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1 Introduction

This technical report is meant to report our findings and ideas with respect to spectrum-based fault localization and model-
based diagnosis. In the following we want to introduce and compare model-based diagnosis (MBD), spectrum-based fault
localization (SFL) and our contributions using 3-inverters as a running example (which is simple, yet sufficiently interesting).

The remainder of this paper is organized as follows. The concepts and definitions used in this paper are given in the
next section. The combination of model-based diagnosis andBayesian reasoning, as it is normally applied to, e.g., digital
circuits, is discussed in Section 3. Spectrum-based fault localization, including the system transformation for instrumentation
to collect data to reason about failures is discussed in Section 4.1. In Section 4.2 we investigate several novel approaches
for applying model-based diagnosis, and notably Bayesian reasoning to systems that have been prepared for spectrum-based
fault localization.

2 Preliminaries

Definition 1 By a system under observation, orsystemwe mean a tuple〈C, V, S〉, where

• C is a finite, non-empty set ofcomponents{c1, . . . , cn}.
• V is a finite, non-empty sequencex1, . . . , xk of observable variables, with respective domainsD1, . . . ,Dk,

• S ∈ D1 × . . .×Dk represents the specified behavior.

Further, by anobservationwe mean a tuple〈v1, . . . , vk〉 ∈ D1 × . . .×Dk. An observation obs/∈ S is called afailure.

With each componentcm ∈ COMPS we associate ahealth variablehm which denotes component health. The health
states of a component are healthy (true) and faulty (false), but this concept can easily be generalized to any finite domain [?].

Definition 2 An h-literal ishm or ¬hm for cm ∈ COMPS .

Definition 3 An h-clause is a disjunction of h-literals containing no complementary pair of h-literals.

Definition 4 Let SN andSP be two disjoint sets of healthy and faulty components, respectively, such thatC = {m | m ∈
SN ∪ SP } andSN ∩ SP = ∅. A diagnosis candidate isdk(SN , SP )

(
∧

cm∈SN

¬hm) ∧ (
∧

cm∈SP

hm)

Definition 5 A diagnosisD = {d1, . . . , dk, . . . , dK} is an ordered set of allK diagnosis candidates.
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MBD + BR
(Section 4.2)

Figure 1. Approaches to diagnosis considered in this paper

For simplicity, we refer tod in terms of a set of the negations literals only.
The purpose of diagnosis is to identify the component, or combination of components that causes observed system failures,

and the starting point of such an analysis is a system〈C, V, S〉, and a sequence of observationsobs1, . . . , obsm that contains
at least one failure. Note that in our definition of a system under observation the components inC are not related to the
observations, and without further information we cannot exclude any diagnosis candidate from the powerset ofC except the
empty diagnosis candidate, which indicates that all components function correctly.

In this report we will describe and compare several techniques that help make meaningful selections of diagnosis candi-
dates in one or both of the following ways:

• by reducing the number of diagnosis candidates, and

• by ranking diagnosis candidates with respect to the likelihood that they explain the observations.

Figure 1 illustrates the combinations of techniques that wewill consider.
The primary technique for reducing the number of diagnosis candidates ismodel-based diagnosis(MBD). It entails that

the system description〈C, V, S〉 is complemented with a model, on the basis of which we can exclude diagnosis candidates
that do not logically explain all observations. The number of remaining diagnosis candidates is typically large, and Bayesian
reasoning (BR) is normally applied as a companion to model-based diagnosis, to rank the remaining diagnosis candidate with
respect to the probability that they reflect reality in presence of the observed behavior. In addition to providing the ranking,
the calculated probabilities can also play a role in determining the quality of a diagnosis, and to guide the search for valid
diagnosis candidates, but these applications are outside the scope of this paper.

As a second technique for ranking diagnosis candidates, we will consider spectrum-based fault localization (SFL). In this
case, the observations relate to the activity of the components, and the diagnosis candidates are ranked according to the extent
to which this activity coincides with the occurrence of failures. The measurements required for SFL are achieved through
instrumentation, and we model this by a transformation of a system into a variant of that system that provides the necessary
observations.

Traditionally, MBD+BR and SFL are applied to hardware and software, respectively. Some approaches to model-based
software diagnosis exist, but a major problem with these approaches is that in general, neither the software models usedin the
development cycle, nor the models that can be derived from existing code, allow for a significant reduction of the number of
diagnosis candidates. In this paper we investigate a different approach, where Bayesian reasoning is applied to calculate the
probability that diagnosis candidates are supported by observations in the context of the instrumented system, which we also
use for SFL. In addition, model-based diagnosis based on a simple, automatically generated causal model (SDC in Figure 1)
is used to counter the computational complexity.

2.1 Model-based Diagnosis

Without loss of generality, in this section we considerdigital systems, which we define to be systems whose variable domains
D1, . . . ,Dk equal the set{true, false}.
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Definition 6 A system descriptionfor a digital system〈C, V, S〉 is a propositional formulaM that involves at least the
following propositional variables:

• the observable variables of the system,x1, . . . , xk,

• h1, . . . , hn, wheren is the number of components inC. These are the so-calledhealth variables, wherehi represents
the proposition that componentci is healthy (functioning correctly).

Furthermore we require that

h1 ∧ . . . ∧ hn ∧ xobs+ ∧ xobs− ∧ M 6|= ⊥ iff obs ∈ S,

where forobs := 〈v1, . . . , vk〉, xobs+ denotes the conjunction of literalsxi for which vi = true, andxobs− denotes the
conjunction of literals¬xi for whichvi = false.

Now a diagnosis candidated is called a diagnosis candidate for the combination of a system 〈C, V, S〉, a description of
that system, and a single observationobsiff

hd+ ∧ hd− ∧ xobs+ ∧ xobs− ∧ SD 6|= ⊥,

wherehd+ denotes the conjunction of literalshi for which ci ∈ d, and wherehd− denotes the conjunction of literals¬hi

for which ci /∈ d, and wherexobs+ andxobs− are as in Definition 6. The notion of a diagnosis for a single observation
is extended to the notion of a diagnosis for a sequence of observations by requiring that the above condition holds for all
observations in the sequence.

2.2 Observation-based Fault Localization

Given a system〈C, V, S〉 and a sequence of observationsobs1, . . . , obsm, we define〈C, V ′, S′〉 andobs ′1, . . . , obs
′
m to be as

follows.

