
A Dynamic Modeling Approach to Software Multiple-Fault Localization∗

Rui Abreu and Peter Zoeteweij and Arjan J.C. van Gemund

Embedded Software Lab

Delft University of Technology

The Netherlands

{r.f.abreu,p.zoeteweij,a.j.c.vangemund}@tudelft.nl

Abstract

Current model-based approaches to software de-
bugging use static program analysis to derive a
model of the program. In contrast, in the soft-
ware engineering domain diagnosis approaches are
based on analyzing dynamic execution behavior.
We present a model-based approach where the pro-
gram model is derived from dynamic execution be-
havior, and evaluate its diagnostic performance for
both synthetic programs and the Siemens software
benchmark, extended by us to accommodate multi-
ple faults. We show that our approach outperforms
other model-based software debugging techniques,
which is partly due to the use of De Kleer’s in-
termittency model to account for the variability of
software component behavior.

1 Introduction

Automatic software fault localization techniques aid devel-
opers to pinpoint the root cause of failures, thereby reduc-
ing the debugging effort. Two major approaches can be dis-
tinguished, (1) the spectrum-based fault localization (SFL)
approach, a statistical approach that correlates dynamic soft-
ware component activity (i.e., execution traces) with program
failures [1; 12; 13], and (2) the model-based diagnosis or de-
bugging (MBD) approach, which deduces component failure
through logic reasoning over a static model of the program [4;
5; 6; 7; 8; 9; 15; 16; 20].
Because of its low computational complexity and absence

of modeling requirements, SFL has gained large popularity
in the software engineering community. Although inherently
not restricted to single faults, in most cases these statistical
techniques are applied and evaluated in a single-fault context,
such as the Siemens benchmark set [10], which is seeded with
only 1 fault per program (version). In practice, however, the
defect density of even small programs typically amounts to
multiple faults. Although the root cause of a particular pro-
gram failure need not constitute multiple faults that are act-
ing simultaneously, many failures will be caused by different

∗This work has been carried out as part of the TRADER project
under the responsibility of the Embedded Systems Institute. This
project is partially supported by the Netherlands Ministry of Eco-
nomic Affairs under the BSIK03021 program.

faults. Hence, the problem of multiple-fault localization (di-
agnosis) deserves detailed study.
Unlike SFL, MBD inherently considers multiple faults.

However, the logic models of software systems that are
used in the diagnostic inference are typically based on static
program analysis. Consequently, they do not consider dy-
namic execution behavior, such as (data-dependent) condi-
tional control flow, which, in contrast, forms the essence
of the SFL approach. Aimed to combine the best of both
worlds, in this paper we present an approach that exploits the
dynamic, execution trace-based observation approach from
SFL, to derive models and observations as input to MBD to
produce multiple-fault diagnoses.
To illustrate the potential advantages of a multiple-fault

approach, consider a triple-fault program with faulty com-
ponents c1, c2, and c3. Whereas (ideally) a single-fault ap-
proach such as SFL would producemultiple single-fault diag-
noses like {{1}, {2}, {3}, {4}, {5}, . . .} (component indices,
ordered in terms of statistical similarity), a multiple-fault ap-
proach would simply produce one single multiple-fault diag-
nosis {{1, 2, 3}}. This single diagnosis unambiguously re-
veals the actual triple fault, which, additionally, measures
the potential for debugging parallelism [11], whereas in the
former case it is not obvious how many faults are actually
present.
This paper makes the following contributions:

• We present our multiple-fault diagnosis method which
combines a dynamicmodeling and observation approach
known from SFL with a diagnostic reasoning approach
from MBD.

• We evaluate our approach using the Siemens set bench-
mark, extended by us to accommodate multiple faults.

• We evaluate the merit of two specific strategies for up-
dating the probabilities of diagnosis candidates, based
on De Kleer’s intermittent fault model [4], to account
for the fact that faulty (software) components very often
exhibit nominal behavior.

• We compare our approach to related reasoning ap-
proaches (AIM [15], ∆-slicing [8], and explain [8])
for the Siemens set program tcas (their common
benchmark).

Our experiments show that strategies that exploit (inter-
mittency) information to exonerate components involved in

passed runs outperform those that do not include such infor-
mation. Furthermore, experiments using the tcas program
show that our approach allows that more bugs can be solved
if limited debugging time is available.

2 Preliminaries

In this section we introduce the concepts and definitions used
throughout this paper.

2.1 Basic Definitions

Definition 1 A diagnostic system DS is defined as the triple
DS = 〈SD ,COMPS ,OBS 〉, where SD is a propositional
theory describing the behavior of the system, COMPS =
{c1, . . . , cM} is a set of components in SD , and OBS is a
set of observable variables in SD .

With each component cm ∈ COMPS we associate a
health variable hm which denotes component health. The
health states of a component are healthy (true) and faulty
(false).

Definition 2 An h-literal is hm or ¬hm for cm ∈ COMPS .

