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1 Introduction

This technical report is meant to report our findings andsdeith respect to spectrum-based fault localization andehod
based diagnosis. In the following we want to introduce andgare model-based diagnosis (MBD), spectrum-based fault
localization (SFL) and our contributions using 3-investas a running example (which is simple, yet sufficientlyreséng).

The remainder of this paper is organized as follows. The eptscand definitions used in this paper are given in the
next section. The combination of model-based diagnosisBay&sian reasoning, as it is normally applied to, e.g. taligi
circuits, is discussed in Section 3. Spectrum-based facetlization, including the system transformation forinstentation
to collect data to reason about failures is discussed in@edtl. In Section 4.2 we investigate several novel appgrescc
for applying model-based diagnosis, and notably Bayesiaaaning to systems that have been prepared for spectrsen-ba
fault localization.

2 Preliminaries

Definition 1 By a system under observation,systemwe mean a tupléC, V, S), where
e C'is afinite, non-empty set @omponentgci, ..., ¢, }.
e V is afinite, non-empty sequence, . . ., x;, of observable variablesvith respective domairBy, . .., Dy,
e S e Dy x...x Dy represents the specified behavior.

Further, by anobservatiorwe mean a tuplévy, ..., vx) € Dy X ... X Di. An observation obg S is called afailure.

With each component,, € COMPS we associate health variableh,,, which denotes component health. The health
states of a component are healttry€) and faulty false), but this concept can easily be generalized to any finiteadoif].

Definition 2 An h-literal ish,,, or —h,,, for ¢,, € COMPS.
Definition 3 An h-clause is a disjunction of h-literals containing no gdementary pair of h-literals.

Definition 4 Let.Sy and Sp be two disjoint sets of healthy and faulty components, @smdy, such that’ = {m | m €
Sy USp}andSy N Sp = (. Adiagnosis candidate i# (Sy, Sp)

( /\ _‘hm)/\( /\ hm)

cm€ESN cm €SP

Definition 5 A diagnosisD = {ds,...,dy,...,dk} is an ordered set of all diagnosis candidates.
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(C,V,S), 0bs1,...0bsm,
/ AN

modeling instrumentation

/

(C,V,8), 8D, obsy, ..., 0bsm, (C, V', 8", obs’, ..., obs),
MBD + BR SFL
(Section 2.1) / (Section 2.2)
model generation

<

(C,V',5"), SD¢, obsy, ..., obs,

MBD + BR
(Section 4.2)

Figure 1. Approaches to diagnosis considered in this paper

For simplicity, we refer tal in terms of a set of the negations literals only.

The purpose of diagnosis is to identify the component, ortoation of components that causes observed system fajlure
and the starting point of such an analysis is a systenV, S), and a sequence of observatiais, . . . , obs,, that contains
at least one failure. Note that in our definition of a systerdarmbservation the componentsGhare not related to the
observations, and without further information we cannafeate any diagnosis candidate from the powerset eicept the
empty diagnosis candidate, which indicates that all coreptsifunction correctly.

In this report we will describe and compare several tectesghat help make meaningful selections of diagnosis candi-
dates in one or both of the following ways:

¢ by reducing the number of diagnosis candidates, and
¢ by ranking diagnosis candidates with respect to the likahthat they explain the observations.

Figure 1 illustrates the combinations of techniques thatwlleconsider.

The primary technique for reducing the number of diagnosigl@ates isnodel-based diagnos{MBD). It entails that
the system descriptiofC, V, S) is complemented with a model, on the basis of which we carueeadlliagnosis candidates
that do not logically explain all observations. The numbfeemaining diagnosis candidates is typically large, angeB&n
reasoning (BR) is normally applied as a companion to modskt diagnosis, to rank the remaining diagnosis candidtte w
respect to the probability that they reflect reality in preseof the observed behavior. In addition to providing thekinag,
the calculated probabilities can also play a role in deteimgi the quality of a diagnosis, and to guide the search fbd va
diagnosis candidates, but these applications are outsédscbpe of this paper.

As a second technique for ranking diagnosis candidates,ilveomsider spectrum-based fault localization (SFL).Hist
case, the observations relate to the activity of the commisnand the diagnosis candidates are ranked according extant
to which this activity coincides with the occurrence of fméds. The measurements required for SFL are achieved throug
instrumentation, and we model this by a transformation ofstesn into a variant of that system that provides the necgssa
observations.

Traditionally, MBD+BR and SFL are applied to hardware anfivgare, respectively. Some approaches to model-based
software diagnosis exist, but a major problem with theseaaaghes is that in general, neither the software modelsingbd
development cycle, nor the models that can be derived frastieg code, allow for a significant reduction of the numbgr o
diagnosis candidates. In this paper we investigate a difteapproach, where Bayesian reasoning is applied to eadctile
probability that diagnosis candidates are supported bgrwhtions in the context of the instrumented system, whietalso
use for SFL. In addition, model-based diagnosis based anplsj automatically generated causal mod& ¢ in Figure 1)
is used to counter the computational complexity.

2.1 Model-based Diagnosis

Without loss of generality, in this section we considaital systemswhich we define to be systems whose variable domains
D1, ..., Dy equal the seftrue, false}.

2 TUD-SERG-2008-014
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Definition 6 A system descriptioffior a digital systemC, V, S) is a propositional formulal/ that involves at least the
following propositional variables:

e the observable variables of the system,. . ., x,

e hi,...,hy,, wheren is the number of componentsdh These are the so-calldtealth variablesvhereh; represents
the proposition that componeatis healthy (functioning correctly).

Furthermore we require that
hiA ANy A Topet A Tops— AN M L dff obs €5,

where forobs := (v1,...,vk), T+ denotes the conjunction of literals for whichv; = true, andz,,,- denotes the
conjunction of literals~z; for whichv; = false.

