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Abstract

In fault diagnosis intermittent fault models are an important tool to ade-
quately deal with realistic failure behavior. Current model-based diagnosis
approaches account for the fact that a component cj may fail intermittently
by introducing a parameter gj that expresses the probability the component
exhibits correct behavior. This component parameter gj, in conjunction with
a priori fault probability, is used in a Bayesian framework to compute the pos-
terior fault candidate probabilities. Usually, information on gj is not known
a priori. While proper estimation of gj can be critical to diagnostic accuracy,
at present, only approximations have been proposed. We present a novel
framework, coined Barinel, that computes estimations of the gj as integral
part of the posterior candidate probability computation using a maximum
likelihood estimation approach. Barinel’s diagnostic performance is evalu-
ated for both synthetic systems, the Siemens software diagnosis benchmark,
as well as for real-world programs. Our results show that our approach is
superior to reasoning approaches based on classical persistent fault models,
as well as previously proposed intermittent fault models.
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1. Introduction

In model-based fault diagnosis (MBD) faults are typically assumed to be
persistent. In many practical situations, however, faults manifest themselves
intermittently, such as in copiers where sometimes sheets may be blank, or
where a worn roller sometimes slips and causes a paper jam [11]. Intermit-
tent behavior is also relevant in software fault diagnosis, which is the primary
context of this paper. Although software is supposed to be inherently de-
terministic, intermittent component models are often essential. This can be
due to non-determinism (e.g., race conditions) caused by design faults re-
lated to properly dealing with concurrency. A more compelling reason is
the modeling abstraction typically applied, where, for example, the software
component’s input and output values are abstracted in the model, such that
a component’s output may differ for the same input, manifesting as intermit-
tent failures. Although a weak fault model (that does not stipulate particular
fault behavior) admits any output behavior, modeling inconsistently failing
(software) components merely in terms of weak models results in degraded
diagnostic performance [4].

A model for intermittent behavior [9] was introduced as an extension
of the GDE framework [10, 12]. Essentially, next to the prior proba-
bility pj that a component cj is at fault, a parameter gj is used to ex-
press the probability that a faulty component exhibits correct (good, hence
g) behavior (gj = 0 = for persistently faulty, gj = 1 = effectively ok,
0 < gj < 1 = intermittently faulty). The model is incorporated into the
standard, Bayesian framework that computes the posterior probability of
diagnosis candidates based on observations [8, 12].

The intermittency framework has been shown to yield significantly bet-
ter results (e.g., in the diagnosis and replanning of paper sheet paths in
copiers with intermittent component failures [22], and in software fault di-
agnosis [4]), compared to an approach based on a classical, persistent fault
model. An important problem in using the intermittency model, however,
is the estimation of gj, as calibration data on correct and incorrect compo-
nent behavior is typically not available. Estimating gj for each component
cj would be straightforward when (sufficient) system observations are avail-
able where only that single, intermittent component is involved [9]. However,
in a multiple-fault context usually only system observations are available in
which multiple faulty components are involved. Consequently, isolating to
what extent each individual component contributes to the observed, inter-
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mittent failure behavior is not trivial. However, as the influence of gj in
the computation of the posterior probability of each diagnostic candidate is
significant, exact knowledge of each gj can be critical to overall diagnostic
accuracy.

In [11] as well as in [4, 5] strategies have been proposed to estimate the
gj in a multiple-fault context. However, the approaches are essentially based
on an approximation. In this paper, we present a novel approach to com-
pute the gj, in conjunction with a new approach towards the computation of
the posterior candidate probabilities using an intermittent fault model that
generalizes over classical, persistent MBD approaches. The approach repre-
sents a departure from the current Bayesian framework as used in current
diagnosis approaches (e.g., [4] and [11]) in the sense that (1) the resulting
gj are maximum likelihood estimators instead of approximations, and (2) the
computation of the posterior candidate probabilities is an integral product of
the gj estimation procedure.

Apart from diagnosis accuracy, in this paper we also address diagnosis effi-
ciency. The weak (intermittent) modeling approach, in combination with the
large systems we consider ((O(10, 000) components) leads to a huge diagnos-
tic candidate space. In this paper we present a minimal hitting set algorithm
that features a novel, diagnosis-specific heuristic that directs the search to
generate candidates in order of decreasing posterior probability, even within
equal-cardinality groups. This feature allows the candidate generation pro-
cess to be truncated to a very limited number of candidates (merely 100
in our experiments), yet effectively capturing all posterior probability mass.
This tailored algorithm enables us to apply our diagnosis technique to very
large systems.

This paper makes the following contributions

• We present our new approach for the candidate probability computa-
tion which features a maximum likelihood estimation algorithm to com-
pute the gj of all components involved in the diagnosis. The approach
is coined Barinel1, which is the name of the software implementation
of our method;

• We present a new algorithm to compute the minimal hitting set from

1
Barinel stands for Bayesian AppRoach to dIagnose iNtErmittent fauLts. A barinel

is a type of caravel used by the Portuguese sailors during their discoveries.
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a set of conflicts, called Staccato2, and derive its time and space
complexity;

• We compare the accuracy and complexity of Barinel (including
Staccato) to the current approaches in [4] and [11] for synthetically
generated observation series based on injected faults with known gj

setpoints;

• We describe the application of our approach to software multiple-fault
diagnosis and evaluate its diagnostic performance using the well-known
Siemens suite of benchmark programs (extended for multiple faults) as
well as real-world programs (space, sed, gzip).

The results from the synthetic experiments, as well as from the applica-
tion to real software systems, confirm that our new approach has superior
diagnostic performance to all Bayesian approaches to intermittent systems
known to date, at very limited computation cost.

The paper is organized as follows. In the next section we describe the cur-
rent Bayesian approach to persistent and intermittent models. In Section 3
and 4 we describe our new approach to candidate generation, and posterior
probability computation, respectively. Sections 5 and 6 present experimen-
tal results for synthetic observations, and real program codes, respectively.
Section 7 describes related work, while Section 8 concludes the paper.