Definition 3 An h-clause is a disjunction of h-literals con-
taining no complementary pair of h-literals.

Definition 4 A conflict of (SD ,COMPS ,OBS) is an h-
clause of negative h-literals entailed by SD ∪ OBS.

Definition 5 Let SN and SP be two disjoint sets of com-
ponents indices, faulty and healthy, respectively, such that
COMPS = {cm | m ∈ SN ∪ SP } and SN ∩ SP = ∅. We
define d(SN , SP) to be the conjunction:

(
∧

m∈SN

¬hm) ∧ (
∧

m∈SP

hm)

A diagnosis candidate is a sentence describing one possible
state of the system, where this state is an assignment of the
status healthy or not healthy to each system component.

Definition 6 A diagnosis candidate for
(SD ,COMPS ,OBS), given an observation term obs
over variables in OBS , is d(SN , SP) such that

SD ∧ obs ∧ d(SN , SP) 2⊥

In the remainder we refer to d(SN , SP) simply as d, which
we identify with the set SN of indices of the negative literals.

Definition 7 A diagnosis D = {d1, . . . , dk, . . . , dK} is an
ordered set of all K diagnosis candidates, for which SD ∧
obs ∧ dk 2⊥

2.2 Model-based Diagnosis

In this section we describe the principles underlying model-
based software diagnosis as far as relevant to this paper.
Consider the simple program function in Figure 1, which is

supposed to be composed of three inverting statements (with
a fault in statement 3), resembling a circuit with three logi-
cal inverters1 . The function takes one input x, and returns

1Note that in this approach we assume the presence of a correct
model of the components (in contrast to e.g. [14])

(y1 , y2) 3 i nv (boo l x) {
1 . w = ! x
2 . y1 = !w;
3 . y2 = w; / / f a u l t : ! m i s s i ng

r e t u r n (y1 , y2) ; }

Figure 1: A defective function

two outputs y1, y2. A weak model of each inverter statement,
which only specifies nominal (required) behavior, is given by
the proposition

h ⇒ y = ¬x

Given the data dependencies of the program, the intercon-
nection topology of the three inverting components is easily
obtained, yielding the (combined) program model

h1 ⇒ w = ¬x

h2 ⇒ y1 = ¬w

h3 ⇒ y2 = ¬w

Computing Diagnoses

Consider the observation obs = ((x, y1, y2) = (1, 1, 0)).
From the model, it follows

h1 ⇒ ¬w

h2 ⇒ ¬w

h3 ⇒ w

which equals

(¬h1 ∨ ¬w) ∧ (¬h2 ∨ ¬w) ∧ (¬h3 ∨ w)

Resolution yields the following conjunction of conflicts

(¬h1 ∨ ¬h3) ∧ (¬h2 ∨ ¬h3)

meaning that (1) at least c1 or c3 is at fault, and (2) at least
c2 or c3 is at fault. The minimal diagnoses are given by the
minimal hitting set [18], yielding

¬h3 ∨ (¬h1 ∧ ¬h2)

Thus either c3 is at fault (single fault), or c1 and c2 are at
fault (double fault), as well as a number of other double-faults
(¬h2 ∨ h3, ¬h1 ∨ h3), and a triple fault (¬h1 ∨ h1 ∨ h3),
which, however, are subsumed by the previous two minimal
diagnoses. Consequently, D = {{3}, {1, 2}}.

Ranking Diagnoses

The fact that models do not always specify all possible behav-
ior (e.g., weak models), and that usually only limited obser-
vations are available typically leads to diagnoses with many
solutions. However, not all solutions are equally probable, al-
lowing them to be ranked in order of probability of being the
actual fault state.

Let Pr({j}) denote the a priori probability that a compo-
nent cj is at fault. Although this value is typically component-
specific, in the above inverter example we assume Pr({j}) =
p (where we arbitrarily set p = 0.01). Assuming compo-
nents fail independently, and in absence of any observation,

the prior probability a particular diagnosis dk is correct is
given by

Pr(dk) =
∏

j∈SN

Pr({j}) ·
∏

j∈SP

(1 − Pr({j}))

In order to compute the posterior probability given an obser-
vation we use Bayes’ rule, which can be applied iteratively
for multiple observations

Pr(dk|obs) =
Pr(obs|dk)

Pr(obs)
· Pr(dk)

The denominator Pr(obs) is a normalizing term that is iden-
tical for all dk and thus needs not be computed directly.
Pr(obs|dk) is defined as

Pr(obs|dk) =

{

0 if dk and obs are inconsistent
1 if dk implies obs
ε if neither holds

Many policies exist for ε [3]. For the purpose of the above
example, we adopt the classical policy ε = 1/dx where dx is
the number of observations that can be explained by diagnosis
dk. As there are 4 possible observations that can be explained
by {3}, and 8 that can be explained by {1, 2}, it follows

Pr(obs|{3}) = 1
4 ; Pr(obs|{1, 2}) = 1

8

Hence, the diagnosis is given by (after normalization)

dk Pr(dk)
{3} 0.995
{1, 2} 0.005

3 Observation-based Modeling

The above approach is dependent on the existence of a model
of the program, which would have to be derived from the sys-
tem specifications. Even if a model were available for each
component (statement), only for the simplest of programs
(such as our example program) a program model could be
extracted based on static dependence analysis. In this sec-
tion we present our dynamic, observation-based diagnosis ap-
proach. This model is used to compute the set of valid diag-
noses, which will then be ranked according to the likelihood
that they explain the failures.