Now a diagnosis candidatkis called a diagnosis candidate for the combination of aesysC, V, .S), a description of
that system, and a single observatasiff

hd+ A hd* N Topst A Tops— A SD %J_,

whereh,+ denotes the conjunction of literals for which ¢; € d, and wherei;- denotes the conjunction of literatsh;

for which¢; ¢ d, and wherer,,,+ andz,,,- are as in Definition 6. The notion of a diagnosis for a singlsesbation

is extended to the notion of a diagnosis for a sequence ofraditsens by requiring that the above condition holds for all
observations in the sequence.

2.2 Observation-based Fault Localization

Given a systen{C, V, S) and a sequence of observatiams, , . . ., obs,,, we defing{C, V', S’) andobs], ..., obs! tobe as
follows.

o V' :=a,...,an,e, i.e., the number of variables in the modified system is etuttie number of components, plus
one. All variables o’ have domai{true, false}.

e Forobs, := (ay,...,a,,e) we have
— a; indicates whether or not componefitwas involved in the computation that resulted in observedis ;,
— e indicates whethewobs; is a failure or not, i.e.¢ is equal to the truth value of the conditiohs; € S.

o We defineS’ to contain those observationss’, := {ay, ..., an, e) havinge = false.

The set of observations are stores in a so-callegkrvation matrixwhich is defined as follows

Definition 7 Let M be the number of components, aNdthe number of execution runs. L@tdenote theV x (M + 1)
observation matrix For j < M, the elemenb;; is equal tol (true) if componentj was observed to be involved in the
execution of run, and0 (false otherwise. The elemenf ;1 is equal tol (true) if run ¢ failed, and0 (fals§ otherwise.
The rightmost column @ is also denoted as (the error vector).

From O it is also possible to derive the probabilitythat a component is actually executed in a run (expressidg co
coverage), and the probabiligythat a faulty component is actually exhibiting good beha(@xpressing fault coverage, also
known as the “goodness” paramegeirom MBD [2]).

2.3 Bayes’Rule

Throughout this paper, components are assumed to fail erdimtly. Therefore, in absence of any observation thegprob
bility a particular diagnosid(A, C' — A) is correct is:

Prd) = ] Pt=hm)- ] (1-Pr(=hm))

cmEA cm€C—-A
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where P(-h,,) is the given probability that componeyt, is faulted (not healthy). The probability for diagnosgideing
correct after an observatiens is given by Bayes’ rule:

Pr(SD A obs|d) - Pr(d)
Pr(SD A obs)

Pr(d|SD A obs) =

The denominator RED A obs) is a normalizing term that is identical for alland thus needs not to be computed directly.
Thus,
Pr(d|SD A obs) = a.- Pr(SD A obs|d) - Pr(d)

Pr(SD A obs|d) is defined as

0 if dandSD A obs are inconsistent
Pr(SD A obs|d) = ¢ 1 if dlogically follows from.SD A obs
e if neither holds

where various policies are possible [1]: different values femwill be considered in the subsequent sections of this paper.
For multiple observations, Bayes’ rule can be applied iusege. Thus, after a setofobservation$O = {obs1, . .., 0bs,}
the probability a particular diagnosisis correct given by applying recursively the Bayes’ rulelgling

Pr(d|SD A SO) = - Pr(SD A obs1|d) - ... - Pr(SD A obs,|d) - Pr(d)
As SD does not change, we use(Bpbs) instead of P{d|.SD A obs) for simplicity.
2.4 3-inv

The circuit in Figure 2 will be the running example throughttis paper.

Figure 2. 3-inverters example

3 Model-Based Diagnosis

A weak model of an inverter component c is given by
h=y=—z

Consequently, the circuit is modeled by

hi = w=—x
h,2:>y1:_"l,l)
hs = y2 = ~w

Consider the observatias = ((z,y1,y2) = (1, 1,0)). It follows

h1 = —w
h2:>—"w
hs = w

4 TUD-SERG-2008-014
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which equals
(ﬁhl \Y ﬁw)
(_\h2 \Y —|w)
(ﬁhg V w)
Resolution yields
(—=h1 V =hg) A (—hg V —hs)

also known as conflicts [4], meaning that (1) at leastr c5 is at fault, and (2) at least or c; is at fault.
The minimal diagnoses are the minimal hitting set [7], gilsgn

ﬁhg V (ﬁhl A jhg)

Thus eitheres is at fault (single fault), or; andc, are at fault (double fault). Given the weak model, any otlaeitf
combination that is subsumed by the above, two minimal diags, is a valid diagnosis.

Assuming all inverters have equal a priori fault probagpiliearly, the single fault has higher probability, i.dwpsld rank
higher than the double fault candidate. The posterior ihibaof the diagnoses, given the observations, is comguting
Bayes’ rule, updating the prior probability according te #xtent the observation is explained by the candidate digas
explained in Section 2.3. Thus,

Pr(—hs|obs) = a - Pr(obs|—hg) - Pr(—h3)
Pr(—=h1 A =hg|obs) = a - Pr(obs|=hy A =hsg) - Pr(=hy A —hs)

Let P(—h.) = p and assume components fail independently, the prior pilifebare given by

Pr(ﬁhg) =D
Pr(=hy A —hg) = p°

If € is defined to be one divided by the number of observationscidiate explained by a given diagnosis, and since there
are 4 possible observations that can be explainediy and 8 possible observations that can be explainediqyA —hs it

follows that

1
Pr(obs|—hs) = 1
1
Pr(obs|—h1 A —hg) = 3

Consequently,
1

Pr(—=hs|obs) = « - 1P

1
Pr(—=hy A —=hg|obs) = « - 3 p?

As the two minimal diagnoses are independent (weak faultaf)pldoth must sum up tb, determining.
Forp = 0.01 it follows
Pr(—=hs|obs) = 0.995
Pr(—hy A —hs|obs) ~ 0.005