2. Preliminaries

In this section we describe the state-of-the-art in MBD involving inter-
mittent faults.

2.1. Basic Definitions

Definition A diagnostic system DS is defined as the triple DS =
〈SD ,COMPS ,OBS〉, where SD is a propositional theory describing the be-
havior of the system, COMPS = {c1, . . . , cM} is a set of components in SD ,
and OBS is a set of observable variables in SD .

With each component cj ∈ COMPS we associate a health variable hj

which denotes component health. The health states of a component are
either healthy (hj true) or faulty (hj false).

2Staccato is an acronym for STAtistiCs-direCted minimAl hiTing set algOrithm.
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Definition An h-literal is hj or ¬hj for cj ∈ COMPS .

Definition An h-clause is a disjunction of h-literals containing no comple-
mentary pair of h-literals.

Definition A conflict of (SD ,COMPS ,OBS) is an h-clause of negative h-
literals entailed by SD ∪ OBS.

Definition Let SN and SP be two disjoint sets of components indices, faulty
and healthy, respectively, such that COMPS = {cj | j ∈ SN ∪ SP} and

SN∩SP = ∅. We define d(SN , SP ) to be the conjunction (
∧

j∈SN

¬hj)∧(
∧

j∈SP

hj)

A diagnosis candidate is a sentence describing one possible state of the
system, where this state is an assignment of the status healthy or not healthy
to each system component.

Definition A diagnosis candidate d(SN , SP ) for DS given an observation
obs over variables in OBS is such that

SD ∧ obs ∧ d(SN , SP ) 2⊥

In the remainder we refer to d(SN , SP ) simply as d, which we identify with the
set SN of indices of the negative literals. A minimal diagnosis is a diagnosis
that is not subsumed by another of lower fault cardinality (i.e., number of
negative h-literals C = |d|).

Definition A diagnostic report D =< d1, . . . , dk, . . . , dK > is an ordered set
of all K diagnosis candidates, for which SD ∧ obs ∧ dk 2⊥.

The diagnostic accuracy of a diagnosis D depends on the ranking of the
actual system’s fault state d∗. Assuming a diagnostician traverses D top to
bottom, a diagnostic approach that produces a D where d∗ is ranked on top
has higher accuracy (i.e., generates less testing effort) than an approach that
ranks d∗ lower. Details are discussed in the experimental evaluation sections
later on.

The Bayesian approach serves as the foundation for the derivation of
diagnostic candidates, i.e., (1) deducing whether a candidate diagnosis dk

is consistent with the observations, and (2) the posterior probability Pr(dk)
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of that candidate being the actual diagnosis. With respect to (1), rather
than computing Pr(dk) for all possible candidates, just to find that most of
them have Pr(dk) = 0, search algorithms are typically used instead, such as
CDA* [31], Safari [14], or just a minimal hitting set (MHS) algorithm when
conflict sets are available (e.g. [12]), but the Bayesian probability framework
remains the basis. In this section we will briefly describe the contemporary
approach to the derivation of candidates and their posterior probability.

2.2. Candidate Generation

Consider a particular process, involving a set of components, that either
yields a nominal result or a failure. For instance, in a logic circuit a process is
the sub-circuit (cone) activity that results in a particular primary output. In
a copier a process is the propagation of a sheet of paper through the system.
In software a process is the sequence of software component activity (e.g.,
statements) that results in a particular return value. The result of a process
is either nominal (“pass”) or an error (“fail”). As explained earlier, in the
sequel we assume weak component fault models (h⇒ <nominal behavior>,
compatible with the notion of intermittency which allows a faulty component
to (intermittently) exhibit correct behavior.

Definition Let Sf = {cj|cj involved in a failing process}, and let Sp =
{cj|cj involved in a passing process}, denote the fail set and pass set, respec-
tively.

Approaches for fault diagnosis that assume persistent, weak fault models
often generate candidates based on fail sets (aka conflict sets), essentially
using an MHS algorithm to derive minimal candidates. A well-known exam-
ple is GDE [12] where fail sets are derived from detecting inconsistencies in
the system given certain input and output observations. Recent approaches
that allow intermittency also take into account pass sets (consistent behav-
ior). Examples that use pass sets next to fail sets include intermittent logic,
and the copier and software systems mentioned earlier. A fail set indicts
components (i.e., increases their posterior fault probability), whereas a pass
set exonerates components (i.e., decreases their posterior fault probability).
The extent of indictment or exoneration is computed using Bayes’ rule. In
the following we assume that a number of pass and fail sets have been col-
lected, either by static modeling (e.g., logic circuits, where each circuit (cone)
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involved in computing an output yields a pass or fail set) or by dynamic pro-
filing (e.g., software, where each run yields a pass or fail set, collectively
known as a hit spectrum [3, 19]).

Definition Let N denote the number of passing and failing processes. Let
Nf and Np, Nf + Np = N , denote the number of fail and pass sets (spectra),
respectively. Let A denote the N ×M activity matrix of the system, where
aij denotes whether component j was involved in process i (aij = 1) or not
(aij = 0). Let e denote the error vector, where ei signifies whether process i
has passed (ei = 0) or failed (ei = 1, i.e., a conflict).

The observations (A, e) are the only input to the diagnosis process (see Fig-
ure 1).

M components conflict

N sets











a11 a12 . . . a1M

a21 a22 . . . a2M

...
...

. . .
...

aN1 aM2 . . . aNM





















e1

e2
...

eN











Figure 1: Input to the diagnostic process

In our Barinel approach we compute the candidates from the fail sets
using our Staccato MHS algorithm (Section 3).

2.3. Candidate Probability Computation

Given the multitude of candidates that are typically generated the rank-
ing induced by posterior probability computation is critical to diagnostic
accuracy. Let Pr(j) = pj denote the prior probability that a component cj

is at fault. Assuming components fail independently the prior probability of
a candidate dk is given by

Pr(dk) =
∏

j∈SN

Pr({j}) ·
∏

j∈SP

(1− Pr({j}))

For each observation obsi = (Ai∗, ei) the posterior probabilities are updated
according to Bayes rule (naive Bayes classifying)

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
· Pr(dk) (1)
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The denominator Pr(obsi) is a normalizing term that is identical for all dk

and thus needs not be computed directly. Pr(obsi|dk) is defined as

Pr(obsi|dk) =







0 if obsi ∧ dk are inconsistent;
1 if obsi is unique to dk;
ε otherwise.

