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ABSTRACT

Background: Automated diagnosis of software defects can
drastically increase debugging efficiency, improving reliabil-
ity and time-to-market. Current, low-cost, automatic fault
diagnosis techniques, such as spectrum-based fault localiza-
tion (SFL), merely use information on whether a component
is involved in a passed/failed run or not. However, these
approaches ignore information on component execution fre-
quency, which can improve the accuracy of the diagnostic
process. Aim: In this paper, we study the impact of ex-
ploiting component execution frequency on the diagnostic
quality. Method: We present a reasoning-based SFL ap-
proach, dubbed Zoltar-C, that exploits not only component
involvement but also their frequency, using an approximate,
Bayesian approach to compute the probabilities of the di-
agnostic candidates. Zoltar-C is evaluated and compared to
other well-known, low-cost techniques (such as Tarantula)
using a set of programs available from the Software Infras-
tructure Repository. Results: Results show that, although
theoretically Zoltar-C can be of added value, exploiting com-
ponent frequency does not improve diagnostic accuracy on
average. Conclusions: The major reason for this unex-
pected result is the highly biased sample of passing and fail-
ing tests provided with the programs under analysis. In
particular, the ratio between passing and failing runs, which
has a major impact on the probability computations, does
not correspond to the false negative (failure) rates associated
with the actually injected faults.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: testing and debugging

General Terms

Algorithms, Experimentation
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Figure 1: Input for SFL

1. INTRODUCTION
When software failures are observed, developers/testers

need to find their root cause as quickly as possible. Au-
tomatic fault localization techniques can be of consider-
able help to perform such rather cumbersome task [4].
Spectrum-based fault localization (SFL) is amongst the best
(semi-)automatic techniques for fault localization. Current
spectrum-based approaches for fault localization take as in-
put an activity matrix A, that stores whether a component
was involved in the run (test case), and pass/fail informa-
tion e per test case (see Figure 1). Each row in A is called
a spectrum. Classical, statistical SFL approaches use (A, e)
to statistically correlate software component activity with
program failures [6, 17, 19, 22, 26].

Reasoning-based approaches to SFL has been shown
to have better diagnostic performance than statistical
approaches as they imply model-based reasoning tech-
niques [5]. Internally reasoning approaches uses a Bayesian
approach based on a failure model (aka ǫ policy) that allows
to exploit all information in the matrix.

Statistical approaches (as well as current spectrum-based
reasoning) only consider whether a component is involved
or not. Effectively, they do not exploit all information in
A, i.e., the integer value of aij is mapped to 0 or 1 (aka
a component hit spectrum). Unlike statistical approaches,
reasoning-based SFL can exploit aij information by extend-
ing the current failure model [5] to take into account the
number of times a component is called in the test (aka com-
ponent count spectra).

In this paper we study the effect of extending the fail-
ure model to accommodate the integer values of aij on the
diagnostic performance. In particular,

• We define a new failure model that estimates the fail-
ure probability of a test given the aij of the compo-
nents involved, and outline its use in our Bayesian ap-
proach used in Zoltar [16]; We dubbed this new rea-
soning module Zoltar-C;
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• We assess the impact in diagnostic performance when
exploiting the integer aij compared to the 0− 1 map-
ping considered thus far. In particular, we measure the
diagnostic performance impact for a set of well-known,
commonly used programs taken from the Software In-
frastructure Repository.

Our results show that exploiting component frequency
does not improve the diagnostic process on average. The
reason for these unexpected, and disappointing results is
the biased sample of passing and failing tests provided with
the programs under analysis. For instance, most test suites
only offer a very limited fraction of failing runs, which does
not statistically agree with the execution frequencies of the
defective components in combination with their false nega-
tive rates (the percentage of tests that fail when defective
components are executed). Depending on whether the faults
reside in components with high aij frequency, large diagno-
sis errors can occur, compared to the diagnosis based on hit
spectra.

The paper is organized as follows. In the next section
we introduce some basic concepts and terminology, and il-
lustrate the fault localization technique based on reasoning
over program spectra. In Section 3 we present our Zoltar-C
approach to fault localization. In Section 4, the approach
is evaluated using real software programs to assess the true
capabilities of our technique. We compare Zoltar-C with
related work in Section 5. In Section 6 we conclude and
discuss future work.

2. PRELIMINARIES
In this section we introduce program spectra, and describe

how they are used for diagnosing software faults. We also
give an overview of related work in the automated debugging
area. First we introduce the necessary terminology.

2.1 Terminology
As in [8], the following terminology is used throughout

this paper.

• A failure is an event that occurs when delivered service
deviates from correct service.

• An error is a system state that may cause a failure.

• A fault is the cause of an error in the system.

In this paper we apply this terminology to computer pro-
grams that transform an input file to an output file in a
single run. Specifically in this setting, faults are bugs in
the program code, and failures occur when the output for a
given input deviates from the specified output for that in-
put. One specific form of failure is abnormal termination of
a program, for example because of a segmentation fault.