Instead of accounting for the scaling constansuch that the posterior probabilities sum upltove can also explicitly
compute Pfobs). By definition, as explained in Section 2.3, the conditigmabability is calculated as follows

Pr(=h3 A (SD A obs
Pr(=hs3|SD A obs) = ( P:’(SD(AObS> )

Pr((—=h1 A —=ha) A (SD A obs))
Pr(SD A obs)

Pr(=hi A =h2|SD A obs) =

TUD-SERG-2008-014 5
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Forobs = ((z,y1,y2) = (1,1,0)), the solutiorn; = SD A obs = —hz V (—h1 A —hz) holds,

Pr(—hs)
((—h3) + Pr(—hy) - Pr(=ha) — Pr(=hy) - Pr(=hsg) - Pr(=hg)
Pr(ﬁhl A jhg)
Pr(ﬁhg) + Pr(ﬁhl) . Pr(ﬁhg) — Pl'(ﬁhl) . PI’(ﬁhQ) . Pr(ﬁhg)

Pr(=hsls) = 3

Pr(—‘hl A ﬁhg‘{) =

Thus, forp = 0.01

P
Pr(—hs|c) = ————— = 0.99
(hal<) p+p? —p3
p2
Pr(=hy A =hal) = ———— = 0.01
s 2l¢) p+p*—p°

Now suppose that there is a second observafish= ((z,y1,y2) = (1,1, 1)), which does not reveal any faulty behavior.
Using the same reasoning as for the firist, all possible diagnoses explaibs’

di = (hiANhaAhg)

dy = (hy Ahg A—hs)

d7 = (ﬁhl A ﬁ}LQ A hg)
ds = (=hy A—hy A —hs)

As mentioned before, probabilities are updated as follows
Pr(dy|{obs, 0bs'}) = - Pr(obs’|dy,) - Pr(obs|dy). Pr(d)
Due to the first observation, we only consider the two minidiagnosed, andd;. Thus

Pr(—hs|{obs, 0bs'}) = a - Pr(obs’|=h3) - Pr(obs|—h3).p
Pr(—hy A —ha|{obs, 0bs'}) = a - Pr(obs’|~hy A =hy) - Pr(obs|—~hy A =hy).p?

Similarly to the previous observation, it follows that

1
Pr(obs’|=h3) = =
4
1
Pr(0b8/|_‘h1 AN _\hg) = g
Consequently
1 1 1
! — (Ve — « — . — - —_
Pr(—hg|{obs,0bs'}) = « 11 P=a P
11 1
Pr(—=hy A —hsa|{obs,obs'}) = - 3% p=a- o1 p°

4 Observation-based Diagnosis

In the following we assume that we cannot apply model-baseldniques to derive diagnoses. Consider the same circuit.
However, now we necessarily abstract from system struetodecomponent behavior. Observations are associated asth p
or fail information. Hence, the following observation niat© is obtained:

1 1 0|0 obsi(cpandes areinvolved, leadingtg, =1, i.e., a pass)
1 0 1|1 obss(c;andesareinvolved, leadingtg, =0, i.e., a fail)

There are generally two approaches towards diagnosindpthegroblem. The first approach, SFL, is popular in software
The second approach is based on logic reasoning, similarBD,NMbut without the knowledge that comes from modeling
component behavior and interconnection structure.

6 TUD-SERG-2008-014
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4.1 SFL

Returning to the example presented in the previous seaigopose we have the followirg@
1 1 0|0
1 0 1|1

The data inD can be compactly represented using four counters for eagimdsis. Letl be a diagnosis§r be the set of
indices of non healthy componentsdne be the index of the error detection information:

e ay1(d) = Z [( \/ Onm) A €n]

n=1..N c¢n€SF

° alo(d): Z [( \/ On?TL)/\"en]

n=1..N c¢n€SF

o a01(d): Z [( /\ _‘O’nm)/\e’n]

n=1..N c¢mE€SF

o aon(d)= 3 [ \ —oum)A-ed]

n=1..N c¢n€SF

where[] is the lverson’s operator [5].

Diagnosis in SFL consists in identifying the diagnoses #ratmore probable explanations for the errors. This is done
by means osimilarity coefficientdaken from data clustering techniques [6], which are defirgdg the four counters just
defined. As an example, the Ochiai similarity coefficienteééinked as follows

(1) — a11(j) 1
U= om0 T e s @anl) ol @

For the three single faults it follows

-hi | O 1 1|07
-hy | 1 1 0 0
—hs | O 0 1 1

Compared to MBD, the second conflict is missing. Includirig ihformation would yield "¢ row)

1 1 0|0
1 0 1|1
0 1 1|1 obss(ceandesareinvolved,leading to a fail)

For the three single faults it would follow

| Go1 Q10 411 | S
—hy | 1 1 1]05
—hy | 1 1 11|05
-hs | O 0 2 1
For double faults it follows
‘ o1 aip a1 | S

“hiAh | 0 1 2 |082
~hyA=hs | O 1 2 |082
~hiA-hs | O 1 2 |082

Note that this way of counting multiple diagnoses start @pging to a value that is merely dependent on the pass/fail ra
of the matrix as typically all component combinations wil involved in any computation (the triple faulfi; A —ho A —hg
is involved in all - for the example abow¢—h, A —hs A—hg) = 0.82. Here, SFL does not provide a sound basis for multiple
fault diagnosis.

TUD-SERG-2008-014 7
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4.2 Logic Reasoning

In this section we describe the logic reasoning (LR) metbambtnpute diagnoses and present several approaches toteompu
the associated probabilities.

4.2.1 Compute Diagnoses

Unlike the MBD approach mentioned earlier, which staticdiéduces information from the program sour@es theonly,
dynamic source of information, from whidtotha model, and the input-output observations are derivedrtAgman exploit-
ing dynamic information, this approach only requires a germmponent model, avoiding the need for detailed fumetio
modeling or relying, e.g., on invariants or pragmas for niagtfermation. Note, however, that this default model casilya
be extended when more detailed information is available.

