
A Mutable Protocol for Consensus in Large Groups
J. Pereira R. Oliveira

Univ. Minho Univ. Minho
jop@di.uminho.pt rco@di.uminho.pt

Abstract— In this paper we propose the mutable con-
sensus protocol, a pragmatic and theoretically appealing
approach to enhance the performance of distributed con-
sensus with a large number of participants. First, an ap-
parently inefficient consensus protocol is developed using
the very simple stubborn channel abstraction for unreliable
message passing. Then, the introduction of judiciously
chosen finite delays in the implementation of channels
makes it likely that the transmission of some messages is
avoided. Although this does not affect correctness, which
rests on an asynchronous system model, the message
exchange pattern at the network level changes noticeably
and can be made to resemble several different protocols. A
particularly appealing instantiation, called the permutation
gossip, allows the protocol to scale gracefully to a large
number of processes.

I. INTRODUCTION

Several distributed programming problems such as
atomic broadcast, view synchrony and atomic commit-
ment can be reduced to consensus [1], hence the rele-
vance of correct and efficient consensus protocols. Nev-
ertheless, a fundamental result states the impossibility
of deterministic consensus in asynchronous distributed
systems where at least one process may crash [2]. This
impossibility can be circumvented by strengthening the
asynchronous model with additional assumptions, and
recently it has been shown that a large class of consensus
protocols using different additional assumptions can be
derived from the same generic framework [3].

We focus on protocols based on unreliable failure de-
tectors [4], [5] in asynchronous message passing systems
where processes fail by crashing. These protocols exe-
cute in asynchronous rounds with a rotating coordinator.
In each round, an estimate is broadcast to all participants
by the coordinator of the round. The protocol then tries
to gather a majority of votes, either to decide or to enter
the next round. When a value is decided it is reliably
broadcast to all participants.

These protocols differ mostly on how votes are col-
lected. As an example, in the early consensus protocol [5]
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all votes are broadcast to the entire set of participants,
leading to a quadratic number of messages and impos-
ing a heavy load on the network. With a centralized
protocol [4], votes are collected by the coordinator and
relayed to other participants only after a decision has
been reached, reducing the load on the network at the
expense of an additional communication step. Such dif-
ferences have a definite impact in performance measured
in realistic settings [6].

In this paper we address this issue: The trade-off
between the (average) number of communication steps
(i.e. latency) and the number of messages in the network
(i.e. bandwidth). First, we propose a new consensus
protocol based on stubborn channels [7]. Al thought the
result is apparently not attractive by any performance
metric, especially when considering the number of mes-
sages exchanged, we notice an interesting property: As
messages can be lost by stubborn channels, it is possible
that only a small fraction of the messages sent by the
protocol are actually transmitted through the underlying
network. In fact, we can easily fabricate valid runs which
exchange a much lower number of messages at the
network level. Unfortunately, it is highly unlikely that
a naive implementation produces such desirable runs.

We therefore seek an implementation of stubborn
channels which maximizes the likelihood of desirable
runs. Interestingly, this can be achieved simply by in-
troducing finite delays in a naive implementation of
stubborn channels. Such delays avoid actual transmission
of messages because they increase the likelihood of
a more recent message being sent in the meantime,
which in stubborn channels discards all previously sent
messages. Moreover, as delays are finite this does not
in any way compromise the correctness of the protocol,
which assumes an asynchronous system model.

In practice, judiciously chosen delays make it likely
that only desirable runs occur thus resulting in very good
performance in practical metrics such as the latency and
the number of bytes transmitted. Different configurations
of delays can also achieve different classes of desirable
runs which resemble the message exchange pattern of
different (well known or innovative) protocols.



As the proposed protocol can be made to behave at
the network level like several different protocols we
call it the mutable consensus protocol and each of the
combinations of the protocol with an implementation of
stubborn channels a protocol mutation. In this paper we
introduce four distinct mutations. Two of them mimic
well known protocols [4], [5]. A third is called the ring
and uses very little resources at the expense of high
latency. Finally, the permutation gossip mutation allows
the protocol to scale to very large groups.

The paper is structured as follows: Section 2 presents
the consensus protocol based on stubborn channels.
Section 3 introduces protocol mutations and evaluates
their performance. Section 4 briefly discusses related
work and concludes the paper.

