@
@)X® HAsLab

HIGH-ASSURANCE
SOFTWARE LABORATORY

Clouder: A Flexible Large Scale Decentralized Object Store

Ricardo Vilaca

December 14, 2012

M[A[P|i

Context

® Traditional RDBMS were not designed for massive
scale.

® Storage of digital data has reached unprecedented
levels.

® Trade consistency for availability.

®© Massive-scale distributed computing is a challenge
at our doorstep.

® Centralized storage and processing making
extensive and flexible data partitioning unavoidable.

® Emergence of Cloud Computing paradigm/business
model.

HIGH-ASSURANCE
SOFTWARE LABORATORY

Large scale data stores

® Elastic computing.

® Highly decentralized, scalable, and dependable
systems.

® Google’s Bigtable, Amazon’s Dynamo, Yahoo's
PNUTS, Facebook’s Cassandra.

® A simple data store interface, that allows
applications to insert, query, and remove
individual elements.

® Forfeit complex relational and processing
facilities.

® Specific narrow tradeoff between consistency,
availability, performance, scale, and cost.

HIGH-ASSURANCE
SOFTWARE LABORATORY

Tradeoffs

®|n most enterprises there isn’t a large in-
house research development team to
redesign applications.

@ Hard to provide a smooth migration path for
existing applications, mostly SQL based.

@ Hurdle to the adoption of Cloud computing

by a wider potential market.
RDBMS LSDS Clouder

Availability Availability Availability

Network \ / \

e | IScalabilit Network | . Network , i e
partition y partition Scalability partition’ Scalability
tolerance tolerance tolerance

Consiétency

Consistency Consistency

HIGH-ASSURANCE
4 SOFTWARE LABORATORY

Problem and goals

®© New generation large scale data stores and
traditional RDBMS are in disjoint design spaces, and
there is a huge gap between them.

® This thesis aims at reducing this gap by:

® seeking mechanisms to provide additional
consistency guarantees;

® higher-level data processing primitives in large
scale data stores:

® extending data stores with additional operations,
such as general multi-item operations;

® coupling data stores with other existing
processing facilities.

| 5 .i .
SOFTWARE LABORATORY

DataDroplets

Clouder

® Assumptions

® Controlled environment: same owner, reasonable
stable membership, specific set of applications.

®© Nodes can be commodity machines mainly
dedicated to enterprise or academic business
tasks.

® Goals

® General purpose consistent, conflict-free, data
storage, and in-place processing capabilities.

® Allow to leverage large computing
infrastructures.

® Dependability in face of massive distributed
data.

| / . . .
SOFTWARE LABORATORY

Clouder architecture

Clients

ft-state |;

DHT

,—’—\

Per3|st nt-state Layer

ooooog
1.
/,

/ Request |
Routing

Partition
—_—

Replication
D E—

Storage
——

Replication

| l

® Hybrid

® Structured approach
suited to a smaller scale
and to offer an adequate
interface to the client.

Unstructured approach is
fit to manage the massive
scale of the system.

HIGH-ASSURANCE
SOFTWARE LABORATORY

Clouder architecture

Soft-state layer

" Request
Routing

Partition

Replication

(ke

n e) CRTCE:

DataDroplets

@ Elastic data store providing atomic access to
tuples and flexible data replication.

® Environment

®Hundreds of nodes with a reasonably
stable membership.

® Functionalities

®Storage cache managed as allowed by the
adopted consistency criteria.

®Data partitioning.

® Request routing and processing.

M A P HIGH-ASSURANCE
SOFTWARE LABORATORY

DataDroplets data model and API

String — (K — (V x 2 5tring))

@New Operations:

@ Complex queries containing tags,
wildcards, or ranges of tags.

I O . . .
M A P <<<<<<<<<<<<<<<
SOFTWARE LABORATORY

State of the art data placement

® Existing data placement strategies only efficiently
support single tuple or range queries.

®© Most applications have however general multi-
tuple queries.

® |ts performance is highly affected by the data
placement strategy.

® Correlation

® The probability of a pair of tuples being
requested together in a query is not uniform but
often highly skewed.

