
Clouder: A Flexible Large Scale Decentralized Object Store

Ricardo Vilaça

December 14, 2012

๏ Traditional RDBMS were not designed for massive
scale.

๏ Storage of digital data has reached unprecedented
levels.

๏ Trade consistency for availability.

๏ Massive-scale distributed computing is a challenge
at our doorstep.

๏ Centralized storage and processing making
extensive and flexible data partitioning unavoidable.

๏ Emergence of Cloud Computing paradigm/business
model.

Context

2

๏ Elastic computing.
๏ Highly decentralized, scalable, and dependable

systems.
๏ Google’s Bigtable, Amazon’s Dynamo, Yahoo’s

PNUTS, Facebook’s Cassandra.
๏ A simple data store interface, that allows

applications to insert, query, and remove
individual elements.

๏ Forfeit complex relational and processing
facilities.

๏ Specific narrow tradeoff between consistency,
availability, performance, scale, and cost.

Large scale data stores

3

๏ In most enterprises there isn’t a large in-
house research development team to
redesign applications.

๏Hard to provide a smooth migration path for
existing applications, mostly SQL based.

๏Hurdle to the adoption of Cloud computing
by a wider potential market.

Availability

Consistency

Network
partition
tolerance

Scalability

Availability

Consistency

Network
partition
tolerance

Scalability

Availability

Consistency

Network
partition
tolerance

Scalability

RDBMS LSDS Clouder

Tradeoffs

4

๏ New generation large scale data stores and
traditional RDBMS are in disjoint design spaces, and
there is a huge gap between them.

๏ This thesis aims at reducing this gap by:
๏ seeking mechanisms to provide additional

consistency guarantees;
๏ higher-level data processing primitives in large

scale data stores:
๏ extending data stores with additional operations,

such as general multi-item operations;
๏ coupling data stores with other existing

processing facilities.

Problem and goals

5

DataDroplets

๏ Assumptions
๏ Controlled environment: same owner, reasonable

stable membership, specific set of applications.
๏ Nodes can be commodity machines mainly

dedicated to enterprise or academic business
tasks.

๏ Goals
๏ General purpose consistent, conflict-free, data

storage, and in-place processing capabilities.
๏ Allow to leverage large computing

infrastructures.
๏ Dependability in face of massive distributed

data.

Clouder

7

Soft-state layer

Partition

Replication

Request
Routing

DHT

• Hybrid

• Structured approach
suited to a smaller scale
and to offer an adequate
interface to the client.

• Unstructured approach is
fit to manage the massive
scale of the system.

Clouder architecture

8

Clients

Storage

Persistent-state Layer

Replication

Soft-state layer

Partition

Replication

Request
Routing

DHT

• Hybrid

• Structured approach
suited to a smaller scale
and to offer an adequate
interface to the client.

• Unstructured approach is
fit to manage the massive
scale of the system.

Clouder architecture

8

Clients

Storage

Persistent-state Layer

Replication

Soft-state layer

Partition

Replication

Request
Routing

DHT

๏Elastic data store providing atomic access to
tuples and flexible data replication.

๏Environment
๏Hundreds of nodes with a reasonably

stable membership.
๏Functionalities
๏Storage cache managed as allowed by the

adopted consistency criteria.
๏Data partitioning.
๏Request routing and processing.

DataDroplets

9

String ⇀ (K ⇀ (V × P String))

Key Value

1

3

4

a

c

b

Tags

Blue

Red

Red

Oval

Oval Rectangular

Rectangular

๏New Operations:
๏Complex queries containing tags,

wildcards, or ranges of tags.

DataDroplets data model and API

10

๏ Existing data placement strategies only efficiently
support single tuple or range queries.

๏ Most applications have however general multi-
tuple queries.
๏ Its performance is highly affected by the data

placement strategy.
๏ Correlation

๏ The probability of a pair of tuples being
requested together in a query is not uniform but
often highly skewed.