II. MUTABLE CONSENSUS PROTOCOL

In this section we introduce the mutable consensus
protocol. First, we briefly describe the system model
assumed and the definition of stubborn channels.

A. System Model

We consider an asynchronous, message-passing
system consisting of a finite set of processes
{p1, p2, . . . , pn}. There is no global clock but each
process has access to a local monotonically increasing
clock. Processes may only fail by crashing, and once a
process crashes it does not recover. A process that does
not crash is said correct and we assume that a majority
of the processes are correct. Our model of computation
is augmented with a failure detector oracle of class
♦S [4] enabling us to circumvent the FLP impossibility
result [2]. Processes are completely connected through
a set of fair-lossy communication channels [8]. Such
a channel is a reasonable abstraction of the service
provided by existing connectionless network layers and
basically ensures that no spurious messages are created,
message duplication is finite, and that each message has
a non-null probability of being delivered.

B. Definition of Stubborn Channels

A stubborn channel [7] connecting two processes pi

and pj is an unreliable channel defined by a pair of
primitives Sendi,j(m) and Receivei,j(m), that satisfy the
following two properties:

• No-Creation If pi receives a message m from pj ,
then pj has previously sent m to pi.

• Stubborn: Let pi and pj be correct. If pi send a mes-
sage m to pj and pi indefinitely delays sending any
further message to pj , then pj eventually receives
m.

Process pi:

Function Consensus(vi):
1 esti ← vi; ri ← 1;
2 while true do
3 phi ← 1; Pi ← ∅;
4 if i = (ri mod n) then
5 Pi ← {i};
6 forall k: Sendi,k((ri, phi, Pi, esti));
7 endif;
8 while #Pi ≤ n/2 do
9 select

10 upon Receivei,j((rj , phj , Pj , estj)):
11 if ri < rj then
12 esti ← estj ;ri ← rj ;
13 phi ← phj ; Pi ← ∅;
14 endif;
15 if ri = rj ∧ phi < phj then
16 phi ← phj ; Pi ← ∅;
17 endif;
18 if (ri = rj ∧ Pj \ Pi 6= ∅)∨
19 (phj = 1 ∧#Pj > n/2) then
20 Pi ← Pi ∪ Pj ∪ {i};
21 if (ri mod n) ∈ Pi then
22 esti = estj ;
23 endif;
24 forall k: Sendi,k((ri, phi, Pi, esti));
25 endif;
26 upon Suspectedi(j):
27 if j = (ri mod n) ∧ phi = 1 then
28 phi ← 2; Pi ← {i};
29 forall k: Sendi,k((ri, phi, Pi, esti));
30 endif;
31 endselect;
32 endwhile;
33 if phi = 1 then return esti; endif
34 ri ← ri + 1;
35 endwhile

Fig. 1. Mutable consensus.

A stubborn channel is easily implementable over a fair-
lossy channel: It suffices to buffer the last message sent
and periodically retransmit it.

C. Algorithm

In Fig. 1 we present an algorithm based on stubborn
channels to solve the consensus problem [4]: All pro-
cesses are expected to start the protocol proposing some
value through function Consensus and then decide on
its return value such that the following properties hold:
if a process decides v, then v was proposed by some
process; no two processes decide differently; and every
correct process eventually decides some value.

The algorithm proceeds in asynchronous rounds of
two phases. Each round has a designated coordinator
that tries to impose its proposal as the decision value.
In phase 1, if a majority of the processes endorse the



value proposed by the coordinator a decision is locked
and processes can decide. However, if the coordinator
is suspected to have failed, then processes are requested
to enter phase 2 and, as soon as a majority does so,
they proceed to the next round. The asynchrony of the
rounds means that processes do not need to synchronize
when changing rounds and thus we may have different
processes in different rounds. Moreover, due to the
unreliability of the communication channels, processes
are not guaranteed to receive all messages and thus
processes may be forced to skip certain rounds.

In detail, each process pi maintains a round (ri) and
a phase (phi) counter, an estimate of the decision (esti),
and a set of voters (Pi). The set Pi contains in phase 1
the processes that pi knows have endorsed the estimate
of the current coordinator or, in phase 2, the processes
that proceeded to phase 2 and are thus detractors of the
coordinator.

