readLetters(void sxbuffer) {
// while not at end of buffer
// if current character is letter
// lock mutex
updateVal (1);
// unlock mutex

}

/* thread for reading digits */
void *readDigits (void xbuffer) {
// while not at end of buffer
// if current character is digit
updateVal (2);
¥

/* thread for reading other characters */
void *readOther (void xbuffer) {
// while not at end of buffer
// if current character is non alphanumeric
// lock mutex
updateVal(10);

Figure 2: Pseudo code for the textVal program.

Two bugs related to mutual exclusion are introduced. The
critical section of this code is at the updateVal function,
which adds the value of its argument to the shared value
containing the result of the program. The thread that is
responsible for reading letters of the alphabet, running the
readLetters function, correctly locks and unlocks the mu-
tex. However, it is assumed that other threads do the same,
which is not always the case and which in practice results

in difficult to find bugs. In this case, the thread that scans
for digits (readDigits) does not lock and unlock the mutex,
which results in a critical section that is not exclusively exe-
cuted by one thread at a time. If the first threads reads the
shared value and the second thread reads the same value
before the first thread has written a value back, then in-
formation is lost and the resulting value will be lower than
expected.

The second introduced bug in this code is located in the
third thread, which scans for special characters. This thread
does lock the mutex, but does not release the exclusive right
to the critical section, resulting in a situation in which the
first thread waits forever for the mutex to become unlocked.

Instrumentation is performed on LLVM bytecode, which
is obtained using the LLVM gcc frontend. An overview of
instrumentation passes is given in Table 1. Some instrument
the program to generate different kinds of program spectra,
others instrument variables within the program for train-
ing program invariants to enable automatic error detection.
Additionally, the Zoltar toolset provides instrumentation for
protecting the part of memory in which the program spectra
and invariant data are stored.

pass name description

-spfunction function level spectrum generation
-spbasicblock basic block level spectrum generation
-spdefuse spectrum generation of def-use pairs
-invstore memory store value invariants
-invload memory load value invariants

-invfunctiontimer | function execution time invariant

—-invloopcount loop iteration count invariant
-memprotection protection of instrumentation data
-mainbypass bypass of main and exit functions

Table 1: Overview of instrumentation passes.

Using Zoltar’s instrument tool the textVal program is
instrumented to generate a program spectrum on the basic
block level and to be able to train function timer invariants
using the following commands:

1llvm-gcc -emit-1llvm -g -c textVal.c -o textVal.bc
instrument -f -invfunctiontimer -spbasicblock \
-memprotection -bypassmain textVal.bc -o textVal.ibc
1llc -f textVal.ibc -o textVal.s

gcc textVal.s -o textVal -lpthread -linstrument

H VvV

expected | textVal
test file | input output | output
testl.in | "abcdefghij" 10 10
test2.in | "0123456789" 20 20
test3.in | "AOB1C2D3E4" 15 15
test4.in | large text only 1040 1040
test5.in | large text and digits 920 < 920
test6.in | ".=+-#" 50 hangs

Table 2: Test suite for the textVal program with in-
formation on the number of letters, digits and other
characters.

Data is gathered by running the instrumented program
on available test inputs. Table 2 shows the test suite that is
available for this program. The input, or a description of the

input, is given together with the expected output and the
actual output of the program. By just running the instru-
mented program on the first four test inputs, (which result
in normal perceived behavior of the program) the function
timer invariants are trained. These trained ranges are then
stretched to allow inputs of larger scale (the function exe-
cution time is input related). The instrumented program
is then set from training mode to test mode, which enables
the automatic error detection. The fifth test input returns
a value lower than the expected value. The sixth test input
causes the function timer invariant to trigger an error, be-
cause one of the functions keeps waiting for the mutex to
become unlocked. The data gathering process results in the
pair (4, e) of which a simplified" version is shown in Figure 3.
Block 1 corresponds to the basic block within the updateVal
function, Block 2 to 4 correspond to the basic blocks within
the if statements of the three thread functions.

block
test file [1 2 3 4 | error
testlin [1 1 0 O 0
test2.in [1 O 1 O 0
testd.in [1 1 1 O 0
test4din |1 1 0 O 0
testbin [1 1 1 O 1
test6.in [1 1 0 1 1

Figure 3: Simplified (A4,e) for the textVal program.

The resulting run-time data of the test runs is stored in
a separate file. This file is created after the first run and is
incrementally updated at every next run. This is illustrated
in Figure 4. The data file contains program spectrum in-
formation, invariant data and the operating mode of the
instrumented program, among other things.