(2)

As mentioned earlier, rather than updating each candidate only candidates
derived from the diagnostic search algorithm are updated, implying that the
0-clause need not be considered.

For the large majority of cases, the ε-clause applies. Many policies exist
for ε [8]. Three policies can be distinguished. The first policy, denoted ε(0)

equals the classical MBD policy for persistent, weak faults, and is defined as
follows

ε(0) =

{

EP

EP +EF
if ei = 0

EF

EP +EF
if ei = 1

(3)

where EP = 2M and EF = (2|dk| − 1) · 2M−|dk| are the number of passed
and failed observations that can be explained by diagnosis dk, respectively.
A disadvantage of this classical policy is that pass sets, apart from making
single faults more probable than multiple faults, do not help in pinpointing
the faults, in particular for weak fault models which do not rule out any
candidates (the 2M term in Eq. 3). In addition, there is no way to distinguish
between diagnoses with the same cardinality, because the terms are merely
a function of the cardinality of the diagnosis candidate.

The next two, intermittent policies account for the fact that components
involved in pass sets should to some extent be exonerated. In the following
we distinguish between two policies, ε(1) [9] and ε(2) [4] which are defined as

ε(1) =

{

g(dk) if ei = 0
1− g(dk) if ei = 1

and

ε(2) =

{

g(dk)
m if ei = 0

1− g(dk)
m if ei = 1

where m =
∑

j∈dk
[aij = 1] is the number of faulty components according

to dk involved in process i 3. Note that a term g(dk) is used rather than

3[·] is Iverson’s operator ([true] = 1, [false] = 0).
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the real individual component intermittency parameters gj. As mentioned
earlier, this is due to the fact that obtaining gj from pass and fail sets where
multiple intermittent failures are involved has been far from trivial. Instead,
an “effective” intermittency parameter g(dk) is estimated for the multiple-
fault candidate dk by counting how many times components of dk are involved
in pass and fail sets. In both policies g(dk) is approximated by

g(dk) =
n10(dk)

n10(dk) + n11(dk)

where

n10(dk) =
∑

i=1..N

[(
∨

j∈dk

aij = 1) ∧ ei = 0]

n11(dk) =
∑

i=1..N

[(
∨

j∈dk

aij = 1) ∧ ei = 1]

Policy ε(2) is a variant of ε(1), which approximates the probability
∏

j∈dk
gj

that all m components in dk exhibit good behavior by g(dk)
m assuming that

all components of dk have equal g values. This takes into account the fact
that the failure probability should increase with the number intermittent
faults involved.

2.4. Example

To illustrate how current Bayesian approaches work, consider the diagno-
sis candidates dk in Table 1 obtained from a 2-faulty gzip software program
(components 2553 and 2763 are faulty, M = 5, 680 components, N = 210
test cases, of which NF = 12 failed). For simplicity, we refrain from report-
ing the activity matrix, summarizing it in terms of n11(dk), n10(dk), n01(dk),
n00(dk) instead4. The terms n01(dk) and n00(dk) are defined as follows

n01(dk) =
∑

i=1..N

[(
∨

j∈dk

aij = 0) ∧ ei = 1]

n00(dk) =
∑

i=1..N

[(
∨

j∈dk

aij = 0) ∧ ei = 0]

4For interested readers, the activity matrix can be downloaded from http://www.st.

ewi.tudelft.nl/~abreu/aij.
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dk n11 n10 n01 n00 g(dk)
{1347} 12 189 0 9 0.94

{2553, 2763} 12 16 0 182 0.57 never involved simultaneously
{2682, 2745} 12 2 0 196 0.14 never involved simultaneously
{2110, 2745} 12 2 0 196 0.14 both involved in 2 passed and 8

failed processes

Table 1: Candidates obtained from gzip

ε(0) ε(1) ε(2)

{1347} 0.11 × 10−1
.
..

.

..
.
..

.

..
...

... {2110, 2745} 0.10 × 10−3 {2682, 2745} 0.12 × 10−3

... 0.11 × 10−3
...

...
...

...
{2682, 2745} 0.11 × 10−3 {2682, 2745} 0.11 × 10−3 {2110, 2745} 0.73 × 10−5

{2110, 2745} 0.11 × 10−3
.
..

.

..
.
..

.

..
...

...
...

... {2553, 2763} 0.19 × 10−9

...
... {2553, 2763} 0.17 × 10−9

...
...

..

.
..
.

..

.
..
.

..

.
..
.

.

..
.
.. {1347} 0.61 × 10−19 {1347} 0.69 × 10−19

{2553, 2763} 0.11 × 10−3
...

...
...

...
...

...
...

...
...

...

Table 2: Diagnostic Reports

A snippet of the diagnostic reports obtained for the different policies is
given in Table 2. Common to traditional policies, ε(0) does not distinguish
between candidates with the same cardinality, ranking them in order of di-
agnosis candidate’s cardinality. The diagnostic report yielded by ε(2) differs
from ε(1) because ε(2) takes into account the number of (faulty) components
involved in a process (the rationale being that the more faulty components
are involved, the more likely it is that the run will fail). Essentially, due to
the ranking position of the true fault ε(2) requires the developer to inspect
less code than the other policies.