In each round the coordinator records its own vote
and initiates the round by sending its set of voters and
its estimate to all participants (lines 5 and 6). A round
lasts until a majority of votes have been collected (while
loop of lines 8 to 32). This set of votes can be either from
phase 1 (an endorsement of the coordinator’s estimate)
and if so a decision is reached (line 33), or from phase
2 and the process proceeds to the next round. During
a round, the handling of a message may undergo two
processing steps corresponding to the conditional clauses
upon reception (lines 10 to 25). Consider a message m

sent by pj and received by pi. Firstly, pi checks whether
m comes from a larger round and if so pi adopts the
message’s estimate and jumps to the round and phase
of m. This is due to the use of stubborn channels as
there’s no guarantee that pi receives any messages pj

might have sent to pi before m and that would enable
pi to proceed. The next clause handles messages from
phase 2 of the same round, taking pi to phase 2 and
making it a detractor of the current coordinator.

The second processing step of the message deals with
voting. Depending on the phase pi is in, it may be
processing votes supporting the coordinator’s proposal
(phase 1) or votes to leave the current round and to
proceed (phase 2). Both cases are not distinguished
though and are dealt in the same way. When the received
message is from the same round pi is in and brings new
votes (Pj \Pi 6= ∅), then pi records the new votes adding
its own vote (line 20), adopts the message’s estimate if it
has the coordinator’s vote and relays its new set of votes
to all processes. This very same processing is done when
the received message brings a majority set of votes for
phase 1 regardless of the round they were sent. These
messages are actually decision messages: pi records a

majority set in Pi, leaves the while loop of line 8, and
since it is in phase 1 it returns from function Consensus.

Suspicions are handled in lines 26 to 30. If the
suspected process is the coordinator for the current round
the process enters phase 2, sending its updated state to all
participants. Upon reception of such message, processes
still in the first phase of the same round are brought to
the second phase (lines 15 to 17).

We assume that the channel receive and failure sus-
pecter primitives in lines 10 and 26 are fair. Therefore, no
message is forever pending and not received. Likewise,
no suspicion is forever pending and not acknowledged.

D. Correctness Argument

Due to lack of space, we omit a correctness proof [9].
Nevertheless, consider the following argument that the
algorithm ensures validity and agreement. If a decision
on v is reached in some round r, then 1) v is the estimate
value est of the coordinator of r, and 2) any process pi

reaching a round r′ > r has esti = v. Combining 1) and
2) it is clear that any decision reached in a round r ′ > r

must be on v.
For the first clause it is easy to verify that all messages

in phase 1 carry est of the current coordinator and that
it is the only value that can be adopted by the other
processes as their own est on which they may decide.

With respect to 2), a process pi can reach r′ > r either
a) by receiving a message from round r′ (lines 11 to 14)
or b) by executing line 34 in round r. In order to show
2) we derive a contradiction. Let us consider the first
process pi reaching r′ > r with esti 6= v. In case a)
pi reaches r′ with the estimate of the process that sends
the message from r′ (line 12) which would contradict
the fact that pi is the first to reach r′ > r with esti 6= v.
In b), pi needed to collected a majority of votes in phase
2 of round r. Since, by assumption, a decision has been
reached on v in round r, a majority of processes adopted
est = v. The intersection of these majorities makes at
least one of the messages collected by pi in phase 2 to
contain the estimate v of the coordinator which pi uses to
set esti in line 22. Process pi thus leaves round r with
esti = v, contradicting the hypothesis and confirming
clause 2).

III. PROTOCOL MUTATIONS

The consensus protocol is now combined with various
implementations of stubborn channels and evaluated. We
start by introducing the experimental setting, then the
implementations of stubborn channels, and finally the
performance results obtained.



(a) Early (229 µs) (b) Centralized (447 µs) (c) Ring (754 µs) (d) Perm. gossip (428 µs)

Fig. 2. Prefixes of typical executions.

A. Experimental Setting

Common metrics often misrepresent the performance
of distributed algorithms in complex environments such
as the Internet [10]. Therefore we use a centralized
simulation model [11] to evaluate the performance of the
protocol. Centralized simulation works as follows: the
execution of real code is timed with a high resolution
clock and the resulting elapsed time is used to update
simulated time-lines associated with simulated proces-
sors in the context of a discrete event simulation model.
Such models have been shown to accurately reproduce
the timing characteristics of real systems [11] and have
several advantages: only a single host is required, even
when testing configurations with a large number of
processes and arbitrarily complex networks; it is possible
to perform global observations, including time durations;
and it is very easy to perform fault injection to test and
evaluate distributed fault-tolerant programs.