Abstracting from particular component behavior, each comemtc; is modeled by the weak model

hj = (zj = y))

whereh; models the health state of andz;, y; model its input and output variable valoerrectnesgi.e., we abstract from
actual variablevalues in contrast to the earlier example). This weak model inspiliet a healthy componegittranslates a
correct inpute; to a correct outpug;. However, a faulty component or inpuotaylead to an erroneous output.

As each row inO specifies which components were involved, we interpret aasa “run-time” model of the program as
far as it was considered in that particular run. Consequgntis interpreted as a sequence of typically different modiise
program, each with its particular observation of inputfaicorrectness. The overall diagnosis can be viewed as@sta|
diagnosis approach that incrementally takes into accoamtstructural program (and pass/fail) evidence with insirea/\V .

A single rowQ,, . corresponds to the (sub)model

hm = (Tm = ym), form e I,
Ts, = Ys,_,, TOri >2
x5, =true
ys/ = —|€n
wherel,, = {m € {1,..., M} | on,, = 1} denotes the well-ordered set of component indices invalvedmputatiom, s;

denotes thé'" element in this ordering, (i.e., for< j, s; < s,), s’ denotes its last element. The resulting component chain
logically reduces to

/\ hm = Tép

meSy,

For example, consider the rof = 5)

This corresponds to a model where components, are involved. As the order of the component invocation isgie¢n
(and with respect to our above weak component model is vaek}, we derive the model

hl = (Il = yl)
h4 = ($4 = y4)

T4 =UY1
T =true
Yqg = 7€p

In this chain the first component is assumed to have correct input (= t r ue, typical of a proper test), its output feeds
to the input of the next componeni (x4 = y1), whose output is measured in termsef(y, = —e,,). This chain logically
reduces to

hi Ahy = fal se

8 TUD-SERG-2008-014
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If this were a passing computatioly(A 24 = t r ue) we could not infer anything (apart from the exoneration wheomes
to probabilistically rank the diagnosis candidates asarpl in next section). However, as this run failed thisdsel

—hy V —hy

which, in fact, is a conflict. In summary, each failing rundngenerates a conflict according to

\/ _‘hm

meS,

As in the former MBD approach, the conflicts are then subjeet hitting set algorithm that generates the diagnosticieand
dates.

To illustrate this concept, again consider the examplegarog For the purpose of the spectral approach we assume the
program to be run two times where the first time we considectreectness of; and the second timg,. This yields the
observation matrixO below

1 0|0 obs:
1 0 1|1 obss

Fromobss, it follows
—hy V —hsg

which equals the first conflict from the earlier MBD approaghd the diagnosis trivially comprises the two single faults
{1} (=h1) and {3} (—hs3). Compared to the earlier MBD approach, the second coriftibk vV —h3) is missing due to
the fact that no additional knowledge is available on comngmbiehavior and component interconnection. Although this
would suggest that the dynamic approach yields lower disiimperformance than the earlier MBD approach, note that
the example program is ideally suited to static analysi€red&s real programs feature extensive control flow, rendéhie
previous approach extremely difficult. However, if, for soneason, we were able to capture the second conflict in tefms o
the execution trace according to

(G 03|e
0 1 1|1 obss

then our observation-based approach would yield exaatlgéme set of minimal diagnoses.

4.2.2 Classical Model for Computing Probabilities

Computing probabilities is done in much the same way as in MB® every diagnosis candidate, we update the posteriors

by the extent that the observation is explained by the catelidiagnosis. In contrast to the MBD case, an observatiootis

an input or output value, but pass or fail informatign (as the input and outputs are already taken into accoua).by
Suppose the following two observations

1 1 0|0 obs;
1 0 1|1 obsy

After obsy, all diagnoses are still possible (8 in total)

di = (hl A ha A hg)

da = (h1 Ahg A—hs)

dv = (~hi A —hy Ahs)
dg = (—\hl A —ha A _‘hg)

and their probabilities are updated according to Bayeg rul

Pr(dz‘|0b81) = - Pr(0b81|di) . Pr(d7)

TUD-SERG-2008-014 9
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10

wheree is defined as follows
_Ep d
. { if run passe @)

EPE+EF
E . .
YTy if run failed

whereEp = 2M andEp = (2! — 1) - 2M~1 are the number of passed and failed observations that carpbeireed by
diagnosisdy, respectively, and = |Sy| is the number of faulty components in the diagnosis. Althotigs observation
does not help much in pinpointing the fault (all diagnosessill valid), its update makes single faults more probaiden
multiple faults.

As mentioned before, when considerioigs., the minimal set of diagnoses ish; or —hg, and their probabilities are
updated by

Pr(—|h1\{obsl, Obé‘g}) = - Pr(()b82|—|h1) . PI’(ObSl‘—'}Ll).p
Pr(—hs|{obs1,0bsa}) = a - Pr(obsa|—h3) - Pr(obs1|—hs).p

yielding
Pr(=h1|{ob bsa}) 18 0.5
- obsy, obs =a-—-—-p=0.
1 15 2 2 12 p
4 8
Pr(—=hg|{obs1,0bs2}) = o - 13 1 -p=0.5

However, if we assumé@ also includes the second MBD conflict, i.ebss, then the set of consistent diagnoses is the same
as for MBD, i.e.,—~h3 and—h; A —hs.
Pr(=h3|O) = a - Pr(obss|—hs) - Pr(obsa|—hg) - Probs1|—hs).p
Pr(ﬁhl AN jhg‘Osz;) = Pr(0683|ﬁh1 N ﬁh2) . Pr(0b82|ﬁh1 A jhg) . Pr(0b81|ﬁh1 A ﬁhg).pQ

Consequently
4 4 8
Pr(—= - — — . — .
(“halO) =535 157
6 6 8
Pr(—= — = L2
(FhiA=he|O) =090 9P

Note that when the two failed observations are availab&eptmimal diagnosis-h; is no longer a valid explanation.