• V ′ := a1, . . . , an, e, i.e., the number of variables in the modified system is equalto the number of components, plus
one. All variables ofV ′ have domain{true, false}.

• Forobs ′i := 〈a1, . . . , an, e〉 we have

– aj indicates whether or not componentcj was involved in the computation that resulted in observation obs i,

– e indicates whetherobs i is a failure or not, i.e.,e is equal to the truth value of the conditionobs i ∈ S.

• We defineS′ to contain those observationsobs ′i := 〈a1, . . . , an, e〉 havinge = false.

The set of observations are stores in a so-calledobservation matrix, which is defined as follows

Definition 7 Let M be the number of components, andN the number of execution runs. LetO denote theN × (M + 1)
observation matrix. For j ≤ M , the elementoij is equal to1 (true) if componentj was observed to be involved in the
execution of runi, and0 (false) otherwise. The elementoi,M+1 is equal to1 (true) if run i failed, and0 (false) otherwise.
The rightmost column ofO is also denoted ase (the error vector).

From O it is also possible to derive the probabilityr that a component is actually executed in a run (expressing code
coverage), and the probabilityg that a faulty component is actually exhibiting good behavior (expressing fault coverage, also
known as the “goodness” parameterg from MBD [2]).

2.3 Bayes’ Rule

Throughout this paper, components are assumed to fail independently. Therefore, in absence of any observation the proba-
bility a particular diagnosisd(∆, C −∆) is correct is:

Pr(d) =
∏

cm∈∆

Pr(¬hm) ·
∏

cm∈C−∆

(1− Pr(¬hm))
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where Pr(¬hn) is the given probability that componentcm is faulted (not healthy). The probability for diagnosisd being
correct after an observationobs is given by Bayes’ rule:

Pr(d|SD ∧ obs) =
Pr(SD ∧ obs|d) · Pr(d)

Pr(SD ∧ obs)

The denominator Pr(SD ∧ obs) is a normalizing term that is identical for alld and thus needs not to be computed directly.
Thus,

Pr(d|SD ∧ obs) = α · Pr(SD ∧ obs|d) · Pr(d)

Pr(SD ∧ obs|d) is defined as

Pr(SD ∧ obs|d) =

 0 if d andSD ∧ obs are inconsistent
1 if d logically follows fromSD ∧ obs
ǫ if neither holds

where various policiesǫ are possible [1]: different values forǫ will be considered in the subsequent sections of this paper.
For multiple observations, Bayes’ rule can be applied in sequence. Thus, after a set ofm observationsSO = {obs1, . . . , obsn}

the probability a particular diagnosisd is correct given by applying recursively the Bayes’ rule, yielding

Pr(d|SD ∧ SO) = α · Pr(SD ∧ obs1|d) · . . . · Pr(SD ∧ obsn|d) · Pr(d)

As SD does not change, we use Pr(d|obs) instead of Pr(d|SD ∧ obs) for simplicity.

2.4 3-inv

The circuit in Figure 2 will be the running example throughout this paper.

Figure 2. 3-inverters example

3 Model-Based Diagnosis

A weak model of an inverter component c is given by

h ⇒ y = ¬x

Consequently, the circuit is modeled by

h1 ⇒ w = ¬x

h2 ⇒ y1 = ¬w

h3 ⇒ y2 = ¬w

Consider the observationobs = ((x, y1, y2) = (1, 1, 0)). It follows

h1 ⇒ ¬w

h2 ⇒ ¬w

h3 ⇒ w

R. Abreu, P. Zoeteweij & A. van Gemund SERG
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which equals

(¬h1 ∨ ¬w)
(¬h2 ∨ ¬w)
(¬h3 ∨ w)

Resolution yields

(¬h1 ∨ ¬h3) ∧ (¬h2 ∨ ¬h3)

also known as conflicts [4], meaning that (1) at leastc1 or c3 is at fault, and (2) at leastc2 or c3 is at fault.
The minimal diagnoses are the minimal hitting set [7], givenby

¬h3 ∨ (¬h1 ∧ ¬h2)

Thus eitherc3 is at fault (single fault), orc1 and c2 are at fault (double fault). Given the weak model, any other fault
combination that is subsumed by the above, two minimal diagnoses, is a valid diagnosis.

Assuming all inverters have equal a priori fault probability, clearly, the single fault has higher probability, i.e., should rank
higher than the double fault candidate. The posterior probability of the diagnoses, given the observations, is computed using
Bayes’ rule, updating the prior probability according to the extent the observation is explained by the candidate diagnosis as
explained in Section 2.3. Thus,

Pr(¬h3|obs) = α · Pr(obs|¬h3) · Pr(¬h3)
Pr(¬h1 ∧ ¬h2|obs) = α · Pr(obs|¬h1 ∧ ¬h2) · Pr(¬h1 ∧ ¬h2)

Let Pr(¬hc) = p and assume components fail independently, the prior probabilities are given by

Pr(¬h3) = p

Pr(¬h1 ∧ ¬h2) = p2

If ǫ is defined to be one divided by the number of observations thatcan be explained by a given diagnosis, and since there
are 4 possible observations that can be explained by¬h3, and 8 possible observations that can be explained by¬h1 ∧ ¬h2 it
follows that

Pr(obs|¬h3) =
1
4

Pr(obs|¬h1 ∧ ¬h2) =
1
8

Consequently,

Pr(¬h3|obs) = α · 1
4
· p

Pr(¬h1 ∧ ¬h2|obs) = α · 1
8
· p2

As the two minimal diagnoses are independent (weak fault model), both must sum up to1, determiningα.
Forp = 0.01 it follows

Pr(¬h3|obs) ≈ 0.995
Pr(¬h1 ∧ ¬h2|obs) ≈ 0.005

Instead of accounting for the scaling constantα such that the posterior probabilities sum up to1, we can also explicitly
compute Pr(obs). By definition, as explained in Section 2.3, the conditionalprobability is calculated as follows

Pr(¬h3|SD ∧ obs) =
Pr(¬h3 ∧ (SD ∧ obs))

Pr(SD ∧ obs)

Pr(¬h1 ∧ ¬h2|SD ∧ obs) =
Pr((¬h1 ∧ ¬h2) ∧ (SD ∧ obs))