Read data

/ traifing testing
Update] Invariant
data Eerror

Passedrun Fa/'u'e/drun

Write data

Figure 4: Zoltar data gathering workflow.

Two tools are provided for the data analysis. The zoltar
tool is created to work in a console environment. This en-
ables it to be used in many environments, including a remote
shell. The zoltar tool provides an interface for the data file,
can give a summary of the instrumentation of the program,
is able to show spectrum data for each instrumented spec-
trum, can alter the pass/fail status of each run, calculates

!Other basic blocks are either never executed or always ex-
ecuted or are not represented in the pseudo code given in
Figure 2.

SFL/Barinel results and offers invariant tweaking options.
By default the zoltar tool is started with a menu based
interface.

An intuitive visualization is achieved with the xzoltar
tool, which shows a graphical representation of the ranked
list returned by the underlying diagnostic approach, where
each line is color coded. A red line indicates that it is likely
to be the location of the fault. A green line indicates that
it has little correlation with the failure. Next to the tab
for the ranked list there is a separate tab for each instru-
mented source file. In these files the lines which are present
in the ranking have the same coloring. This simplifies the
process of locating areas of interest in each file and to view
the surrounding code, which gives some context of why the
specified location would possibly be at fault. A screenshot
of the resulting ranking of basic blocks of the textVal case,
using the BARINEL approach, is given in Figure 5.

C xzoltar BEE)

;Ranked L\st: textVal c

Rank Score Line Code

0.45029 textVal c:29 -

0.37266 textval.c:17 -
0.37266 textVal c:19 -
0.37266 textVal.c:19 - —

1

2

3

4

5 0.37266 textval.c:20 -
6

7

]

9

0.37266 textVal c:22 -
0.37266 textVal.c:26 -
0.37266 textVal c:28 -
0.37266 textval.c:33 -
10 0.37266 textVal c:27 -
11 0.37286 textval.c:35 -
12 0.37266 textVal c:39 - z

Figure 5: Visualization of Barinel ranking of the
textVal case.

- xzoltar ===

Ranked List textVal.c,

Rank | Score Line Code =

50 wvoid *readOther(void *buffer) {
17 0.37266 51 char *c = (char¥*)buffer,
21 0.37266 52 while (*c !=0) {
18 0.37266 53 if (lisalnum(*c) && lisspace(*c)) {

oo

55 updateVal(10),
56 M BUG: forgot to release the lock! */ M
57 }

20 037266 58 C++;

59}
61

1

Figure 6: Source code location of the first textVal
bug.

Figure 6 shows the source code context of the highest
ranking location. The indicated location is indeed the lo-
cation of one of the bugs (the mutex is locked but not un-
locked). After this bug is fixed, the tests can be repeated,
resulting in another (A, e) which results in another BARINEL
ranking. The part of the source code with the highest rank-

[
L)
%

C xzoltar

Ranked List | textval.c.

Rank Score Line Code =
37

38 void *readDigits(void *buffer) {

42 /¥ BUG: no mutex locking! */

}

48 }
49 =

Figure 7: Source code location of the second textVal
bug after fixing the first bug.

ing location, after the first fault was fixed, is shown in Figure
7. This is the basic block in which the locking and unlocking
of the mutex is neglected.

A.2 mplayer

To test the toolset on a more realistically sized program,
we have instrumented mplayer?, which totals around 650,000
LOC. We investigate two cases of unexpected behavior using
mplayer version 1.0rc2:

1. When using a GUI and changing the position of the
volume slider while the balance slider is not at center,
the position of the balance slider changes as well.

2. Using a particular .avi video file as input, changing the
position in the file beyond some point causes the video
to end immediately.

Instrumenting a complete program is not always practi-
cal or can become inefficient. Instrumented code could slow
down execution, depending on the program and the kind
of instrumentation. For example, a program that writes
to memory intensively could suffer slowdown when instru-
mented with store invariants and memory protection. To
overcome this problem and to be able to investigate cer-
tain parts of the program (as a result of previous tests), the
Zoltar toolset enables partial instrumentation of a program.

In the case of mplayer the core of the program together
with the gui and demux libraries were instrumented on the
basic block level together with memory protection and store
invariants. In total, approximately 100 kKLOC of the 650
kLOC was instrumented. This resulted in an instrumented
movie player executable of which a slowdown of performance
was barely noticeable, i.e., playing videos on the instru-
mented version showed little difference compared to the orig-
inal version.