To illustrate these concepts, consider the C function in
Figure 2. It is meant to sort, using the bubble sort algo-
rithm, a sequence of n rational numbers whose numerators
and denominators are stored in the parameters num and den,
respectively. There is a fault (bug) in the swapping code of
block 4: only the numerators of the rational numbers are
swapped while the denominators are left in their original
order. In this case, a failure occurs when RationalSort

changes the contents of its argument arrays in such a way
that the result is not a sorted version of the original. An

error occurs after the code inside the conditional statement
is executed, while den[j] 6= den[j+1]. Such errors can be
latent: if we apply RationalSort to the sequence 〈 4

1
, 2

2
, 0

1
〉,

an error occurs after the first two numerators are swapped.
However, this error is “canceled” by later swapping actions,
and the sequence ends up being sorted correctly. Note that
faults do not automatically lead to errors, not even latent
ones: no error will occur if the sequence is already sorted,
or if all denominators are equal.

The purpose of diagnosis is to locate faults. Diagnosis
applied to computer programs is known as debugging. The
automated methods that we study here have wider appli-
cability, but in the context of this paper they fall in the
category of automated debugging techniques.

Error detection is a prerequisite for diagnosis. We must
know that something is wrong before we can try to locate
the fault. Failures constitute a rudimentary form of error
detection, but many errors remain latent and never lead to
a failure. An example of a technique that increases the num-
ber of errors that can be detected is array bounds checking.
Failure detection and array bounds checking are both ex-
amples of generic error detection mechanisms, that can be
applied without detailed knowledge of a program [1]. Other
examples of mechanisms in this category are the detection
of NULL pointer handling, malloc problems, and deadlock
detection in concurrent systems. Examples of program spe-
cific mechanisms are precondition and postcondition check-
ing, and the use of assertions.

2.2 Program Spectra
A program spectrum [23] is a collection of data that pro-

vides a specific view on the dynamic behavior of software.
Typically, this data is collected at run-time, and consist of
a number of counters of specific events/components. For
example, block count spectra count how often every block
(so a block is the grain-size of a component in this specific
situation) of code is executed during a run of a program. In
this case, a block of code is a C language statement, where
we do not distinguish between the individual statements of
a compound statement, but where we do distinguish between
the cases of a switch statement1. So in Figure 2, the three
assignments inside the body of the conditional statement
constitute a single block.

To illustrate the concept of a program spectrum, suppose
that the function RationalSort of Figure 2 is called from
the following main function, to sort the sequence 〈 2

1
, 3

1
, 4

1
, 1

1
〉,

which it happens to do correctly.

int main ()
{

/* block 0 */
int num [] = { 2, 3, 4, 1 };
int den [] = { 1, 1, 1, 1 };

RationalSort (4, num , den);
return 0;

}

Running this program would result in the block count
spectrum represented by the histogram in Figure 3. Blocks
0 and 1, the bodies of functions main and RationalSort,

1This is a slightly different notion than a basic block , which
is a block of code that has no branch.

2



void RationalSort (int n, int *num , int *den)
{

/* block 1 */
int i,j,temp ;

for ( i=n -1; i >=0; i-- )
{

/* block 2 */
for ( j=0; j<i; j++ )
{

/* block 3 */
if (RationalGT (num[j], den[j], num[j+1], den[j+1]) )
{

/* block 4 */
temp = num[j];
num[j] = num[j+1];
num[j+1] = temp ;

}
}

}
}

Figure 2: A faulty C function for sorting rational numbers

 0

 1

 2

 3

 4

 5

 6

 7

0 1 2 3 4 5

Blocks

occurrences

Figure 3: Block count spectrum

are both executed once. Blocks 2 and 3, the bodies of the
two loops in RationalSort are executed four and six times,
respectively. To sort the array in our example program we
need to make three exchanges, and block 4, the if branch of
the conditional statement, is executed three times. Block 5
has not been shown in Figure 2, but it represents the body
of the RationalGT function. It is executed six times: once
on every iteration of the inner loop.

If we are only interested in whether a block is executed or
not, but not in the number of times it is executed, we can
use binary flags instead of counters, and block count spectra
revert to block hit spectra. Beside block count/hit spectra,
many other forms of program spectra are used in practice.
See [14] for an overview.

2.3 Fault Diagnosis
Program spectra can be used for fault diagnosis by com-

paring spectra for runs in which an error has been detected
(usually called failed runs), to spectra for runs in which no
error has been detected (usually called passed runs), and
analyzing the differences. Using block spectra, this may

identify those blocks (components) that are executed pri-
marily in failed runs. These components are then also likely
to contain the fault that causes the error. As we already
pointed out, some form of error detection is needed to be
able to make this classification of spectra, and failure de-
tection provides a rudimentary form of error detection. We
will now demonstrate the approach using our RationalSort
example.

Suppose we apply RationalSort to the two sequences
I1 = 〈 1

4
, 1

3
, 1

2
, 1

1
〉 and I2 = 〈 3

1
, 2

2
, 4

3
, 1

4
〉. The former sequence

is already sorted, and the program will pass, but the latter
sequence will result in a failure, which is a clear indication
that an error has occurred. The block hit spectra for the
two runs are as follows (’1’ denotes component involvement
and also that the run has failed).

component
input 0 1 2 3 4 5 error
I1 1 1 1 1 0 1 0
I2 1 1 1 1 1 1 1

The difference between the two hit spectra (correctly) iden-
tifies component 4 as the most likely location of the fault:
while all other components are executed in both runs, com-
ponent 4 only occurs in the run where the error is detected.