® Stable over time for most applications.

® Challenge of achieving such placement in a
decentralized fashion.

| | .x .
SOFTWARE LABORATORY

Our approach: Tagged

®Set of tags defined
per tuple.

@Uses a dimension
reducing and
locality—-preserving
indexing scheme

(SFC).

Data placement

Twitter alike workload

Real
300 |
Users
ey 1 2500
(dp)]
S
>
% 250 L _ 20
cU -
— 2085 e random nOdeS
i ordered | .
= tagged | Without
200 s replication
0 100 200 300 400 500

Throughput (ops/sec)

I 3 . . .
M A P HIGH-ASSURANCE
SOFTWARE LABORATORY

HASLab

HIGH-ASSURANCE

‘x‘ ‘
SOFTWARE LABORATORY

SQL on large scale data stores

Distributed query engine

® Attaining scalable SQL processing on top of
a large scale data store.

® Does not introduce coordination
bottlenecks.

® Use the query engine functionality of RDBMS
removing components that limit scalability.

® Separation of concerns: execution,
transactions, and storage.

® Resolve impedance mismatches of the
relational model and the data model of large
scale data stores.

| |5 .i .
SOFTWARE LABORATORY

Distributed query engine architecture

Large scale data
store application

SQL Application

r

Large scale data
store client library

F

DQE

Large scale data store
client library

[
SQL Application .

DQE

Large scale data store
client library

MI[A[P|i

¥

Large scale data store

e ——

|6

HHHHHHHHHHHHH

Distributed query engine architecture

SQL Application
SELECT * FROM

ﬁ Large scale data store client library F

JDBC driver

connection handler

C N (Y

a) .
compiler) (optlm|zer

\J\/_J

meta meta

meta

Available Operators

(selection) (projection)) |

\

)

v

MI[A[P|i

row

|6

iIndex

Large scale data store index
row iIndex

HHHHHHHHHHHHH

®YCSB workload.

DQE overhead

Workload | client 100 tps 50 clients 100 tps
Operation HBase DQE HBase DQE
Insert 0.58 0.93 .04 .98
Update 0.51 1.3 2.66 3.1
Read 0.53 0.79 .63 1.7
Scan |.43 2.9 4.64 6.1

DQE non-transactional scalability

@] to 30 HBase RS (1 to 10 DQE).

@ TPC-C workload.

&)

—h
)
—
o

Throughput tpmC

1.10° |

5.10% L

e DQE
PYyTPCC

5 10

Nodes

AAAAAAAAAAAAAAAAAAA

DQE non-transactional scalability
@] to 30 HBase RS (1 to 10 DQE).

@ TPC-C workload.

&)

O 1.5.10
-

o

5 1.10° |
Q.

i -

S

O 5.10% |
i -

—

e DQE
PYyTPCC

Linear Scalabity

10 15

Nodes

20

25

30

AAAAAAAAAAAAAAAAAAA

DQE non-transactional scalability
@] to 30 HBase RS (1 to 10 DQE).

@ TPC-C workload.

&)

O 1.5.10
-

o

5 1.10° |
Q.

i -

S

O 5.10% |
i -

—

¢ DQE

PyTPCC

Linear Scalabity

Network saturated

10

15

Nodes

20

25

30

AAAAAAAAAAAAAAAAAAA

Main contributions

® A new architecture for large scale data stores.

® New large scale data store with additional consistency
guarantees and higher level data processing primitives.

®© A multi-tuple data placement strategy that allows to
efficiently store and retrieve large sets of related data at
once.

® Provides better results in overall query performance.

® Usefulness of having multiple simultaneous
placement strategies in a multi-tenant system.

® Design modifications to existing relational SQL query
engines allowing them to be distributed, and efficiently
run SQL on scalable data stores while preserving
scalability.

M A P HIGH-ASSURANCE
SOFTWARE LABORATORY

Main results

® A prototype of a new large scale data store,
following the proposed architecture and
implementing the novel data placement strategy.

® Extensive simulation and real results, under a
workload representative of applications currently
exploiting the scalability of large scale data
store.