3.1 Observations

Observations are collected as abstractions of execution traces,
in SFL called program spectra. A program spectrum is a col-
lection of observations that provides a specific view on the
dynamic behavior of software. This data is collected at run-
time, and typically consists of a number of counters or flags
for the different components of a program. In the context
of this paper we use the so-called hit spectra, which indicate
whether a component (statement) was involved in a run.

Definition 8 Let M be the number of components, andN the
number of execution runs. Let O denote the N × (M +1) ob-
servation matrix. For j ≤ M , the element oij is equal to 1
(true) if component j was observed to be involved in the exe-
cution of run i, and 0 (false) otherwise. The element oi,M+1

is equal to 1 (true) if run i failed, and 0 (false) otherwise. The
rightmost column of O is also denoted as e (the error vector).

Note that at least one faulty component has to be involved
in the computation of a failed run. From O it is also possible
to derive the probability r that a component is actually exe-
cuted in a run (expressing code coverage), and the probability
g that a faulty component is actually exhibiting good behav-
ior (expressing fault coverage, also known as the “goodness”
parameter g [4]).

3.2 Computing Diagnoses

Unlike theMBD approachmentioned earlier, which statically
deduces information from the program source, O is the only,
dynamic source of information, from which both a model,
and the input-output observations are derived. Apart from
exploiting dynamic information, this approach only requires
a generic component model, avoiding the need for detailed
functional modeling or relying, e.g., on invariants or prag-
mas for model information. Note, however, that this default
model can easily be extended when more detailed informa-
tion is available.
Abstracting from particular component behavior, each

component cj is modeled by the weak model

hj ⇒ (xj ⇒ yj)

where hj models the health state of cj and xj , yj model its
input and output variable value correctness (i.e., we abstract
from actual variable values, in contrast to the earlier exam-
ple). This weak model implies that a healthy component cj

translates a correct input xj to a correct output yj . However,
a faulty component or input may lead to an erroneous output.
As each row in O specifies which components were in-

volved, we interpret a row as a “run-time” model of the pro-
gram as far as it was considered in that particular run. Con-
sequently, O is interpreted as a sequence of typically differ-
ent models of the program, each with its particular observa-
tion of input/output correctness. The overall diagnosis can be
viewed as a sequential diagnosis approach that incrementally
takes into account new structural program (and pass/fail) ev-
idence with increasing N . A single row On,∗ corresponds to
the (sub)model

hm ⇒ (xm ⇒ ym), for m ∈ Tn

xti
= yti−1 , for i ≥ 2

xt1 = true

yt′ = ¬en

where Tn = {m ∈ {1, . . . , M} | onm = 1} denotes the well-
ordered set of component indices involved in computation n,
ti denotes the ith element in this ordering, (i.e., for i ≤ j, ti ≤
tj), t

′ denotes its last element. The resulting component chain
logically reduces to

∧

m∈Tn

hm ⇒ ¬en

For example, consider the row (M = 5)

c1 c2 c3 c4 c5 e

1 0 0 1 0 1

This corresponds to a model where components c1, c4 are in-
volved. As the order of the component invocation is not given

(and with respect to our above weak component model is ir-
relevant), we derive the model

h1 ⇒ (x1 ⇒ y1)

h4 ⇒ (x4 ⇒ y4)

x4 = y1

x1 = true

y4 = ¬en

In this chain the first component c1 is assumed to have correct
input (x1 = true, typical of a proper test), its output feeds to
the input of the next component c4 (x4 = y1), whose output
is measured in terms of en (y4 = ¬en). This chain logically
reduces to

h1 ∧ h4 ⇒ false

If this were a passing computation (h1∧h4 ⇒ true) we could
not infer anything (apart from the exoneration when it comes
to probabilistically rank the diagnosis candidates as explained
in next section). However, as this run failed this yields

¬h1 ∨ ¬h4

which, in fact, is a conflict. In summary, each failing run in
O generates a conflict according to

