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1. Introduction
When developing algorithms for dependable distributed

systems one often makes several simplifying assumptions
that are essential to reason about the problem in hand. It
is usual to assume an asynchronous system model, uncon-
strained system resources and the absence of easily mask-
able faults such as message loss. While most of the sim-
plifications strengthen the model and are particularly useful
when proving theoretical edge results, asynchrony, on the
contrary, is a "non-assumption" and it is specially appeal-
ing in practice as it yields robust solutions that are correct
regardless of the actual timing behavior of the target sys-
tems.

The asynchronous model is useful even when the prob-
lem cannot be solved in a pure asynchronous system (e.g.
consensus [2]) or the specification itself includes timeliness
requirements. By factoring out timeliness assumptions one
can separately reason about safety guarantees [13] or con-
strain assumptions on time to a small subset of the entire
system, therefore increasing coverage and simplifying im-
plementation [20].

In an asynchronous model the performance of distributed
algorithms is typically evaluated based on theoretical met-
rics such as the message complexity or communication
steps. Such metrics are however of limited use at predicting
actual performance as understood by systems engineers and
the best measurements are obtained with trade-offs between
different theoretical metrics [9]. The systems approach re-
lies heavily on actual timing measurements and resource
usage of real systems or very realistic, although informal,
models. A good example is the usage of large benchmark-
ing infrastructure such as PlanetLab [16] and Netbed [22] or
detailed simulators such as ns-2 [11].

Moreover, testing in real systems shows that the opti-
mum performance in each system is obtained with a dif-
ferent algorithmic trade-off. Changing the trade-off how-
ever, means changing the original algorithm which was pre-
viously designed to exclude all runs but those optimal in a
given theoretical metric. This is obviously a case where pre-
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mature optimization is the root of some evil, since having to
change the algorithm negates the advantages of separately
obtaining correctness proofs.

In this paper we advocate that instead of optimizing for
a single metric, the goal of the computer scientist when
designing algorithms in an asynchronous system model
should be to:
• Accommodate a wide range of runs that fare differ-

ently with various theoretical metrics. This is contrary
to the common approach in which all runs but those
that are optimal in the selected metric are excluded.

• Ensure that the likelihood of different runs can be ma-
nipulated by the implementation without impact in cor-
rectness.

The resulting algorithms thus give additional freedom to the
implementor to optimally tune the implementation for each
target system, unconstrained by premature performance as-
sumptions.

The cornerstone of the approach is that configuration for
performance is achieved solely by introducing finite delays
in the implementation. By manipulating only time, the cor-
rectness of algorithms proven in an asynchronous model is
kept ensured.

We illustrate the approach with two examples. First, in
Section 2 we describe an atomic broadcast with optimistic
delivery [19] that makes a very simple use of the proposed
approach to select the runs in which the predicted order
most closely matches the final order in each system. The
second example, Section 3, describes a consensus proto-
col that uses the proposed approach to radically mutate its
message exchange pattern [15]. Besides mimicking existing
protocols, it can be configured to use an innovative gossip-
style pattern and thus scale gracefully to very large systems.

The paper concludes with a brief review of related work
in Section 4 and a discussion of the key requirements and
consequences of the approach in Section 5.

2. Case study: Optimistic total order in WAN
An atomic broadcast protocol delivers messages by an

agreed total order, thereby easing the implementation of



fault-tolerant services using the replicated state machine ap-
proach [18]. The requirement of agreement introduces a sig-
nificant latency overhead when compared with a reliable
broadcast protocol. Additional latency is introduced if the
protocol further provides uniform agreement [21].

It has been pointed out that in some total ordering pro-
tocols, such as those based on consensus or on a se-
quencer [3], the total order decided is the spontaneous
ordering of messages as observed by one of the partic-
ipating processes. In addition, in local area networks
(LANs) it can be observed that the spontaneous or-
der of messages is often the same in all processes, which
therefore are able to accurately predict the agreed or-
der.

This observation can be useful to mask (although not re-
duce) delivery latency, by tentatively delivering messages
based on spontaneous ordering, thus allowing the applica-
tion to proceed the computation in parallel with the order-
ing protocol [10]. Later, when the total order is established
and if it confirms the optimistic ordering, the application
can immediately use the results of the optimistic compu-
tation. If not, it must undo the effects of the computation,
e.g. by aborting a transaction, and restart it using the cor-
rect ordering. The effectiveness of the technique rests on
the assumption that a large share of correctly ordered tenta-
tive deliveries offsets the cost of undoing the effects of mis-
takes.