In Section 4 we will show that knowledge of the individual gj yields far
better results than the above g(dk) estimations.
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3. Candidate Generation: Staccato

As mentioned earlier, we derive the diagnosis candidates from the activity
matrix A comprising the pass and fail sets. As the fail sets represent conflicts,
we apply a minimal hitting set algorithm to compute the diagnosis candi-
dates. Due to the typically large number of hitting sets a search heuristic
that focuses the search towards solutions that are potentially a minimal hit-
ting set will yield significant efficiency gains. However, many of the computed
minimal hitting sets may potentially be of little value (i.e., have very low pos-
terior probability). Therefore, the solutions need to be ordered in terms of
relevance, possibly aborting the search once a particular number of minimal
hitting sets have been found, again boosting efficiency. MHS algorithms typ-
ically generate candidates in terms of increasing cardinality, implying that
cardinalities of highest posterior probability are generated first. However,
changes in the order within the same cardinality class (aka ambiguity group)
can greatly affect diagnostic accuracy. In this section we present our approx-
imate, statistics-directed minimal hitting set algorithm, coined Staccato,
aimed to increase search efficiency.

Similar to contemporary MHS algorithms [12, 21, 15], the algorithm com-
bines components, starting with cardinality C = 1, until a combination is
found that covers all conflicts. In principle, the algorithm executes in depth-
first order until all minimal hitting sets are found. Initially, the components
cj are ordered using a heuristic function H : j → R. Then during the search
the algorithm selects the components in that order.

A generally accepted heuristic [12] is to assume that components that
are members of more fail sets than other components, are more likely to be
part of a minimal hitting set. The trivial case are those components that
are involved in all sets, which constitute minimal hitting sets of cardinality
1. This heuristic is given by

H(j) =
N

∑

i=1

aij (4)

Despite its generally good performance, the above heuristic is not partic-
ularly tailored to the diagnostic domain. Given a set of conflicts, the MHS
solutions should ideally be ordered in terms of Eq. 1. However, due to the
circular dependency, we would first need an MHS algorithm to be able to
solve Eq. 1, which would defeat any cost-effective approach. Hence, a low-
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cost heuristic that still provides a good prediction of Eq. (1) is a critical
success factor.

A low-cost, statistics-based technique that is known to be a good predic-
tor for ranking (software) components in order of likelihood to be at fault
is spectrum-based fault localization (SFL) [3]. SFL takes the same (spectral)
input (A, e) and produces a ranking of the components in order of fault likeli-
hood. The component ranking is computed using a similarity coefficient that
measures the statistical correlation between component involvement and er-
roneous/nominal system behavior. Many similarity coefficients exist for SFL,
the best one currently being the Ochiai coefficient, known from molecular bi-
ology and introduced to SFL in [3]. It is defined as follows

s(j) =
n11({j})

√

(n11({j}) + n01({j})) ∗ (n11({j}) + n10({j}))
(5)

The similarity coefficient indicts components using n11({j}), and exoner-
ates components using n10({j}) and n01({j}). In [3] it has been shown that
similarity coefficients provide an ordering of components that yields good
diagnostic accuracy, i.e., components that rank highest are usually faulty.
This diagnostic performance, combined with the very low complexity of s(j)
is the key motivation to use the Ochiai coefficient s(j) for H. If (A, e) only
contains conflicts (i.e., 6 ∃ei = 0), the ranking returned by this heuristic func-
tion reduces to the more simple Eq. 4 and, therefore, classic MHS problems
are also adequately handled by our MBD-specific heuristic.

Staccato uses the SFL heuristic Eq. 5 to focus the search of the minimal
hitting set computation (see Algorithm 1). To illustrate how Staccato

works, consider the following (A, e), comprising two fail sets and one pass
set.

c1 c2 c3 ei

1 0 1 1 (conflict)
0 1 1 1 (conflict)
1 0 1 0 (nominal)

From (A, e) it follows H(1) = 0.5, H(2) = 0.7, and H(3) = 1, yielding the
following ranking < 3, 2, 1 >. As component c3 is involved in all failed sets,
it is added to the minimal hitting set and removed from A using function
Strip Component, avoiding solutions subsumed by {3} to be considered
(lines 5–12). After this phase (A, e) is as follows
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Algorithm 1 Staccato

Inputs: Matrix (A, e), number of components M , stop criteria λ, L

Output: Minimal Hitting set D

1 TF ← {Ai∗|ei = 1} ⊲ Collection of conflict sets
2 R← rank(H, A, e) ⊲ Rank according to heuristic H
3 D ← ∅
4 seen← 0
5 for all j ∈ {1..M} do

6 if n11({j}) = |TF | then

7 push(D, {j})
8 A← Strip Component(A, j)
9 R← R\{j}

10 seen← seen + 1
M

11 end if

12 end for

13 while R 6= ∅ ∧ seen ≤ λ ∧ |D| ≤ L do

14 j ← pop(R)
15 seen← seen + 1

M

16 (A′, e′)← Strip(A, e, j)
17 D′ ← Staccato (A′, e′, λ)
18 while D′ 6= ∅ do

19 j′ ← pop(D′)
20 j′ ← {c} ∪ j′

21 if is not subsumed(D, j′) then

22 push(D, j′)
23 end if

24 end while

25 end while

26 return D

c1 c2 ei

1 0 1
0 1 1
1 0 0

Next component to be checked is c2, which is not involved in one failed set.
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Thus, the column for that component as well as all conflict sets in which it
is involved are removed from (A, e), using the Strip function, yielding the
following

1 ei

1 1
1 0

Running Staccato with the newly generated (A, e) yields a ranking with
component 1 only (line 15 – 18), which is a MHS for the current (A, e).
For each MHS d returned by this invocation of Staccato, the union of
d and c2 is checked ({1, 2}), and because this set is involved in all failed
sets, and is minimal, it is also added to the list of solutions D (lines 18–24).
The same would be done for c1, the last in the ranking, but no minimal
set would be found. Thus, Staccato would return the following minimal
hitting sets {{3}, {1, 2}}. Note that this heuristic ranks component 2 on top
of component 1, whereas the previous heuristic ranked component 1 and 2 at
the same place (because they both explained the same number of conflicts).

