
Increasing System Availability with Local Recovery

based on Fault Localization

Hasan Sözer∗, Rui Abreu†, Mehmet Akşit∗ and Arjan J.C. van Gemund‡

∗University of Twente, The Netherlands
{sozerh, m.aksit}@ewi.utwente.nl

†Faculty of Engineering, University of Porto, Portugal
rma@fe.up.pt

‡Delft University of Technology, The Netherlands
a.j.c.vangemund@tudelft.nl

Abstract—Due to the fact that software systems cannot be
tested exhaustively, software systems must cope with residual
defects at run-time. Local recovery is an approach for recovering
from errors, in which only the defective parts of the system
are recovered while the other parts are kept operational. To be
efficient, local recovery must be aware of which component is at
fault. In this paper, we combine a fault localization technique
(spectrum-based fault localization, SFL) with local recovery
techniques to achieve fully autonomous fault detection, isolation,
and recovery. A framework is used for decomposing the system
into separate units that can be recovered in isolation, while SFL
is used for monitoring the activities of these units and diagnose
the faulty one whenever an error is detected. We have applied
our approach to MPlayer, a large open-source software. We
have observed that SFL can increase the system availability by
23.4% on average.

I. INTRODUCTION

Due to the sheer size and complexity of today’s software

systems, testing software exhaustively has become prohibitive.

Therefore, to increase system availability, software systems

must cope with residual defects at run-time. This requires

the incorporation of fault tolerance in which it is accepted

that faults exist and might get activated while the system can

recover from the consequences (i.e., errors), if possible before

a failure occurs.

Software failures are generally caused by design and coding

faults, being typically permanent [1]. However, most of these

faults are only activated by, e.g., timing issues, race conditions,

resource leaks and peak conditions in workload that could not

all have been anticipated before. As a matter of fact, errors that

are caused by such faults are likely to be resolved when the

software is re-executed after a clean-up and initialization [1].

Consequently, it is possible to design a system that can recover

from a significant fraction of errors [2] at run-time.

To attain high system availability [3], recovery actions can

be applied only to a fraction of the system (when possible),

while the other parts remain operational. For example, only

the failed components can be restarted rather than the whole

system (i.e., microreboot [2]) so that the other components can

remain available. Moreover, applying recovery to a subset of

the system components rather than the whole system decreases

the mean time to recover [2]. Hence, for faster recovery and

better availability, it is necessary to reduce the granularity of

the parts in the system that can be recovered and as such

realize local recovery. However, local recovery is not always

successful in cases where, the erroneous/failed components

are not also the ones at fault. Even if a failed component

is restarted locally, another faulty component can, e.g., keep

sending messages that will crash the failing component again,

soon after its recovery. As a result, progressively larger

subsets, and eventually the whole system might need to be

restarted [2]. Therefore, to achieve efficient local recovery,

effective fault diagnosis is needed, localizing the root causes

of errors (i.e., faults, defects).

The process of pinpointing the fault(s) that led to symptoms

(i.e., failures/errors) is called fault localization, and has been

an active area of research for the past decades. Based on a

set of observations, automatic approaches to software fault

localization yield a list of likely fault locations, which is subse-

quently used by the developer to focus the software debugging

process [4], [5]. Depending on the amount of knowledge that is

required about the system’s internal component structure and

behavior, the most predominant approaches can be classified as

i) statistical approaches, of which spectrum-based fault local-

ization (SFL) [6] is an example, or ii) reasoning approaches.

The former approach uses an abstraction of program traces,

dynamically collected at runtime, to produce a list of likely

candidates to be at fault, whereas the latter combines a static

model of the expected behavior with a set of observations to

compute the diagnostic report. In the remainder of this paper

we only consider SFL for fault localization as i) it entails

low time and space complexity, and ii) it is amongst the best

performing techniques [5].

To achieve effective local recovery and as such increase

system availability, we have utilized two techniques, namely

local recovery supported by FLORA [7], extended by an

implementation of SFL [8]. FLORA is a framework that is

2010 10th International Conference on Quality Software

1550-6002/10 $26.00 © 2010 IEEE

DOI 10.1109/QSIC.2010.29

276

used for decomposing a system into separate units that can be

recovered in isolation. SFL [4], [9] is used for monitoring

the activities of these units and diagnoses the faulty one

whenever an error is detected. We have combined SFL and

FLORA for providing an integrated fault tolerance approach.