Premature optimization A protocol exploiting optimistic
delivery [10] is quite simple and can be obtained from the
original ordering protocol by adding the following: upon re-
ception, immediately signal optimistic delivery thus deter-
mining the optimistic ordering. This produces runs where
optimistic deliver happens atomically with reception. Con-
sidering that rm, om, sm, dm denote, respectively, recep-
tion, optimistic delivery, sequencing and final delivery of
a message m, this produces runs such as H1 and H2 in Fig-
ure 1(a). In detail, optimistic order correctly predicts total
order in H1 but misses in H2, requiring the effects of the
computation based on optimistic deliveries to be undone.

This protocol cannot however produce runs H3 and H4

presented in Figure 1(b), because optimistic delivery would
have to be executed atomically upon reception. This is un-
fortunate, as H3 would have saved a rollback of the opti-
mistic processing of message m1. An example of why runs
such as H3 are useful is the common loopback optimiza-
tion in a protocol stack that leads the sender to observe its
own messages sooner than everyone else. In an optimistic
atomic broadcast protocol, this would mean that a sender
would always miss on the ordering of its own messages. If
allowed by the specification, an implementor would most
certainly find a way to compensate the loopback optimiza-
tion.
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(a) Spontaneous ordering.
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(b) Manipulating optmistic order with delays.
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(c) Other runs allowed by order manipulation.

Figure 1. Runs with optimistic delivery.



Algorithm A better algorithm can thus be obtained by de-
coupling the assumption that the agreed order of messages
can be predicted from how it can be predicted. Such proto-
col, is obtained as follows: upon reception, schedule the op-
timistic delivery of each message m after a finite and pos-
sibly zero delay δm, thus allowing some yet unknown opti-
mistic ordering criterion to be implemented later, thus al-
lowing H3. Although seemingly trivial, this modification
has to be anticipated at the algorithmic level and is not a
simple implementation decision. Consider runs H5 and H6

in Figure 1(c), which are also allowed after removing the
atomicity requirement on reception and optimistic delivery.
Although run H5 should be obviously excluded, run H6 is
probably acceptable. The decision to exclude or include ei-
ther would have an impact on the specification of the proto-
col and thus on the correctness proofs of both the protocol
and the application.

At first sight, our new protocol is much worse
performance-wise since we are trained to regard delays in
the asynchronous system model as random, or worse, con-
trolled by an evil adversary. Indeed, the change has appar-
ently opened up the possibility for the adversary to mess
with the optimistic ordering by decoupling it from sponta-
neous order.

Implementation The actual performance of the algorithm
in a real system depends essentially on a high probabil-
ity of good runs and not on the total absence of bad runs.
It is therefore up to the implementation to ensure with a
high probability that the delays are judiciously chosen to
obtain a good match with final ordering. Besides coping
with the loopback optimization, the idea can be extended
to cope with the variability of end-to-end delays in a wide-
area network: Even if message transmission delays between
any given pair of processes is stable, each process will ob-
serve first and thus optimistically deliver messages from
those that are closer in terms of network delays, thus miss-
ing spontaneous ordering of concurrent messages.

An adaptive protocol to optimize delays is presented in
[19] and works as follows. When issuing a sequence num-
ber, the sequencer process tags it with the locally measured
elapsed time since the previous reception. Other partici-
pants, are therefore able to compare such duration with the
same interval measured locally and thus adjust delays that
are imposed on messages from the same sources. When-
ever possible, the adjustment is done by reducing the cur-
rently estimated delay on the message that turned out to be
late. If not possible, because no additional delay is being
used, the delay on the other source is increased.

When the network is stable (i.e. standard deviation σ is
low), delays imposed by each process to messages from
each source converge to a fixed value as shown by detailed
simulation and experiments with a prototype [19]. The re-
sult is an improvement on the predicted optimistic order
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(a) Spontaneous ordering.
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(b) Optimistic ordering.

Figure 2. Comparison of spontaneous with
optimistic order after delay compensation.

when compared to spontaneous ordering on reception, as
shown in Figure 2, while at the same time optimistic de-
liver precedes final delivery by enough time to be useful for
optimistic processing.

Detailed presentation of the protocol, the implementa-
tion, the evaluation environment, and further results can be
found in [19].