Pr(SD ∧ obs)
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Forobs = ((x, y1, y2) = (1, 1, 0)), the solutionς = SD ∧ obs = ¬h3 ∨ (¬h1 ∧ ¬h2) holds,

Pr(¬h3|ς) =
Pr(¬h3)

Pr(¬h3) + Pr(¬h1) · Pr(¬h2)− Pr(¬h1) · Pr(¬h2) · Pr(¬h3)

Pr(¬h1 ∧ ¬h2|ς) =
Pr(¬h1 ∧ ¬h2)

Pr(¬h3) + Pr(¬h1) · Pr(¬h2)− Pr(¬h1) · Pr(¬h2) · Pr(¬h3)

Thus, forp = 0.01

Pr(¬h3|ς) =
p

p + p2 − p3
= 0.99

Pr(¬h1 ∧ ¬h2|ς) =
p2

p + p2 − p3
= 0.01

Now suppose that there is a second observationobs′ = ((x, y1, y2) = (1, 1, 1)), which does not reveal any faulty behavior.
Using the same reasoning as for the firstobs, all possible diagnoses explainobs′

d1 = (h1 ∧ h2 ∧ h3)
d2 = (h1 ∧ h2 ∧ ¬h3)

. . .

d7 = (¬h1 ∧ ¬h2 ∧ h3)
d8 = (¬h1 ∧ ¬h2 ∧ ¬h3)

As mentioned before, probabilities are updated as follows

Pr(dk|{obs, obs′}) = α · Pr(obs′|dk) · Pr(obs|dk). Pr(dk)

Due to the first observation, we only consider the two minimaldiagnosesd2 andd7. Thus

Pr(¬h3|{obs, obs′}) = α · Pr(obs′|¬h3) · Pr(obs|¬h3).p
Pr(¬h1 ∧ ¬h2|{obs, obs′}) = α · Pr(obs′|¬h1 ∧ ¬h2) · Pr(obs|¬h1 ∧ ¬h2).p2

Similarly to the previous observation, it follows that

Pr(obs′|¬h3) =
1
4

Pr(obs′|¬h1 ∧ ¬h2) =
1
8

Consequently

Pr(¬h3|{obs, obs′}) = α · 1
4
· 1
4
· p = α · 1

16
· p

Pr(¬h1 ∧ ¬h2|{obs, obs′}) = α · 1
8
· 1
8
· p2 = α · 1

64
· p2

4 Observation-based Diagnosis

In the following we assume that we cannot apply model-based techniques to derive diagnoses. Consider the same circuit.
However, now we necessarily abstract from system structureand component behavior. Observations are associated with pass
or fail information. Hence, the following observation matrix O is obtained:

1 1 0 0 obs1 (c1 andc2 are involved, leading toy1 = 1, i.e., a pass)
1 0 1 1 obs2 (c1 andc3 are involved, leading toy2 = 0, i.e., a fail)

There are generally two approaches towards diagnosing the above problem. The first approach, SFL, is popular in software.
The second approach is based on logic reasoning, similar to MBD, but without the knowledge that comes from modeling
component behavior and interconnection structure.

R. Abreu, P. Zoeteweij & A. van Gemund SERG
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4.1 SFL

Returning to the example presented in the previous section,suppose we have the followingO

1 1 0 0
1 0 1 1

The data inO can be compactly represented using four counters for each diagnosis. Letd be a diagnosis,SF be the set of
indices of non healthy components ind, e be the index of the error detection information:

• a11(d) =
∑

n=1..N

[(
∨

cm∈SF

onm) ∧ en]

• a10(d) =
∑

n=1..N

[(
∨

cm∈SF

onm) ∧ ¬en]

• a01(d) =
∑

n=1..N

[(
∧

cm∈SF

¬onm) ∧ en]

• a00(d) =
∑

n=1..N

[(
∧

cm∈SF

¬onm) ∧ ¬en]

where[·] is the Iverson’s operator [5].
Diagnosis in SFL consists in identifying the diagnoses thatare more probable explanations for the errors. This is done

by means ofsimilarity coefficientstaken from data clustering techniques [6], which are definedusing the four counters just
defined. As an example, the Ochiai similarity coefficient is defined as follows

s(j) =
a11(j)√

(a11(j) + a01(j)) ∗ (a11(j) + a10(j))
(1)

For the three single faults it follows

a01 a10 a11 s
¬h1 0 1 1 0.7
¬h2 1 1 0 0
¬h3 0 0 1 1

Compared to MBD, the second conflict is missing. Including this information would yield (3rd row)

1 1 0 0
1 0 1 1
0 1 1 1 obs3 (c2 andc3 are involved, leading to a fail)

For the three single faults it would follow

a01 a10 a11 s
¬h1 1 1 1 0.5
¬h2 1 1 1 0.5
¬h3 0 0 2 1

For double faults it follows

a01 a10 a11 s
¬h1 ∧ ¬h2 0 1 2 0.82
¬h2 ∧ ¬h3 0 1 2 0.82
¬h1 ∧ ¬h3 0 1 2 0.82

Note that this way of counting multiple diagnoses start converging to a value that is merely dependent on the pass/fail ratio
of the matrix as typically all component combinations will be involved in any computation (the triple fault¬h1 ∧¬h2 ∧¬h3

is involved in all - for the example aboves(¬h1∧¬h2 ∧¬h3) = 0.82. Here, SFL does not provide a sound basis for multiple
fault diagnosis.
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4.2 Logic Reasoning

In this section we describe the logic reasoning (LR) method to compute diagnoses and present several approaches to compute
the associated probabilities.

4.2.1 Compute Diagnoses

Unlike the MBD approach mentioned earlier, which statically deduces information from the program source,O is theonly,
dynamic source of information, from whichbotha model, and the input-output observations are derived. Apart from exploit-
ing dynamic information, this approach only requires a generic component model, avoiding the need for detailed functional
modeling or relying, e.g., on invariants or pragmas for model information. Note, however, that this default model can easily
be extended when more detailed information is available.

Abstracting from particular component behavior, each componentcj is modeled by the weak model

hj ⇒ (xj ⇒ yj)

wherehj models the health state ofcj andxj , yj model its input and output variable valuecorrectness(i.e., we abstract from
actual variablevalues, in contrast to the earlier example). This weak model implies that a healthy componentcj translates a
correct inputxj to a correct outputyj. However, a faulty component or inputmaylead to an erroneous output.

