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Abstract

Model-based debugging has proved successful as a
tool to guide automated debugging efforts, but the
technique may suffer from large result sets in prac-
tice, since no means to rank or discriminate between
the returned candidate explanations are available.
We present a unique combination of model- and
spectrum-based fault localisation approach to rank
explanations and show that the combined frame-
work outperforms the individual approaches as well
as other state of the art automated debugging mech-
anisms.

1 Introduction

The problem of faulty software has been recognised as long-
standing issue, with considerable costs attached to locating
and eliminating problems in development as well as after
deployment of software systems [19]. In particular, testing,
validation and debugging of software consumes a considerable
slice of the overall software development costs. Hence, numer-
ous approaches have been proposed to automate parts of this
process to help detect more defects earlier in the development
cycle and to guide software engineers towards possible faults.

Early debugging efforts were geared towards reducing the
size of a program that must be investigated by analysing the
structure and dependencies between different parts of the pro-
gram’s source code [16]. More recently, dynamic analysis
techniques have been proposed that exploit traces of program
executions to accommodate the size of modern software sys-
tems [23]. While applicable to a wide variety of programs,
both approaches are limited by the absence of a detailed model
of the correct behaviour of a program.

To overcome these limitations, a spectrum of model-based
fault isolation techniques has been advocated as powerful
debugging aid that can help to isolate faults in complex pro-
grams [12]. By comparing the state and behaviour of a pro-
gram to what is anticipated by its programmer, model-based
reasoning techniques separate those parts of a program that
may contain a fault from those that cannot be responsible
for observed symptoms. A distinguished advantage of the
model-based framework is that it helps programmers by sys-
tematically exploring different fault assumptions while hiding
the complex underlying reasoning procedures behind a simple
intuitive conceptual interface.
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Initial experiences with model-based software debugging
(MBSD) have shown that the approach is competitive with
other state of the art automated debugging aids [13], but it has
also become clear that no single technique is sufficient to deal
with a variety of programs and faults. Instead, a combination
of approaches must be pursued where the strengths of indi-
vidual techniques complement each other to lead to a more
accurate and robust debugging tool.

In this paper we present a combined framework that inte-
grates model-based debugging with popular dynamic program
analysis techniques to focus search and rank results. We show
that, as a result, fewer program fragments are being impli-
cated, leading to considerably increased accuracy as well as
reduced computational complexity of the overall approach.
While MBSD is general enough to be combined with almost
any debugging tool that can expose its findings in terms of
the original program’s source code and a set of fault assump-
tions, the combination of semantic and trace-based analysis is
particularly appealing, since the approaches contribute com-
plementary information: MBSD injects and analyses specific
modifications to the semantics of a program, while dynamic
analysis exploits fault correlation to focus the search.

Our presentation is structured as follows: The principles of
model-based debugging are outlined in Section 2, followed by
a discussion of spectrum-based fault localisation in Section 3.
The combined framework is discussed in Section 4. Empirical
validation of our approach and our findings are given in Sec-
tion 5. Section 6 discusses relevant related works, followed by
the conclusion.

2 Model-based Software Fault Localisation

In search for effective (semi-) automated debugging aids,
many different strategies have been proposed in the last three
decades. Approaches to automate analysis and isolation of
faults in programs range from purely syntactical checks to
isolate common fault patterns [4], over execution trace-based
analysis [15] to full-fledged semi-automatic program verifica-
tion [2]. Syntax-based analysis can be easily applied to most
programs, but its results are often language-specific and de-
pend on particular syntactic programming styles; trace-based
techniques depend on a suitable test harness being available.
Better results can often be achieved if a model of the correct
program behaviour is available to guide debugging efforts. For
example, a partial specification expressed in some formal lan-



guage. Unfortunately, building such models is error prone and
prohibitively expensive for many software development sce-
narios. Attempts to devise formal specifications for non-trivial
systems has shown that constructing a model that captures an
abstraction of the semantics of a system can be as difficult and
error-prone as building a concrete implementation [14].