Our approach does not depend on a particular application

domain or an architectural structure, and as such it is generic.

Our integrated framework provides an implementation of the

approach for software systems that are implemented in C for

Linux platform. We have applied our approach to an open-

source software media player, MPlayer.

In this paper, we show that i) local recovery increases

the system availability, and ii) fault localization significantly

improves the recovery effectiveness. We have observed that

for MPlayer local recovery takes up to 83.8% less time than

restarting the whole system. Furthermore, for failure scenarios,

in which the faulty location is different than the erroneous

location, fault localization reduces the mean time to recover

by 23.4% on average.

The remainder of this paper is organized as follows. The

next two sections provide background information on the

local recovery and fault localization techniques, respectively.

In Section IV, we describe our integrated fault tolerance

approach. Section V presents the case study and discusses

the realization issues. Section VI presents an evaluation of

the approach. In Section VII, related previous studies are

summarized. Finally, in section VIII we discuss some future

work issues and provide the conclusions.

II. LOCAL RECOVERY

Local recovery is an effective approach for recovering from

errors, in which the erroneous parts of a system are restarted

while the other parts of the system are kept operational.

Introducing local recovery to a system imposes certain require-

ments.

• Isolation: An error occurring in one part of the system

can easily propagate and lead to errors in other parts.

To prevent this error propagation we need to be able to

decompose the system into a set of Recoverable Units

(RUs) with clear boundaries and isolation between them.

• Communication Control: Although an RU is unavailable

during its recovery, other RUs might still need to access it

in the meantime. Therefore, the communication between

RUs must be mediated and controlled (e.g., through

blocking, queuing and retrying of messages), so that the

recovery of an RU is transparent to the other RUs.

• System-Recovery Coordination: In case recovery actions

need to take place while the system is still operational,

interference with the normal system functions can occur.

For this reason, the required recovery actions need to be

coordinated.

FLORA [7] is a framework that supports the decomposition

and implementation of software architecture for local recovery.

A set of RU wrappers are defined to wrap system modules into

separate RUs. FLORA partitions system modules as defined

by RU wrappers and isolates these modules by assigning each

RU to a separate process1. In addition to the specified RUs,

FLORA introduces a Communication Manager (CM) and a

Recovery Manager (RM). The CM mediates and controls all

inter-RU communication. The RM coordinates the recovery of

RUs for killing and/or restarting them.

FLORA implements the detection of several type of errors,

including deadlocks and fatal errors (e.g., illegal instruction,

invalid data access), buffer overflows and null pointer ex-

ceptions. The RU that is associated with a detected error is

assumed to be also the source of the error (i.e., the faulty

RU). If the error is not recovered after the restart of the

corresponding RU, the whole system is restarted. This is

similar to the other local recovery approaches [2], where

increasingly larger subsets of the system is restarted until

the error is recovered. However, this can increase the time to

recover. Also, if the fault and/or error is either in the CM or the

RM, the framework then applies global recovery by restarting

the whole system. In the following, we provide background

information on fault localization techniques, and in particular

the SFL technique that we have utilized in FLORA.

III. FAULT LOCALIZATION

The process of pinpointing the fault(s) that led to the

observed symptoms (failures/errors) is called fault localization,

and has been an active area of research for the past decades.

Based on a set of observations, automatic approaches to

software fault localization yield a list of likely fault locations,

which is subsequently used either by the developer to focus

the software debugging process, or as an input to automatic

recovery mechanisms [10], [11]. Depending on the amount of

knowledge that is required about the system’s internal compo-

nent structure and behavior, the most predominant approaches

can be classified as i) statistical approaches or ii) reasoning ap-

proaches (for an overview of approaches, see [8]). The former

approach uses an abstraction of program traces, dynamically

collected at runtime (also known as program spectra [12]), to

produce a list of likely candidates to be at fault [4], [9], [13],

whereas the latter combines a static model of the expected

behavior with a set of observations to compute the diagnostic

report [14]. In this paper we use a statistical technique, in

particular spectrum-based fault localization (SFL, [4], [9]),

because it is not only amongst the best fault localization

techniques, but also due to the fact that entails low time and

space complexity [8].

Spectrum-based fault localization (SFL) is a dynamic pro-

gram analysis technique that has shown that comparing the

program behavior over multiple test runs can indicate which

program components may be likely to contribute to an ob-

served program failure.