In the above example the two parameters were set at λ = 1 (relative
search depth), and L = ∞ (maximum number of solutions returned) which
results in a full search (i.e., Staccato is complete). In practice, however,
we exploit Staccato’s focusing property by (1) decreasing λ such that only
the top fraction λ of components in the ranking are actually selected in each
recursion, and (2) aborting the search after L solutions have been returned.
Experiments for synthetic problems have shown that λ = 0.1 hardly sacrifices
completeness where none of the more important MHS solutions are missed,
and that virtually the entire probability mass is returned in less than the first
L = 100 solutions [1]. As a result, Staccato allows our diagnostic approach
to be applied to very large systems.

In terms of the algorithm, Staccato comprises the following steps

• Initialization phase, where a ranking of components using the heuristic
function borrowed from SFL is computed (lines 1–4 in Algorithm 1);

• Components that are involved in all failed sets are added to D (lines
5–12);

• While |D| < L, for the first top λ components in the ranking (including
also the ones added to D, lines 13-25) do the following: (1) remove the
component j and all Ai∗ for which ei = 1 ∧ aij = 1 holds from (A, e)

14



(line 17), (2) run Staccato with the new (A, e), and (3) combine
the solutions returned with the component and verify whether it is a
minimal hitting set (lines 17–24).

We conclude this section with a complexity analysis of Staccato. To
find a minimal hitting set of cardinality C Staccato has to be (recur-
sively) invoked C times. Each time Staccato (1) updates the four coun-
ters per component (O(N ·M)), (2) ranks components in fault likelihood
(O(M · log M)), (3) traverses λ components in the ranking (O(M)), and
(4) checks whether it is a minimal hitting set (O(N)). Hence, the over-
all time complexity of Staccato is O((M · (N + log M))C). In practice,
however, due to the search focusing heuristic the time complexity is merely
O(C ·M · (N + log M)). With respect to space complexity, for each invoca-
tion of Staccato the algorithm has to store four counters per component to
create the SFL-based ranking (n11, n10, n01, n00). As the recursion depth is C
to find a solution of the same cardinality, Staccato has a space complexity
of O(C ·M). In [1] it has been verified that Staccato generates solutions
with high search efficiency, ordered such that all posterior probability mass
is concentrated in the first L solutions. Experiments involving activity ma-
trices of size 30 × 300 show that diagnostic accuracy is optimal for as low
as L ≥ 100. The performance benefits of our approach is exemplified by the
fact that matrices with M = 1, 000, 000, N = 1, 000, and C = 1, 000 are
processed with an average solution rate of 88.6 ms (2.3 GHz Intel Pentium-6
PC with 4 GB memory).

4. Candidate Probability Computation: Barinel

In this section we present our approach to compute the gj and the associ-
ated, posterior candidate probabilities Pr(dk) given the observations (A, e).
In our approach we (1) determine the real gj instead of g(dk), and (2) apply
the gj in an improved epsilon policy to compute Pr(obs|dk). The key idea
underlying our approach is that for each candidate dk we compute the gj for
the candidate’s faulty components that maximizes the probability Pr(e|dk)
of the observations e occurring, conditioned on that candidate dk (maximum
likelihood estimation for naive Bayes classifier dk). For a given process i, in
terms of gj the epsilon policy for (possibly) intermittent components is given
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by

ε =















∏

j∈dk∧aij=1

gj if ei = 0

1−
∏

j∈dk∧aij=1

gj if ei = 1
(6)

Eq. 6 reflects the fact that the probability of a process failure is one minus
the probability that none of the candidate components induce a failure (gj per
component, the product comes from the failure independence assumption, a
common assumption in the diagnosis community).

In our approach gj is solved by maximizing Pr(e|dk) under the above
epsilon policy, according to

G = arg max
G

Pr(e|dk)

where G = {gj|j ∈ dk}. Note that for a particular candidate dk the opti-
mum gj values may differ with those for another candidate d′

k for the same
components.

Our approach, of which the implementation is coined Barinel, is de-
scribed in Algorithm 2 and comprises three main phases. In the first phase
(line 2) a list of candidates D is computed from (A, e) using Staccato

that returns a list of most probable diagnosis candidates (in our experiments
L = 100 candidates).

In the second phase Pr(dk|(A, e)) is computed for each dk ∈ D (lines 3
to 15). First, GeneratePr derives for every candidate dk the probabil-
ity Pr(e|dk) for the current set of observations e. As an example, suppose
the following measurements when c1, c2 are at fault (ignoring the healthy
components):

c1 c2 . . . e Pr(ei|{1, 2})
1 0 . . . 1 1− g1

1 1 . . . 1 1− g1 · g2

0 1 . . . 0 g2

1 0 . . . 0 g1

As the four observations are independent, the probability of obtaining e given
dk = {1, 2} equals (Eq. 6).

Pr(e|dk) = g1 · g2 · (1− g1) · (1− g1 · g2)
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Subsequently, all gj are computed such that they maximize Pr(e|dk). To
solve the maximization problem we apply a simple gradient ascent proce-
dure [6] (bounded within the domain 0 < gj < 1). The motivation behind
the choice for a simple, linearly converging, optimization procedure over,
e.g., a quadratically convergent, but much more complex procedure, is our
focus on demonstrating the added diagnostic accuracy due to our maximum
likelihood estimation approach, rather than to minimize computation cost.
Moreover, even with the simple optimization scheme, all the test programs
are already processed by Barinel in the order of seconds.

In the third and final phase, the diagnoses are ranked according to
Pr(dk|(A, e)), which is computed by Evaluate according to the usual, pos-
terior update (Eq. 1).

For single-fault candidates, the maximum likelihood estimator for g1

equals the intermittency rate
∑

i ei/N , which is the intuitive way to deter-
mine g1 for single faults. Consider the following (A, e) (only showing the c1

column and the rows where c1 is hit), e, and the probability of that occurring
(Pr):

c1 e Pr(ei|dk)

1 0 g1

1 0 g1

1 1 1− g1

1 0 g1

As Pr(e|{1}) is given by Pr(e|{1}) = g3
1 · (1− g1), the value of g1 that max-

imizes Pr(e|{1}) is 3
4
, which is easily found by differentiating the expression

and determining the zero root. From e we find the same intermittency rate
g1 = 3

4
. While averaging over e offers a low-cost, analytic solution to com-

puting gj , this approach only works for single faults, motivating our numeric
(gradient ascent) alternative in the multiple-fault case, in contrast to the
approximate, averaging techniques (ε(1,2)) published thusfar.