4.2.3 Intermittency Model for Computing Probabilities

A disadvantage of the classical probability model is thamhponents involved in passed runs are not exonerated, argithe
not a way to distinguish between diagnoses with the saméneditgl. An approach to account for the fact that, similaSteL,
components involved in passed computations should be exi@e by extending the component model with an interntitten
failure model, as introduced in MBD [2].

We include statistical information on the probability tlaafaulty component will exhibit correct behavior (i.e., produce
correct output). Leg(c) denote this probability. In the following we will distinggh three different Bayesian update schemes
(¢), which we refer to as Method 1, Method 2, and Method 3.

4.2.4 Method 1
In this method, the observations made during passed rursdsaréaken into account by extending theefinition as follows

0 if d andobs are inconsistent

if d logically follows fromobs

if neither holds, run passed, angh(d) =0
g(d) if none of the above and run passed

1 —g(d) if none of the above and run failed

Pr(obs|D) =

whereg(d) = #% (i.e, the fraction of involvement of the faulty componettsat didnotlead to a failure).

Again, considering the following two observations

TUD-SERG-2008-014
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1 1 0|0 obsy
1 0 1|1 obsy

The hitting set for the weak model is equatif; V —hs. After obsy, the probabilities of-h; and—hs are updated as follows

Pr(—hy|obs1) = a - Pr(obsy|—hy) - p
Pr(—hs|obs1) = « - Pr(obsy|—hs) - p

where, from the definition, Pobs;|—h1) = g(—h1) and Pfobsi|—-hg) = 1. Thus

Pr(—=hy|obs1) = - g(—hy) - p
Pr(—=hglobs1) =a-1-p

Similarly, afterobs, the probabilities are updated as follows

Pr(—h1|{obs1, 0bsa}) = a - Pr(obsa|—hy) - Pr(obsi|—hy) - p
Pr(—=hs|{obs1,0bs2}) = o - Pr(obsa|—h3) - Pr(obsi|—h3) - p*

where, from the definition, Pobs2| D) = 1 — g(d), and Pfobse|D) = 1 — g(d) is as previously defined. Consequently

Pr(=hy|{obs1,0bs2}) = - (1 — g(=h1)) - g(—hq)
Pr(—=hs|{obs1,0bs2}) = a- (1 — g(—hs)) - 1

Sinceg(—h1) = 0.5 andg(—hs) =0

Pr(=hq|{obs1,0bs2}) =a-05-05-p=a-0.25-p
Pr(=hg|{obs1,0bs2}) =a-1-p=a-p

yielding

Pr(—hq|{obs1, 0bsa}) = 0.2
Pr(—hs|{obs1,0bs2}) = 0.8

which means thaths is more probable to be the diagnostic explanatiomhs is partially exonerated. Compared to LR
without intermittency, this method distinguishes betwdentwo diagnoses, whereas in the previous methiagdand—h;
were considered equally likely equal for explaining thelttau

Again, when compared to MBD approach the second confliét (v —h3) is missing. However, as explained in the
previous section, ibbs3 were available, this approach would result in the same distimperformance as MBD

—hs V (—‘hl AN —|h2)
The probabilities are calculated according to

Pr(—=h3|O) = a - Pr(obss|—hs) - Pr(obsa|—hg) - Pr(obsy|—hs) - p
Pr(_\hl N _‘h2|0) =«- Pr(0b83|_\h1 N _\hg) . Pr(0b82|_‘h1 N _\hg) . Pr(0b81|_‘h1 N _\hg) . p2

(Note that the diagnosish; A —he was previously discarded because it was not a minimal disignélowever, have we
not discarded non-minimal diagnoses, its probability widug updated as follows Pfhy A —ha|{0bs1,0bs2}) = - (1 —
g(=h1 A =hs)) - g(—=h1 A =hs) - p?). From the definition, it follows

Pr(obsy|—hs
Pr(obs1|—=hi A —he
Pr(obss|—hs
Pr(obss|—hi A —hs

1

g(=h1 A =hs)

PI’(ObSQ|—‘h3) =1- g(—|h3)

= Pr(ob32|ﬁh1 N ﬁh,g) =1- g(ﬁhl A jhg)

)
)
)
)
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Hence,
Pr(—=h3|0) = - (1 — g(=h3)) - (1 — g(=h3)) - 1-p
Pr(—|h1 A\ _\h2|0) = Q- (1 — g(_‘hl A ﬁhg)) . (1 — g(_‘hl A _\hg)) . g(—\hl A _\hg) -1 «p2
yielding
Pr(—=h3|0) = « - 12.p
Pr(=hi A =hs|O) = - (1 —0.33)% - 0.33 - p?
thus,

Pr(—hs|O0) =a-p
Pr(ﬁhl N jh2|0) =a-0.15- p2

Meaning that the-h3 is more probable thanh; A —h.
Generalizing, in terms af;1, a1, ag1, andagg, the probability of diagnosig afterO is observed equals

PI(d]O) = a- g(d)*™*®) - (1 — g(d))*@ - Pr(d)

4.2.5 Method 2

This method is essentially the same as Method 1, excepttthégd takes into account the number of faulty components
involved in the observation (in contrast to Method 1) by ki