๏ Stable over time for most applications.
๏ Challenge of achieving such placement in a

decentralized fashion.

State of the art data placement

11

Our approach: Tagged

12

๏Set of tags defined
per tuple.

๏Uses a dimension
reducing and
locality-preserving
indexing scheme
(SFC).

Nodes Data

Tagged

d

1

a

c
3

2
4

h

0.000

0.250
0.750

0.100

0.400
0.600

a

0.500

h

Data placement

13

2500
Users

20
nodes

Without
replication

Twitter alike workload
Real

200

225

250

275

300

La
te

nc
y

(m
s)

0 100 200 300 400 500

Throughput (ops/sec)

random
ordered
tagged

SQL on large scale data stores

๏Attaining scalable SQL processing on top of
a large scale data store.

๏Does not introduce coordination
bottlenecks.

๏Use the query engine functionality of RDBMS
removing components that limit scalability.
๏Separation of concerns: execution,

transactions, and storage.
๏Resolve impedance mismatches of the

relational model and the data model of large
scale data stores.

Distributed query engine

15

Distributed query engine architecture

16

Large scale data store

DQE
Large scale data
store application

SQL Application

DQE

SQL Application

Large scale data
store client library

Large scale data store
client library

DQE

Large scale data store
client library

Distributed query engine architecture

16

Large scale data store
row
row
row

index
index
index

DQE
Large scale data
store application

SQL Application

DQE

SQL Application

Large scale data
store client library

Large scale data store
client library

DQE

Large scale data store
client library

compiler optimizer

connection handler

Available Operators

selection projection join

seqscan indexscan

SQL Application
SELECT * FROM

JDBC driver

meta meta meta

Large scale data store client library

Tr
an

sa
ct

io
ns

St
at

ist
ics

๏YCSB workload.
DQE overhead

17

Workload 1 client 100 tps1 client 100 tps 50 clients 100 tps50 clients 100 tps

Operation HBase DQE HBase DQE

Insert 0.58 0.93 1.04 1.98

Update 0.51 1.3 2.66 3.1

Read 0.53 0.79 1.63 1.7

Scan 1.43 2.9 4.64 6.1

๏1 to 30 HBase RS (1 to 10 DQE).
๏TPC-C workload.

DQE non-transactional scalability

18

0

5 . 10 4

1 . 105

1.5 .105

Th
ro

ug
hp

ut
 tp

m
C

0 5 10 15 20 25 30

Nodes

DQE
PyTPCC

๏1 to 30 HBase RS (1 to 10 DQE).
๏TPC-C workload.

DQE non-transactional scalability

18

0

5 . 10 4

1 . 105

1.5 .105

Th
ro

ug
hp

ut
 tp

m
C

0 5 10 15 20 25 30

Nodes

DQE
PyTPCC

Linear Scalabity

๏1 to 30 HBase RS (1 to 10 DQE).
๏TPC-C workload.

DQE non-transactional scalability

18

0

5 . 10 4

1 . 105

1.5 .105

Th
ro

ug
hp

ut
 tp

m
C

0 5 10 15 20 25 30

Nodes

DQE
PyTPCC

Network saturated

Linear Scalabity

๏ A new architecture for large scale data stores.
๏ New large scale data store with additional consistency

guarantees and higher level data processing primitives.
๏ A multi-tuple data placement strategy that allows to

efficiently store and retrieve large sets of related data at
once.
๏ Provides better results in overall query performance.
๏ Usefulness of having multiple simultaneous

placement strategies in a multi-tenant system.
๏ Design modifications to existing relational SQL query

engines allowing them to be distributed, and efficiently
run SQL on scalable data stores while preserving
scalability.

Main contributions

19

๏ A prototype of a new large scale data store,
following the proposed architecture and
implementing the novel data placement strategy.
๏ Extensive simulation and real results, under a

workload representative of applications currently
exploiting the scalability of large scale data
store.