3. Case study: Mutable consensus

Several distributed programming problems such as
atomic broadcast, view synchrony and (weak) atomic com-
mitment can be reduced to consensus. We focus on pro-
tocols based on unreliable failure detectors [2, 17] to
circumvent the FLP impossibility result [4] in asyn-
chronous message passing systems when processes may
fail by crashing. In particular, protocols using an even-
tually strong failure detector and that assume a majority
of non-faulty processes. These protocols execute in asyn-
chronous rounds with a rotating coordinator. In each round,
an estimate is broadcast to all participants by the coordi-



nator of the round. Processes then try to gather a majority
of votes, to decide on the coordinator’s estimate or to pro-
ceed to the next round. When a value is decided it is
reliably broadcast to all participants. These protocols dif-
fer mostly on the message exchange pattern used to collect
votes and disseminate the decision, which has a definite im-
pact in performance [1].

Premature optimization In a centralized protocol [2], all
votes are gathered by the round’s coordinator. In detail,
when entering a round the coordinator collects estimates
from other participants. Then it broadcasts a selected esti-
mate and collects the acknowledgments. Upon receiving ac-
knowledgments from a majority of the participants, the de-
cision is broadcast. This allows the decision to be reached
in three communication steps and requires that only the co-
ordinator handles messages from all participants.

On the other hand, in a decentralized protocol [17] all
votes are broadcast to all participants, making it possible
that each process independently gathers a majority and thus
reaches a decision. This allows the decision to be reached
in two communication steps at the expense of a larger num-
ber of messages exchanged. Network bandwidth can be re-
duced by using broadcast mechanisms at the network level
when available, but still requires that all participants han-
dle messages from all others.

Notice that, in terms of communication, the correctness
of both protocols depends only on the guarantee that a ma-
jority of votes is relayed to all participants. A way to achieve
this is to have, in each round, a single trusted process to
gather all the votes and afterwards relay just the decision
to all other processes. The problem however, is that exist-
ing protocols follow this approach and absolutely preclude
runs in which the relaying of the votes themselves is done
by more than one process, even when there are no faults.
As an example, it could be interesting to collect votes us-
ing a tree structure to reduce the number of messages sent
and received by each process.

This is unfortunate as, in practice, the performance of a
distributed protocol in general, and in particular its scala-
bility to large numbers of participants, is tightly related to
the number of messages sent and received by each process.
The available processing power of such participants thus di-
rectly translates to an upper bound on the scalability of the
protocols.

Algorithm We start with a decentralized consensus protocol
based on an unreliable channel abstraction [12] and do the
following modification: every process immediately relays
votes as it receives them, instead of waiting for a majority
to broadcast the decision. Notice that this simple modifica-
tion is sufficient to allow runs in which a decision is reached
by the first time by a process without having received direct
communication from a majority of participants.

At first sight, this protocol is even worse than the origi-
nal, as we are trained by the usual assumption of reliable
channels to consider that all messages consume valuable
system resources and thus the proposed change results in
a lot of redundant transmissions. Actually, it is not true that
all messages sent have to be actually transmitted as the pro-
posed protocol rests on stubborn channels [5]. Informally,
a stubborn channel guarantees the delivery of only the last
message sent. In practice, this can be implemented simply
by buffering and periodically retransmitting the last mes-
sage sent.

As messages can be lost by stubborn channels, it is pos-
sible that only a small fraction of the messages sent by
the protocol are actually transmitted through the underly-
ing network. We can easily fabricate valid runs which ex-
change a much lower number of messages at the network
level. It is highly unlikely that a naive implementation pro-
duces such desirable runs, though.
Implementation We therefore seek an implementation that
maximizes the likelihood of desirable runs. Interestingly,
this can be achieved simply by introducing finite delays in a
naive implementation of stubborn channels, which makes it
likely that a message becomes obsolete and is discarded be-
fore having been transmitted. Moreover, as delays are finite
this does not in any way compromise the correctness of the
protocol, which assumes an asynchronous system model.
In practice, judiciously chosen delays make it likely that
only desirable runs occur thus resulting in very good per-
formance in practical metrics such as the latency, number
of messages and the number of bytes transmitted.

Such delays avoid the actual transmission of a message
m due to two different reasons. The first is that they in-
crease the likelihood of a more recent message being sent
in the meantime, which with stubborn channels discards all
previously sent messages. The second is that if a decision
can be reached by all processes before the delay expires,
the transmission of m can be entirely avoided in practice.
As an example, consider the usage of consensus to imple-
ment view synchronous multicast, in which an instance of
consensus is run to install each view [7]. As soon as a pro-
cess has started receiving messages (or acknowledgments
to messages) from all others in the recently installed view,
it knows that all participants in the previous consensus in-
stance have decided. It may therefore terminate the consen-
sus protocol and flush all pending messages.