Of course, this example is contrived in many ways: the
number of runs and components is small, no latent errors
have occurred, no routine in the program has multiple call
sites, etc. However, it serves to illustrate the basic principle.

2.3.1 Statistical Approach

Spectrum-based statistical fault localization essentially
consists in identifying the component whose column vector
(in A) resembles the error vector most (e). Such approach
yields a ranked list of probable faulty components which
should help the software tester to find the bugs quickly.

In the field of data clustering, resemblances between vec-
tors of binary, nominally scaled data, such as the columns in
our matrix of program hit spectra, are quantified by means
of similarity coefficients (see, e.g., [15]). Many similarity
coefficients exist. As an example, below are two different
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similarity coefficients, namely the coefficient sT , used in the
Tarantula fault localization tool [17], and the Ochiai coef-
ficient sO, taken from the molecular biology domain and
known to the best similarity coefficient for statistical fault
localization based on program hit spectra [4, 6]:

sT (j) =

n11(j)
n11(j)+n01(j)

n11(j)
n11(j)+n01(j)

+ n10(j)
n10(j)+n00(j)

(1)

sO(j) =
n11(j)

p

(n11(j) + n01(j)) · (n11(j) + n10(j))
(2)

where n11(j) is the number of failed runs in which part j is
involved, n10(j) is the number of passed runs in which part j
is involved, n01(j) is the number of failed runs in which part
j is not involved, and n00(j) is the number of passed runs
in which part j is not involved, i.e., referring to Figure 1,

n00(j) = |{i | aij = 0 ∧ ei = 0}|

n01(j) = |{i | aij = 0 ∧ ei = 1}|

n10(j) = |{i | aij = 1 ∧ ei = 0}|

n11(j) = |{i | aij = 1 ∧ ei = 1}|

Note that n10(j) + n11(j) equals the number of runs in
which part j is involved, and that n10(j) + n00(j) and
n11(j) + n01(j) equal the number of passed and failed runs,
respectively. The latter two numbers are equal for all j.
Similarly, for all j, the four counters sum op to the number
of runs N .

Under the assumption that a high similarity to the error
vector indicates a high probability that the corresponding
parts of the software cause the detected errors, the calcu-
lated similarity coefficients rank the parts of the program
with respect to their likelihood of containing the faults.

To illustrate the approach, suppose that we apply the
RationalSort function in Figure 2 to the input sequences
shown in Table 1. The block hit spectra for these runs are
shown in the central part of the table (’1’ denotes a hit),
where block 5 corresponds to the body of the RationalGT

function, which has not been shown in Figure 2. The first,
second, and sixth test cases are already sorted, and lead to
passed runs. The third test case is not sorted, but the de-
nominators in this sequence happen to be equal, hence no
error occurs. For the forth test case an error occurs during
its execution, but goes undetected. For the fifth test case the
program fails, since the calculated result is 〈 1

1
, 2

2
, 4

3
, 3

4
〉 in-

stead of 〈 1
4
, 2

2
, 4

3
, 3

1
〉, which is a clear indication that an error

has occurred. For this data, the calculated similarity coef-
ficients sx∈{T,O}(1), . . . , sx∈{T,O}(5) listed at the bottom of
Table 1 (correctly) identify block 4 as the most likely loca-
tion of the fault.

2.3.2 Reasoning Approach

As in real life many components may be likely explana-
tions for observed failures, we need a mechanism to (1) de-
rive the set of diagnosis candidate and (2) rank them ac-
cording to their likelihood to be the true fault explanation.
Below we describe the basic principles of spectrum-based
reasoning, which were first introduced in [5].

block
input 1 2 3 4 5 error
〈 〉 1 0 0 0 0 0
〈 1
4
〉 1 1 0 0 0 0

〈 2
1
, 1

1
〉 1 1 1 1 1 0

〈 4
1
, 2

2
, 0

1
〉 1 1 1 1 1 0

〈 3
1
, 2

2
, 4

3
, 1

4
〉 1 1 1 1 1 1

〈 1
4
, 1

3
, 1

2
, 1

1
〉 1 1 1 0 1 0

sT 0.50 0.56 0.63 0.71 0.63
sO 0.41 0.45 0.50 0.58 0.50

Table 1: SFL applied on six runs of the RationalSort

program

Computing Diagnoses.
Our reasoning approach is inspired in model-based diag-

nosis (MBD). MBD is dependent on the existence of a model
of the program. However, even if a model was available for
each component (statement), only for the simplest of pro-
grams a program model could be extracted based on static
dependence analysis. Unlike the MBD approaches, which
statically deduce information from the program source [21],
we use A as the only, dynamic source of information, from
which both a model, and the input-output observations are
derived. Apart from the fact that we exploit dynamic in-
formation, this approach also allows us to apply a generic
component model, avoiding the need for detailed functional
modeling, or relying, e.g., on invariants or pragmas for model
information.

Abstracting from particular component behavior, each
component cj is modeled by the weak model

hj ⇒ (xj ⇒ yj)

where hj models the health state of cj and xj , yj model its
input and output variable value correctness (i.e., we abstract
from actual variable values, in contrast to the earlier exam-
ple). This weak model implies that a healthy component cj

translates a correct input xj to a correct output yj . How-
ever, a faulty component or a faulty input may lead to an
erroneous output.