0 if d andobs are inconsistent
1 if d logically follows fromobs
Pr(obs|D) = 1 if neither holds, run passed, angh (D) = 0
g(d)t if none of the above and run passed
1—g(d)** if none of the above and run failed

wherect is the number of faulty components involved in the obseovatandg(d) is defined as in the previous section. The
rationale is that if more faulty components are involveds inore likely the run will fail.
For the two single fault diagnoses that follow from LR on atvagionsobs; andobss this method yields the same results
as Method 1 (ast = 1)
Pr(—=hy|{obs1,0bs2}) = 0.2
Pr(—=hs|{obs1,0bs2}) = 0.8
However, for multiple fault diagnoses this method may giifeetent results. Suppose again the followifig

1 1 0|0 obs;
1 0 1|1 obsy
0 1 1|1 obss

As mentioned before, the hitting set for the weak model exyuha} \V (—h1 A —hg). It follows
Pr(—=h3|O) = a - Pr(obss|—hs) - Pr(obsa|—hg) - Pr(obsy|—hs) - p
Pr(—\hl N —‘h2|0) = - Pr(0683|—|h1 N —|h2) . Pr(0b82|—‘h1 A —\hg) . Pr(0b51|—‘h1 A —|h2) . p2
From the definition, it follows
1
g(ﬁhl A jh2)2
Pr(obss|—hs) = 1 — g(—hs)"
= pT'(ObSQ|“}L1 A\ jhg) =1- g(ﬁhl N jh2)1

Pr(obs1|—hs)
Pr(obs1|—hi A —hs)
Pr(obss|—hs)
Pr(obss|—hy A —hg)
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Hence,
Pr(—h3]0) = o~ (1 — g(=h3)) - (1 — g(=h3))-1-p
Pr(=hy A —he|O) = a - (1 — g(=hy A =h2)') - (1 — g(=hy A =ho)') - g(=hy A —hy)?.p?
Thus, by evaluating(d),

Pr(—=h3|O) =a-p
Pr(=hy A —hs|O) = - 0.049 - p?

Similarly to Method 1, this method considers the single arption more probable than the double fault.
Generalizing, the probability of diagnosisfterO is observed is updated according to

Pr(d|O) = a - H (g(d)")Pr(@D . (1 = g(d)))/"( & . pr(d)
i€{1..|SF|}

wherepr and fr count the number of passed and failed runs where it was aidéimat; faulty components where involved,
respectively, i.e.,

p’l“(d,i) = Z H{n\omn/\n € SF/\em}\ :L}
me{1..M}

fr(d,i)= Z [{n|omn An € Sp A —ep}| =i

me{l..M}

whereSr is the set of indices of faulty componentsdnand|-] is the Iverson’s operator.

4.2.6 Method 3
In this variant, the updates are computed based on [3], whierdefined as

1 if dandobs are inconsistent
Pr(obs|D) = 0 if dlogically follows fromobs
e =1—g(d) ifneither holds for passed and failed runs

whereg(d) is defined as in the previous methods. Therefore, in terms9ti1, ag1, andag, € can be re-written as follows

au(D)
a11(D) + a10(D)

Consequently for
1 1 0|0 obs;
1 0 1|1 obso
we obtain
Pr(—=hi|{obs1,0bsa}) = a - Pr({obs1, 0bsa}|—=h1) - p
Pr(—hs|{obs1,0bsa}) = a - Pr({obs1, 0bsa}|—hs) - p
where
a11(—h1)+aio(—h1)
all(ﬁhl) > "
Pr({obs1, 0bsa }|-hy) =
({0bs 2}|=h) <a11(ﬁh1)+alo(ﬁh1)
(=h1)+aio0(—h1)
all(“hg) >a11
Pr({obs1, obsa }|-h3) =
({obs1 2}|7h) (a11(—'h3)+a10(—'h3)

TUD-SERG-2008-014 13
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resulting in,

Pr(—hy |{obs1, 0bsa}) = o~ 0.5% - p = 0.20
Pr(=hs|{obs1,0bs2}) = a- 12 - p = 0.80

If the second failed observation is considered, the apprdagnostic results equals tgis V (—h; A —hs), and the proba-
bilities are updated according to:

Pr(-h3|0) =a-1*>-p=a-p
Pr(—hy A =h3|O) = a- 0.67% - p* = - 0.30 - p?

4.3 Summary
| Classical Method 1 Method 2 Method 3 | Classical Method 1 Method 2 Method 3
Pr(—h1) | 05 0.2 0.2 0.2 Pr(—hs) | 0.98 0.99 0.999 0.77
Pr(=hs) 0.5 0.8 0.8 0.8 Pr(=h1 A —h2) 0.02 0.01 0.001 0.23
(a) Afterobs; andobsa (b) After obs1, obs2, andobss

Figure 3. Probabilities updates

Let Pr(—h,,) = 0.01, Figure 3 lists the probabilities resulting from the vaseupolicies for the diagnoses obtained after
obs1 andobs, only (Figure 3(a)) and afterss (Figure 3(b)). In the first case, the classic policy cannstigiguish between
c1 andes while the g policies exploit the additional information provided byetbxonerating observatiabs;. Whenobss
is includede; is no longer a valid diagnosis by itself, and is eliminatezhirthe (hitting) set of valid diagnosis candidates.
Hence, all policies favots as most likely candidate, due to (1) the lower prior probghbdf the double fault (all policies)
and (2) the exoneration by passed runs (methods 1, 2, and 3).

5 Analytic Model

In this section we derive a simple, approximate model tossstee influence of various parameters onvilasteddebugging
effort W. It is defined as the effort that is wasted on inspecting a aomapt that was not faulty. In our computationi&fwe
assume that after each inspection, the test set is rerusippoeading to a new ranking (without the most recently oged
fault). For example, suppose a triple-fault prograii & 6, andcy, c2, andes faulty) for which the following diagnosis
D = {{1,2,6},{3,4,5}} is obtained. This diagnosis induces a wasted effoiof= 33% ascs in the first candidate is
inspected in vain, as well as, on average two out of threeert8ms in the second candidate (in this example we assumed
that rerunning the test set didn’t change the second catejida contrast to related work, we measiliveinstead of effort
so that the performance metric’s scale is independent afuh@er of faults in the program.