In the following, we assume that a program P comprises a

set of components C and is executed using a set of test cases
T that either pass or fail, with M = |C| and N = |T |, respec-
tively. Program (component) activity is recorded in terms of

1Interaction among the RUs are redirected through Inter-Process Commu-
nication.

277

M components error

vector

N spectra

⎡

⎢⎢⎢⎣

a11 a12 . . . a1N e1

a21 a22 . . . a2N e2
...

...
. . .

...
...

aM1 aM2 . . . aMN eN

⎤

⎥⎥⎥⎦

s1 s2 . . . sN

Figure 1. The ingredients of fault diagnosis

program spectra [4], [9], [13]. These data are collected at run-

time and typically consist of a number of counters or flags for

the different components of a program. We use the so-called

hit spectra that indicate whether a component was involved in

a (test) run or not.

Both spectra and pass/fail information is input to SFL. The

combined information is expressed in terms of theN×(M+1)
activity matrix A. An element aij is equal to 1 if component
j took part in the execution of test run i, and 0 otherwise.
The rightmost column of A, the error vector e, represents the
test outcome. The element ei = ai,m+1 is equal to 1 if run
i failed, and 0 if run i passed. For j ≤ M and i ≤ N , the
row Ai∗ indicates whether a component was executed in run
i, whereas the column O∗j indicates in which runs component

j was involved.
In SFL one measures the similarity between the error vector

e and the activity profile vector A∗j for each component j
(see Figure 1). This similarity is quantified by a similarity

coefficient, sj . In this paper, the Ochiai similarity coefficient,

known from molecular biology, is used2. sj associated with

each component Cj ∈ C indicates the correlation between the
executions of Cj and the observed incorrect program behavior.

Applying the hypothesis that closely correlated components

are more likely to be relevant to an observed misbehavior, s j

can be reinterpreted as “fault probability” and components can

be listed in order of likelihood to be at fault.

The SFL technique can be applied to localize faults at

different granularity levels (e.g., source code blocks, functions,

modules). In this paper, we apply SFL at an architectural

level and use this technique to identify faulty architectural

components. As such, a local recovery mechanism can utilize

the diagnosis information to focus on the faulty components

in the software architecture. In the following, we explain our

integrated approach.

IV. THE APPROACH

The effectiveness of recovery strategies can be limited if

they rely only on the information regarding the detected errors.

Especially for local recovery approaches, such as FLORA,

the effectiveness of recovery actions highly depends on the

diagnosis i.e., to be able to know precisely which (recov-

erable) unit is at fault. In order for FLORA to be aware

2Previous investigations have identified it as the best coefficient to be used
for SFL [9].

which component (RU) is faulty, it is augmented with a

fault localization technique. In particular, we use the SFL

technique, described in the previous section, to localize faults

amongst the set of RUs. This integration allows FLORA to

obtain educated guesses with respect to which RU(s) should

be restarted first. Hence, the RU decomposition of the software

architecture defines the granularity level (i.e., components) for

the diagnosis. SFL is designed to be a part of the CM, which

monitors all the messages exchanged among the RUs. Such

monitoring offers the capabilities for the CM to record all the

activity in the system in terms of a data structure to represent

the information in Figure 1.

• the RU j was involved in execution i (aij = 1);
• the RU j was not involved in execution i (aij = 0).

The facilities provided by FLORA are used for automatic

error detection. If an error is detected during a given run

i, then the run is flagged as failed (ei = 1). If no error is
detected in run i, then the run is flagged as passed (e i = 0).
This recording process is repeated for every single execution

(i.e., between key presses in the GUI, between completion of

the processing of video frames) of the program. Successive

executions are identified based on the detection of related

messages as specified in a configuration file. The aij and ei

information are used as input for the SFL module whenever

a failed run is observed. The SFL module computes a list

of RU in order of likelihood to be faulty, which is used by

the RM to decide which RU(s) should be recovered. The

infrastructure and dependencies of its modules are depicted

in Figure 2. We can see the main components of FLORA;

KEY
RU0 RUnRU1

RM

aij + ei

ranking

generator

message analyzer

CM
data flow

recovery

actions

FLORA

components

SFL-related

components

SFL

spectra

record

Figure 2. The SFL-based recovery infrastructure

the RM, the CM and a set of RUs. SFL is realized by a set

of components within the CM. All the messages exchanged

among different RUs are analyzed and the SFL spectra record

is updated accordingly. Detected errors are notified by RUs

and the RM with notification messages. A ranking of possibly

faulty RUs is generated and provided to the RM based on the

collected spectra record. This ranking is used for deciding on

the recovery actions to be applied to a set of RUs or to the

whole system.