Model-based debugging [12] aims to close the gap be-
tween powerful formal analysis techniques and execution-
based strategies in a way that does not require the end-user to
possess knowledge of the underlying reasoning mechanisms.
Here, an adaption of the classic “reasoning from first princi-
ples” paradigm borrowed from diagnosis of physical systems
is particularly appealing, since much of the complexity of
the formal underpinnings of program analysis can be hidden
behind an interface that resembles the end-user’s traditional
view of software development.!

Different to classical model-based diagnosis, where a cor-
rect model is furnished and compared to symptoms exhibited
by an actual faulty physical artifact, debugging software re-
verses the roles of model and observations. Instead of relying
on the user to formally specify the desired program behaviour,
the (faulty) program is taken as its own model and is com-
pared to examples representing correct and incorrect execu-
tions. Hence, the model in MBSD reflects the faults present in
the program, while the observations indicate program inputs
and correct and incorrect aspects of a program’s execution. Ob-
servations can either be introduced interactively, or be sourced
from existing test suites.

Example 1 Consider the program in Figure 1. An ob-
servation for this program consists of concrete program
inputs, that is values for variables tbl, n and k before
line 1, together with the anticipated result value returned
by the algorithm. For example, the assignments tbl <«
[90, 21, 15,0,0,0,8,23,0,0,0,0,50,60,59], n «— 16, k «—
90 and the assertion result = 0 could be an “observation”
specifying the inputs and the desired result of a particular
program execution.

Since the result (—1) obtained by running the program on
the given inputs contradicts the anticipated result (0), it has
been shown that the program is incorrect. (Indeed, the program
contains a defect in line 9; when assigning O to variable ¢, the
program works as expected.)

In the following, we briefly outline the model construction.
More detailed discussion can be found in [11; 12]. A program
is partitioned into “components”, each representing a partic-
ular fragment in the program’s source code. The behaviour
of each component is automatically derived from the effects
of individual expressions the component comprises. Connec-
tions between components are based on control- and data-
dependencies between the program fragments represented by
each component.

Example 2 Assume a model at statement granularity is to be
created from the program in Figure 1. For each statement
s, a separate component is created that is comprised of the
expressions and sub-expressions in s. The inputs and outputs

'In the software engineering context, the notion of “first prin-
ciples” may be interpreted in the sense of “directly available from
program execution and source code”.

function FINDINDEX(tbl, n, k)
> Find the index of key k in the hash table
tbl[0, ..., n — 1], or —1 if not found.
Assumes that ¢bl contains a free slot.

i < HASH(k) > Hash key

1
2 while tbl[i] # 0do > Empty slot?
3 if tbl[i| = k then
4 return ¢ > Found match
5 end if
6 if i <n —1then > Atend?
7 1—1+1 > Try next
8 else
9 11 > Wrap around (incorrectly)
10 end if
11 end while
12 return —1 > Not found

end function

Figure 1: Algorithm to search in a hash table.
(There is a fault in line 9.)

of the components correspond to the used and modified vari-
ables, respectively. Connections between the components are
created to reflect data dependencies between statements in
the program (as determined by a simple data flow analysis).
Additional variables and components may be introduced to
correctly capture data flow at points where control flow paths
may split or merge.

The component C; corresponding to statement 7 in Fig-
ure 1 is represented as a component with input i5 and output
i7. Here, i7 represents the result value of statement 7, and
15 denotes the previous value of variable ¢ that is implicitly
defined at the loop head in line 2.

Similar to classical model-based diagnosis, the model also
provides different operating modes for each component, where
the “correct” mode ~AB(C') of component C' corresponds to
the case where C'is not to blame for a program’s misbehaviour.
In this case, C' is defined to function as specified in the pro-
gram. Conversely, when C' is assumed “abnormal” (AB(C)),
the C' may deviate from the program’s behaviour.

Example 3 The behaviour of C'; can be expressed as the log-
ical sentence

—|AB(07) = 47 =49 + 1. (D)

In the case where C7 is considered faulty (AB(C%) is true),
the effect on ¢~ is left unspecified.

The main difference between the original program and its
model is that the model represents the program in a form that
is suitable for automated consistency checking and prediction
of values in program states in the presence of fault assump-
tions. This includes program simulation on partially defined
program states and backward propagation of values or con-
straints, which would not occur in a regular (forward) program
execution.

