
1

ReFlO: An Interactive Tool for Pipe-And-Filter
Domain Specification and Program Generation

Rui C. Gonçalves, Don Batory, João L. Sobral

Abstract—ReFlO is a framework and interactive tool to record and systematize domain knowledge used by experts to derive complex
pipe-and-filter (PnF) applications. Domain knowledge is encoded as transformations that alter PnF graphs by refinement (adding more
details), flattening (removing modular boundaries), and optimization (substituting inefficient PnF graphs with more efficient ones).
All three kinds of transformations arise in reverse-engineering legacy PnF applications. We present the conceptual foundation and
tool capabilities of ReFlO, illustrate how parallel PnF applications are designed and generated, and how domain-specific libraries of
transformations are developed.

Index Terms—MDE, Tools, Software Architectures, Design by Transformation, Refinement, Optimization, Graph Transformations

F

1 INTRODUCTION

Component Based Software Engineering (CBSE) promotes the de-
velopment of software by graphically wiring together reusable
components. CBSE tools foster a circuit analogy to software
development and, like actual circuit design tools, can express
hierarchical systems by levels of abstraction: a component at
level i is defined in terms of a circuit of more primitive com-
ponents at level i+1, recursively. CBSE is an early example of
Model Driven Engineering (MDE) where models (ie hierarchical
circuit diagrams) are transformed into executables.

Pipe-and-filter (PnF) or streaming systems are among the
fundamental architecture styles used in CBSE [1], [2], where
components are functions that process data that is transmitted
through wires [3], [4], [5], [6]. Some time ago, we were given
the task to re-engineer expert-created legacy PnF applications:
a parallel database query processor and a crash-fault-tolerant
server. The PnF graphs of these systems were spaghetti dia-
grams; our understanding of how these systems worked was
minimal. We could not explain their PnF graphs nor did we
know if they were correct.

Step-wise development provided an answer. We start with
an elementary PnF graph that cleanly and abstractly describes
the system to be reverse-engineered. In MDE terms, this is
a Platform Independent Model (PIM): a model that does not
constrain the implementation or target platform and is an ab-
stract specification of what to build. We then derived the target
PnF graph (a Platform Specific Model (PSM) [7]) by applying a
series of transformations that are well-known to engineers in
that domain. Further, each transformation was simple enough
to be demonstratably correct (by proof or other means). Our
derivations were correct by construction [8].

We had to depart from contemporary CBSE tools to admit
architectural optimizations—the ability to replace a PnF subgraph
with another PnF subgraph that implements the same function-
ality but in a different way (to yield improved quality metrics,
like performance). Optimizations were essential to our re-

• R. Gonçalves and J. Sobral are with the Departamento de Informática,
Universidade do Minho, Braga, Portugal
Email: {rgoncalves,jls}@di.uminho.pt

• D. Batory is with the Department of Computer Science, The University of
Texas at Austin, Austin, TX, USA
Email: batory@cs.utexas.edu

engineering tasks; we could not derive legacy PnF graphs without
them. With Model-to-Text (M2T) transformations, we reproduced
these legacy applications from our models.

Our critical insight was to recognize that the transformations
used to derive a PnF graph are building-blocks just as important as
the components used in the application itself.

This paper presents ReFlO, an interactive tool that embod-
ies a derivational approach to PnF graphs. Initially we used
ReFlO to reverse-engineer the design of legacy applications—
an example of which we illustrate in this paper. Over time, the
library of transformations that are used in deriving a family or
domain of similar applications becomes extensive enough for
forward-engineering. That is, given a PIM of an application,
cataloged transformations can be used to mechanically derive
the space of all PSMs and automatically select the most effi-
cient. Our work on forward-engineering is not the focus of this
paper and is detailed elsewhere [9]. Nonetheless, the strong
connection of ReFlO to forward engineering demonstrates the
significance of derivational approaches.

The contributions of this paper are:
• a simple way to encode domain knowledge of PnF graph

construction as transformations,
• how ReFlO can be used as an interactive design tool to

derive custom PnF graphs,
• an explanation why the Perry Substitution Principle,

rather than the Liskov Substitution Principle, is central to
derivational development of optimized PnF programs,

• how ReFlO provides a framework to allow different in-
terpretations of PnF graphs to compute properties about
them (besides producing executables), and

• how multiple derivations of a PSM can expose new trans-
formation rules of a domain.

2 FOUNDATIONAL CONCEPTS: PART I
2.1 PnF Graphs, Refinements, and Optimizations
A pipe-and-filter (PnF) graph [1] is a directed multigraph, where
boxes (components) process data that is passed to other boxes
via connectors (pipes). Boxes may receive inputs from different
sources and compute zero or more outputs. Input ports are
drawn as nubs on the left-side of boxes; output ports are drawn
as nubs on the right. A connector links an input port to an
output port. Figure 1 shows a PnF graph modeling a program,

2

Fig. 1. The PnF graph ProjectSort.

called ProjectSort, that projects (eliminates) attributes of the
tuples of its input stream and then sorts them.

We call boxes PROJECT and SORT interfaces as they specify
only abstract behavior (their inputs and outputs, and, infor-
mally, their semantics). Besides input ports, boxes may have
other inputs that are not shown graphically, such as the sort
key for the SORT box or the list of attributes to remove for the
PROJECT box. We call the former essential parameters and the
latter additional parameters [10].

Figure 1 is a PIM as it makes no reference to or demands
on its concrete implementation. It is a high-level specification
that can be adapted to a particular platform or for particular
inputs. Adaptation is accomplished in ReFlO by applying
transformations.

A transformation can map an interface directly to a primitive
box, representing a concrete code implementation. Besides
primitives, there are other implementations of an interface that
are expressed as a PnF graph, called algorithms. Algorithms
may reference interfaces. Figure 2 is an algorithm. It shows
the PnF graph called parallel sort of a map-reduce imple-
mentation of SORT. Each box inside Figure 2, namely SPLIT,
SORT and SMERGE (sorted merge), is an interface which can be
subsequently elaborated.

Fig. 2. parallel sort implements SORT by map-reduce.

Refinement [11] is the replacement of an interface with one of
its implementations (primitive or algorithm). By repeated re-
finements, eventually a graph of wired primitives is produced.