∨

m∈Tn

¬hm

As in the former MBD approach, the conflicts are then sub-
ject to a hitting set algorithm that generates the diagnostic
candidates.
To illustrate this concept, again consider the example pro-

gram. For the purpose of the spectral approach we assume the
program to be run two times where the first time we consider
the correctness of y1 and the second time y2. This yields the
observation matrix O below

c1 c2 c3 e

1 1 0 0 obs1

1 0 1 1 obs2

From obs2, it follows

¬h1 ∨ ¬h3

which equals the first conflict from the earlier MBD ap-
proach, and the diagnosis trivially comprises the two single
faults {1} (¬h1) and {3} (¬h3). Compared to the earlier
MBD approach, the second conflict (¬h2 ∨ ¬h3) is miss-
ing due to the fact that no additional knowledge is avail-
able on component behavior and component interconnec-
tion. Although this would suggest that the dynamic approach
yields lower diagnostic performance than the earlier MBD
approach, note that the example program is ideally suited to
static analysis, whereas real programs feature extensive con-
trol flow, rendering the static approach extremely difficult.
However, if, for some reason, we were able to capture the
second conflict in terms of an execution trace according to

c1 c2 c3 e

0 1 1 1 obs3

then our observation-based approach would yield exactly the
same set of minimal diagnoses.
Note that, e.g., unlike dynamic slicing [21] and constraint-

based models [17], we do not exploit actual data dependen-
cies between components but execution patterns.

3.3 Ranking Diagnoses

Similar to the incremental compilation of conflicts per run we
compute the posterior probability for each candidate based
on the pass/fail observation obs for each sequential run using
Bayes’ rule as described in Section 2.2. In the following we
will distinguish between three ε policies. The first policy,

denoted ε(0) is similar to the classical MBD policy, and is
defined as follows

ε(0) =

{

EP

EP +EF
if run passed

EF

EP +EF
if run failed

(1)

where EP = 2M and EF = (2l − 1) · 2M−l are the num-
ber of passed and failed observations that can be explained
by diagnosis dk, respectively, and l = |dk| is the number
of faulty components in the diagnosis. Note that this policy
is slightly different from the one in Section 2.2, as the lack
of component interconnection information allows more diag-
noses (component combinations) as likely explanations for
pass/fail outcomes.

A disadvantage of this classical policy is that passed runs,
apart from making single faults more probable than multi-
ple faults, do not help much in pinpointing the fault location.
This has to do with the fact that all diagnoses are possible
when a run passes due to the weak fault model (the 2M term
in Eq. 1). In addition, there is no way to distinguish between
diagnoses with the same cardinality, because the terms are
merely a function of the cardinality of the diagnosis candi-
date.

An approach to account for the fact that, similar to statis-
tical approaches for fault localization, components involved
in passed computations should to some extent be exonerated,
is by extending the component model with an intermittent
failure model, as introduced by De Kleer [4]. As in soft-
ware components it is quite usual that a faulty component
exhibits correct behavior, we include statistical information
on the probability that a faulty component c exhibits correct
behavior. Let g(dk) denote the aforementioned (“goodness”)
probability that faulty components in dk are exhibiting good
behavior. In the following we distinguish between two dif-

ferent policies, which we refer to as ε(1), and ε(2), which are
defined as follows

ε(1) =

{

g(dk) if run passed
1 − g(dk) if run failed

and

ε(2) =

{

g(dk)t if run passed
1 − g(dk)t if run failed

where t is the number of faulty components according to dk

involved in the run i

t =
∏

j∈dk

[oij = 1]

We propose policy ε(2) as a variant of ε(1), which is due to
De Kleer [4]. It approximates the probability

∑

j∈dk
gj that

the components in dk all exhibit good behavior by g(dk)t, as-

suming that all components of dk have equal goodness prob-
abilities. In both strategies we use

g(dk) =

X

i=1..N

[(
_

j∈dk

oij = 1) ∧ ei = 0]

X

i=1..N

[
_

j∈dk

oij = 1]

where [·] is Iverson’s operator ([true] = 1], [false] = 0]). In
the above two policies g(·) is assumed to be different from 0.
Otherwise a strong exoneration factor is included, as a passed
run would set Pr(dk) = 0, for all diagnosis candidates. Fur-
thermore, one can think of additional policies, such as com-

bining either ε(1) or ε(2) with ε(0). Note, however, that in this

case the variable term in ε(0) is a function of the diagnosis’
cardinality only. As the prior probabilities p already differen-
tiate diagnoses with different cardinalities, such a combined
policy would not produce a different ranking than those ob-

tained by either ε(1) or ε(2).

ε(0) ε(1) ε(2)

Pr({1}) 0.5 0.2 0.2
Pr({3}) 0.5 0.8 0.8

(a) After obs1 and obs2

ε(0) ε(1) ε(2)

Pr({3}) 0.98 0.99 0.999
Pr({1, 2}) 0.02 0.01 0.001

(b) After obs1, obs2, and obs3

Figure 2: Probabilities updates

Returning to the example of Section 2.2, Figure 2 lists the
probabilities resulting from the various ε policies for the di-
agnoses obtained after obs1 and obs2 only (Figure 2(a)) and
after obs3 (Figure 2(b)). In the first case, the classical policy
cannot distinguish between c1 and c3 while the g policies ex-
ploit the additional information provided by the exonerating
observation obs1. When obs3 is included c1 is no longer a
valid diagnosis by itself, and is eliminated from the (hitting)
set of valid diagnosis candidates. Hence, all policies favor c3

as most likely candidate, due to (1) the lower prior probability

of the double fault (ε(0,1,2)) and (2) the exoneration by passed

runs (ε(1,2)).