Since the resulting model includes the same faults as the
program, means to compensate for incorrect structure and
behaviour of components must be introduced. While heuristics
to diagnose structural deficiencies in physical systems can be



based on invariants and spatial proximity [3], in software, the
model must be adapted and restructured once a defect in its
structure has become a likely explanation. Here, detection and
model adaption must be guided by using abstract assertions
that capture simple “structural invariants” [11]. Also, since
different fault assumptions may alter the control and data flow
in a program, models may be created on-the-fly rather than in
the initial setup stage.

A trade-off between computational complexity and accu-
racy can be achieved by selecting different abstractions and
models [12], both in terms of model granularity and represen-
tation of program states and executed transitions.

Example 4 In Example 3 the representation of program state
has been left unspecified. Using an interval abstraction to
approximate a set of values, sentence (1) becomes a constraint
over interval-valued variables io and i [13]. Another possible
abstraction is to encode the operation as logical sentences over
the variables’ bit representations [13]. In this paper, we use
the interval abstraction described in [12], since it provides
good accuracy but avoids the computational complexity of the
bit-wise representation.

Similar to consistency-based diagnosis in physical sys-
tems [17], from discrepancies between the behaviour predicted
by the model and the behaviour anticipated by the user, sets of
fault assumptions are isolated that render the model consistent
with the observations. Diagnoses are obtained by mapping
the implicated components into the program’s source code.
Formally, our framework is based on extensions to Reiter’s
consistency-based framework [12]:

Definition 1 (Diagnosis) Let P denote a program and 7 a
set of test cases, where each T' € T is a pair (I, A) where I
specifies P’s inputs and A is a set of assertions over variables
in P that (partially) specify the correct behaviour of P with
respect to T'. Let C denote a partition of the statements in P.

A diagnosis of P with respect to 7 is a set of components
D such that V(I, A) € T :

P(I) AM{AB(C)|C € D} A{=AB(C)|C € C\ D} }£ —A.

Example 5 Continuing Example 4, a contradiction between
the test case from Example 1 and the program is detected when
the assertion checking the expected result fails. It is derived
that the (cardinality-)minimal fault assumptions that are con-
sistent with our test specification are: {AB(C1)}, {AB(C7)},
{AB(Cy)}, and {AB(C12)}. Hence, the statements in lines 1,
7,9 and 12 are considered the possible root causes of the symp-
toms. Any other statement cannot alone explain the incorrect
result, since the result remains incorrect even if a statement is
altered.

2.1 Issues in MBSD

While the pure MBSD framework is well-suited to carry out
complex inferences, its application in practice is limited due
to the following factors:

Result interpretation: If many explanations are returned,
MBSD alone provides little information to discriminate be-
tween the different explanations. Here, a mechanism to rank
results would be desired.

Different to electronic circuits, where long sequences of e.g.
inverters are uncommon, program executions frequently con-
tain long chains of control- and data dependencies, leading to
a number of explanations that cannot be distinguished without
further observations. For example, the value of the conditional
test in line 2 depends on all statements executed in previous
iterations. Interactive measurement selection techniques are
difficult to apply, since program states in different executions
may be incomparable, rendering entropy-based solutions inef-
fective.Returning a “super component” as explanation is also
not viable in general, since the involved statements can span
many different program fragments. Therefore, an approach
that works with little or no user involvement is desired.

Scalability: The application of MBSD has been limited to
small programs, since the computational effort exceeds what
is considered reasonable for interactive scenarios. Hence,
inference processes must be applied selectively to remain
efficient.

External interfaces: MBSD requires that effects of pro-
gram fragments can be simulated even if only partial informa-
tion is available. Programs interacting with external compo-
nents, such as I/O, files and GUIs, must be modified to either
remove these interactions or provide placeholder implementa-
tions.

The first two issues can be addressed by introducing a mech-
anism to estimate, for each component C' in the model, how
likely it is that C contains a fault. The third issue is common
to most program analysis techniques and is beyond the scope
of this paper.

