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๏ Traditional RDBMS were not designed for massive 
scale.

๏ Storage of digital data has reached unprecedented 
levels.

๏ Trade consistency for availability.

๏ Massive-scale distributed computing is a challenge 
at our doorstep. 

๏ Centralized storage and processing making 
extensive and flexible data partitioning unavoidable.

๏ Emergence of Cloud Computing paradigm/business 
model.

Context
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๏ Elastic computing.
๏ Highly decentralized, scalable, and dependable 

systems.
๏ Google’s Bigtable, Amazon’s Dynamo, Yahoo’s 

PNUTS, Facebook’s Cassandra.
๏ A simple data store interface, that allows 

applications to insert, query, and remove 
individual elements. 

๏ Forfeit complex relational and processing 
facilities. 

๏ Specific narrow tradeoff between consistency, 
availability, performance, scale, and cost.

Large scale data stores
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๏ In most enterprises there isn’t a large in-
house research development team to 
redesign applications.

๏Hard to provide a smooth migration path for 
existing applications, mostly SQL based.

๏Hurdle to the adoption of Cloud computing 
by a wider potential market.
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Tradeoffs
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๏ New generation large scale data stores and 
traditional RDBMS are in disjoint design spaces, and 
there is a huge gap between them.

๏ This thesis aims at reducing this gap by:
๏ seeking mechanisms to provide additional 

consistency guarantees;
๏ higher-level data processing primitives in large 

scale data stores:
๏ extending data stores with additional operations, 

such as general multi-item operations;
๏ coupling data stores with other existing 

processing facilities.

Problem and goals
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DataDroplets



๏ Assumptions
๏ Controlled environment: same owner, reasonable 

stable membership, specific set of applications.
๏ Nodes can be commodity machines mainly 

dedicated to enterprise or academic business 
tasks.

๏ Goals
๏ General purpose consistent, conflict-free, data 

storage, and in-place processing capabilities.
๏ Allow to leverage large computing 

infrastructures.
๏ Dependability in face of massive distributed 

data.

Clouder
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Soft-state layer

Partition

Replication

Request
Routing

DHT

• Hybrid 

• Structured approach 
suited to a smaller scale 
and to offer an adequate 
interface to the client.

• Unstructured approach is 
fit to manage the massive 
scale of the system.

Clouder architecture
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๏Elastic data store providing atomic access to 
tuples and flexible data replication.

๏Environment
๏Hundreds of nodes with a reasonably 

stable membership.
๏Functionalities
๏Storage cache managed as allowed by the 

adopted consistency criteria.
๏Data partitioning.
๏Request routing and processing.

DataDroplets
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๏New Operations:
๏Complex queries containing tags, 

wildcards, or ranges of tags.

DataDroplets data model and API
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๏ Existing data placement strategies only efficiently 
support single tuple or range queries.

๏ Most applications have however general multi-
tuple queries.
๏ Its performance is highly affected by the data 

placement strategy.
๏ Correlation

๏ The probability of a pair of tuples being 
requested together in a query is not uniform but 
often highly skewed.

๏ Stable over time  for most applications. 
๏ Challenge of achieving such placement in a 

decentralized fashion.

State of the art data placement
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Our approach: Tagged
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๏Set of tags defined 
per tuple.

๏Uses a dimension 
reducing and 
locality-preserving 
indexing scheme 
(SFC).
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Data placement

13

2500
Users

20
nodes

Without
replication

Twitter alike workload
Real

200

225

250

275

300

La
te

nc
y 

(m
s)

0 100 200 300 400 500

Throughput (ops/sec)

random
ordered
tagged



SQL on large scale data stores



๏Attaining scalable SQL processing on top of 
a large scale data store.

๏Does not introduce coordination 
bottlenecks.

๏Use the query engine functionality of RDBMS 
removing components that  limit scalability.
๏Separation of concerns: execution, 

transactions, and storage.
๏Resolve impedance mismatches of the 

relational model and the data model of large 
scale data stores.

Distributed query engine
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Distributed query engine architecture
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Distributed query engine architecture
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๏YCSB workload.
DQE overhead
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Workload 1 client 100 tps1 client 100 tps 50 clients 100 tps50 clients 100 tps

Operation HBase DQE HBase DQE

Insert 0.58 0.93 1.04 1.98

Update 0.51 1.3 2.66 3.1

Read 0.53 0.79 1.63 1.7

Scan 1.43 2.9 4.64 6.1



๏1 to 30 HBase RS (1 to 10 DQE).
๏TPC-C workload.

DQE non-transactional scalability
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๏ A new architecture for large scale data stores.
๏ New large scale data store  with additional consistency 

guarantees and higher level data processing primitives. 
๏ A multi-tuple data placement strategy that allows to 

efficiently store and retrieve large sets of related data at 
once. 
๏ Provides better results in overall query performance. 
๏ Usefulness of having multiple simultaneous 

placement strategies in a multi-tenant system.
๏ Design modifications to existing relational SQL query 

engines allowing them to be distributed, and efficiently 
run SQL on scalable data stores while preserving 
scalability. 