The implementation of the mutable consensus protocol
used for evaluation is based on Java and run using
Sun Java2 SDK with the HotSpot JIT compiler and
Linux 2.4.21 operating system on a Pentium III 1GHz
processor. Round and phase numbers are represented
by 32 bit integers. The set of voters Pi is represented
as a bitmap, making it compact for transmission and
reducing set union to a bitwise or operation. The simu-
lated application works as follows: Values are proposed
simultaneously by all processes. When all processes
decide, the system is restarted thus initiating a new run
of consensus. The results presented in this paper are
obtained without process crashes or suspicions.

The centralized simulation runtime is also based on
Java and uses a virtualized per-process CPU cycle
counter to measure time. The simulated network used
in this paper mimics a switched 10Mbps Ethernet net-
work (i.e., star topology). The model was calibrated
by comparing results of benchmark applications with
their counterparts running in a real system with iden-
tical characteristics. The model used does not however
simulate scheduling latency, thus providing results that

could only be observed in a real system if no other tasks
were competing for the CPU or if a higher priority was
assigned to the protocol task.

B. Implementation of Stubborn Channels

The implementation of stubborn channels assuming
that an unreliable datagram service such as UDP/IP
provides an implementation of a fair-lossy channel is
straightforward. The sender keeps a buffer that can store
a single message. The Sendi,j(m) primitive works as
follows: Each message sent is buffered unaltered, dis-
carding the previous message sent (if any). Periodically,
the content of the buffer (if any) is transmitted using the
datagram send primitive. The Receivej,i(m) primitive is
directly implemented by datagram receive.

Different implementations can be derived from this by
introducing arbitrary finite delays. In detail, we consider
the delays before the first actual transmission of the
buffered message and between successive retransmis-
sions. As long as these delays are finite, the imple-
mentation of the asynchronous specification of stubborn
channels remains correct. To obtain the best performance
we can therefore make use of whatever local knowledge
is useful when computing delays, including the content
of messages themselves.

In this paper, we propose four different strategies to
compute such delays called early, centralized, ring and
permutation gossip. A first intuition on the impact of
such delays can be obtained from Fig. 2, which presents
the graphical representation of actual runs of the mutable
consensus protocol when combined with each of the
implementations of channels. We call each of these
combinations a protocol mutation. In these pictures,
arrows denote messages and solid dots the return from
the Consensus function (i.e. the decision). The x-axis
represents real-time. The entire duration of the interval
presented, from proposal to the last process deciding,
is indicated in the caption. For clarity, only messages
causally preceding decisions are presented. When using
consensus as a building block in a distributed systems
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Fig. 3. Performance of protocol mutations.

one is able to terminate the consensus instance after
decisions and thus these are the relevant messages.
Nevertheless, statistics in the next section account for
all messages transmitted.

The early implementation of Fig. 2(a) is the simplest.
It delays the initial transmission of messages when (i) the
buffer was previously non-empty; (ii) the round/phase
of the newly arrived message are the same as in the
previous and (iii) the new message carries a minority of
votes. This makes it unlikely that all messages but the
first (with the coordinator’s and its own vote) and the last
(with a majority of votes) are actually sent. The result
is a message exchange pattern similar to that of early
consensus [5], in which in every round every process
multicasts its vote to all others, thus allowing decisions
to occur in two communication steps.

The centralized implementation aims at producing a
message exchange pattern which resembles that of the
Chandra-Toueg centralized algorithm [4]. In detail, if the
sender process is the current coordinator, the same delays
of the early implementation are used. If not, messages
are delayed only when the destination is not the current
round coordinator thus making it likely that a decision is
received from the coordinator and thus that the message
is never actually sent. The impact is clearly visible
in Fig. 2(b), showing the decisions occurring in three
communication steps.

One can also achieve innovative message exchange
patterns with desirable performance characteristics. The
ring implementation delays messages from a process i

to a process j unless j = (i + 1) mod n long enough
for n message transmissions. The result is also obvious
from the trace presented in Fig. 2(c) and shows a ring-
style message exchange pattern in which each process
communicates only with its successor.