Assuming a suitable measure is available, ranking of results
based on fault probability and investigating different explana-
tions in best-first order rather than computing all explanations
at once are straight forward. Since a priori probabilities are
typically not directly available, other means to determine a
suitable likelihood value must be used.

The aim of this paper is to show that correlation between
the execution patterns of statements with correct and failed
executions can significantly improve diagnosis results. The
following section outlines our approach to assessing the simi-
larity between different program executions and test outcomes.
Since MBSD does not usually exploit correct program ex-
ecutions in any way, this approach can contribute valuable
information to guide the model-based framework.

3 Spectrum-based Fault Localisation

When more than one test case are available, dynamic program
analysis techniques have shown that comparing the program
behaviour over multiple test runs can indicate which program
components may be likely to contribute to an observed symp-
tom.

In the following, we assume that a program P comprises a
set of M = |C| components (statements in the context of this
paper) and is executed using N = |7 | test cases that either
pass of fail.

Program (component) activity is recorded in terms of pro-
gram spectra [1; 8]. This data is collected at run-time, and
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typically consists of a number of counters or flags for the
different components of a program. We use the so-called hit
spectra that indicate whether a component was involved in a
(test) run or not.

Both spectra and pass/fail information is input to a spectrum-
based fault localisation (SFL) mechanism. The combined
information is expressed in terms of the N x (M + 1) par-
ticipation matrix O (see Figure 2). An element o;; is equal
to 1 if component j took part in the execution of test run g,
and 0 otherwise. The rightmost column of O, the error vector
e, represents the test outcome. The element ¢; = 0; 1,41 1S
equal to 1 if run ¢ failed, and 0 if run ¢ passed. For 7 < M, the
row O;, indicates whether a component was executed in run ¢,
whereas the column O, ; indicates in which runs component j
was involved.

In SFL one measures the similarity between the error vec-
tor e and the activity profile vector O.; for each compo-
nent j. This similarity is quantified by a similarity coeffi-
cient, expressed in terms of four counters a,q(j) that count
the number of positions in which O,; and e contain respec-
tive values p and ¢; that is, for p,q € {0,1}, we define
apq(7) = |{t | 0;; = p A e; = q}|. In this paper, the Ochiai
similarity coefficient is used, known from molecular biology,
since previous investigations have identified it as the best co-
efficient to be used for SFL [1]. It is defined as

a11(7)

V(@11(5) + ao1 (7)) * (a11(5) + a10(4))

The similarity coefficient s; associated with each component
C indicates the correlation between the executions of C; and
the observed incorrect program behaviour. Applying the hy-
pothesis that closely correlated components are more likely
to be relevant to an observed misbehaviour, s; can be reinter-
preted as “fault probability” and components can be ranked.

Sj—

Example 6 Executing the program in Figure 1 using the test
case described in Example 1, the first row vector in the partici-
pation matrix below is obtained: The vector contains a single
0 entry, indicating that all components but C are executed.
Since the returned value does not match the anticipated result,
the entry in the error vector is set to 1.

Assume that further tests are executed to yield the following
participation matrix:

Ci Co C3 Cy Cg C; Cy Cia2 e
1 1 1 0 1 1 1 1 1
1 1 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0
1 1 1 0 1 1 1 1 0
1 1 1 0 1 1 1 0 1

0.58 0.58 0.63 0.00 0.71 0.71 0.71 0.58

For each component the Ochiai similarity s; is given below the
matrix. For C3, the similarity coefficient s3 is 0.63: as can be seen
from the third column in the matrix, there are two failing test runs
where Cs is executed (a11(3) = 2), no failing run where C3 does
not participate (ao1(3) = 0), and three successful executions where
Cs is involved (a10(3) = 3).

Cs, C'7 and Cy are considered to be most closely correlated with
failing tests and should be examined first. Conversely, C4 is not
considered relevant at all.

Recent studies on spectra-based fault localisation indicated
that this scheme is effective even for small test suites contain-
ing only few test cases [1]. For the programs investigated here,
good fault localisation was achieved when using six failing
test cases and twenty passing runs.