Main contributions
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๏ A prototype of a new large scale data store, 
following the proposed architecture and 
implementing the novel data placement strategy.
๏ Extensive simulation and real results, under a 

workload representative of applications currently 
exploiting the scalability of  large scale data 
store.

๏ A simple but realistic benchmark for large scale 
stores based on Twitter and currently known 
statistical data about its usage.

๏ A prototype of a distributed SQL query engine 
running on a large scale data store.
๏ Experimental results, using standard industrial 

database benchmarks.

Main results
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๏ Involved in a National research project, Stratus (PTDC/
EIA-CCO/115570/2009), and two European research 
projects: CumuloNimbo (FP7-257993) and GORDA (FP6-
IST2-004758)

๏ Ricardo Vilaca, Rui Carlos Oliveira and José Pereira.  A 
correlation-aware data placement strategy for key-value 
stores. In DAIS 2011

๏ Miguel Matos, Ricardo Vilaça, José Pereira and Rui 
Oliveira.  An epidemic approach to dependable key-value 
substrates. In DCDV 2011

๏ Ricardo Vilaça, Francisco Cruz and Rui Oliveira. On the 
expressiveness and trade-offs of large scale tuple stores.  
In DOA 2010

๏ Ricardo Vilaça and Rui Oliveira. Clouder: a flexible large 
scale decentralized object store: architecture overview. In 
WDDDM 2009

Publications
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๏ Builds on the Chord structured ring overlay network.
๏ Nodes in the overlay have unique identifiers uniformly 

picked from the [0,1] interval and ordered along the 
ring. 

๏ Each node is responsible for the storage of buckets of a 
distributed hash table (DHT) also mapped into the 
same [0,1] interval.

๏ Several data placement strategies defined on a per 
collection basis.

๏ Automatic load redistribution on membership changes.
๏ As some workloads may impair the uniform data 

distribution the system implements dynamic load-
balancing.

Data placement
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๏ The random strategy is based on a consistent 
hash.

๏ Pseudo-randomly hash the tuple’s key.
๏ Uniformly maps tuples identifiers to the identifier 

space, providing automatic load balancing. 
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๏The ordered strategy places tuples 
according to the partial order of the tuple’ 
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DataDroplets Simulated evaluation Setting
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๏2 Dual-Core AMD Opteron processors 
running at 2.53GHz and 2GB of RAM. 

๏Network delay model with latency 
uniformly distributed between 1 ms and 2 
ms to simulate a LAN network. 

๏Hybrid simulation for CPU profiled with 
real execution. 

๏Populated with 10000 concurrent users 
and the same number of active users were 
simulated.



DataDroplets real evaluation setting
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๏Real
๏24 AMD Opteron Processor cores running 

at 2.1GHz, 128GB of RAM.
๏20 instances of Java Virtual Machine 

(1.6.0) running ProtoPeer.
๏Apache MINA 1.1.3 for communication.
๏All data persistently stored using Berkeley 

DB Java edition 4.0.5.
๏Populated with 2500 concurrent users and 

the same number of active users were 



Twitter alike workload

28

๏ Workload mimics a Twitter alike application.
๏ The workload needs three collections to store the needed 

information: users, tweets and users_timeline.
๏ Operations

๏ List<Tweet>statuses_user_timeline(String userID,int start,int count)

๏ List<Tweet>statuses_friends_timeline(String userID,int start,int count)

๏ List<Tweet> search_contains_hashtag(String  topic)

๏ List<Tweet> statuses_mentions(String  owner)

๏ statuses_update(Tweet tweet)

๏ friendships_create(String userID,String toStartUserID) 

๏ friendships_destroy(String userID, String toStopUserID)

๏ Open-Source



DataDroplets Replication
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DataDroplets Scalability 
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Data placement simulated results
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Number of exchanged messages
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๏CumuloNimbo FP7 project.
๏HBase and Apache Derby

Distributed query engine implementation
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DQE non-transactional evaluation setting
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• We ran the experiments on a cluster of forty-two machines with 
3.10GHz GHz Quad-Core i3-2100 CPU, with 4GB memory and a 
local SATA disk.

• Number of client machines from one to ten, each running a 
hundred and fifty client threads. Each client machine also ran an 
DQE instance in embedded mode.

• One machine was used to run the HDFS namenode, HBase 
Master and Zookeper .

• The remaining machines are RegionServers, each configured with 
a heap of 3GB, and also running a HDFS datanode instance.

• The TPC-C database ranges from five warehouses for a single 
RegionServer to a hundred and fifty warehouses for thirty 
RegionServers. 



DQE transactional evaluation setting
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• Cluster of thirty-six machines

• Six of which are used to run the HDFS namenode, HBase Master, the SO 
server, a Zookeeper ensemble.

• The YCSB workload is run from five machines, each running a hundred client 
threads. 

• read-only, single-row

• write, multi-row write, and and 30% scan

• Remaining machines as RegionServers, each configured with a heap of 16GB. 

• Each machine has two Xeon Quad-Core 2.40Ghz processors, 24GB of 
memory, gigabit Ethernet and four SATA hard disks. 

• MySQL is configured with a single management node and a single MySQL 
daemon.

• Redundancy of 3.



DQE transactional scalability
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