® A simple but realistic benchmark for large scale
stores based on Twitter and currently known
statistical data about its usage.

® A prototype of a distributed SQL query engine
running on a large scale data store.

®© Experimental results, using standard industrial
database benchmarks.

‘ J
M[A]|P 20 o0 1usio

@
@)X® HAsLab

HIGH-ASSURANCE
SOFTWARE LABORATORY

Clouder: A Flexible Large Scale Decentralized Object Store

Ricardo Vilaca
Supervised by Rui Oliveira

December 14, 2012

M[A[P|i

Publications

® |nvolved in a National research project, Stratus (PTDC/
EIA-CCO/115570/2009), and two European research
projects: CumuloNimbo (FP7-257993) and GORDA (FP6-
IST2-004758)

® Ricardo Vilaca, Rui Carlos Oliveira and José Pereira. A
correlation-aware data placement strategy for key-value
stores. In DAIS 2011

® Miguel Matos, Ricardo Vilaca, José Pereira and Rui
Oliveira. An epidemic approach to dependable key-value
substrates. In DCDV 2011

® Ricardo Vilaca, Francisco Cruz and Rui Oliveira. On the
expressiveness and trade-offs of large scale tuple stores.
In DOA 2010

® Ricardo Vilaca and Rui Oliveira. Clouder: a flexible large
scale decentralized object store: architecture overview. In
WDDDM 2009

‘ J
M[A]|P 2 o0 1usio

Data placement

® Builds on the Chord structured ring overlay network.

© Nodes in the overlay have unique identifiers uniformly
picked from the [0,1] interval and ordered along the
ring.

®© Each node is responsible for the storage of buckets of a
distributed hash table (DHT) also mapped into the
same [0,1] interval.

® Several data placement strategies defined on a per
collection basis.

®© Automatic load redistribution on membership changes.

®© As some workloads may impair the uniform data
distribution the system implements dynamic load-
balancing.

‘ J
M[A]|P 23 o0 1usio

Random

® The random strateqgy is based on a consistent
hash.

® Pseudo-randomly hash the tuple’s key.

® Uniformly maps tuples identifiers to the identifier
space, providing automatic load balancing.

. . .
M A P HIGH-ASSURANCE
SOFTWARE LABORATORY

Ordered

®The ordered strategy places tuples
according to the partial order of the tuple’

Ordered

MI[A[P|i

DataDroplets Simulated evaluation Setting

®2 Dual-Core AMD Opteron processors
running at 2.53GHz and 2GB of RAM.

@Network delay model with latency
uniformly distributed between 1 ms and 2
ms to simulate a LAN network.

®Hybrid simulation for CPU profiled with
real execution.

@Populated with 10000 concurrent users
and the same number of active users were
simulated.

‘ J
M[A]|P 26 o0 1usio

DataDroplets real evaluation setting

®Real

©24 AMD Opteron Processor cores running
at 2.1GHz, 128GB of RAM.

®20 instances of Java Virtual Machine
(1.6.0) running ProtoPeer.

©@Apache MINA 1.1.3 for communication.

@All data persistently stored using Berkeley
DB Java edition 4.0.5.

®Populated with 2500 concurrent users and
m same number of active users were &{.

\\\\\\\\\\\\\\\\\\

Twitter alike workload

® Workload mimics a Twitter alike application.

® The workload needs three collections to store the needed
information: users, tweets and users_timeline.

® Operations

® List<Tweet>statuses_user_timeline(String userID,int start,int count)

® List<Tweet>statuses_friends_timeline(String userID,int start,int count)
® List<Tweet> search_contains_hashtag(String topic)

® List<Tweet> statuses_mentions(String owner)

® statuses_update(Tweet tweet)

® friendships_create(String userID,String toStartUserlID)

® friendships_destroy(String userID, String toStopUserID)

® Open-Source

)
M A P 28 @)@ HrsLan

DataDroplets Replication

Simulation

Twitter alike workload

Latency(ms)

20 |

O I I

=¢ NO replication
«#== 3 replicas synchronously

«2= 3 replicas asynchronously |

0 25 10°

5 10° 7.5 10°

Incoming Throughput(ops/sec)