As each row inO specifies which components were involved, we interpret a rowas a “run-time” model of the program as
far as it was considered in that particular run. Consequently, O is interpreted as a sequence of typically different models of the
program, each with its particular observation of input/output correctness. The overall diagnosis can be viewed as a sequential
diagnosis approach that incrementally takes into account new structural program (and pass/fail) evidence with increasingN .
A single rowOn,∗ corresponds to the (sub)model

hm ⇒ (xm ⇒ ym), for m ∈ In

xsi = ysi−1 , for i ≥ 2
xs1 = true

ys′ = ¬en

whereIn = {m ∈ {1, . . . , M} | onm = 1} denotes the well-ordered set of component indices involvedin computationn, si

denotes theith element in this ordering, (i.e., fori ≤ j, si ≤ sj), s′ denotes its last element. The resulting component chain
logically reduces to ∧

m∈Sn

hm ⇒ ¬en

For example, consider the row (M = 5)

c1 c2 c3 c4 c5 e

1 0 0 1 0 1

This corresponds to a model where componentsc1, c4 are involved. As the order of the component invocation is notgiven
(and with respect to our above weak component model is irrelevant), we derive the model

h1 ⇒ (x1 ⇒ y1)
h4 ⇒ (x4 ⇒ y4)
x4 = y1

x1 = true

y4 = ¬en

In this chain the first componentc1 is assumed to have correct input (x1 = true, typical of a proper test), its output feeds
to the input of the next componentc4 (x4 = y1), whose output is measured in terms ofen (y4 = ¬en). This chain logically
reduces to

h1 ∧ h4 ⇒ false

R. Abreu, P. Zoeteweij & A. van Gemund SERG

8 TUD-SERG-2008-014



If this were a passing computation (h1∧h4 ⇒ true) we could not infer anything (apart from the exoneration when it comes
to probabilistically rank the diagnosis candidates as explained in next section). However, as this run failed this yields

¬h1 ∨ ¬h4

which, in fact, is a conflict. In summary, each failing run inO generates a conflict according to∨
m∈Sn

¬hm

As in the former MBD approach, the conflicts are then subject to a hitting set algorithm that generates the diagnostic candi-
dates.

To illustrate this concept, again consider the example program. For the purpose of the spectral approach we assume the
program to be run two times where the first time we consider thecorrectness ofy1 and the second timey2. This yields the
observation matrixO below

c1 c2 c3 e

1 1 0 0 obs1

1 0 1 1 obs2

Fromobs2, it follows
¬h1 ∨ ¬h3

which equals the first conflict from the earlier MBD approach,and the diagnosis trivially comprises the two single faults
{1} (¬h1) and{3} (¬h3). Compared to the earlier MBD approach, the second conflict(¬h2 ∨ ¬h3) is missing due to
the fact that no additional knowledge is available on component behavior and component interconnection. Although this
would suggest that the dynamic approach yields lower diagnostic performance than the earlier MBD approach, note that
the example program is ideally suited to static analysis, whereas real programs feature extensive control flow, rendering the
previous approach extremely difficult. However, if, for some reason, we were able to capture the second conflict in terms of
the execution trace according to

c1 c2 c3 e

0 1 1 1 obs3

then our observation-based approach would yield exactly the same set of minimal diagnoses.

4.2.2 Classical Model for Computing Probabilities

Computing probabilities is done in much the same way as in MBD. For every diagnosis candidate, we update the posteriors
by the extent that the observation is explained by the candidate diagnosis. In contrast to the MBD case, an observation isnot
an input or output value, but pass or fail informationem (as the input and outputs are already taken into account bye).

Suppose the following two observations

1 1 0 0 obs1

1 0 1 1 obs2

After obs1, all diagnoses are still possible (8 in total)

d1 = (h1 ∧ h2 ∧ h3)
d2 = (h1 ∧ h2 ∧ ¬h3)

. . .

d7 = (¬h1 ∧ ¬h2 ∧ h3)
d8 = (¬h1 ∧ ¬h2 ∧ ¬h3)

and their probabilities are updated according to Bayes’ rule

Pr(di|obs1) = α · Pr(obs1|di) · Pr(di)

SERG R. Abreu, P. Zoeteweij & A. van Gemund
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whereǫ is defined as follows

ǫ =

{
EP

EP +EF
if run passed

EF

EP +EF
if run failed

(2)

whereEP = 2M andEF = (2l − 1) · 2M−l are the number of passed and failed observations that can be explained by
diagnosisdk, respectively, andl = |SN | is the number of faulty components in the diagnosis. Although this observation
does not help much in pinpointing the fault (all diagnoses are still valid), its update makes single faults more probablethan
multiple faults.

As mentioned before, when consideringobs2, the minimal set of diagnoses is¬h1 or ¬h3, and their probabilities are
updated by

Pr(¬h1|{obs1, obs2}) = α · Pr(obs2|¬h1) · Pr(obs1|¬h1).p
Pr(¬h3|{obs1, obs2}) = α · Pr(obs2|¬h3) · Pr(obs1|¬h3).p

yielding

Pr(¬h1|{obs1, obs2}) = α · 4
12

· 8
12

· p = 0.5

Pr(¬h3|{obs1, obs2}) = α · 4
12

· 8
12

· p = 0.5

However, if we assumeO also includes the second MBD conflict, i.e.,obs3, then the set of consistent diagnoses is the same
as for MBD, i.e.,¬h3 and¬h1 ∧ ¬h2.

Pr(¬h3|O) = α · Pr(obs3|¬h3) · Pr(obs2|¬h3) · Pr(obs1|¬h3).p
Pr(¬h1 ∧ ¬h2|obs3) = α · Pr(obs3|¬h1 ∧ ¬h2) · Pr(obs2|¬h1 ∧ ¬h2) · Pr(obs1|¬h1 ∧ ¬h2).p2

Consequently

Pr(¬h3|O) = α · 4
12

· 4
12

· 8
12

· p

Pr(¬h1 ∧ ¬h2|O) = α · 6
14

· 6
14

· 8
14

· p2

Note that when the two failed observations are available, the minimal diagnosis¬h1 is no longer a valid explanation.