As each row in A specifies which components were in-
volved, we interpret a row as a “run-time” model of the
program as far as it was considered in that particular run.
Consequently, A is interpreted as a sequence of typically dif-
ferent models of the program, each with its particular input
and output correctness observation. The overall approach
can be viewed as a sequential diagnosis that incrementally
takes into account new program (and pass/fail) evidence
with increasing N . A single row An,∗ corresponds to the
(sub)model

hm ⇒ (xm ⇒ ym), for m ∈ Sn

xsi
= ysi−1

, for i ≥ 2

xs1
= true

ys′ = ¬en

where Sn = {m ∈ {1, . . . , M} | anm = 1} denotes the well-
ordered set of component indices involved in computation
n, si denotes the ith element in this ordering, (i.e., for i ≤
j, si ≤ sj), and s′ denotes its last element. The resulting
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component chain logically reduces to
^

m∈Sn

hm ⇒ ¬en

For example, consider the row (M = 5)

c1 c2 c3 c4 c5 e

1 0 0 1 0 1

This corresponds to a model where components c1, c4 are
involved. As the order of the component invocation is not
given (and with respect to our above weak component model
is irrelevant), we derive the model

h1 ⇒ (x1 ⇒ y1)

h4 ⇒ (x4 ⇒ y4)

x4 = y1

x1 = true

y4 = ¬en

In this chain the first component c1 is assumed to have cor-
rect input (x1 = true, typical of a proper test), its output
feeds to the input of the next component c4 (x4 = y1), whose
output is measured in terms of en (y4 = ¬en). This chain
logically reduces to

h1 ∧ h4 ⇒ false

If this were a passing computation (h1 ∧ h4 ⇒ true) we
could not infer anything (apart from the exoneration when
it comes to probabilistically rank the diagnosis candidates
as will be explained). However, as this run failed this yields

¬h1 ∨ ¬h4

which, in fact, is a conflict [12]. In summary, each failing
run in A generates a conflict

_

m∈Sn

¬hm

As in MBD, the conflicts are then subject to a hitting set
algorithm that generates the diagnostic candidates [7, 11].
The minimal hitting set algorithm yields a set of valid di-
agnosis candidates. In this paper, we use a light-weight ap-
proach to compute the set of candidates given the conflicts
called Staccato (for interested readers, see [3] for details
on the minimal hitting set algorithm).

Ranking Diagnoses.
Although the previous phase already excludes all those

diagnoses that are irrelevant given the set of observed fail-
ures, the number of diagnosis candidates dk is still typically
large, and not all of them are equally probable to be the true
fault explanation. Hence, the computation of a diagnosis
candidate probabilities Pr(dk) to establish a ranking is crit-
ical to the diagnostic performance of reasoning approaches.
Although for each component the a priori fault probability
Pr({j}) is typically dependent on code complexity, design,
etc., we will simply assume Pr({j}) = p (p = 0.01 in the
context of this paper). Again, assuming components fail in-
dependently, the prior probability a particular diagnosis dk

is correct is given by Pr(dk) = p|dk| · (1− p)M−|dk|. Similar
to the incremental compilation of conflicts per run we com-
pute the posterior probability for each candidate based on

the pass/fail observation obs for each sequential run using
Bayes’ rule

Pr(dk|obs) =
Pr(obs|dk)

Pr(obs)
· Pr(dk)

where Pr(obs|dk) is defined as

Pr(obs|dk) =

8

<

:

0 if dk and obs are inconsistent
1 if dk logically follows from obs
ε if neither holds

Due to the previous conflict-hitting set computation, the 0
case doesn’t occur. Since the 1 case only applies to observa-
tions that can only occur for one particular fault, the ε case
is the predominant one. Many policies exist for ε [7, 5, 11].
In this paper we compare our proposed approach against
one of the best policies for software fault localization, which
is defined as [7, 5]

ε =



g(dk)η if run passed
1− g(dk)η if run failed

(3)

where g denotes the probability that a defect, when ex-
ecuted, actually does not induce a program failure, and
η = |Sn| is the number of faulty components (according
to dk) involved (the rationale being that the more faulty
components are involved, the more likely it is that the run
will fail). The parameter g is estimated by [10]

g(dk) =

X

n=1..N

[(
_

j∈dk

anj 6= 0) ∧ en = 0]

X

n=1..N

[
_

j∈dk

anj 6= 0]

where [·] is Iverson’s operator ([true] = 1, [false] = 0).
To illustrate how spectrum-based reasoning works, sup-

pose that we run our example program with I1 and I2. In
order to obtain the set of valid diagnosis candidates, the fol-
lowing model is derived from the (only) failed observation
(see beginning of Section 2.3 for (A, e))

h0 ⇒ (x0 ⇒ y0)

h1 ⇒ (x1 ⇒ y1)

h2 ⇒ (x2 ⇒ y2)

h3 ⇒ (x3 ⇒ y3)

h4 ⇒ (x4 ⇒ y4)

h5 ⇒ (x5 ⇒ y5)

x5 = y4

x4 = y3

x3 = y2

x2 = y1

x1 = true

y4 = ¬en

The model above logically reduces to

h0 ∧ h1 ∧ h2 ∧ h3 ∧ h4 ∧ h5 ⇒ false

And, therefore, the set of valid diagnosis candidates is D =
{{0}, {1}, {2}, {3}, {4}, {5}}.