In the following sections, we explain how our integrated

approach is applied to adapt a given architecture for local

recovery based on fault localization.

278

V. CASE STUDY: MPLAYER

MPlayer [15] is a well-known media player, which sup-

ports many input formats, codecs and output drivers. It em-

bodies approximately 700K lines of code and it is available

under the GNU General Public License. In our case study, we

have used version v1.0rc1 of this software that is complied

on Linux Platform (Ubuntu version 7.04). Figure 3 presents

basic modules of the MPlayer software architecture with

dependencies among them. In the following, we briefly explain

the important modules that are shown in this view.

Stream reads the input media and provides buffering, seek

and skip functions. Demuxer demultiplexes (separates) the in-

put to audio and video channels, and reads them from buffered

packages. Mplayer connects all the other modules, and main-

tains the synchronization of audio and video. Libmpcodecs

embodies the set of available codecs. Libvo displays video

frames. Libao controls the playing of audio. Gui provides the

graphical user interface of MPlayer.

We have realized our approach within the context of the

MPlayer case study. We have used our framework to decom-

pose the system intro 3 RUs; i) RU AUDIO, which provides

the functionality of Libao ii) RU GUI, which encapsulates the

Gui functionality and iii) RU MPCORE which comprises the

rest of the system. Figure 3 depicts the boundaries of these

RUs, which are overlayed on the module decomposition of the

MPlayer software architecture.

«subsystem»

Mplayer

«subsystem»

KEY

Module

dependency

(uses)

«subsystem»

Gui

«subsystem»

Libvo

«subsystem»

Demuxer

«subsystem»

Stream

«subsystem»

Libmpcodecs

«subsystem»

Libao

RU

MPCORE

RU

AUDIO

RU

GUI

boundaries

of RUs

RU
Recoverable

Unit

Figure 3. Basic modules of MPlayer and boundaries of the RUs, which
are overlayed on the module decomposition

In Figure 4 the recovery design corresponding to this RU

selection is shown. Here, we can see the CM, the RM and the

three RUs, RU MPCORE, RU GUI and RU AUDIO. Each

RU can detect deadlock errors. The recovery manager can

detect fatal errors. All error notifications are send to the CM,

which comprises the diagnosis facility. Diagnosis information

is conveyed to the RM, which kills a set of RUs and/or

restarts a dead RU. Messages that are sent from RUs to the

communication manager are stored (e.g., queued) by RUs in

case the destination RU is not available and they are forwarded

when the RU becomes operational again.

In our approach (Section IV), we have applied SFL at

a granularity level determined by the RU decomposition to

provide recovery-oriented diagnosis information. Essentially,

this means that each RU is a component for SFL. Thus,

the CM reserves space to store the information needed by

SFL (i.e., aij and ei) for each RU and certain framework

elements. In case of the MPlayer case study, 6 components

were considered (i.e., j ∈ {1, . . . , 6}): the RM, the CM, each
RU (i.e., RU MPCORE, RU GUI and RU AUDIO), and the

framework facilities that are used for state preservation. The

aijs are updated at every message exchange. The passed runs

are identified based on the reception of particular messages

that are defined in a configuration file. In the MPlayer

case study, we have specified the messages received from

RU MPCORE for this purpose. These are the messages that

are associated with a completion of processing of a video

frame and completion actions related to user events (e.g.,

volume change, opening a video file, skipping). Whenever

the specified messages are received from RU MPCORE, the

activity information collected so far is associated with an

execution i with ei = 0. Whenever there is an error, the
activity information collected since the last execution (i − 1)
is associated with an execution i with ei = 1.

<< RU >>

AUDIO

<< RU >>

MPCORE

<< RU >>

GUI

<<NRU>> Recovery Mgr<<NRU>> Comm Mgr

<<restart>>

<<restart>>

<<restart>>

<<error :deadlock>>

<<error :deadlock>> <<error :deadlock>>

<<error :fatal>>

<<diagnosis>>

<<queued>>

<<queued>>

<<queued>> <<kill>>

<<kill>>

<<kill>>

Recoverable

Unit

<< RU >>

RU name

notifies-error-to

provides-

diagnosis-to

sends-queued

message-to

kills

restarts

<<error: [type]>>

<<diagnosis>>

<<queued>>

<<restart>>

<<kill>>

Nonrecoverable

Unit

<< NRU >>

NRU name

KEY

Figure 4. Realized MPlayer Software Architecture with 3 RUs

Diagnosis information is conveyed to the RM, which kills

a set of RUs and/or restarts a dead RU. If the faulty RU is

different than the erroneous RU, both RUs are restarted. If the

RM, CM or framework facilities are subject to faults or errors,

the whole system is restarted (global recovery). Messages that

are sent from RUs to the CM are stored (queued) by RUs in

case the destination RU is not available and they are forwarded

when the RU becomes operational again.