Different configurations of delays lead to different mes-
sages being actually transmitted and thus result in different
classes of desirable runs. Some of these resemble the mes-
sage exchange pattern of well known protocols. Others re-
sult in innovative message exchange patterns with desirable
performance characteristics.

A first intuition on the impact of the delays introduced
in each mutation can be obtained from Figure 3, which
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Figure 3. Prefixes of typical executions.

presents the graphical representation of prefixes of actual
runs of a prototype of the mutable consensus protocol when
combined with each implementation of the stubborn chan-
nels. In these pictures, arrows denote messages and solid
dots the decision. The x-axis represents real-time. The en-
tire duration of the interval presented is 1 ms. All messages
actually transmitted during the interval are presented.

The first two of them mimic well known centralized and
decentralized protocols [2, 17]. A third is called the ring
and uses very little resources at the expense of high la-
tency. Finally, the permutation gossip mutation provides
a gossip-style message exchange pattern for consensus.
Gossip-based protocols are used for a variety of distributed
programming problems and are known for their scalability
and resilience to network omissions.

Notice also that as correctness is not affected by the strat-
egy used to compute the finite delays introduced, it is also
not affected if each participant uses a different strategy, or
even if a participant changes the strategy dynamically. This
suggests that a mutable protocol can be an ideal founda-
tion for the adaptation to a changing environment by requir-
ing just the definition of a dynamic policy to compute de-
lays.

A detailed presentation of the protocol, the implementa-
tion, the evaluation environment, and further results can be
found in [15].

4. Related work
There is a plethora of work on the usage of time in an

asynchronous system model. Such work is targeted at sepa-
rating the guarantees of (timeless) safety and liveness from
guarantees on timeliness or on providing encapsulated or-
acles that overcome the limitations of the asynchronous
model [20, 13]. Neither propose the instrumental usage of
time in the implementation stage as a mechanism to con-
figure an algorithm for optimal performance by means of
avoiding undesirable runs.

There are several proposals of total ordering protocols
that take advantage of spontaneous ordering. The optimistic
atomic broadcast [14] has no optimistic delivery but takes

advantage of spontaneous ordering to optimize on the com-
munication step metric. Protocols with optimistic delivery
are useful to mask the latency of uniform agreement [21]
and in the context of transaction processing where rollback
is possible [10].

There are also several other proposals of configurable
consensus protocols. Namely, the versatile consensus proto-
col [8] generalizes both proposals analyzed [2, 17] such that
a predetermined subset of processes gather votes. There is
also a proposal for a protocol that can use different oracles
to overcome the FLP impossibility result [6]. Nevertheless,
all of them share the limitation that at least one process re-
lays messages from all others and cannot be reconfigured
independently.

5. Discussion
This paper underlines the mismatch between theoreti-

cal performance metrics and actual systems performance,
and proposes an approach to overcome it. In short, we pro-
pose algorithms in which the likelihood of runs with dif-
ferent performance trade-offs can be manipulated at the im-
plementation level simply by introducing finite delays. This
allows the implementation to be optimized in a concrete en-
vironment without endangering correctness which has been
established on an asynchronous system model.

The approach is made possible by:
• Minimizing the assumptions on the system model,

which includes using the asynchronous system model
but also avoiding simplifications traditionally con-
sidered harmless such as reliable channels. Stubborn
channels [5] provide an excellent trade-off.

• Avoiding premature optimization that overly restricts
the runs possible to a subset that is optimal according
to a theoretical metric, but which embodies false per-
formance assumptions. By having concrete informa-
tion about the target system, the implementor can do a
better job at optimizing performance.

The approach is illustrated by two case-studies summariz-
ing previous research results [19, 15]. The optimistic total



order protocol shows how to dynamically compute delays
to adapt to the environment and improve optimistic order-
ing. The mutable consensus protocol provides several static
configurations that result in innovative message exchange
patterns and, to the best of our knowledge, the only consen-
sus protocol that scales to a very large number of partici-
pants by using gossiping.

An interesting consequence is that in both cases the com-
putation of delays that reconfigure protocols can be done
independently by participants without impact on correct-
ness. This suggests a robust foundation for a configurable
and adaptive distributed systems framework.

In the original tale, the perseverance of the turtle wins as
the overly confident hare stops to sleep. Design and imple-
mentation of dependable distributed systems usually follows
the approach of the turtle: First the computer scientist en-
sures that the turtle safely and eventually reaches the fin-
ish line. Then the implementor makes the heavy beast walk
as fast as it can. The morale of this paper is that in depend-
able distributed systems taking some time to sleep might be
the easiest way to win the race.
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