4 Theoretical Evaluation

In order to gain understanding of the effects of the various pa-
rameters on the diagnostic performance of the different poli-
cies, in this section we use a simple, probabilistic model of
program behavior that is directly based on N, M, r, and g.
Without loss of generality we model the firstC of theM com-
ponents to be at fault (C for fault cardinality). For each run
each component has probability r = 0.6 (which go in accor-
dance with the value measured for our software benchmark
set of faults, see next section) to be involved in that run. If
a selected component is faulty, the probability of exhibiting
nominal (“good”) behavior equals g. When either of the C
components fails, the run will fail. We study the performance
of the ε policies defined previously for observation matrices
that are randomly generated according to the above model.

4.1 Performance Metrics

Before evaluating the results, we first present our perfor-
mance metric. Fault localization techniques aim at helping
developers in finding bugs quickly, and a metric to evaluate
such techniques is to measure the amount of code a devel-
oper would have to inspect before (but not including) find-
ing the fault cause, wasted effort W . It is defined as the
number of inspected components divided by the total num-
ber of components (M). In our computation of W we as-
sume that after each inspection, the test set is rerun, possi-
bly leading to a new ranking (without the most recently re-
moved fault). For example, suppose a triple-fault program
(M = 6, and c1, c2, and c3 faulty) for which the following
diagnosis D = {{1, 2, 6}, {3, 4, 5}} is obtained. This diag-
nosis induces a wasted effort of W = 33% as c6 in the first
candidate is inspected in vain, as well as, on average two out
of three inspections in the second candidate (in this example
we assumed that rerunning the test set did not change the sec-
ond candidate {3, 4, 5}). For example, had the two compo-
nents in the second diagnosis candidate been inspected, then
W = 50%.

In contrast to related work, we measure W instead of ef-
fort [1; 19] so that the performance metric’s scale is indepen-
dent of the number of faults in the program. Another reason
not to adopt the aforementioned score metric is that in our
synthetic model we do not have program dependence graph
information. For the example given above, the effort as de-
fined in [1; 19] would be 100%.

4.2 Diagnosis Optimality

As mentioned in the Introduction, under ideal circumstances
our multiple-fault approach produces one single multiple-
fault diagnosis {1, . . . , C}. This optimal result (shown in [2])
is obtained (for programs where each component has an in-
dependent, non-zero probability of being involved in any run)
when N → ∞. This can be seen through the following ar-
gument. Consider a C-fault program. While for small N the
minimal hitting set will still contain many members (compo-
nents) other than the C faulty components, by increasing N
the probability that a non-faulty component will still be in-
cluded steadily decreases. Let f denote the probability of
a run failing (derived as function of r, g, C in [2]). For
the hitting set analysis only failing runs matter. For those
NF = f ·N failing runs the C-fault candidate is by definition
within the set of candidates that “survive” those runs (whose
chain is still unbroken). However, the probability that other
components can be involved in a candidate is less than unity,
which forms the basis of those candidates’ eventual elimina-
tion. In the following experiments this dependency of W on
N is further studied.

4.3 Experimental Results

In this section we experimentally study the diagnostic per-
formance of the different policies. For that purpose, a syn-
thetic observation matrix generator is implemented, which
takes into account N , g, and C. Although we verified the
influence of these parameters, in the following M is fixed to
20 and r to 0.6 as they do not change our conclusions.

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100
W

 (
%

)
N

ε
(0)

ε
(1)

ε
(2)

(a) C = 1 and g = 0.1

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

ε
(0)

ε
(1)

ε
(2)

(b) C = 2 and g = 0.1

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

ε
(0)

ε
(1)

ε
(2)

(c) C = 5 and g = 0.1

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

ε
(0)

ε
(1)

ε
(2)

(d) C = 1 and g = 0.9

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

ε
(0)

ε
(1)

ε
(2)

(e) C = 2 and g = 0.9

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (

%
)

N

ε
(0)

ε
(1)

ε
(2)

(f) C = 5 and g = 0.9

Figure 3: ε-policies diagnostic performance

Figure 3 contains plots of W versus N for C = 1, C = 2
and C = 5. Each measurement represents an average over
1,000 sample matrices. The plots show that W for N = 1
is similar to r, which follows from the fact that there are on
average (M − C) · r components which would have to be
inspected in vain. For sufficiently large N all policies pro-
duce an optimal diagnosis, see previous section. For small
number of runs N , given the fact that it does not distinguish
between diagnosis with the same fault cardinality (see Sec-

tion 3.3), ε(0) is the worst performing policy. For C ≥ 2, ε(2)

outperforms ε(1), suggesting that information on the number

of components involved a run should be included (t in ε(2)).