The evaluated parameters are number of compongntsumber of test case¥, testing code coverage testing fault
coveragey, and fault cardinalityC. Consider the exampl@ in Figure 4(a), withA/ = 5 components of which the first
C = 2 components are faulty. As a faulty component can still poedeorrect behavior, and therefore not cause a run to
fail, we use an extended encoding wherredenotes a component that is involved, whereas ‘2’ denoféaudty) component
whose involvement actually produced a failure (and consetiya failing run).

c c c c c

€ ep  eg ey c5 |
0 2 1 0 0

0 2 1 1 0
2

N oo k|8
e ofd
USRI 11
PR ool
oo oorm
ool
ke el

1 0 1 0
0 (b) O's failed runs only

(a) ExampleO
Figure 4. Observation Matrix Example
In the following we focus on the hitting set since its constiits are primarily responsible for the asymptotic behasfio

W. Although their individual ranking is influenced by compahactivity in passed runs, the hitting set itself is exclesr
determined by the failing runs. Thus, we consider the sutsirshown in Figure 4(b).
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From Figure 4(b) it can be seen that the first 2 columns togéohen a hitting set of cardinality 2 (which corresponds to
our choiceC' = 2). This can be seen by the fact that in each row there is at égssset member involved, i.e., there is a
so-called “chain” ofc; and/ore; involvement that is “unbroken” from top row to bottom row.

While this chain exists by definition (given the fact thattbatre faulty there is always at least one of them involved
in everyfailed run), other chains may also exist, and may cdlis® increase. This occurs when those chains pertain to
diagnostic candidates of equal or lower cardinali®y thanC'. Generally, two types of chain can be distinguished: (1)rha
(of cardinality B < C) within the faulty components set, call@ternal chains, and (2) chains (of cardinalify < C)
completely outside the faulty components set, cadigttrnalchains. In the above example aftdr = 2 (so considering
only the first two failed runs), there is still one internabah (corresponding to single fault), and two external chains
(corresponding to single fau{8}, and double faul{3, 4}). As their probability will be higher (due to the a priori flx@bility
computation) they will head the ranking. With respect toititernal fault this does not significantly influenté since this
indicates a true faulty component (the real double fauj2} being subsumed by2}). Consequently, there is no wasted
debugging effort. With respect tg3} however, this fault will induce wasted effort. Afte¥ = 3 both single faults has
disappeared (both chain of ‘1's have bd®nkenduring the third failing run), while the double faul, c, is still present.
From the above example it follows that (1) is primarily impacted by external chains, and (2) the prdiigtof a B
cardinality chain still “surviving” decreases with the nber of failing runs. The latter is the reason why in the linat f
N — oo all external (and internal) chains will have disappearggpsing the true fault as only diagnosis.

5.1 Number of Failing Runs

As the number of failing runs is key to the behavio#@fin the following we first compute the fraction of failed rufisut of
the total of N runs, givenr andg. ConsiderC faulty components. Lef denote the probability of a run failing. A run passes
when note of th&' components induces a failure, i.e., does not generate a tAei matrix. Since the probability of the latter
equalsl —r - (1 — g) and generating a ‘2’ requires (1) being involved (prob&pit) and (2) producing a failure (probability
(1 — g)), the probability of not generating a ‘2’ in the matrix equél — r - (1 — g)). Consequently, the probability a run
passes equald — - (1 — g))¢, yielding

f=1-(1-r-(1-9)°

This implies that for highy (and/or lowr) a very large number of rund is required to generate a sufficient number
Np = f - N of failing runs in order to eliminate competing chains of agof lower cardinalityB. As r also affects the
number of external chains which, however, is not affected e effect ofg can be seen orthogonal toin that it only
impacts the number of failed runs throughConsequentlyy and NV are related in that a highis compensated by a, possible
huge, increase itV. In the sequel, we therefore only focus on the effeat.of

5.2 Behavior for Small Number of Runs

While for largeN the determination of¥” depends on the probability that competing chains will haveinated, for small
N a more simple derivation can be made. Consider the case wfke $ailing run Vg = f - N = 1). From the first (failing)
row (¢ = 1) in the above example (Figure 4(b)) it can be seen that thrergenerally- - (M — C) external single-fault
(B = 1) chains ¢3 andcs) that induce wasted effort. Ag” denotes the ratio of wasted effort it follows

r-(M—-C)
M

which for largeM approaches. This is confirmed by the experiments discussed later.

After the second failed rurk(= 2) the probability aB = 1 chain survives two failing runs equat? (i.e., the probability
of two ‘1’s for a particular component). Consequently, thenter of B = 1 chains equals? - (M — C), which, in general,
decreases negative-exponentially with the number ofiftgilruns (f - N). For B = 2 the situation is less restrictive agy
combination of ‘1’s of the first and second row qualifies as alde-fault chain. As on average there aé = |r- (M — C)]

1's per row there ar¢”!") double-faults.