Finally, the permutation gossip works as follows.
A parameter F , called the fanout, is chosen. When
a consensus instance is started, a random permutation
of the set of process identifiers is generated by each

process and used as circular list. An index into this list
is initialized. For each message sent, if the destination is
not within the next F processes in the list, the message
is delayed. The index is then incremented by F . This
results in a message exchange pattern that has the same
desirable characteristics of probabilistic protocols while
at the same time providing a correct (and deterministic)
implementation of stubborn channels. Fig. 2(d) presents
a run with F = 3.

C. Performance Evaluation

Although individual runs presented in Fig. 2 provide
an intuition on the behavior of the protocol, the overall
performance is better evaluated by statistics on protocol
latency and resource usage. Fig. 3(a) shows the latency,
from proposal to decision, of the consensus function as
seen by one process other than the coordinator. Notice
that with a small number of processes, the early mutation
offers the best results. As expected, the latency of the
ring mutation grows linearly with the number of pro-
cesses. The latency of the permutation gossip mutation
grows logarithmically.

The sudden increase of latency of early and central-
ized mutations is explained by Fig. 3(b), which shows
the average number of bytes received by a process during
a run of consensus. It turns out that the corresponding
network link in the switched Ethernet becomes saturated
leading to messages being discarded, retransmissions and
a longer time to complete. In contrast, network usage is
extremely low with the ring mutation and moderate with
the permutation gossip, even with a very large number
of processes.

The effect of network congestion is also visible in
Fig. 3(c), which displays average CPU usage. Notice that
with a small number of processes, the early mutation
makes the most efficient usage of resource, therefore
justifying the better latency. Nevertheless, when the
network is congested it becomes the bottleneck and thus



the CPU become idle. This is bad, as the system is
doing nothing else than solving consensus. In contrast,
the ring mutation makes a very poor usage of CPU, as
processes are most of the time idle waiting for messages.
In between, the permutation gossip mutation allows a fair
usage of CPU thus justifying its performance.

One concludes that both the early and centralized
mutations don’t scale regarding network and CPU usage.
The early mutation is however still the best choice for
small groups (e.g. less than 10 processes). Interestingly,
almost all protocols proposed so far [4], [5], [12], [13],
[3] rely on a similar message exchange pattern in which
at least one process receives messages from all others.

The ring mutation is extremely frugal in terms of
resource consumption, although resulting in high latency
and low throughput. It would however be desirable if a
large number of consensus instances would be running
simultaneously and latency is not a primary concern.
Finally, the permutation gossip is scalable to a large
number of processes while at the same time offering low
latency and high throughput. Such message exchange
pattern is also highly resilient to process failure and
network omissions [9].

IV. DISCUSSION

The proposal of generalized consensus protocols has
been done before, namely regarding also the commu-
nication pattern [13] and to the oracle used [3]. The
first approach [13] also addresses the trade-off between
latency and bandwidth, but is less flexible in terms of
what communication patterns can be obtained. Specifi-
cally, it cannot be instantiated to mimic the ring or the
gossip mutations introduced here and requires the coor-
dination of processes on the pattern used. The second
approach [3] addresses only the issue of which oracle to
use. This is orthogonal to our proposal and it should be
possible to combine them.

The mutable consensus protocol is interesting from
a theoretical point of view, as it abstracts the behav-
ior of several (apparently) distinct consensus protocols.
Furthermore, the tuning procedure operates only in the
time domain and thus does not, in any way, affect
the protocol which assumes an asynchronous system
model. This has some interesting consequences. First,
it fosters innovation by making it safe to experiment
with innovative message exchange patterns. In addition,
in contrast to protocol layer switching [14] no coordi-
nation at all is required when selecting the strategy
used to compute delays. In fact, different processes
may be simultaneously using different strategies without
endangering correctness. This means also that, given an

adequate policy, it is trivial do dynamically reconfigure
the protocol to adapt to a changing environment.

Notice also that protocol mutation is possible because:
(i) the information received is always relayed and (ii)
the protocol assumes lossy channels. The second is
particularly interesting, as it precludes obtaining similar
performance advantages from higher level mutable pro-
tocols based on reliable multicast. To make it possible,
one should use a semantically reliable multicast, which
generalizes the stubborn channel abstraction to multicast
communication [15]. One can also consider developing
mutable protocols for distributed programming problems
other than consensus. In fact, the implementation of
mutable consensus presented here is part of the proto-
type of GROUPZ, a group communication toolkit based
on mutable protocols which is configured by selecting
implementations of stubborn channels.
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