
Non-Invasive Gridi�cation through an

Aspect-Oriented Approach

Edgar Sousa, Rui Carlos Gonçalves, Diogo Neves, João Luís Sobral

Centro de Ciências e Tecnologias da Computação
Departamento de Informática

Universidade do Minho, Braga, Portugal
{edgar, rgoncalves, dneves, jls}@di.uminho.pt

Abstract. This paper presents a framework that allows plugging or un-
plugging Grid-related features to legacy code. Those features can, for ex-
ample, transform sequential-like code to a parallel version or even a dis-
tributed version. With this approach scientists could develop their code as
they are used to, that is, they could spent their time programming as they
are used to instead of learning new programming paradigms. The frame-
work relies on aspect-oriented programming (AOP) techniques to perform
non-invasive enhancements to scienti�c applications to cope with grid spe-
ci�c issues, such as remote execution, load distribution, fault tolerance and
monitoring. In addition, framework components are glued together with
AOP, thus it is possible to plug (only) features required for each speci�c
application / target platform.

Keywords: grid-enabled applications, grid frameworks, aspect-oriented program-
ming

1 Introduction

Computational grids allow scientists to access to an almost unlimited computing
power, making it possible to perform new range of experiments not possible before.
Early grid systems targeted parameter sweep applications, where some scienti�c
code is executed many times, providing a di�erent parameter for each execution.
For this purpose, most grid middleware rely on a command line interface where the
user can specify parameters for each run. For this purpose, most grid middleware
relies on a command line interface or on a JDL - Job Description Language [3] -
where the user can specify parameters for each run.

Grid-enabling scienti�c codes that do not rely on parameter sweep require an
additional burden to decompose the application into a set of independent tasks
that can be executed on a set of remote computing nodes. Moreover, parameter
sweep may not be a�ordable for some kind of applications as some run(s) may
dependent on another(s).

Current tools for gridi�cation [14] require invasive and non-reversible modi�ca-
tions to scienti�c codes (e.g., to specify parallel tasks and to execute these tasks on
a grid environment) making grid-enabled codes dependent of a grid infra-structure.

In addition, decomposing an application into a large set of independent tasks and
submitting these tasks to a grid scheduler avoids application speci�c optimisa-
tions, such as performing application-level self-scheduling on available computing
resources or fault tolerant execution of speci�c application tasks. Moreover, cur-
rent tools focus only on executing applications solely on grids, missing to take
advantage of the growing number of cores on every computing element.

The AspectGrid framework [1] aims at gridifying scienti�c applications in a
non-invasive manner, through a set of pluggable components [16] that can be
composed to meet the requirements of each application/target platform. Current
pluggable services include parallelisation, load-distribution, fault-tolerance, remote
execution and monitoring.

The rest of the paper is organised as follows. Section 2 overviews the Aspect-
Grid framework, describes its main components and their inter-connection. Section
3 presents performance results and section 4 compares this work against other ap-
proaches. Section 5 concludes the paper and points directions for future research.

2 AspectGrid Framework

The AspectGrid framework aims to be a lightweight framework for non-invasive
gridi�cation of scienti�c applications. It relies on a minimalist interface among
components that can be extended to match application speci�c needs, through a
set of pluggable components. To achieve this goal the framework strongly relies on
AOP techniques. Figure 1 presents an overview of the framework architecture.

Fig. 1. Ideal framework layout.

Task provider services are domain speci�c code that generates tasks to be ex-
ecuted on computational resources. Examples of these are scienti�c applications

gridi�ed by our approach, but it is also possible to use other task providers, for
instance by directly (i.e., invasively) creating tasks within the code, or by using a
skeleton framework [17]. These tasks can be executed on a set of resources provided
by execution services. The core of the framework dispatches tasks to available ex-
ecution services. This dispatching service can be extended with pluggable features
to meet speci�c application need(s).

The AspectGrid framework, which currently instantiates this architecture, pro-
vides pluggable services for parallelisation, remote execution, scheduling, load-
distribution, fault-tolerance and monitoring (Fig. 2).