๏ A simple but realistic benchmark for large scale
stores based on Twitter and currently known
statistical data about its usage.

๏ A prototype of a distributed SQL query engine
running on a large scale data store.
๏ Experimental results, using standard industrial

database benchmarks.

Main results

20

Clouder: A Flexible Large Scale Decentralized Object Store

Ricardo Vilaça
Supervised by Rui Oliveira

December 14, 2012

๏ Involved in a National research project, Stratus (PTDC/
EIA-CCO/115570/2009), and two European research
projects: CumuloNimbo (FP7-257993) and GORDA (FP6-
IST2-004758)

๏ Ricardo Vilaca, Rui Carlos Oliveira and José Pereira. A
correlation-aware data placement strategy for key-value
stores. In DAIS 2011

๏ Miguel Matos, Ricardo Vilaça, José Pereira and Rui
Oliveira. An epidemic approach to dependable key-value
substrates. In DCDV 2011

๏ Ricardo Vilaça, Francisco Cruz and Rui Oliveira. On the
expressiveness and trade-offs of large scale tuple stores.
In DOA 2010

๏ Ricardo Vilaça and Rui Oliveira. Clouder: a flexible large
scale decentralized object store: architecture overview. In
WDDDM 2009

Publications

22

๏ Builds on the Chord structured ring overlay network.
๏ Nodes in the overlay have unique identifiers uniformly

picked from the [0,1] interval and ordered along the
ring.

๏ Each node is responsible for the storage of buckets of a
distributed hash table (DHT) also mapped into the
same [0,1] interval.

๏ Several data placement strategies defined on a per
collection basis.

๏ Automatic load redistribution on membership changes.
๏ As some workloads may impair the uniform data

distribution the system implements dynamic load-
balancing.

Data placement

23

๏ The random strategy is based on a consistent
hash.

๏ Pseudo-randomly hash the tuple’s key.
๏ Uniformly maps tuples identifiers to the identifier

space, providing automatic load balancing.

Nodes

DataRandom

d

1

a c

3

2
4

b 0.000

0.250

0.500

0.750

0.100

0.400

0.850

0.600

Random

24

๏The ordered strategy places tuples
according to the partial order of the tuple’

Nodes

DataOrdered

a

1

c b

3

2
4

d 0.000

0.250

0.500

0.750

0.100

0.400

0.850

0.600

Ordered

25

DataDroplets Simulated evaluation Setting

26

๏2 Dual-Core AMD Opteron processors
running at 2.53GHz and 2GB of RAM.

๏Network delay model with latency
uniformly distributed between 1 ms and 2
ms to simulate a LAN network.

๏Hybrid simulation for CPU profiled with
real execution.

๏Populated with 10000 concurrent users
and the same number of active users were
simulated.

DataDroplets real evaluation setting

27

๏Real
๏24 AMD Opteron Processor cores running

at 2.1GHz, 128GB of RAM.
๏20 instances of Java Virtual Machine

(1.6.0) running ProtoPeer.
๏Apache MINA 1.1.3 for communication.
๏All data persistently stored using Berkeley

DB Java edition 4.0.5.
๏Populated with 2500 concurrent users and

the same number of active users were

Twitter alike workload

28

๏ Workload mimics a Twitter alike application.
๏ The workload needs three collections to store the needed

information: users, tweets and users_timeline.
๏ Operations

๏ List<Tweet>statuses_user_timeline(String userID,int start,int count)

๏ List<Tweet>statuses_friends_timeline(String userID,int start,int count)

๏ List<Tweet> search_contains_hashtag(String topic)

๏ List<Tweet> statuses_mentions(String owner)

๏ statuses_update(Tweet tweet)

๏ friendships_create(String userID,String toStartUserID)

๏ friendships_destroy(String userID, String toStopUserID)