For C = 1, as t = 1 the performance of ε(1) equals the one

of ε(2).
Furthermore, from the plots we verify that the higherC the

more runs N are needed to attain optimal diagnostic perfor-
mance. As an example, for g = 0.1, r = 0.4, and C = 1, 13
runs would be enough to yield a perfect diagnosis, whereas
for C = 5, 250 runs would be needed. We have determined
the value of N (NF) for which our C-cardinality fault re-
mains as the only candidate, i.e., a perfect multiple-fault diag-
nosis {1, . . . , C}. Table 1 shows the values of N (NF) where
optimality is reached for different values of C and g. Apart
from a scaling due to g one can clearly see the exponential
impact of C on NF and N (shown in [2]).

g 0.1 0.9

C 1 2 3 4 5 1 2 3 4 5

N 13 31 90 120 250 200 300 500 1000 1700

NF 5 19 71 111 245 12 36 84 219 459

Table 1: Optimal N∗ for perfect diagnosis (r = 0.6)

5 Experimental Evaluation

In this section we assess the diagnostic capabilities of the dy-
namic modeling approach for real programs. For this pur-
pose, we use the well-known Siemens set [10], which con-
tains 132 faulty versions of 7 C programs with extensive test
suites. Table 2 summarizes the characteristics of the Siemens

Program Faulty Versions M N Description

print tokens 7 539 4,130 Lexical Analyzer

print tokens2 10 489 4,115 Lexical Analyzer

replace 32 507 5,542 Pattern Recognition

schedule 9 397 2,650 Priority Scheduler

schedule2 10 299 2,710 Priority Scheduler

tcas 41 174 1,608 Altitude Separation

tot info 23 398 1,052 Information Measure

Table 2: The Siemens benchmark set

set, where M corresponds to the number of lines of code
(components in this context).

For our experiments, we have extended the Siemens set
with program versions in which we can activate arbitrary
combinations of faults. For this purpose, we limit ourselves
to a selection of 102 out of the 132 faults, based on crite-
ria such as faults being attributable to a single line of code,
to enable unambiguous evaluation. The observation matrices
are obtained using the GNU gcov2 profiling tool.

Using this extended Siemens set, we evaluate our dynamic
modeling approach in two ways: first, in Section 5.1, we mea-
sure its diagnostic performance on single and multiple-fault
programs for the three ε strategies outlined in Section 2.2.
Next, in Section 5.2 we compare this performance against
other diagnosis techniques. Here we use single-fault versions
of the tcas program, which is the common program used in
literature to evaluate these other techniques.

5.1 Results

Table 3 lists the wasted effortW , as defined in Section 4.1, in-
curred by the dynamic modeling approach and strategies ε(0),

ε(1), and ε(2) for debugging single, double, and multiple-
fault programs. Like in Section 4.3, we aimed at C = 5
for the multiple fault-cases, but for print tokens insuf-
ficient faults are available, and for print tokens2 and
replace our current implementation of the hitting set al-
gorithm practically prevents analyzing combinations of more

2http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

print tokens print tokens2 replace schedule schedule2 tcas tot info

C 1 2 4 1 2 4 1 2 3 1 2 5 1 2 5 1 2 5 1 2 5

versions 4 6 1 10 43 100 23 100 100 7 20 11 9 43 100 30 100 100 19 100 100

ε(0) 13.54 17.84 22.63 21.39 25.72 29.38 15.78 24.64 28.06 16.48 22.49 27.09 30.17 28.15 29.58 27.39 26.49 27.74 14.18 17.48 26.45

ε(1) 1.25 2.54 5.19 3.31 5.94 10.51 2.99 5.29 7.14 0.83 1.62 3.07 24.86 32.50 38.58 16.48 23.39 29.52 5.05 8.94 17.20

ε(2) 1.25 2.50 5.01 3.62 6.67 12.08 2.90 5.31 7.28 0.83 1.95 5.13 23.00 29.92 36.21 16.48 23.32 29.49 6.10 11.20 19.94

Table 3: Wasted effort W [%] for ε(0), ε(1), and ε(2) on combinations of 1-5 faults from the Siemens set

than four and three faults, respectively3. The hitting set com-
putation is aborted after all diagnosis candidates with cardi-
nality C′ have been generated. To simulate a more or less re-
alistic debugging scenario, where the actual number of faults
is unknown, we set C′ = max(C, 3). All measurements ex-
cept for the four-fault version of print tokens are aver-
ages over 100 versions, or over the maximum number of com-
bination available, where we verified that all faults are active
in at least one failed run.
Similar to what we observed in Section 4.3, in most cases

ε(1,2) lead to significantly better diagnoses than ε(0) because
they exonerate components that are involved in passed runs.