4 Spectra-Enhanced MBSD

As SFL functions without a semantic model of the program,
the technique is easily applied. Experiments with different
similarity measures have shown that Ochiai similarity gener-
ally outperforms other spectra-based indicators and can give
good hints on the location of a fault in a program [1].

At the same time, the absence of a model also limits the
accuracy of fault localisation. Even for comprehensive test
suites, the execution patterns of some components may not
be distinguishable, and faulty components may show erro-
neous behaviour only in particular execution contexts. As a
result, the similarity measure may implicate unrelated program
fragments.

Conversely, the model-based technique captures the seman-
tics of programming constructs, but does not assign ranking
information to candidate explanations. Furthermore, model-
based diagnosis traditionally only considers discrepancies, but
does not utilise correct test cases, although all failing test cases
will be considered. In contrast, spectra-based methods exploit
both correct and failing test runs to rank candidates. Hence,
both techniques complement each other.

Algorithm 1 outlines our combined approach. The algo-
rithm executes in three stages, with the similarity-based ap-
proach used in the setup stage (steps 1 to 5), feeding into
the subsequent model-based filtering stage (steps 6 to 16),
followed by an optional best-first search stage (lines 17 to
24). This combination has significantly lower resource re-
quirements than applying MBSD on the whole program but
using SFL only to rank results. We start by partitioning the
program P into a set of components C and execute P on the
available test cases 7 to obtain the participation matrix M.
Using M, we partition 7 into passing tests (7p) and failing
ones (7x). From M, the Ochiai similarity vector is computed;
its values are subsequently assigned to components as a-priori
fault probabilities to yield the component list C sorted by fault
probability.?

In the subsequent loop, candidate explanations are com-
puted using the MBSD approach to isolate the most likely

explanations based on C and 7x. While it is possible to ap-
ply MBSD once to compute all explanations and present the
ranked candidates to the user, an incremental strategy permits

“We use the term probability as synonym for likelihood to be
incorrect. Our measure does not necessarily conform to the laws of
probability theory.



Algorithm 1 Spectra-Enhanced MBSD Algorithm
Inputs: Program P, set of test cases 7

QOutput: Fault assumptions explaining failed test runs

1 C «— CREATECOMPONENTS(P)

2 M «— GETCOMPONENTMATRIX(C, T)

3 <Tp, TF> — T

4 S — COMPUTESIMILARITY (M)

5 C < ASSIGNCOMPONENTPROBABILITIES(C, S)
6t—1+ce€

7R—C

8 repeat R

9 D« MBSD(C,Tp,t)

10 if Dy, € D is confirmed then

11 return Dy,
12 else
13 t <« PROBABILITY (D) for some D € D
14 end if
15 R«R\ |J Comps(D)
DeD

16 untilD =Qort =0
17 while R # () do

18 C « argmax PROBABILITY(C)
CeR A INENEIGHBOURS(C):N¢R

19 if C' is confirmed faulty then

20 return {AB(C)} > Partial explanation
21 end if

22 R «— R U (NEIGHBOURS(C)NR) \ {C}

23 end while

24 return No explanation found

the algorithm to stop early once a fault has been identified.
In each iteration, the user is presented a number of candidate
explanations for examination. If the actual fault has been lo-
cated, the algorithm stops; otherwise, none of the candidates
represent valid explanations and other candidates must be gen-
erated. The algorithm stops once no more explanations could
be found or if none of the remaining components was executed
for a failing test.

We modified the basic MBSD algorithm to return only the
explanations with probability p less than a given threshold
t, with the additional restriction that p is maximal among
the returned diagnoses. Hence, only explanations with the
same likelihood are returned in an iteration of Algorithm 1.
Initially, ¢ is set to a value slightly larger than 1 (the Ochiai
similarity is always < 1), hence candidate explanations with
maximum likelihood are enumerated first. By decreasing ¢ in
each iteration, lower-scoring alternatives are explored if no
higher-scoring candidate has been confirmed by the user. Our
implementation of MBSD caches intermediate models and
conflicts to avoid repeated computations.

