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Abstract— Recent feedback obtained while applying Model-
based diagnosis (MBD) in industry suggests that the costs in-
volved in behavioral modeling (both expertise and labor) can
outweigh the benefits of MBD as a high-performance diagnosis
approach. In this paper, we propose an automatic approach,
called AMADIOS, that completely avoids behavioral modeling.
Decreasing modeling sacrifices diagnostic accuracy, as the size
of the amiguity group (i.e., components which cannot be discrim-
inated because of the lack of information) increases, which in
turn increases misdiagnosis penalty. AMADIOS further breaks
the ambiguity group size by considering the component’s false
negative rate (FNR), which is estimated using an analytical ex-
pression. Furthermore, we study the performance of AMADIOS

for a number of logic circuits taken from the 74XXX/ISCAS
benchmark suite. Our results clearly indicate that sacrificing
modeling information degrades the diagnosis quality. However,
considering FNR information improves the quality, attaining the
diagnostic performance of an MBD approach.

1. INTRODUCTION

In MBD the cost of the diagnostic process can be broken
down into modeling and solution cost. Solution cost includes
algorithmic as well as identification penalty (pointlessly test-
ing any incorrectly diagnosed candidates), where identifica-
tion cost is often used as diagnostic utility measure. Tradi-
tionally, MBD studies the trade-offs between the above cost
dimensions in a model-once-diagnose-often context, where
modeling cost is amortized over many observations.

While solution cost has been an important success factor
(especially in time-critical applications), a recent design and
maintenance case study in Dutch industry suggests that mod-
eling cost is much more of a bottleneck for the acceptance
of MBD than previously considered. At ASML a LYDIA-
based diagnoser has successfully been used to diagnose faults
in an important electro-mechanical subsystem that frequently
suffered from failures [19]. It was shown that MBD can
reduce solution cost from days to minutes for a once-only
investment of 25 man-days of modeling effort (approximately
2,000 LOC, comprising sensor modeling, electrical circuits,
and some simple mechanisms). Despite the obvious financial
gains, management discontinued the project once it became
clear that only 80% of the model could be obtained automat-
ically from the system’s source code [20], [22].

In view of the continuous evolution of a large fraction of the
subsystems (component upgrading, new lithographic tech-
nology, many machine versions) their reluctance to embrace
non-automated modeling for anything else than their core
business (lithography) seems understandable. Behavioral
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modeling is primarily a complex, manual process which can
be extremely time-intensive and error-prone. For certain
systems, it is even impossible to build behavioral models. For
simple components, as found in combinatorial logic circuits,
a library approach to behavioral component modeling can
amortize much of that cost, reducing the modeling process
to compiling the structural information of the circuit into a
system model. Still, there remains a considerable manual
factor as components evolve and compositionality in complex
systems is typically limited.

The fact that real-world software of realistic size still cannot
be modeled for the purpose of efficient, automatic debug-
ging [17] has led the software engineering community to in-
vestigate approaches that are not based on behavioral model-
ing, such as spectrum-based fault localization (SFL). Unlike
MBD, in SFL the dynamic program execution profiles of tests
(called spectra, hence the name SFL) is correlated with the
test outcomes (pass/fail), typically by using statistical simi-
larity coefficients. The components are subsequently ranked
in order of the likelihood that they are responsible for test
failures. As the spectra are captured by automatic profiling,
and as the test oracles are readily implemented from existing
specifications, no modeling effort is required. Benchmark
studies, as well as case studies by the authors diagnosing
embedded software (100 KLOC) from Philips Semiconduc-
tors (now NXP) have shown promising results [15], [27],
[28]. Recently, a model-based approach to SFL has been
presented [1] where the statistical approach has been replaced
by a reasoning approach. Grounded in (Bayesian) probability
theory, the reasoning approach outperforms the statistical
approach, in particular for multiple-faults, at polynomial cost
due to a number of approximations within the diagnosis
algorithm. In particular, as the reasoning approach is based
on a generic component model no software modeling effort
is involved.