Figure 1 can be refined by replacing SORT with its
parallel sort algorithm and PROJECT with a similar map-
reduce algorithm. Doing so yields the graph of Figure 3(a), or
equivalently the graph of Figure 3(b), obtained by removing
modular boundaries. Removing modular boundaries is called
flattening.

Refinements alone are insufficient to derive complex PnF
graphs. Look at Figure 3(b). We see a MERGE followed by
the SPLIT operation, that is, two streams are merged and
the resulting stream is immediately split again. Let inter-
face IMERGESPLIT be the operation that receives two input
streams, and produces two other streams, with the requirement
that the union of the input streams is equal to the union of
the output streams (see Figure 4). ms mergesplit is one of
its implementations. However, the ms identity algorithm
provides an alternative implementation that is obviously more
efficient than ms mergesplit as it does not require MERGE

(a)

(b)

Fig. 3. Parallel version of ProjectSort.

Fig. 4. Two implementations of the IMERGESPLIT interface.

and SPLIT computations.1

We can use ms identity to optimize ProjectSort. The
first step is to abstract Figure 3(b) with the IMERGESPLIT inter-
face, obtaining Figure 5(a). Then, we refine IMERGESPLIT to
its ms identity algorithm, to obtain the optimized graph for
ProjectSort (Figure 5(b)). We call the action of abstracting
an (inefficient) composition of boxes to an interface and then
refining it to an alternative implementation an optimization.2

2.2 Perry Substitution Principle

By studying several legacy applications from the same domain,
it becomes obvious that there is a set of transformations that
are commonly used in derivations. The collected set of trans-
formations contains interface/implementation pairs (I,A), that
we call rewrite rules, and specifies two distinct kinds of trans-
formations:

• Refinement I A: An interface I is replaced by a graph
A which represents a primitive or algorithm, and

• Abstraction A I: A graph A is replaced by interface I.
Under what circumstances is a rewrite rule permitted? A
possible answer is based on the Liskov Substitution Principle
(LSP) [12], which is a foundation of object-oriented design.
LSP states that if A is a subtype of I, then objects of type A
can be substituted for objects of type I without altering the
correctness properties of a program. Substituting an interface

1. Readers may notice that algorithms ms mergesplit and
ms identity do not necessarily produce the same result. However,
both implement the semantics specified by IMERGESPLIT, and the
result of ms identy is one of the possible results of ms mergesplit,
ie ms identity removes non-determinism.

2. Although called optimizations, they do not necessarily improve
performance, but combinations of them typically do.

3

(a)

(b)

Fig. 5. Optimization of ProjectSort.

with an implementing object (component) is standard fare
today, and is a way to realize refinement in LSP [13], [14]. The
technical rationale behind LSP is that preconditions for using
subtype A can not be stronger than preconditions for type I,
and postconditions for A are not weaker than that for I [12]:

pre(I)⇒ pre(A)

post(A)⇒ post(I)

To our surprise, LSP is too restrictive for ReFlO graph
rewrite rules, as implementations are often accompanied by pre-
conditions that are not required by their interfaces. Such imple-
mentations are often more efficient than those that are not as
specialized [15].

Example: Figure 6 shows three implementations
of the SORT interface: a map-reduce algorithm, a
quicksort primitive, and a do nothing algorithm.
do nothing says: if the input stream is already in
sorted order (a precondition not present in SORT
but definitely present for do nothing), then there
is no need to sort. The (SORT,do nothing) rewrite
rule violates LSP: do nothing implementation has
stronger preconditions than its SORT interface. This is
a common situation in graph rewrites.

Fig. 6. Two algorithms and a primitive implementation of SORT.

Forcing our rewrite rules to comply with LSP, the stan-
dard notion of substitutability for object-oriented inter-
face/implementation refinements, we would not be able to derive

the optimized programs that domain experts created manually. When
looking for alternative notions of substitutability, we found an
existing precedence for a solution. Let A and I be boxes, and
pre and post denote the pre- and postconditions of a box.
Perry [16] defined that A is upward compatible with I if:

pre(A)⇒ pre(I) (1)

post(A)⇒ post(I) (2)

ie A requires and provides at least the same as I. We call this the
Perry Substitution Principle (PSP). It allows the specification of
implementations specialized for certain inputs, essential during
the derivation of optimized program implementations.

Not requiring rewrite rules to conform to LSP, and allow-
ing an interface to be replaced with an implementation with
stronger preconditions, means that a rewrite rule is not always
applicable (it depends on the PnF graph we are refining). To
guarantee that the behavior of the PnF graph is preserved
when replacing interface I with implementation A, we must
guarantee that the preconditions of A are met (in the context
of PnF graph being transformed). If not, ReFlO disallows it.

Consider the do nothing implementation of SORT and
ProjectSort of Figure 1. Algorithm do nothing has a
precondition that requires its input to be sorted in an appro-
priate order (eg on ascending values of field F). We can use
this rewrite rule in ProjectSort (to replace SORT) only if
this precondition is met, ie if PROJECT has a postcondition
specifying its output is sorted in ascending F order. Typically,
PROJECT provides no such postcondition, thus ReFlO disal-
lows do nothing algorithm for ProjectSort. However, if
PROJECT exported a postcondition specifying the sort order
of its output, the input of SORT was in ascending F order,
do nothing would be a valid replacement of the SORT inter-
face. In this scenario, even though do nothing has stronger
preconditions than SORT, it can be used, and the behavior of
ProjectSort would be preserved.

If we assure the preconditions of the implementation being
added (A) are met in the PnF graph being transformed (taking
into account the postconditions of the boxes that compute the
inputs of A), we guarantee that the transformation preserves
the behavior of the PnF graph being transformed (ie no pre-
condition is added to the PnF graph, and the postconditions
are preserved).

Rewrite rules used in abstraction transformations A I
have stronger constraints. An abstraction implies that a graph
A must implement I, ie I A. For both constraints to hold,
the pre- and postconditions of A and I must be equivalent:

pre(I)⇔ pre(A) (3)

post(I)⇔ post(A) (4)

To summarize, refinement is a general concept [17]. In object-
oriented designs, refinement is satisfied by LSP where an
interface can be substituted with an implementing object. In
MDE, a refinement corresponds to mapping of a model of of
one type (metamodel) to that of another. In the world of ReFlO
graph rewrite rules, refinement satisfies PSP.