4.2.3 Intermittency Model for Computing Probabilities

A disadvantage of the classical probability model is that components involved in passed runs are not exonerated, and there is
not a way to distinguish between diagnoses with the same cardinality. An approach to account for the fact that, similar toSFL,
components involved in passed computations should be exonerated, by extending the component model with an intermittent
failure model, as introduced in MBD [2].

We include statistical information on the probability thata faulty componentc will exhibit correct behavior (i.e., produce
correct output). Letg(c) denote this probability. In the following we will distinguish three different Bayesian update schemes
(ǫ), which we refer to as Method 1, Method 2, and Method 3.

4.2.4 Method 1

In this method, the observations made during passed runs arealso taken into account by extending theǫ definition as follows

Pr(obs|D) =


0 if d andobs are inconsistent
1 if d logically follows fromobs
1 if neither holds, run passed, anda10(d) = 0

g(d) if none of the above and run passed
1− g(d) if none of the above and run failed

whereg(d) = a10(d)
a10(d)+a11(d) (i.e, the fraction of involvement of the faulty component(s) that didnot lead to a failure).

Again, considering the following two observations
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1 1 0 0 obs1

1 0 1 1 obs2

The hitting set for the weak model is equal to¬h1∨¬h3. After obs1, the probabilities of¬h1 and¬h3 are updated as follows

Pr(¬h1|obs1) = α · Pr(obs1|¬h1) · p
Pr(¬h3|obs1) = α · Pr(obs1|¬h3) · p

where, from the definition, Pr(obs1|¬h1) = g(¬h1) and Pr(obs1|¬h3) = 1. Thus

Pr(¬h1|obs1) = α · g(¬h1) · p
Pr(¬h3|obs1) = α · 1 · p

Similarly, afterobs2 the probabilities are updated as follows

Pr(¬h1|{obs1, obs2}) = α · Pr(obs2|¬h1) · Pr(obs1|¬h1) · p
Pr(¬h3|{obs1, obs2}) = α · Pr(obs2|¬h3) · Pr(obs1|¬h3) · p2

where, from the definition, Pr(obs2|D) = 1− g(d), and Pr(obs2|D) = 1− g(d) is as previously defined. Consequently

Pr(¬h1|{obs1, obs2}) = α · (1− g(¬h1)) · g(¬h1) · p
Pr(¬h3|{obs1, obs2}) = α · (1− g(¬h3)) · 1 · p

Sinceg(¬h1) = 0.5 andg(¬h3) = 0

Pr(¬h1|{obs1, obs2}) = α · 0.5 · 0.5 · p = α · 0.25 · p
Pr(¬h3|{obs1, obs2}) = α · 1 · p = α · p

yielding

Pr(¬h1|{obs1, obs2}) = 0.2
Pr(¬h3|{obs1, obs2}) = 0.8

which means that¬h3 is more probable to be the diagnostic explanation as¬h1 is partially exonerated. Compared to LR
without intermittency, this method distinguishes betweenthe two diagnoses, whereas in the previous method¬h3 and¬h1

were considered equally likely equal for explaining the fault.
Again, when compared to MBD approach the second conflict (¬h2 ∨ ¬h3) is missing. However, as explained in the

previous section, ifobs3 were available, this approach would result in the same diagnostic performance as MBD

¬h3 ∨ (¬h1 ∧ ¬h2)

The probabilities are calculated according to

Pr(¬h3|O) = α · Pr(obs3|¬h3) · Pr(obs2|¬h3) · Pr(obs1|¬h3) · p
Pr(¬h1 ∧ ¬h2|O) = α · Pr(obs3|¬h1 ∧ ¬h2) · Pr(obs2|¬h1 ∧ ¬h2) · Pr(obs1|¬h1 ∧ ¬h2) · p2

(Note that the diagnosis¬h1 ∧ ¬h2 was previously discarded because it was not a minimal diagnosis. However, have we
not discarded non-minimal diagnoses, its probability would be updated as follows Pr(¬h1 ∧ ¬h2|{obs1, obs2}) = α · (1 −
g(¬h1 ∧ ¬h2)) · g(¬h1 ∧ ¬h2) · p2). From the definition, it follows

Pr(obs1|¬h3) = 1
Pr(obs1|¬h1 ∧ ¬h2) = g(¬h1 ∧ ¬h2)

Pr(obs3|¬h3) = Pr(obs2|¬h3) = 1− g(¬h3)
Pr(obs3|¬h1 ∧ ¬h2) = Pr(obs2|¬h1 ∧ ¬h2) = 1− g(¬h1 ∧ ¬h2)

SERG R. Abreu, P. Zoeteweij & A. van Gemund

TUD-SERG-2008-014 11



Hence,

Pr(¬h3|O) = α · (1− g(¬h3)) · (1− g(¬h3)) · 1 · p
Pr(¬h1 ∧ ¬h2|O) = α · (1− g(¬h1 ∧ ¬h2)) · (1− g(¬h1 ∧ ¬h2)) · g(¬h1 ∧ ¬h2) · 1 · p2

yielding

Pr(¬h3|O) = α · 12 · p
Pr(¬h1 ∧ ¬h2|O) = α · (1− 0.33)2 · 0.33 · p2

thus,

Pr(¬h3|O) = α · p
Pr(¬h1 ∧ ¬h2|O) = α · 0.15 · p2

Meaning that the¬h3 is more probable than¬h1 ∧ ¬h2.
Generalizing, in terms ofa11, a10, a01, anda00, the probability of diagnosisd afterO is observed equals

Pr(d|O) = α · g(d)a10(d) · (1− g(d))a11(d) · Pr(d)

4.2.5 Method 2

This method is essentially the same as Method 1, except that it also takes into account the number of faulty components
involved in the observation (in contrast to Method 1) by taking

Pr(obs|D) =


0 if d andobs are inconsistent
1 if d logically follows fromobs
1 if neither holds, run passed, anda10(D) = 0

g(d)ct if none of the above and run passed
1− g(d)ct if none of the above and run failed

wherect is the number of faulty components involved in the observation, andg(d) is defined as in the previous section. The
rationale is that if more faulty components are involved, itis more likely the run will fail.