In industrial situations where software and hardware is con-
stantly evolving, a critical success factor in the mainstream
adoption of MBD is whether modeling can be fully au-
tomated. Given the results of (model-based) SFL in the
software domain, in this paper, we study to what extent
(model-based) SFL can offer an alternative to MBD in the
logic hardware domain. Apart from the above industrial
motivation, there are two additional reasons: (1) the motiva-
tion to study the relationship between SFL and MBD, where
SFL’s greater ability to handle large time series of obser-
vation data can partly compensate for its inherently limited
precision compared to MBD, as well as (2) the benefits of a
unified approach to simultaneously diagnosing software and
hardware, particularly of interest in the embedded systems
domain, where the root cause of software level failures can
now be traced down to the hardware level.
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This paper makes the following contributions: (1) We present
a spectrum-based diagnosis approach to logic circuits, which
is part of AMADIOS (AutoMAtic systems Diagnosis wIthout
behaviOral modelS ), to generate diagnosers based on cir-
cuit topology without modeling the behavior of the circuit’s
components. (2) We describe a particular AMADIOS feature
that automatically estimates the error propagation charac-
teristics of a circuit, a critical parameter that significantly
improves the quality of SFL’s Bayesian posterior probability
computation. (3) We compare the performance of AMADIOS

with a state-of-the-art MBD approach (GDE [7]) using the
74XXX/ISCAS85 benchmark suite of logic circuits. Our
results show that for the logic circuits we studied AMADIOS is
indeed capable of approaching the performance of MBD, pro-
vided accurate information for each component is available
on the average pass rate of tests (false negative rate, FNR)
that cover the component when faulted.

Approaches that abstract specific component behavior, also
known as structural diagnosis, have been proposed in the
past, e.g., [5], [8], [11]. None of these approaches are able
to deal with intermittent faults. The Analytic Redundancy
Relation (ARR) based approach [23] is close to our approach.
However, (i) it does not scale well for multiple faults, (ii)
it is not studied for probabilistic framework, and (iii) it is
also incapable of diagnosing intermittent fault. To the best of
our knowledge, we are the first to propose the use of SFL in
the multiple-fault diagnosis of logic circuits comprising both
persistent and intermittent logic.

2. SFL

This section briefly reviews SFL. More detailed descriptions
can be found in [1], [12]. In SFL the following is given:

• A finite set C = {⌋∞, . . . , ⌋|, . . . , ⌋M} of M components
of which Mf are faulted.
• A finite set T = {"∞, . . . ,"⟩, . . . ,"N } of N tests with
binary outcomes O = (o1, . . . , oi, . . . , oN ), where oi = 1 if
test ti failed, and oi = 0 otherwise.
• A N ×M (test) coverage matrix, A = [aij ], where aij = 1
if test ti involves component cj , and 0 otherwise. Each row
is also called a spectrum.

For a Bayesian approach to SFL, the following additional
information is also required:

• The prior fault probability of a component cj , denoted pj .
• The false negative rate (FNR) of a component, denoted
gj , which expresses the probability that a test involving a
component cj , when faulted, will still pass. In software
FNR is related to coincidental correctness [25] and failure
exposing potential [21], while in hardware FNR is related to
failure intermittency [6].

The result of SFL is a component ranking R =<
cr(1), . . . , cr(j), . . . , cr(M) >, ordered in terms of decreasing

likelihood Pr(cj) that cj is at fault. In statistical approaches
to SFL Pr(cj) is approximated using statistical similarity
coefficients [2]. In this paper we will consider a reasoning
approach where the Pr(cj) are posteriors based on Bayesian
probability theory.

The diagnostic utility of R is measured in terms of the
identification cost Cd, which models the verification effort of
a diagnostician, going down the suspect ranking R search-
ing for the actual faults (true positives). In particular, we

measure the identification effort wasted on false positives
(i.e., excluding the components found to be faulted). Let
cr denote the actually faulted component that has the lowest
posterior in R, where r ∈ {1, . . . ,M} denotes its rank in
R. Then Cd = r − Mf . In our studies we will typically
consider a normalized value Cd/(M − Mf ) which ranges
from 0 to 1, in order to compare across varying system sizes.
Note that M − Mf is the number of actually non-faulted
components. This normalized metric is essentially the inverse
of the DXC utility metric [9] for diagnosers that produce no
false negatives (R includes all components so it cannot miss
any faulted component).