After the first phase - computing diagnoses - the set D

of valid diagnosis candidates is ranked according to the
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Bayesian update presented before, yielding the following di-
agnostic report

# dk Pr(dk)
1 {4} 0.44
2 {0} 0.11
2 {1} 0.11
2 {2} 0.11
2 {3} 0.11
2 {5} 0.11

Hence, after running the program with this two test cases,
spectrum-based reasoning would correctly pinpoint the de-
veloper to the (faulty) component. Note that for this specific
scenario the ranking above would be the same for statistics-
based techniques such as Tarantula and Ochiai. But, in
general, reasoning yields better diagnostic results than ap-
proaches based on statistics.

3. ZOLTAR-C APPROACH
A particular problem with current approaches to

spectrum-based reasoning for fault localization (such as the
one discussed in the previous section) is that if components
exhibit the same execution pattern, they will have exactly
the same likelihood to be assigned a diagnosis. To illus-
trate this problem, suppose the spectra below which is ob-
tained by running the RationalSort program with I2 and
I3 = 〈 2

1
, 3

1
, 4

1
, 1

1
〉 only.

component
input 0 1 2 3 4 5 error
I3 1 1 1 1 1 1 0
I2 1 1 1 1 1 1 1

As spectrum-based reasoning approaches only exploit hit
spectra, for this specific situation all six components rank
with the same probability. Therefore, the fault localization
approach would not bring any added value for the debug-
ging problem, as in the worst case a developer would have
to inspect all components (50% of the components would
have to be inspected on average).

However, if count spectra would be considered instead of
just hit spectra, a difference in the execution pattern would
be immediately observed. The count spectra for the example
above is as follows.

component
input 0 1 2 3 4 5 error
I3 1 1 4 6 3 6 0
I2 1 1 4 6 5 6 1

Hence, we can see that the faulty component is involved
more times when the run fails. Therefore, this difference
should be exploited to further indict that component as the
most probable to be at fault.

We introduce a new epsilon policy, Zoltar-C, which ex-
ploits not only component involvement but also the number
of times it was executed. The epsilon policy is given by

ε =

8

>

>

<

>

>

:

Y

j∈dk∧aij 6=0

g
aij

j if ei = 0

1−
Y

j∈dk∧aij 6=0

g
aij

j if ei = 1
(4)

The reasoning behind this policy is that if a faulty compo-
nent is involved multiple times in a run, then the probability

that the run will fail is higher than if it only involved once.
As an example, for gj = 0.90 and a prior p = 0.01, the pre-
vious example Zoltar-C would yield the following ranking

# dk Pr(dk)

1 {4} g3
4 · (1− g6

4) · p = 0.27
2 {3} g6

3 · (1− g6
3) · p = 0.21

2 {5} g6
5 · (1− g6

5) · p = 0.21
4 {2} g4

2 · (1− g4
2) · p = 0.19

5 {0} g1
0 · (1− g1

0) · p = 0.07
5 {1} g1

1 · (1− g1
1) · p = 0.07

For this specific example, by exploiting the count spectra
available, Zoltar-C managed to move to the first position the
faulty component, and therefore a developer would start by
inspecting the real faulty component.

A problem with above policy is that gj is both not known
a priori and/or difficult to estimate. Although there are
approaches for estimating the true intermittency rates gj [5],
in this paper we approximate that value using the previous
approximation g(dk). Consequently, we redefine the policy
as follows

ε =



g(dk)t if ei = 0
1− g(dk)t if ei = 1

(5)

where t is the number of combined frequency of the compo-

nents in dk, i.e., t =
X

j∈dk

aij . Note that, in comparison with

the previous ǫ-policy this one exploits the number of times
components are involved in a run and not only the number
of components in dk involved in the run. So, t ≥ η always
holds.

Finally, the workflow of our count spectra-based approach,
Zoltar-C, is detailed in Algorithm 1. Like in other spectrum-
based reasoning approaches [5], the set of diagnosis can-
didates D is computed from (A, e) using the light-weight
algorithm Staccato [3] (line 1). This ultra-low cost per-
formance is achieved at the cost of completeness as solu-
tions are truncated at 100 candidates. Nevertheless, exper-
iments [3] have shown that no significant solution was ever
missed. Subsequently, the probability of a given diagnosis
candidate dk being the true fault explanation is computed
(lines 2 to 12). Finally, all probabilities are normalized so
that they sum up to one (line 13), and the diagnostic report
as well as the associated probabilities are returned to, e.g.,
the software developer.

4. EVALUATION
In this section, we evaluate the diagnostic capabilities and

efficiency of Zoltar-C using real software programs. Before
we present the experimental results, we describe the exper-
imental setup and the performance metric.