For the two single fault diagnoses that follow from LR on observationsobs1 andobs2 this method yields the same results
as Method 1 (asct = 1)

Pr(¬h1|{obs1, obs2}) = 0.2
Pr(¬h3|{obs1, obs2}) = 0.8

However, for multiple fault diagnoses this method may give different results. Suppose again the followingO

1 1 0 0 obs1

1 0 1 1 obs2

0 1 1 1 obs3

As mentioned before, the hitting set for the weak model equals¬h3 ∨ (¬h1 ∧ ¬h3). It follows

Pr(¬h3|O) = α · Pr(obs3|¬h3) · Pr(obs2|¬h3) · Pr(obs1|¬h3) · p
Pr(¬h1 ∧ ¬h2|O) = α · Pr(obs3|¬h1 ∧ ¬h2) · Pr(obs2|¬h1 ∧ ¬h2) · Pr(obs1|¬h1 ∧ ¬h2) · p2

From the definition, it follows

Pr(obs1|¬h3) = 1
Pr(obs1|¬h1 ∧ ¬h2) = g(¬h1 ∧ ¬h2)2

Pr(obs3|¬h3) = Pr(obs2|¬h3) = 1− g(¬h3)1

Pr(obs3|¬h1 ∧ ¬h2) = pr(obs2|¬h1 ∧ ¬h2) = 1− g(¬h1 ∧ ¬h2)1
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Hence,

Pr(¬h3|O) = α · (1− g(¬h3)) · (1− g(¬h3)) · 1 · p
Pr(¬h1 ∧ ¬h2|O) = α · (1 − g(¬h1 ∧ ¬h2)1) · (1 − g(¬h1 ∧ ¬h2)1) · g(¬h1 ∧ ¬h2)2.p2

Thus, by evaluatingg(d),

Pr(¬h3|O) = α · p
Pr(¬h1 ∧ ¬h2|O) = α · 0.049 · p2

Similarly to Method 1, this method considers the single explanation more probable than the double fault.
Generalizing, the probability of diagnosisd afterO is observed is updated according to

Pr(d|O) = α ·
∏

i∈{1..|SF |}
(g(d)i)pr(d,i) · (1− g(d)i)fr(d,i) · Pr(d)

wherepr andfr count the number of passed and failed runs where it was observed thati faulty components where involved,
respectively, i.e.,

pr(d, i) =
∑

m∈{1..M}
[|{n|omn ∧ n ∈ SF ∧ em}| = i]

fr(d, i) =
∑

m∈{1..M}
[|{n|omn ∧ n ∈ SF ∧ ¬em}| = i]

whereSF is the set of indices of faulty components ind, and[·] is the Iverson’s operator.

4.2.6 Method 3

In this variant, the updates are computed based on [3], whereǫ is defined as

Pr(obs|D) =

 1 if d andobs are inconsistent
0 if d logically follows fromobs

ǫ = 1− g(d) if neither holds for passed and failed runs

whereg(d) is defined as in the previous methods. Therefore, in terms ofa11, a10, a01, anda00, ǫ can be re-written as follows

ǫ =
a11(D)

a11(D) + a10(D)

Consequently for

1 1 0 0 obs1

1 0 1 1 obs2

we obtain

Pr(¬h1|{obs1, obs2}) = α · Pr({obs1, obs2}|¬h1) · p
Pr(¬h3|{obs1, obs2}) = α · Pr({obs1, obs2}|¬h3) · p

where

Pr({obs1, obs2}|¬h1) =
(

a11(¬h1)
a11(¬h1) + a10(¬h1)

)a11(¬h1)+a10(¬h1)

Pr({obs1, obs2}|¬h3) =
(

a11(¬h3)
a11(¬h3) + a10(¬h3)

)a11(¬h1)+a10(¬h1)
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resulting in,

Pr(¬h1|{obs1, obs2}) = α · 0.52 · p = 0.20
Pr(¬h3|{obs1, obs2}) = α · 12 · p = 0.80

If the second failed observation is considered, the approach diagnostic results equals to¬h3 ∨ (¬h1 ∧ ¬h2), and the proba-
bilities are updated according to:

Pr(¬h3|O) = α · 12 · p = α · p
Pr(¬h1 ∧ ¬h2|O) = α · 0.673 · p2 = α · 0.30 · p2

4.3 Summary

Classical Method 1 Method 2 Method 3
Pr(¬h1) 0.5 0.2 0.2 0.2
Pr(¬h3) 0.5 0.8 0.8 0.8

(a) Afterobs1 andobs2

Classical Method 1 Method 2 Method 3
Pr(¬h3) 0.98 0.99 0.999 0.77

Pr(¬h1 ∧ ¬h2) 0.02 0.01 0.001 0.23
(b) After obs1, obs2, andobs3

Figure 3. Probabilities updates

Let Pr(¬hm) = 0.01, Figure 3 lists the probabilities resulting from the various ǫ policies for the diagnoses obtained after
obs1 andobs2 only (Figure 3(a)) and afterobs3 (Figure 3(b)). In the first case, the classic policy cannot distinguish between
c1 andc3 while theg policies exploit the additional information provided by the exonerating observationobs1. Whenobs3

is includedc1 is no longer a valid diagnosis by itself, and is eliminated from the (hitting) set of valid diagnosis candidates.
Hence, all policies favorc3 as most likely candidate, due to (1) the lower prior probability of the double fault (all policies)
and (2) the exoneration by passed runs (methods 1, 2, and 3).

5 Analytic Model

In this section we derive a simple, approximate model to assess the influence of various parameters on thewasteddebugging
effortW . It is defined as the effort that is wasted on inspecting a component that was not faulty. In our computation ofW we
assume that after each inspection, the test set is rerun, possibly leading to a new ranking (without the most recently removed
fault). For example, suppose a triple-fault program (M = 6, andc1, c2, andc3 faulty) for which the following diagnosis
D = {{1, 2, 6}, {3, 4, 5}} is obtained. This diagnosis induces a wasted effort ofW = 33% asc6 in the first candidate is
inspected in vain, as well as, on average two out of three inspections in the second candidate (in this example we assumed
that rerunning the test set didn’t change the second candidate). In contrast to related work, we measureW instead of effort
so that the performance metric’s scale is independent of thenumber of faults in the program.