Candidate Generation

In AMADIOS R is derived from the multiple-fault diagnosis
D =< d1, . . . , dk, . . . , d|D| > which is an ordered set of
all |D| minimal candidates, ordered by decreasing posterior
probability Pr(dk). Each candidate dk comprises a minimal
set of components cj that, when faulted, are consistent with
all test observations (i.e., a minimal diagnosis).

Candidate generation is based on modeling each component
by the generic, weak (i.e., faulty behavior is not specified)
model2 given by

hj =⇒ (inputs-okj =⇒ output-okj)

where hj denotes component health (true when nominal,
false when faulted), while inputs-ok and output-ok denote
whether the component’s inputs and output are error-free (an
error being produced by some faulted component upstream).
Depending on the test outcome, each row i in spectrum matrix
A yields either a pass set ({cj|aij = 1, oi = 0}) or a fail set
({cj|aij = 1, oi = 1}). It can be easily seen that a fail set
is equivalent to a conflict (set). Candidate generation is based
on computing the minimal hitting sets (MHS) of all fail sets.

When faulted components are covered in a test, the fact that
components have non-zero FNR leads to many pass sets.
While not useful for deriving candidates the pass sets do
influence a candidate’s posterior probability, and are also
useful for speeding up (focusing) the MHS computation.

Probability Computation

Given the typically large number of candidates in D that
have equal fault cardinality, for large systems the ranking
induced by the posterior probability computation is critical to
diagnostic accuracy. For each observation obsi = (Ai∗, oi)
the posteriors are updated according to Bayes’ rule

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
· Pr(dk|obsi−1) (1)

where Pr(dk|obs0) is computed from the priors according to

Pr(dk|obs0) =
∏

{j|¬hj}

pj ·
∏

{j|hj}

(1− pj)

assuming components fail independently. The denominator
Pr(obsi) is a normalizing term that is identical for all dk and
need not be computed directly. Pr(obsi|dk) is defined as

Pr(obsi|dk) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∏

J

gj if oi = 0;

1−
∏

J

gj if oi = 1.
(2)

2Often referred to as abstract modeling in related work.
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where J = {j | cj ∈ dk, aij = 1} is the set of com-
ponent indices in dk covered by the test. Eq. (2) assumes
an OR-model, i.e., the test may fail if either of the faulted
components fail. In general, the OR-model is an acceptable
approximation [14], [1], not in the least since D’s probability
mass is often dominated by single faults, even when the
system has multiple faults.

R is derived from D by aggregating the posteriors of each dk
into posterior component probabilities according to

Pr(cr) ≈
∑

dk∈D,cr∈dk

Pr(dk)

The approximation is due to the fact that formally D should
be expanded with all non-minimal candidates for the above
equation to be correct. The reason for our approximation is
discussed in the next section.

Implementation Details

In AMADIOS we use the STACCATO MHS algorithm for
computing D from (A,O). STACCATO exploits pass sets
in its any-time computation of the most probable minimal
candidates dk. Typically, the first few hundred candidates
practically cover all posterior probability mass, after which
the MHS algorithm is terminated. As a result, for random
problems comprising N = 1, 000 tests and M = 1, 000, 000
components of which Mf = 1, 000 are faulted, the MHS is
diagnosed in less than 0.1 CPU second on a contemporary
PC [1].

As discussed earlier, our performance metric Cd is for-
mally defined in terms of the full (non-minimal) diag-
noses rather than the minimal diagnoses D. For the large
74XXX/ISCAS85 circuits we are considering, however, the
posterior probability mass covered by D is virtually equal to
unity. As the number of minimal diagnoses is considerably
smaller than all diagnoses, the huge computational savings
outweigh the small estimation error by far. The reason
for the small error is that after multiple observations are
combined D already involves all components due to the use
of a weak component model and the fact that the observations
are random (modeling a practical application situation). Even
when multiple faults are present, the latter leads to many
observations that can already be explained by candidates of
lower cardinality. Had we chosen to limit our observations to
MFMC (Max-Fault Min-Cardinality) observations (such as
generated by MIRANDA [10]) we would have to extend D
with non-minimal candidates (e.g., by a low-cost, first-order
extension approach such as in SEQUOIA [12]).