Finally, to illustrate the benefits of our approach, consider the example
presented in Section 2.4. As mentioned in the previous section, ε(0) does not
distinguish between candidates with the same cardinality. As (i) candidates
rank with the same probability and (ii) the true fault has cardinality 2, all
candidates with cardinality 1 and 2 would have to be inspected. ε(1,2) dis-
tinguish between candidates with the same cardinality, but {2110, 2745} and
{2682, 2748} outrank the true fault {2553, 2763}. Barinel yields better re-
sults due to a better estimation of estimation of the individual gj, ranking the
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Algorithm 2 Diagnostic Algorithm: Barinel

Inputs: Activity matrix A, error vector e,

Output: Diagnostic Report D

1 γ ← ǫ
2 D ← Staccato((A, e), 1, 100) ⊲ Compute MHS
3 for all dk ∈ D do

4 expr← GeneratePr((A, e), dk)
5 i← 0
6 Pr[dk]

i ← 0
7 ∀j∈dk

gj ← 0.5
8 repeat

9 i← i + 1
10 for all j ∈ dk do

11 gj ← gj + γ · ∇expr(gj)
12 end for

13 Pr[dk]
i ← evaluate(expr, ∀j∈dk

gj)
14 until |Pr[dk]

i−1 − Pr[dk]
i| ≤ ξ

15 end for

16 return sort(D, Pr)

true fault {2553, 2763} before all the other diagnosis candidates considered:

dk gj Pr(dk)
{2553, 2763} g2553 = 0.94 g2746 = 0.001 7.8× 10−4

{2110, 2745} g2110 = 0.26 g2745 = 0.95 3.6× 10−5

{2682, 2745} g2682 = 0.26 g2745 = 0.15 9.0× 10−5

{1347} g1347 = 0.94 5.8× 10−20

As the gj expressions that need to be maximized are simple and bounded
in the [0, 1] domain, the time/space complexity of our approach is identical
to the other reasoning policies presented in Section 2 modulo a small, near-
constant factor on account of the gradient ascent procedure, which exhibits
rapid convergence for all M and C (see Section 6).

5. Theoretical Evaluation

In order to assess the performance improvement of our framework we
generate synthetic observations based on sample (A, e) generated for various
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values of N , M , and number of injected faults C (cardinality). The motiva-
tion for using synthetic data next to real-world data is the ability to study the
effect of the various parameters in a controlled setting whereas real programs
only represent a few parameter settings in the multi-dimensional parameter
space.

Component activity aij is sampled from a Bernoulli distribution with
parameter r, i.e., the probability a component is involved in a row of A
equals r. For the C faulty components cj (without loss of generality we
select the first C components) we also set gj . Thus the probability of a
component being involved and generating a failure equals r · (1− g). A row i
in A generates an error (ei = 1) if at least 1 of the C components generates
a failure. Measurements for a specific (N, M, C, r, g) scenario are averaged
over 1, 000 sample matrices, yielding a coefficient of variance of approximately
0.02.

We compare the accuracy of our approach with previous work in terms
of a diagnostic performance metric W , that denotes the excess diagnostic
work spent in finding the actual components at fault. The metric is an
improvement on metrics typically found in the software debugging domain
which measure the debugging effort associated with a particular diagnostic
method [3, 29]. For instance, consider a M = 5 component program with the
following diagnostic report D =< {4, 5}, {4, 3}, {1, 2} > while c1 and c2 are
actually faulty. The first diagnosis candidate leads the developer to inspect
c4 and c5. As both components are healthy, W is increased with 2

5
. Using

the new information that g4 = g5 = 1.0 the probabilities of the remaining
candidates are updated, leading to Pr({4, 3}) = 0 (c4 can no longer be part of
a multiple fault). Consequently, candidate {4, 3} is also discarded, avoiding
wasting additional debugging effort. The next components to be inspected
are c1 and c2. As they are both faulty, no more effort is wasted. Consequently,
W = 2

5
.

The graphs in Figure 2 plot W versus N for M = 20, r = 0.6 (the trends
for other M and r values are essentially the same, r = 0.6 is typical for real
software as found in the Siemens suite), and different values for C and g.
The plots show that W for N = 1 is similar to r, which corresponds to the
fact that there are on average (M − C) · r components which would have to
be inspected in vain. For sufficiently large N all policies produce an optimal
diagnosis, as the probability that healthy diagnosis candidates are still within
the hitting set approaches zero.

For small gj W converges more quickly than for large gj as computa-
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(a) C = 1 and g = 0.1
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(b) C = 5 and g = 0.1
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(c) C = 1 and g = 0.5
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(d) C = 5 and g = 0.5
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(e) C = 1 and g = 0.9
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(f) C = 5 and g = 0.9

Figure 2: Wasted effort W vs. N for several settings of C and h

tions involving the faulty components are much more prone to failure, while
for large gj the faulty components behave almost nominally, requiring more
observations (larger N) to rank them higher. For increasing C more obser-
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vations are required (N) before the faulty components are isolated. This
is due to the fact that failure behavior can be caused by much more com-
ponents, reducing the correlation between failure and particular component
involvement.

The plots confirm that ε(0) is the worst performing policy, mainly due to
the fact that it does not distinguish between diagnosis with the same fault
cardinality. Only for C = 1 the ε(2) and ε(1) policies have equal performance
to Barinel, as for this trivial case the approximations for gj are equal. For
C = 5 the plots confirm that Barinel has superior performance, demon-
strating that a correct computation of gj is quite relevant. In particular, the
other approaches deteriorate for increasing C.

6. Empirical Evaluation

In this section, we evaluate the diagnostic capabilities and efficiency of
the diagnosis techniques for real programs.