If no explanation is found after all components implicated
by MBSD have been explored, we employ a best-first search
procedure that traverses the program along dependencies be-
tween components with decreasing fault probability. No ex-
planation may be found if a fault in the program has larger
cardinality than the MBSD threshold or if the fault affects
component inter-dependencies such that the fault assumptions

and model abstraction can no longer represent the fault. Func-
tion NEIGHBOURS(C) returns the set of components that are
directly connected to C' in P, COMPS(D) returns the set of
components that occur in diagnosis D, and PROBABILITY (C')
returns the fault probability assigned to component C' by SFL.
In line 18, the component with maximum fault probability that
is connected to a previously explored component is selected.
If the component is confirmed to be (part of) a valid expla-
nation, the search stops and the diagnosis is returned. Note
that the explanation may only cover part of the true fault. Line
24 in Algorithm 1 can only be reached if the faulty program
fragment is not covered by any component, or if the user ora-
cle that decides whether an explanation is indeed a satisficing
explanation is imperfect and may miss a fault.

We employ the common assumptions that components may
fail independently. While faults in a statement can imply fail-
ure in subsequent statements due to data dependencies, this
need not be true in general; since most faults in our test suite
are confined to a single component and only few statements oc-
cur where implied faults are possible, this assumption has not
significantly affected the outcomes of our study. Also, since
fault probabilities are estimated from correlation with failing
tests, different components participating in the same failure
will be assigned higher similarity, partially compensating for
missed component fault interactions.

Example 7 Applying Algorithm 1 using the test suite from
Example 6, {AB(C7)} and {AB(Cy)} form the set of can-
didate explanations. Both candidates are associated with the
highest similarity coefficient 0.71.

Notably, this result improves upon both individual fault
localisation procedures. Different from pure SFL, { AB(Cs)}
is no longer considered an explanation. Conversely, candidates
{AB(C4)} and {AB(C42)} obtained using pure MBSD are
low-ranking in SFL and hence omitted at this stage. (AB(C42)
is already eliminated by pure MBSD when using the second
failing test case introduced in Example 6.)

Without further information, neither approach can discrimi-
nate between the two remaining candidate explanations. Since
it is assumed that the user acts as oracle that can reliably recog-
nise true faults, the algorithm stops after the first iteration,
once the statement in Figure 1 corresponding to { AB(Cy)}
has been confirmed to be incorrect.

Otherwise, the diagnosis threshold ¢ would be set to 0.71
and the algorithm would continue to present { AB(C )} as the
(last) remaining alternative explanation.

The use of similarity measures to guide diagnosis can po-
tentially lead to considerable savings; moreover, the behaviour
of Algorithm 1 degrades gracefully if components with high
probability do not actually correspond to faults. In the worst
case, the number of diagnoses to be examined by the user is
the same as when using the non-guided MBSD strategy. In the
next section we evaluate our algorithm on a larger test suite.

5 Empirical Evaluation

To gain a better understanding of the combined approach, the
TCAS program was taken from the Siemens Test Suite?, a test

*http://www-static.cc.gatech.edu/. ..
.../aristotle/Tools/subjects/



bench commonly used in the debugging community. The
program simulates the resolution-advisory component of a col-
lision avoidance system similar to those found in commercial
aircraft. The program consists of 138 lines of C code and takes
twelve parameters as input; the numeric result value encodes
one out of three possible resolution advisories. The program
is equipped with 1608 test cases and 41 different variants with
known faults. For each variant, on average, forty test cases
reveal a fault. In our experiments, all available test cases were
used.

As the efficiency of debugging in practice often depends on
the experience of the software developer, comparing different
approaches is difficult. In particular, simple precision and
recall-based evaluation may be insufficient, since the structure
of a program is not taken into account. In an attempt to devise
an objective measure to assess the quality of automated debug-
ging aids, a quality metric that exploits dependencies within a
program has been proposed, where the quality of a report de-
pends on the fraction of a program that need not be examined
given the debugging tool’s output. Starting with the program
elements implicated by an automated debugger, dependen-
cies between program elements are traversed in breadth-first
order until the fault has been reached. This strategy aims
to mimic programmer behaviour, where possible influences
along control- and data flow paths are explored. The fraction
of the program that has not been traversed leads to the quality
indicator [18].