VI. EVALUATION

To test our framework, we have injected several faults within

the modules of RU MPCORE, RU GUI and RU AUDIO. We

have injected 3 types of faults: i) illegal memory operation that

causes a fatal error ii) busy waiting or skipping a message that

causes a deadlock iii) sending of messages that causes a buffer

overflow and in turn, a fatal error at the destination of the

messages. These faults are activated with certain (combination

of) button presses at the user interface panel.

We have run the modified MPlayer several times, sys-

tematically activated the faults and observed the results and

279

log files. The SFL-based diagnosis mechanism was able to

point out the location of the fault correctly each time (i.e., the

corresponding RU was ranked 1st among the others). Each

time a fault in RU MPCORE is activated, our framework

initiated global recovery and restarted the whole system.

Whenever the faults in RU GUI or RU AUDIO were activated,

our framework was able to recover from the error locally

by restarting these RUs, while the other parts of the system

remained operational.

From the user perspective, local recovery increases the

availability of the system significantly. During the recovery

of RU GUI, the user interface panel vanishes and comes back

within a second. However, audio/video streaming continues.

Similarly, during the recovery of RU AUDIO, the sound is

muted for about a second. However, all the screens remain

intact and video streaming continues. After the recovery of

RU AUDIO, audio streaming starts and synchronizes with the

video. In addition, restarting RUs individually takes 83.8%
less time compared to restarting the whole system3.

We have observed that fault localization information leads

to a faster recovery. When the erroneous RU is the same as

the faulty RU, the corresponding RU is restarted. If the error

is detected in the RM4, CM, RU MPCORE or framework

facilities, a global recovery is applied. In these cases, the first

recovery attempt is successful. However, if the erroneous RU

is not the faulty one, local recovery is not always successful.

The faulty component keeps sending messages that crashes the

same RU upon its recovery. The RM has to apply several local

recovery attempts and finally a global recovery to recover from

the failure successfully. However, the availability of diagnosis

information enables the RM to i) restart both the faulty and

erroneous RUs at once, or ii) restart the whole system directly

rather than trying (unsuccessfully) local recovery first. In the

first case, we have measured on average 32.8% reduction in

mean time to recovery. In the second case, the reduction was

13.9% on average. The average reduction considering both

cases is 23.4%. The impact is lower for the second case
because of the significant difference (83.8%) of time to recover
between the global recovery and local recovery. Thus, the time

lost during the (unsuccessful) local recovery attempt becomes

less significant.

If local recovery mechanisms are not supported with di-

agnosis information, several attempts for local recovery will

be eventually followed by a global recovery. In such cases,

time to recover increases, even compared to a naive global

recovery approach. There have been also recursive approaches

proposed, in which the system components are organized in

a hierarchy, namely a reboot-tree [16]. Whenever an error is

detected, a minimal subset of components is recovered first; if

that does not work, progressively larger subsets are recovered,

moving upwards in the reboot-tree hierarchy. This approach,

however, is based on the structuring of the system at design-

time. SFL does not depend on the structure of the system and

3Mean time to recover is measured by calculating the mean time it takes
to restart a process and the corresponding modules over 100 runs.
4The RM forks another process for monitoring and restarting itself.

it is a dynamic approach based on the information collected

at run-time. The ranking provided by SFL can also be utilized

by a recursive approach, where progressively larger subsets of

the system are recovered based on their ranks.

VII. RELATED WORK

Techniques for self-healing/recovering [17] from failures in

software systems have been subject of research for decades. In

the following, we summarize the techniques that are proposed

so far and discuss the position of our work, especially related

to the techniques for fault localization and local recovery.

In the fault localization domain, many approaches exist.