The evaluated parameters are number of componentsM , number of test casesN , testing code coverager, testing fault
coverageg, and fault cardinalityC. Consider the exampleO in Figure 4(a), withM = 5 components of which the first
C = 2 components are faulty. As a faulty component can still produce correct behavior, and therefore not cause a run to
fail, we use an extended encoding where ’1’ denotes a component that is involved, whereas ‘2’ denotes a(faulty) component
whose involvement actually produced a failure (and consequently a failing run).

c1 c2 c3 c4 c5 e

1 0 1 0 1 0
0 2 1 0 0 1
0 2 1 1 0 1
1 1 1 1 0 0
2 1 0 1 0 1

(a) ExampleO

c1 c2 c3 c4 c5 e

0 2 1 0 0 1
0 2 1 1 0 1
2 1 0 1 0 1

(b) O’s failed runs only

Figure 4. Observation Matrix Example

In the following we focus on the hitting set since its constituents are primarily responsible for the asymptotic behavior of
W . Although their individual ranking is influenced by component activity in passed runs, the hitting set itself is exclusively
determined by the failing runs. Thus, we consider the sub-matrix shown in Figure 4(b).
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From Figure 4(b) it can be seen that the first 2 columns together form a hitting set of cardinality 2 (which corresponds to
our choiceC = 2). This can be seen by the fact that in each row there is at leastone set member involved, i.e., there is a
so-called “chain” ofc1 and/orc2 involvement that is “unbroken” from top row to bottom row.

While this chain exists by definition (given the fact that both are faulty there is always at least one of them involved
in everyfailed run), other chains may also exist, and may causeW to increase. This occurs when those chains pertain to
diagnostic candidates of equal or lower cardinality (B) thanC. Generally, two types of chain can be distinguished: (1) chains
(of cardinalityB < C) within the faulty components set, calledinternal chains, and (2) chains (of cardinalityB ≤ C)
completely outside the faulty components set, calledexternalchains. In the above example afterN = 2 (so considering
only the first two failed runs), there is still one internal chain (corresponding to single faultc2), and two external chains
(corresponding to single fault{3}, and double fault{3, 4}). As their probability will be higher (due to the a priori probability
computation) they will head the ranking. With respect to theinternal fault this does not significantly influenceW since this
indicates a true faulty component (the real double fault{1, 2} being subsumed by{2}). Consequently, there is no wasted
debugging effort. With respect to{3} however, this fault will induce wasted effort. AfterN = 3 both single faults has
disappeared (both chain of ‘1’s have beenbrokenduring the third failing run), while the double faultc3, c4 is still present.
From the above example it follows that (1)W is primarily impacted by external chains, and (2) the probability of a B
cardinality chain still “surviving” decreases with the number of failing runs. The latter is the reason why in the limit for
N →∞ all external (and internal) chains will have disappeared, exposing the true fault as only diagnosis.

5.1 Number of Failing Runs

As the number of failing runs is key to the behavior ofW in the following we first compute the fraction of failed runsf out of
the total ofN runs, givenr andg. ConsiderC faulty components. Letf denote the probability of a run failing. A run passes
when note of theC components induces a failure, i.e., does not generate a ‘2’ in the matrix. Since the probability of the latter
equals1− r · (1− g) and generating a ‘2’ requires (1) being involved (probability r) and (2) producing a failure (probability
(1 − g)), the probability of not generating a ‘2’ in the matrix equals (1 − r · (1 − g)). Consequently, the probability a run
passes equals(1 − r · (1 − g))C , yielding

f = 1− (1− r · (1− g))C

This implies that for highg (and/or lowr) a very large number of runsN is required to generate a sufficient number
NF = f · N of failing runs in order to eliminate competing chains of equal of lower cardinalityB. As r also affects the
number of external chains which, however, is not affected byg, the effect ofg can be seen orthogonal tor in that it only
impacts the number of failed runs throughf . Consequently,g andN are related in that a highg is compensated by a, possible
huge, increase inN . In the sequel, we therefore only focus on the effect ofr.

5.2 Behavior for Small Number of Runs

While for largeN the determination ofW depends on the probability that competing chains will have terminated, for small
N a more simple derivation can be made. Consider the case of a single failing run (NF = f ·N = 1). From the first (failing)
row (k = 1) in the above example (Figure 4(b)) it can be seen that there are generallyr · (M − C) external single-fault
(B = 1) chains (c3 andc5) that induce wasted effort. AsW denotes the ratio of wasted effort it follows

W =
r · (M − C)

M
(3)

which for largeM approachesr. This is confirmed by the experiments discussed later.
After the second failed run (k = 2) the probability aB = 1 chain survives two failing runs equalsr2 (i.e., the probability

of two ‘1’s for a particular component). Consequently, the number ofB = 1 chains equalsr2 · (M − C), which, in general,
decreases negative-exponentially with the number of (failing) runs (f ·N ). ForB = 2 the situation is less restrictive asany
combination of ‘1’s of the first and second row qualifies as a double-fault chain. As on average there areM ′ = ⌊r · (M −C)⌋
‘1’s per row there are

(
M ′

2

)
double-faults.

After the third failing run (k = 3) the number of survivingB = 1 chains equalsr3 ·(M−C), whereas the number of triple
faults equals

(
M ′

3

)
As for sufficiently largeM the higher-cardinality combinations outnumber the lower-cardinality combina-

tions,W is dominated by the combinations that have the same cardinality as the fault cardinalityC. Consequently, assuming
NF ≤ C it follows that the number ofC-cardinality chains that compete with the actualC-cardinality diagnosis is approxi-
mated by

(
M ′

C

)
. However, if there are more combinations thanM−C these combinations will overlap in terms of component

indices. AsW does not measure wasted effort on a component that was already previously inspected (and subsequently
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removed from the next diagnosis), the average number of “effective”C-cardinality chains will never exceedMC (as there are

C indices per candidate). Hence, the number of competingC-cardinality chains is approximated bymin{M
C ,

(
M ′

C

)}.
5.3 Behavior for Large Number of Runs

For largeNF the trend ofW can also be approximated from the probability that competing chains will still have survived
afterNF runs, which we derive as follows. Consider aB-cardinality external chain. At each row there is a probability that
this chain does not survive. Similar to the derivation off we consider the probability thatall B components involved in the
chain have a ’0’ entry, which would terminate that particular chain. This probability equals(1− r)B . Hence, the probability
that aB-cardinality chain does not break per run equals1 − (1 − r)B . Consequently, the probability that a chain survives
NF failing runs equals

(1− (1 − r)B)NF

Similar to the derivation for smallNF , we only considerC-cardinality chains. The largest number of competing chains at the
outset equals

(
M ′

C

)
. As there always exists anNF for which this number is less thanMC (in the asymptotic case we consider

only a few chains) the number of competing chains afterNF runs is given by

(1− (1 − r)C)NF ·
(

M ′

C

)
Consequently,W is approximated by

W ≈ (1− (1− r)C)NF · (M ′
C

)
M

(4)

We observe a negative-exponential (geometric) trend withNF (N ) while C postpones that decay to largerNF (N ) as the
term1− (1− r)C approaches unity for largeC.