The posterior probability computation is a straightforward
application of Bayes’ rule, implemented within the BARINEL

toolset [1], using an option to externally read the gj param-
eters from file. How the gj are generated is described in
Section FNR Estimation.

3. AMADIOS

AMADIOS applies SFL to diagnose hardware, exploiting
topological information only. Whereas in software the spectra
are obtained by tracing the components that are executed
per test run (dynamic control flow), in hardware a spectrum
originates from a cone, i.e., all components involved in the
computation of a circuit output (determined by topology). A
particular feature of AMADIOS is that it includes a method
to estimate the gj parameters, which is vital to diagnostic

c2

c1

1

0

1

c3

Figure 1. Three-inverter circuit

performance. In the following we outline the principle for
logic circuits. Note, however, that the approach generalizes
to any causal system.

Consider the example circuit shown in Fig. 1. Each primary
output observation is interpreted as one test. Thus one test
vector yields two tests, one which involves c1 and c2 (the
cone of the top primary output), and one involving c1 and c3
(the bottom cone). Since SFL assumes the existence of test
oracles, we observe a pass for the above output, and a failure
for the bottom output. The observations are given in terms of
A and O according to

1 1 0 +
1 0 1 -

where ’+’ and ’-’ denote oi = 0 and oi = 1, respectively,
to distinguish O from A. The single conflict (c1, c3) will
generate two minimal candidates c1, and c3. Let pj = p =
0.01 (equal component types), and let gj = g = 0.5, under
the assumption that a fault will show up at the output in 50%
of the cases. SFL (Eqs. 1, 2) yields the following (minimal)
diagnosis D =< c3(0.67), c1(0.33) >, where Pr(dk) is in
parentheses.

The component rankingR =< c3(0.68), c1(0.37), c2(0.05) >
is computed, where Pr(cr) is in parentheses3. Note that
in this small example we have actually computed R from
the full, non-minimal diagnosis, in order to include c2 in
the probability computation (since c2 is not in D). In our
74XXX/ISCAS85 experiments, however, we simply derive
R from D with negligible loss of accuracy.

SFL vs. MBD

Let us compare this diagnosis with a diagnosis from MBD.
Exploiting the inverter model we can now also propagate
values throughout the circuit, leading to a second conflict
(c2, c3). In SFL terms both conflicts are expressed as

1 0 1 -
0 1 1 -

which yields the minimal candidates c3, and (c1, c2). As-
suming the same priors and FNR we obtain the following
diagnosis D =< c3(0.99), c1 ∧ c2(0.01) >. The derived
ranking R is < c3(0.92), c1(0.21), c2(0.21) (again, from the
full, non-minimal diagnosis). Note that the higher defect
density estimation (Mf =

∑

r Pr(cr) = 1.34) compared to
the SFL solution is due to the fact that now two fail sets are

3Note that the total probability mass (Mf ) may well exceed unity.
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c5

c4

c3

c2

c1

Figure 2. A well-known systems topology

found vs. one fail set and one pass set. The latter exonerates
c1 and c2 leading to lower posteriors.

Despite the difference in posterior distribution, the diagnos-
tic accuracy of both approaches are equal in terms of Cd.
However, the SFL approach suffers from the fact that no
modeling information is exploited. This becomes particularly
clear when considering D. While MBD correctly infers
a single fault (c3 with 0.99 probability) or a double fault
(c1, c2 with 0.01 probability), SFL infers a single fault (c3
with 0.67 probability), and another single fault c1 (with 0.33
probability). As the latter cannot be true SFL suffers from
false positives (in terms of D) compared to MBD. However,
note that typically a diagnostician will only consider R,
which comprises all components anyway. Thus the diagnostic
accuracy is effectively determined by the quality of the pos-
terior computation, which is key in the comparison between
SFL and MBD.

An aspect in favor of SFL is that it exploits the information
of the pass sets, whereas MBD does not (except internally,
e.g., for an MHS engine such as STACCATO, which allows
better focusing, yielding computational cost reduction). This
explains why c3 is ranked higher than c1 although, according
to SFL, both are single-fault candidates. Exploiting pass
set information is one of the reasons why SFL’s diagnostic
performance is of practical interest.