3 DOMAIN MODEL SPECIFICATION

ReFlO (Refine, Flatten, and Optimize) is an interactive tool to
draw and derive PnF graphs, built upon the ideas of Design by
Transformation (DxT) [18]. The rewrites that ReFlO applies are
taken from a domain model—a library of graph transformations

4

whose structure we explained in Section 2. ReFlO provides
support for experts build such models.

3.1 Basic Features of a Domain Model

A ReFlO Domain Model (RDM) is a set of ordered pairs that
associate an interface with an implementing algorithm or prim-
itive. That is, a RDM encodes a library of transformations that
can be applied to programs in a given domain. ReFlO provides
the following objects to create RDMs: interfaces, primitives,
algorithms, input/output ports, connectors, implementation
links, and patterns. The UML class diagram of the RDM
metamodel is Figure 7.

name : String
replicated : String
doc : String

Element

parameters : String

Box

template : String

Interface

Algorithm

Implementation

Pattern

Connector

dataType : String

Port

Output

Input

source

1

target

*
ports *

1
source

outgoing

*
1
target

incoming

* elements

connectors *

Primitive
1

Fig. 7. RDM UML class diagram.

An interface is a named box with input and output ports.
A primitive is drawn identically, except that primitives have a
gray background whereas interfaces are white (Figure 6). Every
port of a box has a unique name (to distinguish it from other
ports) and a data type. A connector links a source port to a
target port.

An algorithm is a named box with I/O ports that encloses
a PnF graph.3 A pattern is a special algorithm that not only
implements its interface, but also specifies that its graph can
be replaced with (or abstracted to) an interface, as part of
an optimization. ReFlO graphically distinguishes patterns as
dashed-line boxes from algorithms that are solid-line boxes (see
Figure 4).

A domain model is specified in ReFlO by defining each
interface, primitive, and algorithm. A rewrite rule is an ordered
pair (interface, primitive) or (interface, algorithm) which is
drawn/specified by an implementation link (a dashed arrow)
connecting an interface to an implementation.

Example: Figure 6 defined three implementations of
the SORT interface: the parallel sort algorithm,
the quicksort primitive, and the do nothing al-
gorithm.

Example: Figure 4 specified that pattern ms merge-
split can be abstracted to the IMERGESPLIT inter-
face, which can then be refined to the ms identity
algorithm. This compound rewrite was the optimiza-
tion that we used earlier.

3. We refer to the interfaces (boxes) contained inside an algorithm
as internal interfaces (boxes), and to the algorithm as the parent box of
those interfaces.

3.2 Advanced Features
3.2.1 Additional Parameters
Every box has a parameters attribute which holds a comma-
separated list of names, data types and values, that specify
the box’s additional parameters. The value of an additional
parameter may be a constant or the value of a parameter of
its parent box. Additional parameters keep ReFlO diagrams
simpler, allowing developers to focus on the essential parts of
the model.

3.2.2 RDM Documentation
Transformation rules must be documented, so that others who
inspect PnF graphs can understand the rules that were used
to derive it. ReFlO boxes and ports have the doc attribute,
where designers can place a textual description of model
elements. ReFlO generates HTML documentation that contains
the figures of boxes and their descriptions. This allows users
to reference HTML pages for rule definitions. The HTML doc-
umentation for the rules that we use later in our case study is
at http://www.cs.utexas.edu/users/schwartz/DxT/
case-studies/gamma/models/databases.html.

3.2.3 Templates
Many rewrite rules are parameterized clones of each other.
ReFlO was designed so that any rewrite rule could be used
as a template. Every rewrite rule has a template attribute; if its
value is null, the rule is not a template. A non-null value
specifies (template box name, concrete box name) bindings to
create a new instance of the rewrite rule. Typically a non-null
value specifies multiple groups of bindings, one binding for
every new instance of a rule. Details are given in [19].

Example: The rewrite rules of Figure 8 define an
optimization. Whenever box x1 is followed by box
x2, where x2 = x−1

1 (the inverse operation of x1), box
x2 can be removed, yielding algorithm idx1.

Fig. 8. A template with parameters optid, x1 and x2.

Figure 8 is a template for stamping out customized copies
of itself. Using these bindings {(optid,OptIdF), (x1,F1),
(x2,F2)} where F2 = F1−1, ReFlO produces the customized
rewrite rules of Figure 9. Additional bindings can produce
other instances. Templates provide an elementary form of high-
order transformations that reduce modeling effort [20].

3.2.4 Replicated Elements
Figure 2 showed the parallel_sort algorithm where two
instances of SORT are performed in parallel. We want to
specify a rewrite with an arbitrary number of instances. We use
replicated elements. Ports and boxes have a [bracketed attribute]

5

Fig. 9. A template instance.

that specifies replication. If brackets are absent, the element is
not replicated. If a bracket contains an upper case letter, that
is interpreted as a replication variable that specifies how many
times the element is replicated.4 Thus, box B[N] means that
there are N instances of box B (Bi, for i ∈ {1 . . .N}). Similarly
for ports.

Example: Figure 10 expresses parallel sort
in a more general way. SPLIT has N output
ports {O1 . . .ON}. There are N SORT boxes
{SORT1 . . .SORTN}. SPLIT output port Oi is
connected to input port I of SORTi. Finally, the
input port I of SMERGE is replicated {I1 . . .IN}. The
output of SORTi is connected to SMERGE input port
Ii. Figure 2 is produced by setting N = 2.

Fig. 10. parallel sort with replicated elements.

Example: Figure 11 defines transformations where el-
ements can be replicated a different number of times.
The interface has N inputs and M outputs. Each pattern
replicates some elements N times and others M times.

Fig. 11. MERGE− SPLIT cross product.

ReFlO has specific rules for replicating connectors (ie connec-
tors linking replicated ports or ports of replicated boxes). Using
the notation B.P to represent port P of box B, given a connector
from output port O of box B to input port I of box C, the rules
are:

4. At design time, the variable only allow us to determine whether
to elements are replicated the same number of times. These variables
can be instantiated when generating code.