The code responsible for the first behavior was located by
testing the instrumented executable with six different user
inputs. Two test inputs caused the peculiar behavior and
thus resulted in a failing run. The remaining four tests in-
volved changing one or both of the sliders without the be-
havior appearing to the user, or not changing the sliders
at all. Running the xzoltar tool afterwards resulted in a

“mplayer is a free and open source movie player able to run
from command line but also supporting optional GUIs

ranking of basic blocks, the relevant of which are distributed
over just 4 of the instrumented 132 files. One basic block
at the top of the BARINEL ranking is involved in handling
the event of a changing value for the balance. In the follow-
ing statements, also executed for a volume change event, the
values for volume of the left and right channel are calculated
from the values of the volume and balance. This is shown in
Figure 8. The next ranked basic block, located in another
file, involves the reverse calculation, where the value for the
balance is calculated from the volume values of the left and
right channel. This value is then represented by the bal-
ance slider in the user interface. A fault in this part of the
code results in the strange behavior of the balance slider.
This part of the code is shown in Figure 9. The top rank-
ing locations are all related to changing the balance. The
Zoltar toolset allows users without detailed information of
the source code of mplayer to localize the cause of certain
behavior. This can be very useful in the testing process of
large software projects.

L
3
|

C xzoltar

Ranked L\st} demuxer.c |interface.c } mixer.c mwc|

Rank Score | Line Code

254 goto set_volume;

255 case evSetBalance
257 set_volume
258 {

11 0.45029 259

| T

float | = guilntfStruct Volume * ((100.0 - guilnttStruct Balan
260 float r = guilntfStruct.Volume * ((guilntfStruct Balance) / 5|
12 0.45029 262 if (r > guilntfStruct.Volume) r=guilntfStruct. Volume;
263 Jf printf{ "1 v: % 2f b % 2f -> % 2f x % 2Mn",guilntfStruct Vo

13 0.45029 264 mixer_setvolume(mixer.l.r); (=]
[11l [[

Figure 8: Relevant part of the source code of the
mplayer GUI behavior.

xzoltar

Rank Score Line Code
641 {
642 float Ir;

879 0.37266 643 mixer_getvolume(mixer,&lL&r);

quilntfStruct Volume=(r=17r1);

880 037266 646 else guilntfStruct Balance=50 0f;

881 0.37266 647 btnModiry(evSetVolume,guilntrstruct.Volume);

648 binModify(evSetBalance,guilntfStruct Balance);
549 1
650 break;

651 case guiSetFileFormat:
882 0.37266 652 guilntfStruct.FleFormat=(int)arg;

[1il I D]

(T

Figure 9: Related source code ranked next explain-
ing the GUI behavior further.

The second issue of mplayer is caused by a particular in-
put. During the tests only one of the available test input
videos resulted in the inability to jump to a location further

in the file. By training the instrumented program with nor-
mal behavior (jumping to various locations in other input
files that cause no abrupt ending) we were able to create
program-specific invariants. During the operational phase
we used the problematic file as input, which caused an in-
variant violation and resulted in a recorded failed run. In
total there were ten passed runs during training and four
failed runs in the operational stage. After the data gath-
ering process BARINEL resulted in a ranked list shown in
Figure 10. Five files of the 132 instrumented files are in
the top five ranking (different basic blocks can get the same
score, when they are executed consecutively in all tests). All
locations are related to the seeking of a video file. The top
three locations are small pieces of code which call a seek
function or are the result of seeking until the end of the file.
These locations can be quickly inspected.

v

Figure 10: Ranked list of the basic blocks related to
the second mplayer behavior.

More interesting are the locations at rank 5 (shown in Fig-
ure 11), belonging to a function in demuxer.c and a function
in demux_avi.c. After investigating the latter, it becomes
clear that an input video is used, which contains only the
first few video key frame indices, but lacks the rest. In
this part of the code, the program continues to skip frames
until a video key frame is found, or the end of the file is
reached. In the case of the input file in the test this results
in abrupt ending of the video. Without detailed knowledge
of the sources, we were able to find the location responsible
for handling the data error. Search effort was limited to only
a limited amount of source code locations.

The described mplayer cases show that the Zoltar toolset
is also suitable for analyzing behavior of large programs.
Furthermore, it shows that the toolset could be useful for
localizing the type of bugs that show up as user interface
inconsistencies as well as localizing pieces of code contribut-
ing to certain behavior when the bug is actually in the input
data itself.