6.1. Experimental Setup

For evaluating the performance of our approach we use the well-known
Siemens benchmark set, as well as the larger programs space, gzip, and sed

(obtained from SIR [13]). The Siemens suite is composed of seven programs.
Every single program has a correct version and a set of faulty versions of the
same program. Although the faulty may span through multiple statements
and/or functions, each faulty version contains exactly one fault. For each
program a set of inputs is also provided, which were created with the intention
to test full coverage. The Space package provides 1, 000 test suites that
consist of a random selection of (on average) 150 test cases and guarantees
that each branch of the program is exercised by at least 30 test cases. In our
experiments, the test suite used is randomly chosen from the 1, 000 suites
provided.

Table 3 provides more information about the programs used in our ex-
periments, where M corresponds to the number of lines of code (components
in this context).

For our experiments, we have extended the subject programs with pro-
gram versions where we can activate arbitrary combinations of multiple faults.
For this purpose, we limit ourselves to a selection of 143 out of the 183 faults,
based on criteria such as faults being attributable to a single line of code, to
enable unambiguous evaluation.
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Program Faulty Versions M N Description

print tokens 7 539 4,130 Lexical Analyzer
print tokens2 10 489 4,115 Lexical Analyzer

replace 32 507 5,542 Pattern Recognition
schedule 9 397 2,650 Priority Scheduler
schedule2 10 299 2,710 Priority Scheduler

tcas 41 174 1,608 Altitude Separation
tot info 23 398 1,052 Information Measure
space 38 9,564 13,585 ADL Interpreter

gzip-1.3 7 5,680 210 Data compression
sed-4.1.5 6 14,427 370 Textual manipulator

Table 3: The subject programs

As each program suite includes a correct version, we use the output of
the correct version as reference. We characterize a run as failed if its output
differs from the corresponding output of the correct version, and as passed
otherwise.

6.2. Performance Results

In this section we evaluate the diagnostic capabilities of Barinel and
compare it with other Bayesian policies. Similar to Section 5, we aimed
at C = 5 for the multiple fault-cases, but for print tokens insufficient
faults are available. All measurements except for the four-fault version of
print tokens are averages over 100 versions, or over the maximum number
of combinations available, where we verified that all faults are active in at
least one failed run.

Table 4 presents a summary of the diagnostic quality of the different ap-
proaches, expressed in terms of wasted debugging effort W (see Section 5).
In agreement with the previous section, the results for software systems con-
firm that on average Barinel outperforms the other approaches, especially
considering the fact that the variance of W is considerably higher (coefficient
of variance up to 0.5 for schedule2) than in the synthetic case (1,000 sample
matrices versus at most 100 matrices in the experiments with real software
programs). Only in 4 out of 30 cases, Barinel is not on top. Apart from
the obvious sampling noise (variance), this is due to particular properties of
the programs. Using the paired two-tailed Student’s t-test, we verified that
the differences in the means of W are not significant for those cases where
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Barinel does not clearly outperform the other approaches, and thus the
noise is the cause for the small differences in terms of W. As an example, for
print tokens2 with C = 2 the differences in the means are significant, but
it is not the case for schedule with C = 1. For tcas with C = 2 and C = 5,
ε(2) marginally outperforms Barinel (by less than 0.5%), which is caused
by the fact that (i) the program is almost branch-free and small (M = 174)
combined with large sampling noise (σW /µW = 5% for tcas), and (ii) almost
all failing runs involve all faulty components (highly correlated occurrence).
For schedule2 with C = 2 and C = 5, ε(0) is better due to the fact that
almost all failing runs involve all faulty components (highly correlated oc-
currence). Hence, the program effectively has a single fault spreading over
multiple lines, which favors ε(0) since it ranks candidates with cardinality one
first.

6.3. Time/Space Complexity

In this section we report on the time/space complexity of Barinel. We
measure the time efficiency by conducting our experiments on a 2.3 GHz
Intel Pentium-6 PC with 4 GB of memory.

Table 5 summarizes the timing results. The columns show the programs,
the average CPU time (in seconds) of Barinel, ε(0), ε(1), and ε(2), needed to
compute the diagnostic report D given (A, e). In all cases, we use Staccato

to generate the candidates. As expected, Barinel is more expensive than
the previous, approximate Bayesian approaches. For example, Barinel re-
quires about 42 seconds on average for space, whereas ε(0,1,2) needs less than
1 second. the reason is the numeric, gradient ascent procedure. The effect
of the gradient ascent costs is clearly noticeable for the first three programs,
as well as space, and is due to a somewhat lower convergence speed as a
result of the fact that the hj are close to 1. Note, however, that the im-
plementation has not been optimized. By using a procedure with quadratic
convergence the performance penalty would largely disappear (e.g., 100 it-
erations instead of 10,000, gaining two orders of magnitude of speedup over
linear convergence).

In the following we interpret the above cost measurements from a com-
plexity point of view. All techniques update |D| candidate probabilities,
where |D| is determined by Staccato. The complexity of Staccato is
estimated to be O(N ·M) (for a constant matrix density r) [1]. Although in
all our measurements a constant |D| = 100 suffices, it is not unrealistic to
assume that for very large systems |D| would scale with M , again, yielding
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Program Barinel ε(0,1,2)

print tokens 45.3 4.2
print tokens2 24.7 4.7

replace 9.6 6.2
schedule 4.1 2.5
schedule2 2.9 2.5

tcas 1.5 1.4
tot info 1.5 1.2
space 41.4 0.9
gzip 28.1 8.2
sed 92 6.7

Table 5: Diagnosis cost (time in seconds)

O(N ·M) for the probability updates. For Barinel the complexity of the
maximization procedure appears to be rather independent of the size of the
expression (i.e., M and C) reducing this term to a constant. As the report
is ordered, the time complexity equals O(N ·M + M · log M). The results in
Table 5 follow the trends predicted by this complexity analysis.