In our framework, if the explanation covering the true fault
is ranked nt" among the candidate explanations, the fraction
of the program that is traversed is given by

i ISTMNTS(D;)|
[P ’

where D; represents the i*"-ranked candidate explanation,
STMNTS is a function that returns the set of program state-
ments covered by the components in a diagnosis, and |P|
denotes the number of statements in the program. Otherwise,
if Algorithm 1 stops without locating the true fault, the breadth-
first search procedure is invoked starting with all implicated
statements

q:

U STMNTS(D)
DeMBSD(C,Tr,1+¢)
to obtain ¢ as outlined previously.

5.1 Experimental Results

Results for the individual approaches have already been pub-
lished elsewhere; an evaluation of MBSD is presented in [13],
where an interval abstraction is applied to yield, on average,
nine statements to be inspected. The median quality indicator
is 0.87. The results obtained with SLF are discussed in [1].
Exploring the program beginning with the highest-ranked state-
ment, the true fault is located after 28 statements have been
examined on average. The resulting median report quality is
0.86. Figures 3 and 4 summarise the overall outcomes.

To obtain a first impression how well the two approaches
complement each other, Figure 3 contrasts the components
implicated by either model with those blamed by both. It
can be seen that the AIM significantly reduces the number
of components, and that neither model subsumes the other.
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Figure 3: Components implicated by SFL. and MBSD

Restricting the debugging process to those statements that ap-
pear in both models, the median number of statements reduces
from 36 to 8. Hence, the total number of statements consid-
ered relevant reduces considerably when using the combined
approach.

Similar improvements can be observed in the ranking of
components. Using the pure SFL approach one hits the true
fault after inspecting twenty statements on average, but many
unrelated statements must be examined. When using MBSD
as filtering mechanism, the true fault is located after seven
statements on average. Hence, the model-based filtering mech-
anism seems well-suited to prune away irrelevant components
from the SFL fault profiles.

The improved accuracy of the combined approach also re-
flects in much improved quality indicators. Figure 4 depicts
the quality measure obtained for the individual 41 test pro-
grams using our fault localisation approaches. It is observed
that the combined approach largely outperforms the individual
techniques. In some cases, SFL outperforms the combined
approach, suggesting that the model used in MBSD may not
be able to accurately reflect the fault. This difference may
also be attributed to the execution of some faulty code cor-
relating well with the failing test cases. If the MBSD part
of our algorithm cannot precisely locate the fault, the SFL.
method can score higher. So far, we have not been able to
devise heuristics that can consistently predict this discrepancy
from the a-priori component probabilities and diagnoses to
further improve accuracy. Since both approaches use heuris-
tics to rank candidates, it may be the case that one method
outperforms the combination on individual candidates, even
though it is superior overall.

Overall, the fraction of the program that must be inspected
reduces from 13% and 30%, respectively, to 8%. Although
MBSD alone is not able to locate faults for 9 of the 41 pro-
grams (due to limitations on faults in global variable initialisa-
tion in our current implementation), the overall performance of
the combined approach does not seem to be adversely affected
in most cases. This can be explained by two observations: (i)
the number of diagnoses that are implicated in those cases is
small (4 on average), and (ii) the suspect program fragments
are close to the actual faults when navigating the program
structure.
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Figure 4: Report quality

We also evaluated a modified version of Algorithm 1, where
the MBSD section is stopped after the six* most highly ranked
components have been explored; the remaining components
were subsequently explored using the best-first part of our
algorithm. The resulting quality indicators are labelled Top6 in
Figure 4. The results indicate that the components implicated
by the combined approach sometimes narrowly miss the true
faults; in these cases, the score measure improves compared to
the combined approach. In other cases, following the original
algorithm is more successful. Overall, the quality indicators do
not differ significantly between the two models. Investigating
whether heuristics can be developed that choose a cutoff to
improve accuracy remains for future work.

Figure 5 visualises the number of located bugs for different
fractions of inspected code. Our approach vastly outperforms
the simple spectrum-based fault localisation techniques pro-
posed in [18], where different combinations of union and inter-
section of “similar” passing and failing test runs are computed.
This can be attributed to the improved ranking mechanisms
built into our algorithm that is more robust with respect to
overlapping passing and failing executions. Our combined ap-
proach also improves with respect to SOBER [10], a statistical
approach based on hypothesis testing that has been shown to
dominate other recent bug detectors.