29

1

10°

Population

| 0000 users

| Active Users

10000

100
nodes

With tags

AAAAAAAAAAAAAAA
OOOOOOOOOOOOOOOOOOO

DataDroplets Scalability

Twitter alike workload
Simulation

Population
| 0000 users

1 Active Users
10000

4+ Without
replication

«=» 100 nodes

e 200 NOdes

O 1 |

0 5 10° 1 1¢ 1.5 1¢ 2 1O4With tags

Incoming Throughput(ops/sec)

()
M A P 30 02'0 HASLab

Data placement simulated results

Twitter alike workload Population
200 , | , 10000 users
150 | - .
— Active Users
£
> 100 |) 10000
C
O 7
E]
50 =¢ random 100
== ~ _I_ Ordered] nOdeS
== tagged
0 | | S Without
0 25 10° 5 10° 75 10° 1 10" ..
replication
Throughput(ops/sec)
J
3 o8 e

HIGH-ASSURANCE
SOFTWARE LABORATORY

Number of exchanged messages

1 10’
75 10° |

(dp)

(D)

o) L

5

@ 5 10° |

>

E n

2 25 10° | _
- random
—— tagged

0 | | |
0 50 100 150 200
Nodes
()

Distributed query engine implementation

®@ CumuloNimbo FP7 project.

@HBase and Apache Derby
| SQL Application ' | SQL Application ' l SQL Application '

m\(lént

ction Manage

Transa

HIGH-ASSURANCE
SOFTWARE LABORATORY

DQE non-transactional evaluation setting

® We ran the experiments on a cluster of forty-two machines with
3.10GHz GHz Quad-Core i3-2100 CPU, with 4GB memory and a
local SATA disk.

® Number of client machines from one to ten, each running a
hundred and fifty client threads. Each client machine also ran an
DQE instance in embedded mode.

® One machine was used to run the HDFS namenode, HBase
Master and Zookeper .

® The remaining machines are RegionServers, each configured with
a heap of 3GB, and also running a HDFS datanode instance.

® The TPC-C database ranges from five warehouses for a single
RegionServer to a hundred and fifty warehouses for thirty
RegionServers.

‘ J
M[A]|P 34 o0 1usio

DQE transactional evaluation setting

® Cluster of thirty-six machines

® Six of which are used to run the HDFS namenode, HBase Master, the SO
server,a Zookeeper ensemble.

® TheYCSB workload is run from five machines, each running a hundred client
threads.

® read-only, single-row
® write, multi-row write, and and 30% scan
® Remaining machines as RegionServers, each configured with a heap of |6GB.

® Each machine has two Xeon Quad-Core 2.40Ghz processors, 24GB of
memory, gigabit Ethernet and four SATA hard disks.

e MySQL is configured with a single management node and a single MySQL
daemon.

® Redundancy of 3.

)
M A P 35 QX'O HASLab

Throughput (ops/sec)

Throughput (ops/sec)

1.5-10°

1-10°

5-10%

1.5-10%

1-10%

5-103

Read-Only

—< HBase _ F----—
~+ SO+DQE . — -~
- MySQL L
// |
/7
X
7/
i
| Fleeuee... [P Leeeon fira R e P
5! 10 15 20 25

Number of storage nodes

Write-Only multi

[T T T
-« HBase
—+ SO+DQE
-0 MySQL
I].......'—I—.HEF.:-.._:IT..-.T'--T.TITE ————— |
| 1 . | A
5 10 15 20 25

Number of storage nodes

Throughput (ops/sec)

Throughput (ops/sec)

36

DQE transactional scalability

Write-Only single

- 10
.10% + i
-« HBase
.10* -+ SO+DQE -
- MySQL

4 4

-10% | - gm—----
=T
I -
0 Lo e - N o P feoeos N
0 5) 10 15 20 25
Number of storage nodes
. 104 T T T T T T T
10*
10* -« HBase
—+ SO+DQE
10°
[lreveveeeenn.
0 | | |
5)