Fig. 2. Main components of the AspectGrid framework.

The parallelisation service is responsible for the generation of a set of indepen-
dent tasks that can be scheduled into a set of local or remote resources, by the
dispatching service.

The load-distribution service performs a more �ne-tuned resource selection,
based on the speci�cities of each resource. The fault-tolerance addresses faulty
resources by resubmitting a task for execution when its execution fails. Both the
load-distribution and fault-tolerance services can be seen as improvements to the
basic dispatcher service.

Remote execution service manages task execution on remotes nodes, including
code deployment. Finally, the monitoring service can manage the progress of tasks
execution.

The key issue in the AspectGrid framework is the ability to bind these services
into scienti�c codes in a non-invasive manner, making it possible to (un)plug these
services into/from scienti�c codes at any time during and after the gridi�cation
process. In addition, connections among services are also performed in a non-
invasive manner, minimising coupling among services. This approach makes it
feasible to develop grid-enabled applications that do not depend on a particular:
(1) set of services, as services can be plugged only at request to meet speci�c
execution requirements; (2) target platform, as the code can be tuned to meet
(some) speci�c hardware con�gurations, such as multicore machines. For instance,
to run a scienti�c application on a local multicore machine, remote execution

and fault-tolerance services are not required. This also presents a performance
advantage, since services can be removed from the build.

Non-invasive composition of services relies on aspect-oriented programming
techniques [12]. Two fundamental concepts of AOP are quanti�cation and oblivi-
ousness [8]. Quanti�cation is the ability of an aspect (or service in our framework)
to specify a set of execution points where aspect speci�c behaviour can be attached.
For instance, a service for remote execution can attach that behaviour to certain
procedure calls in scienti�c code. Obliviousness is the ability to apply a mechanism
to code that was not speci�cally prepared for that purpose. To illustrate these two
concepts, consider a service that would print the name of every method called. The
following pseudo code speci�es that we want to apply this aspect to all method
calls (pointcut events2print()) and print the method name before the method
call (before() : events2print(), the joinPoint construct was used in this case
to specify the name of each intercepted execution point).

Algorithm 1 Example of an aspect.

pointcut events2print() : call(* *.*(..));

before() : events2print() {

System.out.println(joinPoint.methodName());

}

Both quanti�cation and obliviousness are present in this example. First, the set
of method calls to intercept are speci�ed in the pointcut construct (quanti�cation).
Second, no special adaptations are required to the basic code to attach this feature
(obliviousness).

Fig. 3 presents a more detailed version of the building blocks of the AspectGrid
framework. Three additional components have the purpose to provide interfaces
among components that are inter-connected by AOP: the FrameworkAdapter, the
ITask and the IServer interfaces.

Fig. 3. Glue and components of the AspectGrid framework.

The FrameworkAdapter is an application-speci�c component, automatically
generated by the framework that speci�es a task to parallelise and/or to execute
remotely. Its purpose is to transform a procedure/method call in the scienti�c code
into an ITask that can be processed by other framework services. The adapter
non-invasively decouples the remainder framework services from the speci�cities
of the domain speci�c code, by encapsulating tasks into a well de�ned interface
(a strategy similar to the command pattern [9]). User speci�ed method calls are
encapsulated into a class implementing the ITask interface, where calls to the
original method are made inside the method execute. Other framework components
(e.g., parallelisation and scheduler) may intercept executions of method execute
to plug their services. The parallelisation service can decompose an ITask into
multiple ITask 's using a default or a user provided partition strategy. When no
other services are plugged, the default ITask implementation (execute method)
performs the execution sequential and locally.

The dispatcher assigns ITask 's to available resources through the IServer in-
terface. For this purpose it uses a list of available IServer 's and dispatches an
ITask by calling the IServer.run(ITask) method. The default scheduling policy
performs a round-robin assignment of tasks. The default implementation of the IS-
erver (e.g., when no remote execution is plugged) directly executes the method by
means of a local thread pool (which may take advantage of multi-core machines).