Ambiguity Groups

In AMADIOS A directly derives from the circuit’s topology.
Each of the circuit’s N ′ outputs generates 1 row in A, leading
to N ′ rows in A per test vector. For multiple test vectors
A simply grows in multiples of N ′ rows. Since, regardless
of the number of test vectors, A only contains N ′ different
rows, many of the columns in A are equal. Consider the
well-known systems topology in Fig. 2 which (for a single
observation) generates the following matrix rows

1 1 0 1 0
0 1 1 0 1

Each of both cones, as well as the cone intersection, generates
a set of equal columns in A. The associated components are
called an ambiguity group (AG). In the above example A has
three ambiguity groups (c1, c4), (c2), (c3, c5). While the 1-
member AG does not pose any problem, the other 2-member
AG’s introduce a lower bound on Cd since their member
components cannot be distinguished unless they have dif-
ferent posteriors. The latter is key to our SFL approach in
AMADIOS.

c2

c1

x1

x2 y

Figure 3. Example logic circuit

Ambiguity Reduction

As shown by the 3-inverter example MBD generates addi-
tional fail sets (conflicts) compared to SFL. Consequently,
SFL gives rise to AGs that can be much larger than MBD.
In software the AG problem can often be resolved by adding
better tests (e.g., distinguishing components by introducing
different control flow, unless they belong to the same basic
block). In hardware, however, the AG problem is determined
by circuit topology (which we assume static). As the ratio
between the number of components and primary outputs is
determined by area vs. circumference, the AG problem scales
with the size of the circuit, leading to very large AGs. This
implies that there are also large AGs in the ranking R (equal
posteriors) if the pj and gj would be equal, which can greatly
affect Cd. As pj is typically not available often one assumes
pj to some arbitrary value p. Even when the pj would be
different, the diagnostic performance of SFL is still largely
determined by the quality of gj , as has been shown in the
software domain [13]. The reason is that gj is involved in the
Bayesian update every time a new observation is processed.
In software gj is typically measured using mutation analy-
sis [24]. While these measurements significantly increase
SFL accuracy, the cost of a Monte-Carlo approach scales
linearly with system size. In AMADIOS we therefore also
consider an analytic approach to the estimation of gj since
the estimation quality is sufficient to tackle the ambiguity
problem.

Gate EPP Estimation

Computing the gj of a component cj can be framed as
the problem of computing the error propagation probability
(EPP) through a logic circuit [3], [16]. For example, consider
the simple logic circuit according to Figure 3, comprising an
INV gate (c1) connected to an AND gate (c2). Suppose the
INV gate is faulted. For input x = (X, 0) (X = don’t care)
an error at the output of c1 will be masked by the fact that c2
will always produce y = 0. However, for input x = (X, 1) an
inverter error will always propagate to y. Assuming a uniform
input value probability distribution, the EPP at y is 0.5, and
consequently, g1 = 1− 0.5 = 0.5.

EPP in logic circuits has been studied in the context of relia-
bility studies, primarily motivated by an increasing soft error
rate due to ever decreasing gate sizes [3], [18]. While there
exists a deterministic approach to compute the EPP through
circuits of arbitrary topology given the model of each gate
involved, in this paper we use a novel, probabilistic approach
to EPP computation, since in the AMADIOS approach we
refrain from modeling the actual components. While our
method produces exact estimates of the mean value of the
EPP over the corresponding gate space, the EPP value found
for a particular circuit output may differ from the correct
value. However, a certain error is acceptable provided the
posterior probability ranking by our diagnosis algorithm is
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not too seriously affected.

Due to space limitation, we refrain from explaining in detail
how the EPP is computed. For interested readers, refer to [4].
However, in this paper, we use the general EPP model for a
binary gate as derived in [4]. Let e1 and e2 denote that the
probability that inputs x1 and x2 of the binary gate have an
error respectively. The EPP value (probability e that the gate’s
output has an error) is given by

E[e] =
e1 + e2 − e1 · e2

2
(3)

Note that Eq. (3) is averaged over the space of all 16 con-
ceivable binary gate functions. Computing the EPP at circuit
level simply requires composition of Eq. (3) per gate between
the faulted gate(s) and the circuit output.