• When O is replicated N times and B is not (which implies
that either I or C is also replicated N times), connectors link
B.Oi to C.Ii or Ci.I (depending on which is replicated),
for i ∈ {1 . . .N}.

• When B is replicated N times and O is not (which implies
that either I or C is also replicated N times), connectors link
Bi.O to C.Ii or Ci.I (depending on which is replicated),
for i ∈ {1 . . .N}.

• When B is replicated N times and O is replicated M times
(which implies that both C and I are also replicated),
connectors link Bi.Oj to Cj.Ii, thereby implementing a
crossbar, for i ∈ {1 . . .N} and j ∈ {1 . . .M} (this implies
that C is replicated M times, and I is replicated N times).

Example: Figure 12 is the result of setting N and M
to 2 in algorithm msnm splitmerge from Figure 11.
Note the crossbar resulting from connectors that link
replicated ports of replicated boxes.

Fig. 12. msnm_splitmerge pattern without replication.

The mapping of a PIM to a PSM in ReFlO is discussed next.

4 INTERACTIVE DERIVATION OF PSMS FROM A PIM

ReFlO is an interactive tool that allows designers to (1) define
an RDM, (2) define a PIM, and (3) use the transformations of
an RDM to progressively rewrite a PIM into a PSM. In the
typical use, a domain expert starts by using ReFlO to reverse
engineer legacy programs. During this process, he replays the
development process, adding to the RDM the transformations
that he, sometimes unconsciously, applied to code. The RDM
may then be used by other developers to optimize their pro-
grams (directly in ReFlO, or exporting the RDM to an external
tool [21]).

The actions domain experts and developers can invoke when
transforming a PnF graph are:

• Refine replaces a user selected interface with one of its
implementations. ReFlO examines each potential refine-
ment and only displays those that satisfy the I G
constraints of Section 2.2.5 If only one option is available,
ReFlO automatically selects it.6

• Flatten removes the modular boundaries of the selected
graph that result from refining a PnF graph. If the graph
to be flattened was replicated, this information is pushed
down to its internal boxes.

• Abstract replaces the selected boxes with the interface
they implement. ReFlO matches selected boxes with the

5. In Section 5.2 we provide additional details about how ReFlO
verify these constraints.

6. Replication parameters of an interface are used to set the repli-
cation parameter(s) of an implementation. If an implementation has
replication parameters that are not present in the interface, the user is
asked to provide a value for the parameter.

6

patterns in the RDM. Unlike in refinements, no precondi-
tions check is needed to decide whether a pattern can be
replaced by the interface. However, to decide whether the
selected boxes are an instance of the pattern G we need
to put the modular boundaries of G around the boxes,
and verify if G preconditions are met. That is, it is not
enough to verify if the selected boxes have the shape of the
pattern. If one match is found, the pattern is replaced by
its interface. If multiple patterns match, the user is asked
to choose one.7

• Optimize performs an abstraction, refinement, and flat-
tening as a single step, replacing the selected set of boxes
with an equivalent implementation.

Example: ReFlO maps Figure 13(a) to 13(b) by apply-
ing the optimization of Figure 11. (Note the replication
variables X and Y of the original graph are used to
define the replication variables of the new graph.)

(a)

(b)

Fig. 13. Optimizing a parallel version of ProjectSort.

• Find Optimization locates all possible matches for the
patterns in the RDM that exist inside the selected graph.
The interfaces that comprise the matches are identified
setting their attribute label to contain a tag identifying the
match(es).

Example: Applying find optimization to the
ProjectSort graph of Figure 3b results in the
graph of Figure 14, where we can see that two boxes
are part of a match (of pattern ms_mergesplit).

Fig. 14. The label shown after the name of boxes MERGE
and SPLIT indicates that they are part of a match of pattern
ms_mergesplit.

• Expand expands replicated boxes and ports of a graph. For
each replicated box, a copy is created. For each replicated
port, a copy is created (suffixes 1 and 2 are added to
names of original port and its copy, respectively, as two
ports cannot have the same name). Connectors are copied
according to the rules previously defined.

Example: Figure 15 is an expansion of Figure 13(b).

7. The values of replication parameters of the pattern are used to
define the replication parameters of the interface. The same is done to
define the values of the additional parameters of the new interface.

Fig. 15. Expanding the parallel, replicated ProjectSort.

5 FOUNDATIONAL CONCEPTS: PART II
5.1 Interpretations

A PnF graph P may have many interpretations. The default is
to interpret each box of P as the component it represents. That
is, SORT means “sort the input stream”. We call this the standard
interpretation S. The standard interpretation of box B is denoted
S(B) or simply B, eg S(SORT) is “sort the input stream”. The
standard interpretation of graph P is S(P) or simply P.

There are other interpretations of P. ET interprets each box
B as a computation that estimates the execution time of S(B),
given statistics about S(B)’s inputs. So ET (SORT) is “return
an estimate of the execution time to produce SORT’s output
stream”. Each box B ∈ P has exactly the same number of inputs
and outputs as ET (B) ∈ ET (P), but the meaning of each box
as well as the types of each of its I/O ports are different.

Example: ET (ProjectSort) estimates the execution
time of ProjectSort for an input I whose statistics
(tuple size, stream length, etc.) is ET (I).

Example: We said in Section 1 that an RDM can be
used to forward-engineer (eg derive) all possible PSMs
from an input PIM. The estimated run-time of a PSM P
is determined by executing ET (P). The most efficient
PSM that implements the PIM is the one with the
lowest estimated cost [22].

Example: M2T (ProjectSort) is a model-to-text
interpretation that maps ProjectSort to executable
code.

Example: Pre- and postconditions guarantee the cor-
rectness of ReFlO graphs. Each is encoded as a dis-
tinct interpretation, discussed further in Section 5.2.

In general, an interpretation I of graph P is an isomorphic
graph I(P), where each box b ∈ P is mapped to a unique box
I(b) ∈ I(P) and each edge b1 → b2 ∈ P is mapped to a unique
edge I(b1)→ I(b2) ∈ I(P). In ReFlO, graph I(P) is identical
to P, except that the bindings of all boxes to computations are
different.