The next subsections describe in more detail the services currently provided by
the framework (i.e., parallelisation, scheduling, remote execution) and overviews
their current implementation using AspectJ [8], an AOP extension to Java.

2.1 Parallelisation

The parallelisation service acts upon a class implementindg the ITask interface
and generates a new set of tasks that are executed in parallel. For this purpose
two application speci�c methods should be provided: scatter and reduce. The scat-
ter method speci�es how the parameters of the original task are scattered among
a set of new tasks. For instance, when processing an array of data, this method
can create several smaller arrays of data. In a simulation, it can generate di�erent
parameters for each task. The reduce method combines the results of each com-
puted task into a single one. In the case of an array of data it can merge all parts
of the processed data.

2.2 Dispatcher

The dispatcher is responsible to start the process of task execution. Since most
of its responsibilities are delegated to additional pluggable services (i.e., remote
execution, load distribution and fault-tolerance) this service is devoid of most
complexities of the scheduling process.

The current implementation of this service intercepts the execute method from
ITask and submits the task to an available IServer. By default tasks are executed
on available resources, in a round-robin strategy. The following pseudo-code illus-
trates how this functionality can be plugged with AOP into generated ITask either
by the FrameworkAdapter or by the Parallelisation service.

Algorithm 2 Dispatcher pseudo-code.

around(ITask task) : call(* ITask.execute())

&& target(task) { //target for method execution

IServer server = ... //get server from the resource list

return server.run(task);

}

2.3 Load Distribution

The load distribution service performs a �ne tuned mapping among available re-
sources and ITask 's. This service is required to manage applications that generate
irregular tasks or/and when tasks will run on heterogeneous resources, with, for
example, varying processing speeds.

This service changes the default round-robin scheduling strategy to a demand-
driven, dispatching more tasks to resources that process tasks faster (either be-
cause they receive more lightweight tasks or because they have higher processing
capabilities).

The current implementation creates a thread pool to dispatch work for each
resource. It ensures that each thread dispatches tasks always to the same resource.
Threads are continuously picking work from the work pool, sending the work to
the processing resource and waiting for the task to complete.

2.4 Fault-tolerance

This service manages faulty resources by resubmitting tasks for execution when
the previously assigned resource fails. This service only addresses resources that
fail after a task is assigned. In other cases the resource is simply discarded from
the list of available resources (i.e., IServer list).

The fault tolerance capability is non-invasively plugged into the dispatcher
through a time-out mechanism. When a task is dispatched to a resource (IServer.run(ITask))
this service starts a timing mechanism to trigger a time-out event after a pre-
de�ned time. On a time-out event the target resource may be discarded from the re-
source list and the task is again resubmitted for execution (by calling ITask.execute()).
Note that when both load distribution and fault tolerance services are plugged the
fault tolerance service intercepts the task dispatching process after the load bal-
ancing service (i.e., after the task have been assigned to a free resource), and tasks
resubmitted by the fault tolerance service are again assigned to speci�c resources
by the load distribution service.

2.5 Resource List

This module maintains a list of remote resources (i.e., a list of IServer). Other
modules, such as Load Distribution or Fault-Tolerance or Monitoring, access the
list accordingly to their speci�c needs, those can be getting or updating the list.

Each remote resource must send a message, from time to time announcing that is
alive. The content of the message must have all information that makes possible
this module to contact the remote server, thus allowing, for example, the sub-
mission of tasks. When a message announcing that a remote resource is available
arrives, a new server is added to the list, in the other hand, when the submission
of a task fails that server can be removed from the list.

2.6 Remote Execution

The remote execution module allows tasks to be executed in distributed processing
elements, that is, in di�erent computing nodes, taking advantage of the computing
power of a cluster, or even a grid, to execute a set of tasks.

Fig. 4. Class diagram of remote execution module.