Delta slicing and explain [7] are two techniques for fault lo-
calisation that exploit differences between passing and failing
abstract program executions traces found by a model checker.
Comparing our results to the published results in [7], we con-
clude that the combination of SFL and MBSD is far superior
than explain (which requires the user to explore 24-64% of a
program) and performs competitive with respect to Delta Slic-
ing (within 5%). Interestingly, when using the cutoff variant of
or our algorithm described in Figure 4, our approach also dom-
inates Delta Slicing. (This comparison is not exhaustive, since
results for only a small subset of the examples considered in
our study is available for the competing approaches.)

“This cutoff seemed to have the best overall effect for an extended
test suite used in [1].
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Figure 5: Debugging efficiency

6 Related Work

Several systems employing dynamic analysis techniques for
fault localisation are present in the literature. Tarantula [8] ob-
tains program spectra from test case executions and graphically
visualises the fault proneness indicator based on participation
of individual statements in passing and failing runs. Tarantula
does not exploit information about the anticipated behaviour
of a program and hence relies on external tools to assess the
outcome of test runs.

Machine learning techniques have been applied to pro-
grams [21] and their executions [15] to infer likely invariants
that must hold at particular locations in a program. Violations
can subsequently be used to detect potential errors. Model-
based approaches have been shown to provide more reliable
behaviour than [15], since success of the trace analysis de-
pends much on the test runs and type of invariants to be in-
ferred [9]. The static program analysis approach requires that
similar patterns appear repeatedly in a program, but is not
applicable when common patterns are not easily identified.

Combining program execution and symbolic evaluation
has been proposed to infer possible errors [5]. Similar to
MBSD, a symbolic, under-constrained representation of a
program execution and memory structures are built. Instead
of using fault probabilities to guide diagnosis, only those
candidate explanations that definitively imply a test failure
are flagged. Hence, the tool complements our approach by
highlighting a subset of all provable faults in a program, while
our approach aims at identifying those program fragments that
may contribute to a fault.

Model-based debugging has been explored using a variety
of different abstractions of concrete programs [12]. Recently,
similar techniques have also been proposed to isolate specific
faults stemming from incorrect implementation of high-level
conceptual models [22]. Mutations applied to state machine
models allow to detect conceptual errors, such as incorrect
control flow and missing or additional features found in the
implementation compared to its specification. Model-based
test generation [6] from abstract specifications of systems



employs a similar idea where possible faults manifested as
differences in abstract state machines are analysed to generate
tests. Our work differs in that we are concerned with program
representations that more closely reflect the actual program
artefact to locate faults at a more detailed level. While initial
steps to integrate similar conceptual abstract models have been
undertaken in an attempt to isolate “structural” faults [11],
detailed analysis remains future work.

Diagnosis and repair in the context of distributed systems
composed from Web Services has also been investigated [20].
In particular, diagnosability and analysis of diagnosis and
repair plans are central parts of this work. Similar ideas are in
principle applicable in the debugging context, but further work
is required to devise a suitable analysis framework that can
operate on the more implementation-centric view employed
in this work.

7 Conclusions & Future Work

We have shown that the accuracy of model-based debugging
increases significantly when applied in combination with com-
plementary approaches that estimate fault probabilities. The
unique combination of semantics-based analysis as undertaken
in MBSD and dynamic aspects obtained from program exe-
cution spectra has proved to focus debugging efforts; overall,
a reduction of user effort to less than 10% compared to the
complete program has been achieved on our test suite. We
have further shown that our approach is among the state of the
art automated debugging tools.

Several issues for further research remain: On the MBSD
side, connecting the lower-level models that reflect the pro-
gram to high-level conceptual models to detect a more diverse
set of faults seems promising to address current limitations.
The same idea may be useful to aid model selection and focus
fault assumptions. On the dynamic analysis side, introducing
machine learning techniques to infer likely invariants that can
then be used to further filter and guide the MBSD modelling
efforts are possible avenues worth further exploration.
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