5.1.1 Implementing Interpretations
It is reasonable to expect that each interpretation would be
written in its own domain-specific language (DSL). Creating such
DSLs was not critical to our goal of developing and demon-
strating ReFlO. Indeed, this would be an entire research project
unto itself. Instead, we chose to write each interpretation in
Java. For each interpretation and box, a Java class must be
provided by a developer. Every interpretation is represented by
a collection of classes, one per box, that is stored in a unique
Java package whose name identifies the interpretation. Thus
if there are n interpretations, there will be n Java packages
provided by a domain designer.

7

compute() : void
getAddParam(paramName : String) : String
getBoxProperty(name : String) : Object
getParentProperty(name : String) : Object
getInputProperty(port : String, name : String) : Object
getOutputProperty(port : String, name : String) : Object
setBoxProperty(name : String, value : Object) : void
setParentProperty(name : String, value : Object) : void
setInputProperty(port : String, name : String, value : Object) : void
setOutputProperty(port : String, name : String, value : Object) : void
addError(errorMsg : String) : void

AbstractInterpretation

Fig. 16. The AbstractInterpretation class.

Each class has the name of its box and must extend abstract
class AbstractInterpretation that is provided by ReFlO
(see Figure 16). Interpretations grow in two directions: (i) new
boxes can be added to the domain, which requires new classes
to be added to each package, and (ii) new interpretations can
be added, which requires new packages.

Each interpretation maintains its own data, which we call
properties. The behavior of an interpretation is specified in
method compute. It computes and stores properties that are
associated with its box or ports. For each box/port, properties
are stored in a map that associates a value with a property iden-
tifier.8 AbstractInterpretation provides get and set
methods for accessing and modifying properties.

A typical class structure for interpretations is shown in
Figure 17(a), where all classes inherit directly from Abstract-
Interpretation. Nevertheless, more complex structures
arise. For example, one interpretation may inherit from another
(this is common when defining preconditions, as an algorithm
has the same preconditions of the interface it implements), or
there may be an intermediate class that implements part (or
all) of the behavior of several classes (usually of the same
interpretation), as depicted in Figure 17(b). Besides requiring
classes to extend AbstractInterpretation, ReFlO allows
developers to choose the most convenient class structure for
the interpretation at hand.

Although ReFlO expects a Java class for each box, if none is
provided, ReFlO automatically selects an appropriate default
class with an empty compute method. That is, in cases where
there are no properties to set, no class needs to be provided.

Example: ReFlO generates complete executables in
M2T interpretations; so interface boxes have no map-
pings to code.
Example: Interpretations that set a ports’ property
usually do not need to provide a class for algorithms,
as the properties of their ports are set when executing
the compute methods of their internal boxes. This
is the case of interpretations that compute postcondi-
tions, or interpretations that compute data sizes.

However, there are cases where properties of an al-
gorithm cannot be inferred from its internal boxes. A
prime example is the do nothing algorithm—it has
preconditions, but its internals suggest nothing. (In
such cases, a Java class is written for an algorithm to
express its preconditions.)

ReFlO executes an interpretation in the following way: for

8. This map is similar to java.util.Properties except that values
are of type Object instead of String.

AbstractInterpretation

iint1.BoxA int1.BoxB int2.BoxA int2.BoxB

(a)

AbstractInterpretation

int1.BoxA

int1.BoxB int2.BoxBint2.BoxA

int2.Super

(b)

Fig. 17. Class diagrams for two interpretations int1 and int2.

each box in a graph, its compute method is executed, with the
execution order being determined by the topological order of
the boxes (in the case of hierarchical graphs, the interpretation
of an algorithm box is executed before the interpretations of its
internal boxes). After execution, a developer (or ReFlO) may
select any box and examine its properties.

5.1.2 Forward and Backward Interpretations
Usually edges of an interpretation I have the same direction
of the corresponding edge of interpretation S. We have found
cases where to compute some property about a graph it is
convenient to invert the direction of the edges, so that infor-
mation flows right-to-left. In this case, an edge b1 → b2 ∈ P
maps to a unique edge I(b1) ← I(b2) ∈ I(P). We call such
interpretations backward and the others are forward.

5.1.3 Composition of Interpretations
To make all of the above work, interpretations must be com-
posable. Each interpretation computes certain properties of a
program P, and it may need properties that are computed by
other interpretations, eg to estimate the execution cost of a box,
we may need an estimate of the volume of data output by
a box. The same property (volume of data) may be needed
for other interpretations (eg preconditions). Therefore, it is
useful to separate the computation of each property, in order
to improve interpretation modularity and reusability.
ReFlO supports the composition of interpretations, where

two or more interpretations are executed in sequence. An
interpretation has access to the properties computed by previ-
ously executed interpretations. For example, an interpretation
to compute data sizes (DS) can be composed with one that
uses data size estimates to form cost estimates (ET). This is
the compound interpretation (ET ◦ DS)(P) = ET (P) ◦ DS(P).
This allows interpretation DS to be composed (reused) with
other interpretations that also need data sizes.

5.2 Pre- and Postconditions
We use interpretations to compute box postconditions and then
verify their preconditions, rather than providing a custom DSL

8

for this purpose (ie pre- and postconditions are specified in
the same language/framework used for other interpretations,
currently Java).

Postconditions are evaluated by the POST interpretation.
POST computes the properties that are output by a box given
the properties that are input to that box. The postconditions of
algorithms and patterns are inferred from the postconditions
of their internal boxes.9

Preconditions are evaluated by the PRE interpretation. PRE
reads the values of the properties about box inputs (computed
by POST), and checks if the preconditions of that box are
satisfied. The method addError is used to send a message
to ReFlO signaling a failure validating precondition. Thus
ReFlO uses PRE ◦ POST for computing postconditions and
validating preconditions.

When a user tries to apply a transformation, ReFlO builds
the list of possible replacements for the selected box(es). The
POST interpretation is then executed, to compute the post-
conditions for each box in the graph that is to be trans-
formed. ReFlO then evaluates the PRE interpretation on each
replacement graph. If no precondition error is reported, the
replacement graph is legal, otherwise it is disallowed.