The (minor) differences between the results for ε(1) and ε(2)

at C = 1 are due to the different ways in which these strate-
gies handle the diagnosis candidates of cardinality 2 and 3
that result from setting C′ = 3.
Contrary to the results in Section 4.3, the improvement of

ε(2) over ε(1) is marginal at best. We expect that this can be
explained by using g(dk)t to approximate the product of the
goodness parameters of the individual components in a diag-
nosis dk, as explained in Section 3.3. In the context of strat-

egy ε(2), this entails using different goodness parameters for
the same component as it occurs in different diagnoses, con-
verging to the fraction of all runs that have passed as the di-
agnosis cardinality increases. The influence of these effects,

and the unexpected superior performance of ε(0) in the partic-
ular cases of schedule2 for C = 2 and C = 5, and tcas
for C = 5 require further investigation.

5.2 Comparison

In the following we compare the diagnostic performance of
our approach with AIM, nearest neighbor (NN), explain,
and∆-slicing techniques (see Section 6 for a discussion). For
compatibility with results reported for those techniques, we
will use the effort, or score metric [1; 19] instead of wasted
effort W which amounts to the percentage of lines of code
that need not be examined when the diagnosis results are used
to guide the search for the fault. Note that the results reported
for NN do not involve a full ranking of all statements, but are
based on the distance between the fault and the diagnosis in
the program dependence graph instead, which is a compara-
ble measure [12].
Our current implementation of the dynamic modeling ap-

proach only supports C programs, while the AIM technique
has mainly been evaluated for Java programs. The only C
program that has been taken into account is tcas, which
happens to be a common benchmark among the other tech-
niques as well, so for this comparison we limit ourselves to

3A novel, statistics-directed improvement is currently under
development. Preliminary results indicate orders of magnitude
speedup.

Effort AIM NN ε(0) ε(1,2)

< 1 34 21 0 48

< 10 70 34 0 63

< 20 100 36 0 100

< 30 100 46 0 100

< 40 100 46 0 100

< 50 100 53 0 100

< 60 100 53 0 100

< 70 100 53 0 100

< 80 100 53 97 100

< 90 100 53 100 100

≤ 100 100 100 100 100

Table 4: Cumulative Percentage of Faults found for tcas

tcas AIM explain ∆-slicing ε(0) ε(1,2)

v1 0.74 0.51 0.91 0.13 0.99

v11 0.84 0.36 0.93 0.17 0.97

v31 0.77 0.76 0.93 0.17 0.98

v40 0.85 0.75 – 0.17 0.90

v41 0.73 0.68 0.88 0.18 0.99

Table 5: Comparison with distance metrics techniques

that program. Furthermore, the other techniques have only
been evaluated for single faults, so we set C′ = C = 1, and
therefore ε(1) = ε(2).
Similar to the results in [15], in Table 4 we compare our

approach with AIM and NN on tcas. As expected, ε(0) is
outperformed by all other techniques. AIM consistently out-

performs NN. For an effort of less than 1%, ε(1,2) outperform
AIM, which yields the best results if 10% of the code is in-
spected. Both techniques find all faults by inspecting less than
20% of the code.
Table 5 compares the different policies used in our ap-

proach with AIM, explain, and ∆-slicing for 5 versions
of tcas, because these are the versions to which explain
and ∆-slicing could be applied to. From the table, we con-

clude that our approach when using ε(1,2) consistently out-

performs all other techniques, with ε(0) being the worst per-
forming technique.

6 Related Work

As mentioned in the introduction, automated debugging tech-
niques can be distinguished into statistical and logic reason-
ing approaches that use program models.
In logic (model-based) reasoning approaches to automatic

software debugging, the program model is typically gener-
ated from the source code. In [15] an overview of techniques
based on automatically generated program models is given.
They conclude that the models generated by means of ab-
stract interpretation [14] (AIM approach) are the most accu-
rate for debugging. Basically, a model of the (faulty) pro-
gram is generated from the source code, e.g., using abstract
interpretation, and the test cases specify the expected output.
Differences between the program’s output and the expected
one are used to compute components that when assumed to

behave differently explain the observed faulty behavior. Ap-
proaches based on model checkers include the explain [9],
∆-slicing [8], which are based on comparing execution traces
of correct and failed runs. Although model-based diagnosis
inherently considers multiple-faults, thus far the above soft-
ware debugging approaches only consider single faults. Apart
from the fact that our approach is multiple-fault, it also dif-
fers in the fact that we use program spectra as dynamic in-
formation on component activity, which allows us to exploit
dynamic execution behavior, unlike static approaches. Fur-
thermore, our approach does not rely on the approximations
required by static techniques. In addition, similar to AIM, the
approach presented in this paper does not require a formal
specification of the program.
Statistical approaches are very attractive from complexity-

point of view. Well-known examples are the Tarantula
tool [12], the Nearest Neighbor technique [19], the Sober
tool [13], and the Ochiai coefficient [1]. Although differing
in the way they derive the statistical fault ranking, all tech-
niques are based on measuring program spectra. All these
approaches yields single fault explanations, whereas ours also
includes multiple faults that explain all failures. This extra in-
formation may help to debug several failures in parallel, sim-
ilar to [11] which uses clustering techniques to build sets of
runs revealing the same failure.