After the third failing run ¢ = 3) the number of surviving? = 1 chains equals®- (M — C), whereas the number of triple
faults equals{j‘;') As for sufficiently largel the higher-cardinality combinations outhumber the loa&rdinality combina-
tions,W is dominated by the combinations that have the same caitginalthe fault cardinality”. Consequently, assuming
Np < C'it follows that the number of’-cardinality chains that compete with the actGatardinality diagnosis is approxi-
mated by(z‘c{) However, if there are more combinations theh- C these combinations will overlap in terms of component
indices. AsTV does not measure wasted effort on a component that was plpeedously inspected (and subsequently

W= 3)

TUD-SERG-2008-014 15



R. Abreu, P. Zoeteweij & A. van Gemund SE

16

removed from the next diagnosis), the average number ofcaife” C-cardinality chains will never excee@ (as there are

C indices per candidate). Hence, the number of compéthugrdinality chains is approximated by n{%7 (J‘é )}

5.3 Behavior for Large Number of Runs

For largeN the trend ofil¥ can also be approximated from the probability that comgetimains will still have survived
after Nz runs, which we derive as follows. ConsideBacardinality external chain. At each row there is a probghtihat
this chain does not survive. Similar to the derivatiorfafe consider the probability thatl B components involved in the
chain have a '0’ entry, which would terminate that particwlaain. This probability equald — »)Z. Hence, the probability
that aB-cardinality chain does not break per run equals (1 — ). Consequently, the probability that a chain survives
Np failing runs equals

(1= (1—r)f)hr
Similar to the derivation for smalVr, we only conside€-cardinality chains. The largest number of competing chairthe

outset equaléi‘é'). As there always exists aN for which this number is less tha}f (in the asymptotic case we consider
only a few chains) the number of competing chains afterruns is given by

a-a-neye (%)

Consequentlyii” is approximated by /
(1— (1 =n))N - (¥) @)
M
We observe a negative-exponential (geometric) trend With(NV) while C' postpones that decay to larg¥- (N) as the
term1 — (1 — )¢ approaches unity for largg.
In the following we asymptotically approximate the numbgfailing test runsNx needed for an optimal diagnosis (i.e.,
W approaches 0). Considering Eq. (4) a single diagnosis ioajpately reached for

W ~

(1—(1—r)O)Nr. (AC[> =W-M

which can be modeled % — (1 — r)¢)Vr = K. Itfollows Np = —log K/log1 — (1 — r)€. Since for sufficiently large
C the terml — (1 — 7)) approaches unity, and sinke; 1 — ¢ ~ —e it follows that Ng ~ log K/(1 —7)¢. As(1 —r) < 1
it follows Ny ~ log K - ((1 — r)~1)¢ of which the second term increases exponentially WittSince K = <1g) for large
M this term also increases exponentially with However, as the term is included in a logarithm, the efféthis term is

less than the previous.

6 An optimal similarity coefficient for single-faults

In this section we show how our above reasoning approacheasdd to derive an optimal similarity coefficient &ngle-
fault programs.

In the single-fault case we know that all failures relatemtyane fault, which, by definition, is included in the minima
hitting set. Hence, any coefficient approach should consiigeminimal hitting set only (i.e., only thosg which consistently
occur in failing runs). This implies that the optimal appebas to select only the failing runs and compute the sintifari
coefficient. Since for these components by definitign= 0, one only needs to consider; anday. This, in turn, implies
that the ranking is only determined by the exonerating tefgn Thus the ranking can be calculated as follows

o | os(y) ifann #0
sim(j) = { 0 otherwise
In summary, once we only consider the components includétktihitting set, any of the coefficients that includeg in
the denominator will produce the same, optimal ranking. éExpents using this “hitting set filter” combined with a silmp
similarity coefficient such as Tarantula indeed confirm thit approach leads to the best performance [8].
Note that the above filter is only optimal for programs thatehanly 1 fault as applying this filter to any multiple-fault
program would be overly restrictive. It would fail to detéatilts that are not always involved in failed runs. For exemp
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the diagnosis for th® in the beginning of Section 4.1 when using the filtering apgtowould yieldD = {{1}}, entirely
ignoring two of the three faults. Hence, instead of congipa single-fault hitting set filter, we modify this apprdaia
order to also allow application to multiple-fault progranisking the Ochiai coefficient as (best) starting point @oe 1,

Eq. 5 follows from Eq. 1 by squaring, and factoring ewt (), none of which changes the ranking) and applying the above
filtering approach, we derive the following similarity céiefent, coined Zoltar-S, according to

a11(J) _ _ )
a1 (§) + awo(j) + ao1 (j) + & - 2alilawll)

a11(7)

§z-s =

wherex > 0 is a constant factor that exonerates a compongtitat was either seldom executed in failed runs or often in
passed runs. We empirically verified that the higherdtiee more identical the diagnosis becomes with the one ciddin
the hitting set filter [8]. In the context of this paper we limito 10, 000 to avoid round-off errors.

A Synthetic Results
Al Wvs. N

Figures 5, 6, and 7 plot W vs. N for several parameters, suoli@aber of faults”, test set coverage and failure coverage
g. To obtain the data, we use a simple, probabilistic modelofiram behavior that is directly based 60N, M, r, andg.

Without loss of generality we model the fiStof the M components to be at fault.
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Figure 5. Wvs. N for g =0.1
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Figure 6. W vs. N for g =0.9
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Figure 9. Wvs. N for M =10,¢g=0.1,and r = 0.6

A2 Wyvs. P

The following figures, up to Figure 24, plot W vs. P, showingttthe observation-based technique (Zoltar-M using Method
2 as policy) may be of added value in order to employ severaldpers P) to find the bugs. The plots were generated by
fixing M = 20 and N = 100, and each point represents an average of 1,000 matrices.
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A.3 Probability/Similarity Distribution

The plots in Figure 24 contain the probability/similaritislibution for the rankings obtained with the several t@ghes.
As can be seen, the observation-based approach (coinea-Ebldoes give extra information on the number of faultshie t

code, when compared with SFL techniques (Ochiai, Tarajfidkar-S).
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Figure 14. W vs. N for M =20,¢g=0.1,and r = 0.4
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Figure 15. W vs. N for M =20, ¢ =0.1,and r = 0.6
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Figure 16. W vs. N for M =20,¢g=0.1,and r = 0.8
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Figure 17. W vs. N for M = 30,9 =0.1,and r =0.4
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Figure 20. W vs. PforC=5and g =0.1
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Figure 21. W vs
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Figure 23. W vs. PforC=5and g =0.9
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Figure 24. Probability/Similarity distribution
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