Example: In Section 2.2 we mentioned the
do nothing implementation of SORT. To use
such rewrite rule we are required to keep track
of how streams are sorted. Thus, we associate a
property to output ports, called SortKey. When
a stream is sorted, SortKey is set to the sorting
attribute. If unsorted, SortKey has an undefined
value. The SORT box sets this property to its sort
key, to specify its output is sorted. Other boxes may
change the order of the stream without sorting it, in
which case the SortKey property is set to undefined.
Alternatively, a box may preserve stream order, in
which case the sort key property of the input stream
is copied to the sort key property of the output
stream. The do nothing algorithm reads the value
of SortKey for its input stream, and compares it to
the value of the desired order. If the sort keys are
different, the do nothing rewrite is invalid.

6 CASE STUDY: GAMMA HASH JOIN

This section serves a dual purpose: (1) to present a case study
using DxT to re-engineer a legacy PnF application and (2) to
illustrate how an RDM can be populated with rewrites. We
have observed that there can be many ways in which a complex
PnF graph can be derived; each derivation uses a slightly
different or larger set of rewrites than other derivations. By
exploring multiple derivations, the RDM is enriched and a
better understanding of a design is achieved. Each of the rewrites
that we present in this section have been proven correct [23].

Gamma was (and perhaps still is) the most sophisticated re-
lational database machine built in academia [24]. It was created
in the late 1980s and early 1990s without the aid of modern
software architectural models. We focus on Gamma’s join
parallelization, which is typical of modern relational database

9. ReFlO ignores the specification of explicit postconditions for algo-
rithms or patterns. This prevents postconditions from being specified
that are stronger than those computed from its internal boxes.

machines, and use ReFlO screenshots to incrementally illus-
trate Gamma’s derivations.10 11

6.1 A Modicum of Domain Knowledge
Of course, to appreciate the rewrites that Gamma uses, one
needs a modicum of domain knowledge about relational query
processing. We assume this, providing references that elaborate
such knowledge.

Look at Figure 18: it shows interface HJOIN (read “hash
join”) with three different implementations: a primitive, a map-
reduce algorithm, and a bloom-filter algorithm.

Fig. 18. HJOIN rewrite rules.

The primitive hash join implementation is simple: read all
tuples of stream A into a main-memory hash table, where the
join key of A tuples are hashed. Then read stream B, one tuple
at a time. By hashing a B tuple’s join key, one can quickly
identify all A tuples that join with the B tuple. This algorithm
has linear complexity in that each A and B tuple is read once.

The parallelization of HJOIN is textbook [25]: both input
streams A, B are hash-split on their join keys using the same
hash function. Each stream Ai is joined with stream Bi (i ∈
{1,2}), as we know that Ai on Bj = ∅ for all i 6= j (equal keys
must hash to the same value). By merging the joins of Ai on Bi
(i ∈ {1,2}), A on B is produced as output.

A very different HJOIN algorithm makes use of Bloom filters
to reduce the number of tuples to join [26]. It uses two new
boxes: BLOOM (to create the filter) and BFILTER (to apply the
filter). We call this algorithm bloomfilterhjoin. Here’s how
it works: the BLOOM box takes a stream of tuples A as input
and outputs exactly the same stream A along with a bitmap M.
The BLOOM box first clears M. Each tuple of A is read, its join
key is hashed, the corresponding bit (indicated by the hash) is
set in M, and the A tuple is output. After all A tuples are read,
M is output. M is the Bloom filter.

The BFILTER box takes Bloom filter M and a stream of tuples
A as input, and eliminates tuples of A that cannot join with
tuples used to build the Bloom filter. The algorithm begins by
reading M. Stream A is read one tuple at a time; the A tuple’s
join key is hashed, and the corresponding bit in M is checked.

10. The RDM used in this derivation is available at http:
//cs.utexas.edu/users/schwartz/DxT/case-studies/
gamma/models/databases.html.

11. For simplicity, the derivation presented does not use
replication. A derivation using replication is available at http:
//cs.utexas.edu/users/schwartz/DxT/case-studies/
gamma/architectures/cascadejoin-rep/.

9

If the bit is unset, the A tuple is discarded as there is no tuple
to which it can be joined. Otherwise the A tuple is output. A
new A stream is the result.

Finally, output stream A of BLOOM and output stream
A of BFILTER are joined. Given the behaviors of the
BLOOM, BFILTER, and HJOIN boxes, it is easy to prove that
bloomfilterhjoin does indeed produce A on B [23].

We are now ready to present two derivations of Gamma: the
first and simplest refines HJOIN by map-reduce first and then
by bloom-filter. The second swaps the order by refining HJOIN
with bloom-filter first, and then map-reduce. This seemingly
minor difference yields a surprising wealth of rewrites.

6.2 Gamma – A Short Derivation

A hash join is an implementation of a relational equi-join; it
takes two streams (A,B) of tuples as input and produces their
equi-join A on B as output (AB). Figure 19 is Gamma’s PIM. It
just uses the HJOIN interface to specify the desired behavior.

Fig. 19. The PIM: Join.

Our derivation starts by refining the HJOIN interface with its
parallel map-reduce algorithm parallelhjoin (Figure 20).

Fig. 20. Parallel Join graph.

Next, bloomfilterhjoin algorithm refines each of the
HJOIN interfaces of Figure 20 to produce Figure 21. Flattening

Fig. 21. Parallel Join graph, using Bloom filters.

Figure 21, and refining each interface with its lone primitive
yields Gamma’s PSM (Figure 22).

Fig. 22. Optimized parallel implementation of Gamma.

6.3 Gamma – An Alternative Derivation

A second, more involved derivation of Figure 22 exposes new
rewrites. Historically, we discovered this derivation first, and
only years later recognized the shorter derivation.

We start by applying the bloomfilterhjoin refinement.
Doing so, we obtain the graph depicted in Figure 23.

Fig. 23. Join graph using Bloom filters.

The next step is to parallelize the BLOOM, BFILTER, and
HJOIN boxes by refining each with their map-reduce versions
(Figure 24(a)).