7 Conclusions and Future Work

In this paper we present a dynamic modeling approach to
software fault localization based on abstraction of program
traces. The model, along with the set of traces for pass/fail
executions is used to reason about observed failures. In con-
trast to most approaches to software fault diagnosis, which
present diagnosis candidates as single explanations, our ap-
proach also contains multiple fault explanations in the diag-
nostic ranking (typical of model-based approaches).
We have evaluated the diagnostic performance of three

Bayesian probability update policies, including De Kleer’s
intermittency model and an extension proposed by us. Em-
pirical results obtained from the widely-used Siemens set of
programs, extended by us to accommodate multiple fault pro-
grams, show that policies that are able to exonerate compo-
nents that are involved in passing runs clearly outperform the
probability update scheme that is traditionally used in model-
based diagnosis.
For future work, we plan to study whether the multiple-

fault diagnosis candidates information can be used to effi-
ciently engage several developers to repair the defect(s) in
parallel, as well as incorporate our new algorithm to speedup
the hitting set computation.

Acknowledgments

We extend our gratitude to Johan de Kleer for discussions
which have influenced our multiple-fault reasoning approach.

References

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On
the accuracy of spectrum-based fault localization. In
Proc. TAIC PART ’07, Windsor, UK, September 2007.

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. Tech-
niques for diagnosing software faults. Technical Report
TUD-SERG-2008-014, Delft University of Technology,
2008.

[3] J. De Kleer. Getting the probabilities right for measure-
ment selection. In Proc. DX’06, Spain, May 2006.

[4] J. De Kleer. Diagnosing intermittent faults. In Proc.
DX’07, May 2007.

[5] J. De Kleer, A. K. Mackworth, and R. Reiter. Charac-
terizing diagnoses and systems. Artificial Intelligence,
56:197–222, 1992.

[6] J. De Kleer and B. C. Williams. Diagnosing multiple
faults. Artif. Intell., 32(1):97–130, 1987.

[7] A. Feldman, G. Provan, and A. J. C. van Gemund. Com-
puting minimal diagnoses by greedy stochastic search.
In Proc. AAAI’08, Chicago, USA, July 2008.

[8] A. Groce. Error explanation with distance metrics. In
Proc. TACAS. Springer, 2004.

[9] A. Groce and W. Visser. What went wrong: Explaining
counterexamples. In Proc. SPIN. Springer, 2003.

[10] M. Hutchins, H. Foster, T. Goradia, and T. Os-
trand. Experiments of the effectiveness of dataflow-
and controlflow-based test adequacy criteria. In Proc.
ICSE’94, Sorrento, Italy, 1994.

[11] J. A. Jones, J. F. Bowring, andM. J. Harrold. Debugging
in parallel. In Proc. ISSTA’07, London, UK, July 2007.

[12] J. A. Jones and M. J. Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique. In
Proc. ASE’05, pages 273–282. ACM Press, 2005.

[13] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff.
Sober: Statistical model-based bug localization. In
Proc. ESEC/FSE-13, Lisbon, Portugal, 2005. ACM.

[14] W. Mayer and M. Stumptner. Abstract interpretation
of programs for model-based debugging. In Proc. IJ-
CAI’07, 2007.

[15] W. Mayer and M. Stumptner. Models and tradeoffs in
model-based debugging. In Proc. DX’07, May 2007.

[16] B. Peischl, S. Soomro, and F. Wotawa. Abstract depen-
dence models in software debugging. In Proc. DX’06,
Spain, May 2006.

[17] X. Pucel, S. Bocconi, C. Picardi, D. Dupré, and L. Mas-
suyès. Diagnosability analysis for web services with
constraint-based models. In Proc. DX’07, May 2007.

[18] R. Reiter. A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, April 1987.

[19] M. Renieris and S. P. Reiss. Fault localization with near-
est neighbor queries. In Proc. ASE’03, October 2003.

[20] F. Wotawa, M. Stumptner, and W. Mayer. Model-based
debugging or how to diagnose programs automatically.
In Proc. IAE/AIE’02. Springer-Verlag, 2002.

[21] X. Zhang, H. He, N. Gupta, and R. Gupta. Experimental
evaluation of using dynamic slices for fault localization.
In Proc. AADEBUG, 2005.

	Introduction
	Preliminaries
	Basic Definitions
	Model-based Diagnosis

	Observation-based Modeling
	Observations
	Computing Diagnoses
	Ranking Diagnoses

	Theoretical Evaluation
	Performance Metrics
	Diagnosis Optimality
	Experimental Results

	Experimental Evaluation
	Results
	Comparison

	Related Work
	Conclusions and Future Work