4.1 Experimental Setup
For evaluating the performance of our approach we use the

well-known Siemens benchmark set, as well as gzip, sed and
space (obtained from the Software Infrastructure Reposi-
tory2 (SIR) [13]). The programs used in our experiments
contain both seeded and real faults. Every single program
has a correct version and a set of faulty versions of the same
program. Although the faulty may span through multiple

2http://sir.unl.edu/
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Algorithm 1 Diagnostic Algorithm: Zoltar-C

Inputs:
Activity matrix A
error vector e,

Output:
Diagnostic Report D

Diagnosis candidates Probabilities Pr

1 D ← Staccato((A, e), 100)
2 for all dk ∈ D do
3 Pr[dk]← p|dk| · (1− p)M−|dk|

4 for all i ∈ {1, . . . , N} do

5 t←
X

j∈dk

aij

6 if ei = 0 then
7 Pr[dk]← Pr[dk] · g(dk)t

8 else
9 Pr[dk]← Pr[dk] · (1− g(dk)t)

10 end if
11 end for
12 end for
13 (D, Pr)← normalize(D, Pr)
14 return sort(D, Pr)

statements and/or functions, each faulty version contains
exactly one fault. For each program a set of inputs is also
provided, which were created with the intention to test full
coverage. In particular, the Space package provides 1, 000
test suites that consist of a random selection of (on aver-
age) 150 test cases out of 13, 585 and guarantees that each
branch of the program is exercised by at least 30 test cases.
In our experiments, the test suite used is randomly chosen
from the 1, 000 suites provided. Table 2 provides more infor-
mation about the programs used in your experiments, where
M corresponds to the number of lines of code (components
in this context).

For our experiments, we have extended the subject pro-
grams with program versions where we can activate arbi-
trary combinations of multiple faults. For this purpose, we
limit ourselves to a selection of 143 out of the 183 faults,
based on criteria such as faults being attributable to a sin-
gle line of code, to enable unambiguous evaluation.

As each program suite includes a correct version, we use
the output of the correct version as reference. We character-
ize a run as failed if its output differs from the corresponding
output of the correct version, and as passed otherwise.

4.2 Performance Metric
In the fault diagnosis research community rank-based [6,

17, 25] and dependency-based [19, 22] metrics have often
been used. The former quantify the quality of a result based
on the ranking position of the faulty component relative to
all components, and is mainly used with techniques that
rank components in a program. In contrast, dependency-
based measures typically operate on the program depen-
dence graph (PDG) and are mainly applied to evaluate tech-
niques that either do not rank components (for example
MBSD [21]) or do not rank all components of a program
(such as SOBER [19]). Essentially, starting with the set
of blamed components, dependencies between components
are traversed in breadth-first order until the fault has been

Program ǫ/Zoltar-C Tarantula/Ochiai
print_tokens 4.2 0.37
print_tokens2 4.7 0.38

replace 6.2 0.51
schedule 2.5 0.24
schedule2 2.5 0.25

tcas 1.4 0.09
tot_info 1.2 0.08
space 7.4 0.15
gzip 6.2 0.19
sed 9.7 0.36

Table 4: Diagnosis cost for the single-fault subject
programs (time in seconds)

reached. The quality of a diagnostic report is measured as
the fraction of the PDG that is traversed. Both metrics
quantify the percentage of a program that needs to be in-
spected in order to find the fault.

As spectrum-based fault localization techniques, such as
the ones studied in this paper, create a ranking of statements
in order of likelihood to be at fault, we can retrieve how
many statements a software developer would have to inspect
until he hits the faulty one. We define wasted effort (W ) as
the percentage of components that need be inspected when
searching for the fault while traversing the ranking (W = 0
represents an ideal diagnosis: all faulted components are at
the top of the ranking).

4.3 Performance Results
In this section we evaluate the diagnostic capabilities of

Zoltar-C and compare it with other fault localization tech-
niques.

Table 3 presents a summary of the diagnostic quality of
the different techniques. The diagnostic quality is quanti-
fied in terms of wasted debugging effort W , as described
in the previous section. The results show that, in general,
Zoltar-C’s average diagnostic quality is worse than tech-
niques that use hit spectra. This disappointing performance
has been observed across all programs as well as independent
of the number of faults. Detailed box-and-whisker diagrams
can be found at http://www.st.ewi.tudelft.nl/~abreu/

page.pdf.
Table 4 summarizes the results of the time complexity

study. We measure the time efficiency by conducting our
experiments on a 2.3 GHz Intel Pentium-6 PC with 4 GB of
memory. As expected, the less expensive techniques are the
statistical techniques Tarantula and Ochiai. Zoltar-C and
the ǫ policy for hit spectra (see Eq. (3) in Section 2.3.2) are
equally complex. For example, for sed, the largest program
in the set of programs analyzed by us, Zoltar-C/ǫ needs 9.7
seconds to produce the diagnostic report, where as Taran-
tula/Ochiai merely needs 0.36 seconds.

With respect to space complexity, statistical techniques,
such as Tarantula and Ochiai, need two store the counters
n11, n10, n01, n00 for the similarity computation for all M
components. Hence, the space complexity is O(M). Zoltar-C
and ǫ also stores similar counters but per diagnosis candi-
date. Under the assumption that |D| scales with M , these
approaches have O(M) space complexity.