A BLOOM box is parallelized by hash-splitting its input
stream A into substreams A1,A2, creating a Bloom filter M1,M2
for each substream, coalescing A1,A2 back into A, and merging
bit maps M1,M2 into a single map M. A BFILTER box is par-
allelized by hash-splitting its input stream A into substreams
A1,A2. Map M is decomposed into submaps M1,M2 and sub-
stream Ai is filtered by Mi. The reduced substreams A1,A2
output by BFILTER boxes are coalesced into stream A. The
same hash function must be used by all algorithms.

This alternative derivation already requires two additional
refinements to map interfaces BLOOM and BFILTER to their
map-reduce algorithms. Still, this graph is not yet the opti-
mized Gamma PSM.

In this derivation, refinement is insufficient to produce Gamma’s
PSM. The graph of Figure 24(a) has three serialization bot-
tlenecks which degrade performance. Consider the MERGE of
substreams A1,A2 (produced by BLOOM) into A, followed by a
HSPLIT to reconstruct A1,A2. There is no need to materialize A: the
(MERGE, HSPLIT) pair can also be implemented by the identity
map: Ai → Ai. The same applies for the (MERGE, HSPLIT)
pair for collapsing and reconstructing substreams produced by
BFILTER. The removal of (MERGE, HSPLIT) pairs eliminates
two serialization bottlenecks. This optimization is encoded in
the graph presented in Figure 25(a).

The third bottleneck combines maps M1,M2 into M and then
decomposes M back into M1,M2. The (MMERGE, MSPLIT) pair can
also be implemented by an identity map: Mi → Mi. This op-
timization removes the (MMERGE, MSPLIT) boxes and reroutes

10

(a)

(b)

Fig. 24. Parallelization of Join graph, and its bottlenecks.

the streams appropriately.12 This optimization is encoded in
the model presented in Figure 25(b).

Using the Find Optimization tool available in ReFlO, the
bottlenecks are identified, as depicted in Figure 24(b). After ap-
plying the identity optimizations, we can refine the interfaces
used with primitive implementations, to obtain the optimized
Gamma graph, already presented in Figure 22.

6.4 An Interpretation Example – Costs Estimates

During the process of deriving a PSM, it is useful for the
developers to be able to estimate values of quality attributes
they are trying to improve. This is a typical application for
interpretations.

For databases, estimates for execution time are computed
by adding the execution cost of each interface or primitive
present in a graph. The cost of an interface13 or primitive
is computed based on the size of the data being processed.
The DS interpretation takes estimates of input data sizes and
computes estimates of output data sizes.

Size estimates are used to build a cost expression represent-
ing the cost of executing interfaces and primitives. We build a
string containing a cost symbolic expression, as during design
time we do not have concrete values for properties needed to
compute costs. Thus, we associate a variable (string) to those
properties, and we use those strings to build the symbolic
expression representing the costs.

Figure 26 shows the code used to generate a cost estimate for
phjoin primitive. phjoin is executed by reading each tuple
of stream A and storing it in a hash table (cHJoinAItem is a
constant that represents the cost of processing a tuple of stream
A), and then each tuple of stream B is read and joined with

12. There are many ways in which MMERGE and MSPLIT can be
realized. The simplest is this: M is a 2 × k bitmap. The join key of
an A tuple is hashed twice: once to determine the row of M, the second
to determine the column within the selected row. Thus, all tuples of
substream Ai hash to row i of M. MMERGE combines M1,M2 into M by
boolean disjunction. For each i, MSPLIT extracts row i from M and
zeros out the rest of Mi.

13. An interface cost is set to that of its most general primitive
implementation.

(a)

(b)

Fig. 25. Gamma optimizations.

tuples of A (cHJoinBItem is a constant that represents the cost
of processing a tuple of stream B). Thus, the cost of phjoin
is given by sizea ∗ cHJoinAItem + sizeb ∗ cHJoinBItem.
As HJOIN can always be implemented by phjoin, we can use
the same cost expression for HJOIN. The COST S interpretation
is backward, as the costs of an algorithm are computed from
the costs of its internal boxes (ie we need to compute costs

11

of internal boxes first). So the costs are progressively sent
to their parent boxes, until they reach the outermost box,
where the costs of all boxes are aggregated, providing a cost
estimate for the entire graph. Figure 27 shows the code used by
interpretations of algorithm boxes, that simply add their costs
to the aggregated costs stored on their parent boxes.

public class phjoin extends AbstractInterpretation {
public void compute() {
String sizeA=(String)getInputProperty("A","Size");
String sizeB=(String)getInputProperty("B","Size");
String cost="("+sizeA+") * cHJoinAItem + ("

+sizeB+") * cHJoinBItem";
setBoxProperty("Cost",cost);
String parentCost=(String)getParentProperty("Cost");
if(parentCost==null) parentCost=cost;
else parentCost="("+parentCost+") + ("+cost+")";
setParentProperty("Cost", parentCost);

}
}

Fig. 26. Interpretation that estimates phjoin cost.

public class Algorithm extends AbstractInterpretation {
public void compute() {
String cost=(String) getBoxProperty("Cost");
String parentCost=(String)getParentProperty("Cost");
if(parentCost==null) parentCost=cost;
else parentCost="("+parentCost+") + ("+cost+")";
setParentProperty("Cost", parentCost);

}
}

Fig. 27. Interpretation that processes costs for algorithm boxes.

7 PERSPECTIVE

To round out our presentation, we sketch a general process on
how to use ReFlO effectively and provide some insights on
ReFlO’s limitations.

7.1 A Process on How to Use ReFlO

ReFlO can be used for different purposes, namely to reverse
engineer existing PnF applications (ie to deduce a sequence
of transformations that were used in a legacy application to
map its PIM to its PSM) or to build new optimized programs,
starting from a PIM. In either case, the process starts with
a domain analysis [27], where an expert catalogs the funda-
mental operations of a domain with their implementations.
The domain expert also knows that certain compositions of
operations are inefficient, thus he needs to identify optimiza-
tions as well. It is also his job to provide evidence (eg a proof)
that each transformation is correct and to specify the pre- and
postconditions of each box.