With respect to space complexity, previous Bayesian approaches need
two store the counters (n11, n10, n01, n00) used in the probability update per
candidate. Assuming that |D| scales with M , these approaches have O(M)
space complexity. Barinel is slightly more expensive because for a given
diagnosis dk it stores the number of times a combination of faulty components
in dk is observed in passed runs (2|dk|−1) and in failed runs (2|dk|−1). Thus,
Barinel’s space complexity is estimated to be O(2C ·M) - being slightly
more complex than previous, approximate Bayesian approaches. In practice,
however, memory consumption is reasonable (e.g., around 5.3 MB for sed,
the largest program used in our experiments).

7. Related Work

As mentioned earlier, in many model-based diagnosis approaches (e.g.,
GDE [12] GDE+ [30], CDA* [31], Safari [14]) faults are assumed to be
persistent. Consequently, they may not work optimally when components fail
intermittently. Recently, a model for intermittent behavior was introduced as
an extension of the GDE framework [9], later extended by [4, 5]. As shown by
our results, our approach improves on the approximations within these works,
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providing better results. This paper extends earlier work [2] by (i) including
a full description of our MHS algorithm Staccato, and (ii) including the
three, large, real-world programs into the experimental evaluation (space,
sed, gzip).

Our approach to diagnosing multiple, intermittent faults has been de-
veloped and applied in a software fault diagnosis context. In model-based
reasoning approaches to automatic software debugging, the model is typically
generated from the source code - see [24] for an evaluation of several models.
The model is generated by means of static analysis techniques, and is ex-
tremely complex. While at this detailed level intermittency is not an issue,
the level of detail is such that the associated diagnostic complexity prohibits
application to programs larger than a few hundred lines of code. As an indi-
cation, the largest program used in [24] is tcas (172 lines of code only). In
contrast, our low-cost algorithm scales to hundreds of thousands of lines of
code. Reasoning approaches based on model checkers include explain [18],
and ∆-slicing [18], which compare execution traces of correct and failed runs.
However, in contrast to our approach, these are not fully automatic as the
system under analysis needs to be annotated with pre- and post-conditions
to facilitate the generation of the model. In addition, they seem not to scale
judging by the fact that the authors have only evaluated these approaches
with small programs (only up to 174 lines of code).

Our dynamic approach towards determining component involvement and
system failure (i.e., through (A, e)) is inspired by statistical approaches to
automatic software debugging, known as spectrum-based fault localization
(each row in A is a spectrum). Well-known examples include the Tarantula
tool [20], the Nearest Neighbor technique [29], and the Ochiai coefficient [3].
These approaches rank components in terms of the statistical similarity of
component involvement and observed program failure behavior. While at-
tractive from complexity-point of view, the approaches do not consider mul-
tiple faults. Furthermore, the similarity metric has little value other than for
ranking, in contrast to our probability metric.

As for MHS computation, since Reiter [28] showed that diagnoses are
MHSs of conflict sets, many (exhaustive) MHS algorithms have been pre-
sented in an MBD context. In [17, 12, 28, 32] the hitting set problem is
solved using so-called hit-set trees. In [15] the MHS problem is mapped onto
an 1/0-integer programming problem. Contrary to our work they do not
consider any other information but the conflict sets. It is claimed that the
integer programming approach has the potential to solve problems with thou-
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sands of variables but no complexity results are presented. In contrast, our
low-cost approach can easily handle much larger problems. In [33] a method
using set-enumeration trees to derive all minimal conflict sets in the context
of model-based diagnosis is presented. The authors merely conclude that
this method has an exponential time complexity in the number of elements
in the sets (components). The Quine-McCluskey algorithm [27, 25], originat-
ing from logic optimization, is a method for deriving the prime implicants of
a monotone boolean function (a dual problem of the MHS problem). This
algorithm is, however, of limited use due to its exponential complexity, which
has prompted the development of heuristics such as Espresso (discussed later
on).

Many heuristic approaches have been proposed to render MHS computa-
tion amenable to large systems. In [23] an approximate method to compute
MHSs using genetic algorithms is described. The fitness function used aims
at finding solutions of minimal cardinality, which is not always sufficient
for MBD as even solutions with similar cardinality have different posterior
probabilities. Their paper does not present a time complexity analysis, but
we suspect the cost/completeness trade-off to be worse than for Staccato.
Stochastic algorithms, as discussed in the framework of constraint satisfac-
tion [16] and propositional satisfiability [26], are examples of domain inde-
pendent approaches to compute MHS. Stochastic algorithms are more effi-
cient than exhaustive methods. The Espresso algorithm [7], primarily used
to minimize logic circuits, uses a heuristic to guide the circuit minimization
that is inspired by this domain. Due to its efficiency, this algorithm still
forms the basis of every logic synthesis tool. Dual to the MHS problem,
no prime implicants cost/completeness data is available to allow comparison
with Staccato. To our knowledge the statistics-based heuristic to guide the
search for computing MHS solutions has not been presented before. Com-
pared to the above approaches, a unique feature is its heuristic which, given
its SFL origin, is specifically tailored to model-based diagnosis.

8. Conclusions and Future Work

Intermittent fault models can be crucial when modeling complex systems.
Estimating the probability that a faulty component exhibits correct behav-
ior is an important step for logic reasoning approaches to properly handle
intermittent failures. In contrast to previous work, which merely approx-
imates such probabilities for particular diagnosis candidates, in this paper
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we present a novel, maximum likelihood estimation approach (Barinel) to
compute the exact probabilities per component at a complexity that is only a
constant factor greater than previous approaches due to the use of a heuristic
minimal hitting set algorithm (Staccato) underlying the candidate gener-
ation process.

We have compared the diagnostic performance of Barinel with the clas-
sical (Bayesian) reasoning approach, as well as with three intermittent rea-
soning approaches. Synthetic experiments have confirmed that our approach
consistently outperforms the previous approaches, demonstrating the signif-
icance of maximum likelihood estimation over approximation. Application
to the Siemens benchmark, gzip, sed, and space also suggest Barinel’s
superiority (26 wins out of 30 trials), while the exceptions are caused by
component clustering in combination with sampling noise.

Future work includes extending the activity matrix from binary to integer,
to exploit component involvement frequency data (e.g., program loops), and
reducing the cost of gradient ascent by introducing quadratic convergence
techniques.
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