4.4 Discussion
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Program Faulty Versions M N Description
print_tokens 7 539 4,130 Lexical Analyzer
print_tokens2 10 489 4,115 Lexical Analyzer

replace 32 507 5,542 Pattern Recognition
schedule 9 397 2,650 Priority Scheduler
schedule2 10 299 2,710 Priority Scheduler

tcas 41 174 1,608 Altitude Separation
tot_info 23 398 1,052 Information Measure
space 38 9,564 150 ADL Interpreter

gzip-1.3 7 5,680 210 Data compression
sed-4.1.5 6 14,427 370 Textual manipulator

Table 2: The subject programs

print_tokens print_tokens2 replace schedule schedule2

C 1 2 4 1 2 4 1 2 5 1 2 5 1 2 5
versions 4 6 1 10 43 100 23 100 100 7 20 11 9 35 91

M
B

D ǫ 1.2 2.4 4.8 5.0 8.9 14.0 3.0 5.2 11.7 0.8 1.5 3.2 21.5 29.5 36.0
Zoltar-C 4.9 9.8 19.7 13.9 21.7 28.2 13.0 20.5 30.7 5.1 7.9 11.7 28.6 35.8 40.5

S
F
L Ochiai 2.6 5.3 11.5 3.9 7.0 11.5 3.0 5.6 12.4 1.1 2.1 3.7 21.5 29.5 36.3

Tarantula 7.4 13.2 21.3 6.0 10.4 15.8 4.5 7.8 15.0 1.5 2.7 5.4 23.5 32.0 39.0

tcas tot_info space gzip sed

C 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5
versions 30 100 100 19 100 100 28 100 100 7 21 21 5 10 1

M
B

D ǫ 16.7 24.1 30.6 6.9 11.7 20.9 2.2 3.7 9.9 1.3 2.7 6.8 0.3 0.6 1.4
Zoltar-C 15.8 22.8 29.0 11.8 17.6 24.7 7.2 12.8 23.2 2.6 5.1 6.6 1.1 1.6 2.8

S
F
L Ochiai 15.5 22.0 27.5 5.2 9.1 16.7 1.7 3.6 8.6 1.3 2.7 7.5 0.4 0.7 1.7

Tarantula 16.2 22.8 28.4 6.9 11.4 19.7 3.4 6.5 13.9 2.6 5.0 11.6 0.4 0.8 1.7

Table 3: Wasted effort W [%] on combinations of C = 1− 5 faults for the subject programs

In this section we discuss in more depth why exploiting
the count spectra leads to the above disappointing results.
Two major factors influence the results. First, unlike in
the hit spectrum case, the ǫ policy assumes that the failure
probability Pr(ei = 1) is governed by an or-model, i.e., any
invocation of a faulty component that leads to a failure will
lead to a program failure. While for different (uncorrelated)
faults the or-model is reasonable (and has produced good
results so far), for repeated invocations of the same faulty
statement (e.g., involved in a loop) the or-model may not
apply that well.

Apart from the above, there is a second, important cause
for the observed results, which relates to the choice of test
samples. Consider a case involving 2 components c1, c2,
with c2 at fault, and two tests, according to

c1 c2 e

1 10 0
1 10 1

Furthermore, suppose g1 = g2 = g. For the purpose of
our exposition, for simplicity we assume a single fault. Our
approach yields the posterior updates (non-normalized)

Pr(c1) = (g1
1)

1 · (1− g
1
1)

1 · p = 0.25 · p

Pr(c2) = (g10
2 )1 · (1− g

10
2 )1 · p ≈ 0.001 · p

Thus c1 is computed to be much more probable to be at
fault than c2, in contrast to a hit spectrum interpretation

(i.e., the ai2 entries were equal to 1) where both components
would have equal probability.

The reason for the component with low aij entries to rank
higher is the choice of test observations. In fact, given that
c2 is at fault, the probability of observing a same number of
passing and failing tests (both 1 time in the above case) is
extremely low. Given c2 at fault, a proper sample of N tests
should comprise (1 − g10

2 ) · N failing tests versus (g10
2 ) · N

passing tests, i.e., an overwhelming majority of failing test
cases. For g2 = 0.5 this amounts to some 1,000 failing tests
versus only 1 passing test, a distribution vastly different from
the above, N = 2 test sample. In this case, the situating
changes drastically, yielding the updates

Pr(c1) = (g1
1)

1 · (1− g
1
1)

1000 · p ≈ 0.0000 · p

Pr(c2) = (g10
2 )1 · (1− g

10
2 )1000 · p ≈ 0.0003 · p

Indeed c2 is now computed to be (much) more likely to
be the fault.

While in hit spectra obtaining an unbiased sample of pass-
ing and failing tests is already an important requirement for
proper diagnosis when using a Bayesian approach, the situ-
ation is much more critical when exploiting count spectra.
The set of programs used in our experiments, unfortunately,
does not offer an unbiased sample of passing and failing runs,
as the set of runs (test inputs) is hand-picked to produce full
coverage, rather than sampled from some representative in-
put distribution. For instance, most test suites only offer a
very limited fraction of failing runs. Depending on whether
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the fault resides in a component with a high invocation fre-
quency aij large diagnosis errors may occur, compared to
the diagnosis based on hit spectra.

Apart from test sample quality, the way the gj are approx-
imated plays an equally important role, as estimation errors
tend to get amplified for larger aij frequencies, again, lead-
ing to a loss of diagnostic precision. Rather than estimating
the gj on a biased sample of passing and failing tests, the
gj should preferably be determined outside of the diagnosis
computation, based on mutation analysis.