Figure 4 presents a class diagram of the remote execution module. Previously
to task execution it is necessary to deploy the (speci�c) code that allows a task to
be executed, that is accomplished by transferring the needed bytecode. By means

of a code contract, the bytecode to be transferred has to implement the Work and
the Deploy interfaces. Thus, it is possible to execute the deployed code since the
implementation of execute method instantiates a Work reference with an instance
obtained from the deployed code.

2.7 Monitoring

The monitoring component allows to see the percentage of concluded tasks relative
to tasks generated so far, as well as to count the number of task whose execution
has failed.

For this purpose, a monitor module intercepts task submission (ITask.execute(..))
to gather the number of tasks to execute and monitors calls to the IServer.run(ITask)
method to �nd when tasks are dispatched to resources. This second call also allows
to detect faulty resources since, in this case task execution does not complete.

3 Evaluation

In this section we illustrate and evaluate the use of the framework to gridify a
simple application, the computation of the Mandelbrot set from the Java Grande
Forum [15]. The application was non-invasively parallelised with the AspectGrid
framework. The Mandelbrot set was divided into disjoint sets, each computed by
a di�erent ITask.

The non-invasive nature of the AspectGrid framework implies that no over-
head is introduced into the original sequential code, as gridi�cation modules can
be plugged any time during and after the gridi�cation process. As such, when
executing the code on a sequential machine no overhead is observable.

Figure 5 presents execution times (in miliseconds) of the computation when
running on a multi-core machine with 4 cores (dual Xeon 2.8GHz) for a varying
number of generated parallel tasks. These results where collected by plugging the
parallelisation and the load distribution services.

The application bene�ts from a moderate number of parallel tasks (e.g., few
tens) since they generate tasks with varying workloads. Increasing the number of
tasks makes it possible to perform a better load distribution up to a point where
this is an excess of parallel tasks.

Figure 6 presents execution times (in milliseconds) of the applications when
running on a cluster with 16 machines without the load distribution service.

Figure 7 presents a screenshot of the current implementation of the monitoring
service. It shows the overall progress of the computation as well as the ratio of
faulty tasks. In this case, faulty tasks were arti�cially injected to test the fault
tolerance service.

Fig. 5. Execution times on a multi-core platform.

Fig. 6. Execution times for distributed version.

4 Related work

The Java GAT [4] is a grid API that aims to provide a simple interface to multiple
grid middleware. Ibis [18], ProActive [5] and HOCs [10] provide middleware to
develop parallel applications that can take advantage of grid systems. Gridgain [2]
is an open source framework designed speci�cally to support the development of
grid applications. Grid-enabling applications in these approaches require invasive

Fig. 7. Monitor window.

and non-reversible source code changes. In these approaches grid-enabled scienti�c
applications become dependent of the Grid middleware.

GEMLCA [6] and GRASG [11] are two frameworks supporting non-invasive
gridi�cation of scienti�c codes. These approaches perform a coarse grain gridi-
�cation, by deploying scienti�c codes as grid services. These approaches lack of
support for �ned-grained decomposition of the application functionality to take
advantage of the power of computational grids.

Non-invasive �ne-grained gridi�cation has been previously applied to applica-
tions that adhere to speci�c coding conventions. The Pagis system [19] explores
the use of re�ection techniques to gridify applications structured according to the
paradigm of process networks. AOP techniques have been previously applied to
abstract the process of remote execution of Java Thread-based applications [13]
and to implement the adaptation of a skeleton framework [7] to cluster and grid
environments [17]. The AspectGrid framework di�ers from these previous e�orts
by supporting non-invasive, �ne-grained, gridi�cation of scienti�c codes, without
requiring the source code to adhere to speci�c coding conventions. In addition,
gridi�cation issues are pluggable, supporting the adaptation of the application to
speci�c running conditions, including the execution on a sequential machine, on
multi-core systems and on computational Grids.

5 Conclusion

The AspectGrid framework is a pioneer lightweight framework supporting a set
of gridi�cation services provided by the use of AOP techniques. It uses a unique
non-invasive approach to bind grid services into scienti�c codes and to couple
together several services provided by the framework, resulting in a non-invasive,
�ne-grained gridi�cation.