FNR Estimation

The above EPP model allows us to directly compute
Pr(obsi|dk) for multiple-fault candidates dk in the Bayesian
update (Eq. (1)), circumventing the approach based on the
single-fault gj parameters in combination with the OR-model
(Eq. (2)). However, the decreasing accuracy with increasing
cardinality makes the EPP model less attractive for multiple
faults. Despite the fact that the OR-model assumes failure in-
dependence, its accuracy in practice outweighs the inaccuracy
of a direct computation [4]. Consequently, in the following
we outline an FNR estimation procedure based on the gj
parameters obtained through single-fault EPP modeling.

Obtaining the EPP for single faults is straightforward. In the
following we assume that a gate is either SA0 (stuck at 0) or
SA1 (stuck at 1), leading to an average failure probability
of 0.5. As this gate is the only faulted gate in the circuit
every subsequent gate downstream to the primary output has
exactly one input that has an error. Consequently, Eq. (3) can
be simplified. Without loss of generality, assume that for each
gate in the path between faulted gate and primary output, x1
is in the error path. Consequently, e2 = 0 and Eq. (3) reduces
to E[e] = e1/2, which implies halving the EPP per stage4.
Let mj denote the ’depth’ of the gate cj relative to the output
considered (for the gate at the output mj = 0). Assuming
that the faulted gate produces e = 1/2 it follows that gj is
given by

gj = 1− 2−(mj+1) (4)

which is substituted in Eq. (2). Thus, in this model the FNR
for a component is only determined by the relative topological
depth of the component relative to a particular circuit output,
where all (intermediate) components are modeled by the
generic model of Eq. (3).

4. EXPERIMENTAL RESULTS

In this section we evaluate the diagnostic performance of
AMADIOS for the circuits described earlier in comparison
to an MBD approach. Tables 1, 2, and 3 list the diagnostic
performance results for 50 random test vectors, averaged over
200 randomly injected fault sets with Mf = 1, 2, 3 faults,
respectively. Instead of Cd we quote Cd/(M − Mf) which

4As mentioned before, this differs for particular gates (1 for XOR, 1/2 for
AND, etc.). Our EPP model represents the average over all 16 conceivable
gates. One can improve the model once statistics are known regarding gate
types.

Table 1. Cd for AMADIOS and MBD (Mf = 1)

Circuit ABAR AMC AEPP MBD

74181 0.176 0.014 0.247 0.030
74182 0.090 0.061 0.080 0.025
74L85 0.320 0.105 0.250 0.060
74283 0.096 0.034 0.155 0.050
c499 0.164 0.092 0.129 0.004
c880 0.065 0.021 0.052 0.006
c1355 0.196 0.135 0.162 0.004
c2670 0.166 0.067 0.089 0.033
c7520 0.112 0.087 0.110 0.003

allows comparison between different values of Mf (a value
of 0 indicates no identification effort, i.e., all faulted compo-
nents are ranked at the top, whereas a value of 1 indicates
maximum identification effort, i.e., all faulted components
are at the bottom of the list).

We consider three versions of AMADIOS:

• A version, denoted ABAR, where gj is not determined by
topology, but is computed internally by BARINEL based on
(A,O) [1]. This reference version [26] is intended to assess
the added value of using topology-specific gj information.
• A version, denoted AMC, where gj is determined from the
circuit using Monte Carlo (MC) simulation and is externally
supplied to BARINEL. This version uses the most accurate gj
information.
• A version, denoted AEPP, where gj is estimated from
the circuit using the analytical EPP model and is externally
supplied to BARINEL.

In order to compare AMADIOS to MBD we include results
for GDE, a state-of-the-art MBD engine [7]. Since GDE does
not provide posterior probabilities we have incorporated GDE
within our SFL approach as follows. The additional conflicts
that GDE infers due to its MBD capability are appended as
rows to the A matrix obtained by AMADIOS, with oi = 1.
The extended (A,O) are processed as usual using STACCATO

and BARINEL.