Depending on the amount of knowledge that is required about

the system’s internal component structure and behavior, the

most predominant approaches can be classified as i) statistical

approaches (e.g., [4], [9], [13], [20], [21]) or ii) reasoning ap-

proaches [5], [14]. The former approach uses an abstraction of

program traces, dynamically collected at runtime, to produce

a list of likely candidates to be at fault, whereas the latter

combines a static model of the expected behavior with a set

of observations to compute the diagnostic report. For run-time

usage, statistical techniques, of which SFL is an example (see

Section III for details), are especially interesting because i)

are amongst the best performing techniques [5], and ii) entail

low time and space complexity [6].

There exist several micro-kernel architectures [22]–[24],

programming environments [25], software libraries [1], mid-

dlewares [26] and workbenches [27] that support local re-

covery. However, they do not support the restructuring and

partitioning of legacy software to introduce local recovery and

they do not employ fault localization techniques.

To the best of our knowledge, the most similar work to

the one presented in this paper is the Recovery Oriented

Computing project [10]. In the context of this project, local

recovery i.e., microreboot [2] is applied to increase the avail-

ability of Java-based Internet systems. To employ microreboot,

a system has to meet a set of architectural requirements

(i.e., crash-only design [2]), where components are isolated

from each other and their state information is kept in state

repositories. Designs of many existing systems do not have

these properties and it might be too costly to redesign and

implement the whole system from the start. Our framework

provides a set of reusable abstractions and mechanisms to

support the refactoring of existing systems to introduce local

recovery.

VIII. CONCLUSION AND FUTURE WORK

Coping with software failures at run-time entails the capac-

ity of being able to detect and recover from them. However,

the complementary domains of automatic fault localization

and recovery of software failures have thus far been been

investigated separately.

In this paper we have integrated a fault localization tech-

nique, namely spectrum-based fault localization (SFL), with

the FLORA framework to achieve local recovery of errors,

280

and fully automate fault tolerance. FLORA is used for decom-

posing the system into separate recoverable units, and SFL is

used for monitoring the activities of these recoverable units

and diagnose the faulty one whenever an error is detected. We

have applied our integrated approach on a large open-source

media player software, called MPlayer.

We have observed promising results based on the applied

failure scenarios. SFL-based diagnosis mechanism was able

to correctly localize the real faults and as such support the

recovery mechanism. Especially when the faulty location is

different than the erroneous location, diagnosis information

leads to a faster recovery. Avoiding unsuccessful local recovery

attempts reduces the mean time to recover by 23.4% on

average. We have also observed that local recovery, when

possible, increases the availability of the system significantly.

In our case study, system components related to the graphical

user interface and audio streaming can be recovered locally,

while video streaming continues. This results in i) a faster

recovery (83.8%), and ii) availability of video to the user

during recovery.

For future work we would like to apply the SFL-FLORA

framework to other software programs, so that we can gener-

alize the findings reported on this paper. In addition, we would

also like to apply the technique to a broader range of faults.

Finally, we also intend to extend the framework with generic,

automatic error detection techniques, e.g., [28], to be able to

detect more errors.

ACKNOWLEDGMENTS

We acknowledge the feedback from the discussions with

our TRADER project partners. This work has been carried

out as part of the TRADER project under the responsibility

of the Embedded Systems Institute. This project is partially

supported by the Netherlands Ministry of Economic Affairs

under the Bsik program.

REFERENCES

[1] Y. Huang and C. Kintala, “Software fault tolerance in the application
layer,” in Software Fault Tolerance, M. R. Lyu, Ed. John Wiley &
Sons, 1995, chapter 10, pp. 231–248.

[2] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Mi-
croreboot: A technique for cheap recovery,” in Proceedings of the 6th
Symposium on Operating Systems Design and Implementation (OSDI),
San Francisco, CA, 2004, pp. 31–44.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[4] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th

IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’05), D. F. Redmiles, T. Ellman, and A. Zisman, Eds. Long
Beach, California, USA: IEEE Computer Society, 7 – 11 November
2005, pp. 273–282.

[5] R. Abreu, P.Zoeteweij, and A. van Gemund, “Spectrum-based multiple
fault localization,” in 24th International Conference on Automated

Software Engeneering (ASE’09), G. Taentzer and M. Heimdahl, Eds.
IEEE Computer Science, November 2009, pp. 88 – 99.

[6] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. van Gemund, “A practical
evaluation of spectrum-based fault localization,” Journal of Systems and
Software, vol. 82, no. 11, pp. 1780–1792, November 2009.