Current work includes the integration of the AspectGrid services with a grid
middleware (e.g., Glite) and the extension of the current set of services to address

security issues. More long-term work includes addressing portability issues namely
by supporting the gridi�cation of non-Java applications.

Acknowledgments

This work was supported by AspectGrid project (Pluggable Grid Aspects for Sci-
enti�c Applications, GRID/GRI/81880/2006) and by SeARCH (Services & Ad-
vanced Computing with HTC/HPC, CONC-REEQ/443/EEI/2005), all funded by
Portuguese FCT and European funds (FEDER).

References

1. AspectGrid homepage. http://gec.di.uminho.pt/aspectgrid.
2. Gridgain homepage. http://www.gridgain.com.
3. JDL - Job Description Language. http://glite.web.cern.ch/glite/documentation.
4. G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky,

R. van Nieuwpoort, A. Reinefeld, F. Schintke, et al. The grid application toolkit:
toward generic and easy application programming interfaces for the grid. Proceedings
of the IEEE, 93(3):534�550, 2005.

5. L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici. Grid
Computing: Software Environments and Tools, chapter Programming, Composing,
Deploying, for the Grid. Springer-Verlag, 2005.

6. T. Delaitre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Winter, and P. Kacsuk.
GEMLCA: Running Legacy Code Applications as Grid Services. Journal of Grid
Computing, 3(1):75�90, 2005.

7. J. Ferreira, J. Sobral, and A. Proenca. JaSkel: a java skeleton-based framework for
structured cluster and grid computing. Proceedings of the Sixth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID'06)-Volume 00, pages
301�304, 2006.

8. R. Filman and D. Friedman. Aspect-Oriented Programming is Quanti�cation and
Obliviousness. Workshop on Advanced Separation of Concerns, 2000, 2000.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1995.

10. S. Gorlatch and J. Diinnweber. From Grid Middleware to Grid Applications: Bridging
the gap with HOCs. Future Generation Grids: Proceedings of the Workshop on Future
Generation Grids, November 1-5, 2004, Dagstuhl, Germany, 2005.

11. Q. Ho, T. Hung, W. Jie, H. Chan, E. Sindhu, G. Subramaniam, T. Zang, and X. Li.
GRASG-a framework for "gridifying" and running applications on service-oriented
grids. Proceedings of the Sixth IEEE International Symposium on Cluster Computing
and the Grid (CCGRID'06)-Volume 00, pages 305�312, 2006.

12. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Ir-
win. Aspect-Oriented Programming. ECOOP'97�object-oriented Programming: 11th
European Conference, Jyväskylä, Finland, June 9-13, 1997: Proceedings, 1997.

13. P. Maia, N. Mendonça, V. Furtado, W. Cirne, and K. Saikoski. A process for sep-
aration of crosscutting grid concerns. Proceedings of the 2006 ACM symposium on
Applied computing, pages 1569�1574, 2006.

14. C. Mateos, A. Zunino, and M. Campo. A survey on approaches to gridi�cation.
Software: Practice and Experience, 38:523�556, 2008.

15. L. Smith, J. Bull, and J. Obdrzalek. A Parallel Java Grande Benchmark Suite.
Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), pages
8�8, 2001.

16. J. Sobral. Pluggable grid services. Grid Computing, 2007 8th IEEE/ACM Interna-
tional Conference on, pages 113�120, 2007.

17. J. Sobral and A. Proença. Enabling jaskel skeletons for clusters and computational
grids. In IEEE Cluster. IEEE Press, 2007.

18. R. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kielmann,
and H. Bal. Ibis: a �exible and e�cient Java-based Grid programming environment.
Concurrency and Computation: Practice & Experience, 17(7):1079�1107, 2005.

19. D. Webb and A. Wendelborn. The PAGIS Grid Application Environment. Inter-
national Conference on Computational Science (Lecture Notes in Computer Science,
2659.