In the following we asymptotically approximate the number of failing test runsNF needed for an optimal diagnosis (i.e.,
W approaches 0). Considering Eq. (4) a single diagnosis is approximately reached for

(1− (1 − r)C)NF ·
(

M ′

C

)
= W ·M

which can be modeled as(1 − (1 − r)C)NF = K. It follows NF = − logK/ log 1− (1− r)C . Since for sufficiently large
C the term1 − (1− r)C approaches unity, and sincelog 1− ǫ ≈ −ǫ it follows thatNF ∼ log K/(1− r)C . As (1− r) < 1
it follows NF ∼ log K · ((1 − r)−1)C of which the second term increases exponentially withC. SinceK =

(
M ′

C

)
for large

M this term also increases exponentially withC. However, as the term is included in a logarithm, the effect of this term is
less than the previous.

6 An optimal similarity coefficient for single-faults

In this section we show how our above reasoning approach can be used to derive an optimal similarity coefficient forsingle-
fault programs.

In the single-fault case we know that all failures relate to only one fault, which, by definition, is included in the minimal
hitting set. Hence, any coefficient approach should consider the minimal hitting set only (i.e., only thosecj which consistently
occur in failing runs). This implies that the optimal approach is to select only the failing runs and compute the similarity
coefficient. Since for these components by definitiona01 = 0, one only needs to considera11 anda10. This, in turn, implies
that the ranking is only determined by the exonerating terma10. Thus the ranking can be calculated as follows

sim(j) =
{

s(j) if a01 6= 0
0 otherwise

In summary, once we only consider the components included inthe hitting set, any of the coefficients that includesa10 in
the denominator will produce the same, optimal ranking. Experiments using this “hitting set filter” combined with a simple
similarity coefficient such as Tarantula indeed confirm thatthis approach leads to the best performance [8].

Note that the above filter is only optimal for programs that have only 1 fault as applying this filter to any multiple-fault
program would be overly restrictive. It would fail to detectfaults that are not always involved in failed runs. For example,
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the diagnosis for theO in the beginning of Section 4.1 when using the filtering approach would yieldD = {{1}}, entirely
ignoring two of the three faults. Hence, instead of considering a single-fault hitting set filter, we modify this approach in
order to also allow application to multiple-fault programs. Taking the Ochiai coefficient as (best) starting point (forκ = 1,
Eq. 5 follows from Eq. 1 by squaring, and factoring outa11(j), none of which changes the ranking) and applying the above
filtering approach, we derive the following similarity coefficient, coined Zoltar-S, according to

sZ-S =
a11(j)

a11(j) + a10(j) + a01(j) + κ · a01(j)·a10(j)
a11(j)

(5)

whereκ > 0 is a constant factor that exonerates a componentcj that was either seldom executed in failed runs or often in
passed runs. We empirically verified that the higher theκ the more identical the diagnosis becomes with the one obtained by
the hitting set filter [8]. In the context of this paper we limit κ to 10, 000 to avoid round-off errors.

A Synthetic Results

A.1 W vs. N

Figures 5, 6, and 7 plot W vs. N for several parameters, such asnumber of faultsC, test set coverager, and failure coverage
g. To obtain the data, we use a simple, probabilistic model of program behavior that is directly based onC, N, M, r, andg.
Without loss of generality we model the firstC of theM components to be at fault.
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Figure 5. W vs. N for g = 0.1
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Figure 6. W vs. N for g = 0.9
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(d) g = 0.9 andC = 1

0%

20%

40%

60%

80%

100%

 0  10  20  30  40  50  60  70  80  90  100

W
 (

%
)

N

r = 0.6
r = 0.4
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Figure 7. Impact of N on W
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Figure 8. W vs. N for M = 10, g = 0.1, and r = 0.4
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Figure 9. W vs. N for M = 10, g = 0.1, and r = 0.6

A.2 W vs. P

The following figures, up to Figure 24, plot W vs. P, showing that the observation-based technique (Zoltar-M using Method
2 as policy) may be of added value in order to employ several developers (P ) to find the bugs. The plots were generated by
fixing M = 20 andN = 100, and each point represents an average of 1,000 matrices.
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Figure 10. W vs. N for M = 10, g = 0.1, and r = 0.8
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Figure 11. W vs. N for M = 10, g = 0.9, and r = 0.4
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Figure 12. W vs. N for M = 10, g = 0.9, and r = 0.6

A.3 Probability/Similarity Distribution

The plots in Figure 24 contain the probability/similarity distribution for the rankings obtained with the several techniques.
As can be seen, the observation-based approach (coined Zoltar-M) does give extra information on the number of faults in the
code, when compared with SFL techniques (Ochiai, Tarantula, Zoltar-S).
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Figure 13. W vs. N for M = 10, g = 0.9, and r = 0.8
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Figure 14. W vs. N for M = 20, g = 0.1, and r = 0.4
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Figure 15. W vs. N for M = 20, g = 0.1, and r = 0.6
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Figure 16. W vs. N for M = 20, g = 0.1, and r = 0.8
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Figure 17. W vs. N for M = 30, g = 0.1, and r = 0.4
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Figure 18. W vs. P for C = 1 and g = 0.1
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Figure 19. W vs. P for C = 2 and g = 0.1
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Figure 20. W vs. P for C = 5 and g = 0.1
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Figure 21. W vs. P for C = 1 and g = 0.9
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Figure 22. W vs. P for C = 2 and g = 0.9
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Figure 23. W vs. P for C = 5 and g = 0.9
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Figure 24. Probability/Similarity distribution
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