A.3 space

The space program is an interpreter for an array defini-
tion language (ADL), which was developed for the Euro-
pean Space Agency. This C program totals just over 6,000
LOC and there are 38 known faults. The space benchmark
package provides 1,000 test suites that consist of a random
selection of (on average) 150 test cases out of 13,585 and

- xzoltar El=NlEs

=
ol
i
E
2
3
2
| =
5
[=%
o
3
c
9
1
oy
<
2l
[=}
o
3
c
*
]
)
[a]
o
]
3
c
x
]
a3
=2
3
o
3
P
n
o
[a]
3
=
2l
3
-
¥
=
]
Il
2]
v

Rank Score Line Code
13

I D)|

14
15
16
17
18
19
20
21
22
23
24

25

[

Figure 11: Relevant basic blocks ranked somewhat
lower.

guarantees that each branch of the program is executed by
at least 30 test cases.

To show the performance of BARINEL on multiple faults
we combined five known faults into one source file and we
run a randomly chosen test suite (of the 1,000) to obtain
a ranking of fault locations. These fault locations are at
the statement level, which is more fine-grained that the ba-
sic block level discussed previously. Figure 12 shows the
location of the fault (line 3,237) that scored highest in the
ranking. It is shown in position 67 in the list (of the 6,218),
however the actual score returned from BARINEL is second
in rank, and the first locations that are ranked first are dis-
tributed in only four functions and form larger blocks of
statements. This leads to less investigation effort than the
67th place in the ranking suggests.

L] xzoltar = 3

ID

Rank Score | Line Code
3232 return 12;
3233 5
3234

3235

3236 #ifdef FAULT v4
3238 #else

3239 *pp2 = *curr_ptr;
3240 #endif

3241

68 oooz7o [FEER
3243 }
3

Il [»]

Figure 12: Location of the first of five bugs present
in space.

When the first bug was fixed, the tests were run again and
this still resulted in some failures, yielding another ranked
list of locations. The actual fault scoring highest in this case
is at position 73 in the ranked list, but, similar as in the first
case, only four larger blocks of code need investigation before
getting to the fault location.

Fixing this bug and running the tests for the third time
resulted in two of the faults sharing the highest ranking score

in the list. Line 5,201 and line 5,516 were located within the
five larger blocks of code in the highest ranking, which sum
up to 113 of the 6,218 executable lines of code.

Finally, after fixing the previous two bugs, the bug in line
2,469 appeared in the third ranking block of code. The
location in the code is shown in Figure 13. It would in
fact be the twenty-eighth line to investigate, if all lines were
investigated in order of appearance in the ranked list. The
lines are less red in this result, because the line that ranked
first scored rather high in comparison (0.74 vs. 0.47).

Ranked List %S__Eac_E ct
Rank Score Line Code =
20 0.47002 2461 port_ptr->=PSC_UNIT = DEGREES;
21 0.47002 2462 port_ptr->PSH = 0;
22 0.47002 2463 port_ptr->=PSH_UNIT = DEGREES; 1|
23 0.47002 2464 port_ptr->PPA = 0; [
24 0.47002 2465 port_ptr->=PPA_UNIT = DEGREES;
25 0.47002 2466 port_ptr->PHEPOL = DEF_ELEM_LIN_POL_ANGLE;
26 0.47002 2467 port_ptr->PHEPOL_UNIT = DEF_ELEM_LIN_POL_ANGLE__
2468 #ifdef FAULT_v17
27 0.47002 2469 {int pz_dummy = 1; pz_dummy++; } /* LOCATION
2470 #else
2471 port_ptr->OMIT_POL = YES;
2472 #endif z
(G I [v)

Figure 13: Location of the last bug in space.

Zoltar was shown to be able to handle multiple-fault sce-
narios, aiding in the debugging of each fault separately. Af-
ter a bug has been fixed, the number of failing runs will
typically be reduced, which results in another input matrix
and a new ranking to help locate another fault. Little effort
was needed to investigate the limited amount of code in the
top ranking, since the fault resided in the top 5 blocks of
code in each of the discussed rounds of debugging.

A.4 Tool maturity and availability

Currently, the Zoltar toolset is at a beta stage. The de-
velopers package can be downloaded from

http://wuw.fdir.org/zoltar

It is currently only tested on a Linux environment. Zoltar
depends heavily on the LLVM framework and as a result
languages that are supported by Zoltar are the languages
supported by the LLVM frontend, although only C sources
are currently tested. A tutorial is made available to get ac-
quainted with the toolset, which can be downloaded from
the same site. The Zoltar toolset can easily be extended by
adding new program instrumentations or other spectrum-
based calculations for returning a ranked list of fault loca-
tions.