๏ Open-Source

DataDroplets Replication

29

10000 users
Population

10000
Active Users

100
nodes

With tags0

20

40

60

La
te

nc
y(

m
s)

0 2.5 103 5 103 7.5 103 1 104

no replication
3 replicas synchronously
3 replicas asynchronously

Incoming Throughput(ops/sec)

SimulationTwitter alike workload

DataDroplets Scalability

30

10000 users

Population

10000
Active Users

Without
replication

With tags

0

50

100

150

200

La
te

nc
y(

m
s)

0 5 103 1 104 1.5 104 2 104

Incoming Throughput(ops/sec)

100 nodes
200 nodes

Twitter alike workload
Simulation

Data placement simulated results

31

10000 users
Population

10000
Active Users

100
nodes

Without
replication

0

50

100

150

200

La
te
nc
y(
m
s)

0 2.5 103 5 103 7.5 103 1 104

Throughput(ops/sec)

random
ordered
tagged

Twitter alike workload

Number of exchanged messages

32

0

2.5 106

5 106

7.5 106

1 107

To
ta

l M
es

sa
ge

s

0 50 100 150 200
Nodes

random
tagged

๏CumuloNimbo FP7 project.
๏HBase and Apache Derby

Distributed query engine implementation

33

Query engine layer

SQL Application

HRegionServer

Storage Layer

File System Layer

HRegionServer HRegionServer

Data
Node

Data
Node

Data
Node

DQE

SQL Application

DQE

SQL Application

DQE

Master

Name
Node

Tr
an

sa
ct

io
n

M
an

ag
em

en
t

DQE non-transactional evaluation setting

34

• We ran the experiments on a cluster of forty-two machines with
3.10GHz GHz Quad-Core i3-2100 CPU, with 4GB memory and a
local SATA disk.

• Number of client machines from one to ten, each running a
hundred and fifty client threads. Each client machine also ran an
DQE instance in embedded mode.

• One machine was used to run the HDFS namenode, HBase
Master and Zookeper .

• The remaining machines are RegionServers, each configured with
a heap of 3GB, and also running a HDFS datanode instance.

• The TPC-C database ranges from five warehouses for a single
RegionServer to a hundred and fifty warehouses for thirty
RegionServers.

DQE transactional evaluation setting

35

• Cluster of thirty-six machines

• Six of which are used to run the HDFS namenode, HBase Master, the SO
server, a Zookeeper ensemble.

• The YCSB workload is run from five machines, each running a hundred client
threads.

• read-only, single-row

• write, multi-row write, and and 30% scan

• Remaining machines as RegionServers, each configured with a heap of 16GB.

• Each machine has two Xeon Quad-Core 2.40Ghz processors, 24GB of
memory, gigabit Ethernet and four SATA hard disks.

• MySQL is configured with a single management node and a single MySQL
daemon.

• Redundancy of 3.

DQE transactional scalability

36

0

5 · 103

1 · 104

1.5 · 104

2 · 104

2.5 · 104

T
h
ro
u
gh

p
u
t
(o
p
s/
se
c)

0 5 10 15 20 25

Number of storage nodes

HBase
SO+DQE
MySQL

0

5 · 104

1 · 105

1.5 · 105

T
h
ro
u
gh

p
u
t
(o
p
s/
se
c)

0 5 10 15 20 25

Number of storage nodes

HBase
SO+DQE
MySQL

0

2 · 104

4 · 104

6 · 104

8 · 104

T
h
ro
u
gh

p
u
t
(o
p
s/
se
c)

0 5 10 15 20 25

Number of storage nodes

HBase
SO+DQE
MySQL

0

5 · 103

1 · 104

1.5 · 104

T
h
ro
u
gh

p
u
t
(o
p
s/
se
c)

0 5 10 15 20 25

Number of storage nodes

HBase
SO+DQE
MySQL

Read-Only Write-Only single

Write-Only multi Mixed