[7] H. Sozer, B. Tekinerdogan, and M. Aksit, “FLORA: A framework
for decomposing software architecture to introduce local recovery,”
Software: Practice and Experience, vol. 39, no. 10, pp. 869–889, 2009.

[8] R. Abreu, “Spectrum-based fault localization in embedded software,”
Ph.D. dissertation, Delft University of Technology, November 2009.

[9] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:

Academia and Industry Conference - Practice And Research Techniques
(TAIC PART’07), P. McMinn, Ed. Windsor, United Kingdom: IEEE
Computer Society, September 2007, pp. 89–98.

[10] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,
P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer,
N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft, “Recovery Oriented
Computing (ROC): Motivation, definition, techniques, and case studies,”
University of California at Berkeley, Tech. Rep. UCB/CSD-02-1175,
2002.

[11] H. Sözer, “Architecting fault-tolerant software systems,” Ph.D. disserta-
tion, University of Twente, January 2009.

[12] M. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical investigation
of program spectra,” ACM SIGPLAN Notices, vol. 33, no. 7, 1998.

[13] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation

(PLDI’05), V. Sarkar and M. W. Hall, Eds. Chicago, Illinois, USA:
ACM Press, 12 – 15 June 2005, pp. 15–26.

[14] W. Mayer and M. Stumptner, “Evaluating models for model-based
debugging,” in Proceedings of the 23rd IEEE/ACM International Con-

ference on Automated Software Engineering (ASE’08), A. Ireland and
W. Visser, Eds. L’Aquila, Italy: ACM Press, 15 – 19 September 2008,
pp. 128–137.

[15] “MPlayer official website,” 2010, http://www.mplayerhq.hu/.
[16] G. Candea, J. Cutler, and A. Fox, “Improving availability with recursive

micro-reboots: A soft-state system case study,” Performance Evaluation,
vol. 56, no. 1-4, pp. 213–248, 2004.

[17] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[18] N. Kolettis and N. D. Fulton, “Software rejuvenation: Analysis, module
and applications,” in FTCS ’95: Proceedings of the Twenty-Fifth Inter-
national Symposium on Fault-Tolerant Computing. Washington, DC,
USA: IEEE Computer Society, 1995, p. 381.

[19] K. S. Trivedi and K. Vaidyanathan, “Software aging and rejuvenation,”
in Wiley Encyclopedia of Computer Science and Engineering. John
Wiley & Sons, Inc., 2008.

[20] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in Proceedings of the 18th IEEE International Conference on

Automated Software Engineering (ASE’03), J. Grundy and J. Penix, Eds.
Montreal, Canada: IEEE Computer Society, 6 – 10 October 2003, pp.
30–39.

[21] E. Wong, T. Wei, Y. Qi, and L. Zhao, “A crosstab-based statistical
method for effective fault localization,” in Proceedings of the 1st In-
ternational Conference on Software Testing, Verification, and Validation

(ICST’08), R. Hierons and A. Mathur, Eds. Lillehammer, Norway:
IEEE Computer Society, 9 – 11 April 2008, pp. 42–51.

[22] J. Herder, H. Bos, B. Gras, P. Homburg, and A. Tanenbaum, “Failure re-
silience for device drivers,” in Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
Edinburgh, UK, 2007, pp. 41–50.

[23] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Colub,
and M. Jones, “Mach: A system software kernel,” in Proceedings of

the 34th Computer Society International Conference (COMPCON), San
Francisco, CA, USA, 1989, pp. 176–178.

[24] G. C. Hunt et al., “Sealing OS processes to improve dependability and
safety,” SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 341–354, 2007.

[25] “Erlang/OTP design principles,” 2010, http://www.erlang.org/doc/.
[26] Object Management Group, “Fault tolerant CORBA,” Object Manage-

ment Group, Tech. Rep. OMG Document formal/2001-09-29, 2001.
[27] R. Buskens and O. Gonzalez, “Model-centric development of highly

available software systems,” in Architecting Dependable Systems IV,
ser. Lecture Notes in Computer Science, R. de Lemos, C. Gacek, and
A. Romanovsky, Eds. Springer-Verlag, 2007, vol. 4615, pp. 409–433.

[28] R. Abreu, A. González, P. Zoeteweij, and A. J. C. van Gemund, “Au-
tomatic software fault localization using generic program invariants,” in
Proceedings of the 23rd Annual ACM Symposium on Applied Computing

(SAC’08). ACM Press, 2008, pp. 712–717.

281