4.5 Threats to Validity
The Siemens suite as well as several other utility programs

have been used as subject programs in the study presented in
this paper. All of them are either small or medium-sized pro-
grams. Further experiments on large programs may further
strengthen the external validity of the overall conclusions.
Currently, our tooling only supports C programs, and there-
fore we have not used programs in other programming lan-
guages. However, further investigation using other subject
programs may help to generalize and strengthen our find-
ings. Moreover, in our empirical study, we use the test suites
provided by SIR, which were created to have full branch-
coverage, but they may not represent all kinds of test cases
in real-life situations.

Although we have thoroughly tested our tooling to ascer-
tain correctness, another threat to validity is the correctness
of our tooling, which is implemented using C.

Finally, another threat to validity is the type of faults
we have at our disposal. Apart from the space program, all
other programs have manually seeded faults. Therefore, fur-
ther investigation with programs with real faults is needed
to strengthen our confidence in our findings. We leave that
for future work.

5. RELATED WORK
Depending on the amount of knowledge that is required

about the system’s internal component structure and behav-
ior, the most predominant approaches to automatic fault lo-
calization can be classified as (1) statistical approaches or
(2) reasoning approaches.

Statistical approaches use an abstraction of program
traces (also known as program spectra), dynamically col-
lected at runtime, to produce a list of likely candidates to
be at fault. Well-known examples are Tarantula tool by
Jones, Harrold, and Stasko [17], the Nearest Neighbor tech-
nique by Renieris and Reiss [22], the Sober tool by Lui, Yan,
Fei, Han, and Midkiff [19], PPDG by Baah, Podgurski, and
Harrold [9], CrossTab by Wong, Wei, Qi, and Zap [25], the
Cooperative Bug Isolation by Liblit and his colleagues [18,
27], the Ochiai coefficient by Abreu, Zoeteweij, and Van
Gemund [6], and the work of Wang, Cheung, Chan, and
Zhang [24]. Although differing in the way they derive the
statistical fault ranking, all techniques are based on mea-
suring program hit spectra. In fact, due to the underlying
diagnostic algorithms all these statistics-based approaches
cannot exploit the extra information given by program count
spectra.

Reasoning approaches combines a (automatically derived)
static model of the expected behavior with a set of observa-
tions to compute the diagnostic report. In the work of Mayer
and Stumptner [21] an overview of techniques to automati-
cally generate program models from the source code is given,

concluding that models generated by means of abstract in-
terpretation [20] are the most accurate for model-based soft-
ware debugging (MBSD). Reasoning approaches are much
more complex than statistics-based approaches. In order
to make reasoning approaches scale up to large programs,
recently Abreu, Mayer, Stumptner, and Van Gemund pro-
posed a framework, Deputo, combining model-based soft-
ware debugging with statistics-based approach [2]. In re-
cent work, we have also proposed a Bayesian (reasoning)
approach, Barinel, that solves the complexity problem in
model-based debugging, taking a (hit) spectrum-based ap-
proach to MBSD, thus scaling to large programs [5].

The significant difference between the work proposed in
this paper and the related work described above is that we
propose a Bayesian approach that takes into account count
spectra, i.e., we exploit the additional information on the
number of times a component was involved in a given run
instead of just considering component involvement. Neither
of the above work considers execution frequencies.

6. CONCLUSIONS & FUTURE WORK
Current spectrum-based approaches to software fault lo-

calization, such as SFL, only take into account component
involvement in a pass/fail test case, ignoring information
on component execution frequency. In this paper we pre-
sented a reasoning-based SFL approach to fault localiza-
tion, dubbed Zoltar-C, that do not only exploit component
involvement but also frequency, which uses a Bayesian ap-
proach to compute their posteriors probabilities of being the
most likely explanation for the observed failures.

We have evaluated and compared Zoltar-C to other
renowned techniques such as Tarantula and Ochiai using a
benchmark set of well-known software programs. Our results
show that, although Zoltar-C can effectively aid developers
in pinpointing the root cause of observed failures, it does
not improve the diagnostic process on average for real pro-
grams. This unexpected result is due to two major factors.
First, unlike in the hit spectrum case, the Bayesian proba-
bility update policy assumes that the failure probability is
governed by an or-model, i.e., any of the invocations of com-
ponent cj leading to a failure will lead to a program failure.
Second, the error is also due to the choice of test samples.
The test suites provided with the subject programs under
analysis have a highly biased sample of passing and failing
test cases, which greatly influence the probability computa-
tions of the diagnosis candidates when execution frequencies
are taken into account, and, by far, do not correspond to
the false negative rates associated with the actually injected
faults.

For future work we plan to theoretically study the impact
of exploiting count spectra on the diagnostic performance of
Zoltar-C, by using randomly generated matrices in order to
vary several parameters such as number of runs, probability
a component fails, and probability a component is involved
in a run. In generating passing and failing runs we can cor-
rectly simulate the or-model, and also generate a non-biased
sample of passing and failing runs, thus circumventing the
current accuracy issues, and showing the theoretic potential
of exploiting count spectra. This study, which is being per-
formed at the moment, will increase our understanding of
the results obtained for real software programs.
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Dataset: availbale from the PROMISE repository.
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