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Abstract—In this paper we review what it has been stated
so far about transactional support on the cloud computing
environment. Then, we propose to extend them with some ideas
already stated in replicated databases, like the certification
process, to solve certain problems about coordination in the
commit phase of transactions in the cloud.
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I. I NTRODUCTION

Cloud computing has emerged as one of the most promis-
ing computing paradigms in developing highly scalable dis-
tributed systems [1], [2], [3]. Its popularity is due to the fact
that it provides the notion of elasticity and illusion of infinite
resources on the cloud. Resources can be dynamically added
or removed as the system load varies. It permits to transfer
the risk to cloud service providers (like Amazon, Yahoo!)
instead of the smaller company developing an application.
There is no up front cost and features a “pay-as-you-go”
model, this allows new applications to be easily and rapidly
tested without the expensive costs involved in developing
the proper infrastructure.

We have that most of distributed applications, like those
web-based, are divided into three layers: application server,
web server and database server. The application and web
servers can be easilly scaled up by adding new servers;
however, both of them are built on top of the database server.
This database constitutes the bottleneck of the system, even
though it can be replicated for higher scalability and avail-
ability in a master-slave configuration [4] where read-only
transactions can be run on secondaries or a multimaster [5]
by taking advantage of communication primitives featured
by a Group Communication System [6]. In any case, the
problem of scalability is partially alleviated since in the
case of the former the bottleneck is the master for update
intensive scenarios whereas in the latter the total order
broadcast primitive used to synchronize all replicas does
not scale well after tens of replicas are considered. Keep
in mind that replicated databases are still providing to final
users richer semantics through SQL semantics than those
provided by cloud based applications which are based on
key-value pairs storage [7], [8] and no transactional support.

The key scalability issue here for database replication
and, most importantly, transactional support is to reduce
the number of messages to be transmitted [2] and, respec-
tively, the number of participants to decide the outcome
of transactions [1]. The first one tries to circumvent the
problems arisen with distributed state maintenance which
is deadlock prone and hard to manage while the second one
is focused on reducing the overhead and response time of a
transaction without penalizing availability. Of course, there
has been some works that provide consistent data storage
without transaction support [7], systems that lies amid [2],
[3] and a new system, called ElasTras, that supports trans-
actions in the cloud [1]. These systems do not provide a
language query like SQL to query transactions but they can
scale horizontally by static or dynamic partitioning pretty
much more than traditional replicated databases. They have
different commitment protocols that range from Paxos [9]
which is costly or use an evolved form of the 2-phase-
commit protocol. In this paper we want to discuss the
feasibility of existing solutions developed in multimaster
database replication [5] to the cloud environment with its
own requisites [1].

Figure 1. Abstraction of the architecture of the system

II. SYSTEM MODEL

The system model we assume is very similar to ElasTras
(see Figure 1). The model assumed is the key-value data



model as used in BigTable [8]. At the top of the system is
the load balancer where requests are handled and forwarded
to a Higher Level Transaction Manager (HTM in Figure 1).
An HTM can decide to execute the transaction locally,
if it is read-only by caching, or redirect it to the appro-
priate Owning Transaction Manager (OTM) which owns
exclusive access rights to thepartitioned data accessed by
the transaction that it has aggressively cached. data can
be statically or dynamicallypartitioned. The set of OTMs
and HTMs are responsible for transactional guarantees and
constitute the core of the system denoted as Transaction
Manager (TM). This set can grow up or shrink as there
is an increase or a decrease in demand. The actual data
is stored in the Distributed Storage Layer that takes care
of replication and fault-tolerance. The Metadata Manager
and Master (MMM) stores the system state and checks
failures of OTMs and reassigns partitions for load balancing.
MMM needs synchronous replication of its contents and
uses Paxos [9] for that purpose.

III. T RANSACTION MANAGEMENT

Static partitioning is similar to database partitioning and
each one is assigned to an OTM. This approach has the ben-
efit that the application is aware of partitions an transactions
can be limited to a partition and provide ACID properties.
On the contrary, with dynamic partitioning, ElasTraS has to
manage and define (by range or hash-based) the partitions.
Moreover, a transaction can potentially access several parti-
tions while the scalability of the system has to be maintained.
Hence, to avoid the management of a distributed transaction,
it uses aminitransaction[2].

As already mentioned, a minitransaction consists in an
evolution of the 2PC protocol where an HTM is the co-
ordinator and participants are OTMs. The semantics of a
minitransaction are restrictive, it includes a set of items
to be read, compared and to be written if some condition
is satisfied. This information goes along with the first
phase of the commit request, the reason for this comes
from scalability issues as no message is exchanged but
the commit request itself. A transaction will be committed
if all participants have a yes vote in their logs but the
coordinator has no log, as opposed to traditional 2PC. This
phase will only block if some involved OTM fails instead
of the coordinator (HTM). Locks are only held during this
phase and to avoid deadlocks, each OTM tries to acquire
locks without blocking; if it fails, it will release all locks
and send an abort message to the HTM.

IV. OUR PROPOSAL

From what it has been seen before, it could be seen
that the failure of an OTM stops all the minitransactions
involved in that partition. In [2], it is said that this seems
realistic since if there is an application trying to access that
data, the application has to remain blocked anyway. It can

also be avoided by setting a set of “logical participants”
thanks to the replication of the OTM. We can achieve this
by stating that there can be several OTMs as owners of a
given partition that perform a certification test like in [5].
Hence, we can achieve higher availability at the cost of a
quantifiable latency cost. Nevertheless, as we are dealing
with lower intensive update workloads this will not occur
that often. Besides, as we have a certification process over
each partition we could avoid the 2PC of minitransactions
by extending the certification process to OTMs repsonsible
for different partitions. In this case, the certification protocol
will simply consist of something like a vote from each
partition, because partitions do not need to receive nor apply
the updates from each other.
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