Comparison of the ABAR and MBD results shows that some
diagnostic accuracy is lost by merely taking into account
structure (topology) with a standard, weak component model
without FNR information. The results for AMC show that
knowledge of the gj has a significant impact on AMADIOS’
diagnostic performance. Although the results are for logic
circuits only, these results suggest that in quite a number
of cases the modeling cost associated with MBD may well
outweigh the limited loss of AMADIOS’s diagnostic utility.

The results for AEPP show that analytically estimating the
gj using our generic component model does not always im-
prove AMADIOS’ performance compared to not using them
(ABAR). Given the impact of gj as shown by AMC, how-
ever, there is a great potential in developing more elaborate,
analytic schemes. An obvious extension of the analytic EPP
model takes into account information on the truth probability
of a gate (in terms of its truth table). For instance, the EPP
characteristics of an AND (truth probability 1/4) and an OR
(truth probability 3/4) are equal to Eq. (3), while an XOR
(truth probability 1/2) has higher EPP (a single error on one
of its inputs always propagates to the output). In some cases
the truth probability of components may be known by design,
or can be measured in isolation using MC simulation.

Single faults dominate the ranking yielded by random vectors
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Table 2. Cd for AMADIOS and MBD (Mf = 2)

Circuit ABAR AMC AEPP MBD

74181 0.314 0.230 0.502 0.110
74182 0.275 0.201 0.250 0.140
74L85 0.550 0.483 0.545 0.144
74283 0.303 0.210 0.355 0.210
c499 0.182 0.123 0.164 0.010
c880 0.461 0.265 0.386 0.011

Table 3. Cd for AMADIOS and MBD (Mf = 3)

Circuit ABAR AMC AEPP MBD

74181 0.480 0.460 0.608 0.287
74182 0.365 0.303 0.350 0.203
74L85 0.671 0.610 0.675 0.195
74283 0.447 0.375 0.516 0.410
c499 0.203 0.158 0.182 0.020
c880 0.502 0.321 0.452 0.020

since there are many single-fault diagnosis candidates that
explain all failed observations. In other words, unlike MBD,
our study does not make use of Max-Fault Min-Cardinality
(MFMC) observation vectors, but instead use random vectors
in an attempt to mimic reality. As a consequence, AMADIOS

suffers from a limitation in presence of multiple faults. Even
for large circuits (c1355, c2670 and c7552) only one of the
faulty components appears in the diagnosis and therefore
AMADIOS could not isolate all of them. Hence we do not
include those circuit results in the paper for Mf = 2 and
3. However, in many real life scenarios, a diagnostician
looking for the root cause of a system failure does not know
in advance how many faults are in the system; every time a
faulty component has been found and replaced, the system
is typically re-tested, to ascertain that all faults have been
found. With such iterative process, multiple faults often can
be detected using the single fault diagnosis approach, making
AMADIOS a useful approach.

5. CONCLUSION

Results clearly show that MBD outperforms every variant of
AMADIOS which demonstrates the importance of modeling
information in diagnosis. However, there are situations where
it is impossible to create behavioral models. For instance,
in software of realistic size and complexity the choice not
to model is typically borne out of necessity. Our industrial
feedback suggests that there is a business proposition in sac-
rificing some diagnostic performance in an approach where
modeling is no longer required.

In this paper we addressed the trade-off between the mod-
eling/identification costs in diagnosis. We also propose to
exploit FNR information to boost the diagnosis quality with-
out actually using the behavioral models. Our results show
that AMADIOS using detailed FNR information is capable
of approaching the performance of MBD. While in software
mutation analysis is relatively easy to implement, measuring
FNR data in hardware can only be done when simulators are
available. Consequently, we also studied a simple, abstract
EPP modeling technique to analytically estimate the FNR
data. Our results show that a more detailed EPP model is
required to attain the performance of Monte Carlo measure-
ments.

Future work will address improved EPP modeling to fur-
ther exploit the potential of AMADIOS. Currently, we use
a generic component EPP model, and we will investigate
whether we can reach the quality of the Monte Carlo ap-
proach by dynamically measuring each component’s EPP.
The great significance of such empirical study is to measure
EPP without needing to inject faults in the circuit, while still
not modeling component’s behavior.
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