This “minimal” model may be enhanced further. To explore
different implementations of a program (eg efficiency or avail-
ability), additional interpretations are needed to estimate a
program’s quality attributes.

This knowledge can then be used by developers (or by the
domain expert itself) to derive efficient programs. Typically, a
developer starts with a PIM of a target application. ReFlO can
be used incrementally to apply transformations and derive var-
ious PSMs, until a PSM is found that meets desired constraints
on quality attributes. The developer may also export a domain
model to an external tool to automatically search the space of
a given PIM for a desirable PSM [21].

Domain analysis and derivations are often conducted in
parallel. The domain model is usually built while reverse
engineering existing programs, ie domain experts may be using
ReFlO to derive programs and to build the domain model at
the same time.

Finally, we note that ReFlO was developed specifically with
pipe-and-filter software architectures in mind. We believe that
ReFlO should be useable in other practical applications, such
as dataflow and workflow applications, as well as functional-
based application designs.

7.2 Limitations of ReFlO

We have used ReFlO to derive the designs of other
applications—crash fault tolerant (CFT) servers [18] and dense
linear algebra algorithms [22].

We chose a PnF notation to model programs and transfor-
mations that was influenced by the case-studies we explored.
Although in certain domains a program’s structure easily fits
this architecture style (eg streaming applications [28], dataflow
applications [29]), we are aware that some domains may re-
quire more effort to mine than others, and existing code may
need to be adapted in order to provide code implementations
for domain components. ReFlO seems best suited for mature
and well-understood domains, although our use of ReFlO to
explore designs of CFT servers is an example of a domain that
hardly qualifies as mature. Further, ReFlO is not limited to
domains with stateless computations either. The CFT servers
that we studied were stateful [18].

The graphical notation (syntax) provided by ReFlO is not
sufficient to encode domain knowledge. Pre- and postcondi-
tions are specified in Java; quality attribute definitions and
computations are also specified in Java. Further, we found
that many transformations are simple variations of each other;
using templates substantially reduces the effort to encode
rule variants. This combination of ideas and representations
were sufficient to derive optimized programs in the different
domains that we have studied.

It is possible that DSLs may simplify the task of writing dif-
ferent (and standardized) interpretations, rather than writing
Java code. We leave this exploration to future work.
ReFlO promotes correct by construction derivations. Pro-

viding proofs of correctness for rewrite rules takes effort.
Nevertheless, (i) proving individual transformations correct is
usually simpler than proving the entire system correct and
(ii) proofs for transformations are reusable whereas the proof
for an entire system is usually not. Moreover, experts are far
better able to provide proofs than developers who simply use
the components and rewrite rules that experts have defined.
Although having proof of correctness is important, ReFlO does not
require such proofs.

Finally, we are hardly the first to notice that implementations
of an interface can be specialized for particular inputs and
particular conditions [16]. This forced Perry, and now us, to
use PSP. It is worth observing that violations of the LSP are
documented in the widely used JDK (eg TreeMap implemen-
tation of Map [30]).

8 RELATED WORK

ReFlO is a tool to specify model transformations. Common
tools/languages for model transformation, such as ATL [31]
or Epsilon [32], specify transformations using executable code.

12

Our approach specifies transformations by providing exam-
ples, which has two advantages.

First, it makes it easier for domain experts (the ones with
the knowledge about the valid domain transformations) to
specify transformations [33], [34], [35], [36], [37]. Other ap-
proaches have been proposed to address this challenge. Baar
and Whittle [34] explain how a metamodel (eg for PnF graphs)
can be extended to also support the specification of transfor-
mations over models. In this way, a concrete syntax, similar
to the syntax used to define models, is used to define model
transformations, making those transformations easier to read
and understand by humans. In ReFlO transformations are also
specified using a concrete syntax.

Model transformation by example (MTBE) [33], [35] proposes
to (semi-)automatically derive transformation rules based on
set of key examples of mappings between source and target
models. The approach was improved with the use of Inductive
Logic Programming to derive the rules [38]. The rules may later
be manually refined. Our rules provide examples in minimal
context, and unlike in MTBE, we do not need to relate the
objects of the source and target model (ports of interfaces are
implicitly related with the ports of their implementations). Ad-
ditionally, MTBE is more suited for exogenous transformations,
whereas we use endogenous transformations [39], [40], [41].

More recently, a similar approach, model transformation by
demonstration [36] was proposed, where users show how source
models are edited in order to be mapped to the target models.
A tool [42] captures the user actions and derives the transfor-
mations conditions and the operations needed to perform the
transformations. When using ReFlO it is enough to provide
the original element and its possible replacements.

Graph grammars [43] also provide a declarative way to define
model/graph transformations using examples. In particular,
our rules are specified in a similar way to productions in
the double-pushout approach for hypergraphs [44]. AGG [45]
is probably the most similar tool to ReFlO. It deals with
graph rewrite rules, whereas our transformations are better
captured by hypergraph rewrite rules, due to the role of ports
in the transformations (that specify the gluing points in the
transformation). Moreover, it is not clear whether these other
approaches would be able to capture pre- and postconditions,
which are essential for correct PnF graph derivation.

Another advantage is that ReFlO rewrites make domain
knowledge more accessible to non-experts, as ReFlO encodes
domain knowledge in a graphical and abstract way, relating al-
ternative ways of implementing a particular behavior. Captur-
ing algebraic identities is on the base of algebraic specifications
and term rewriting systems. Relational query optimization [46],
[47] is one of the most successful examples of application
of these ideas, where, as in ReFlO, the goal is to optimize
programs. Program verification tools, such as CafeOBJ [48]
or Maude [49], are another common application. ReFlO was
developed to support DxT approach, where transformations
are specified as graph rewrites, instead of term rewriting.

More generally, ReFlO provides a framework for program
transformation, that allows developers to interactively trans-
form high-level program specifications into optimized imple-
mentations. SPIRAL [50] and AMPHION [51], are examples of
projects with a similar goal, ie to synthesize efficient imple-
mentations for high-level specifications. Besides the differences
in the way as they model the domain knowledge, and the
strategies used to transform programs, the focus of these
tools was on the automation of the synthesis process, whereas

ReFlO is a tool for interactive development. Tools such as
SPIRAL or AMPHION are useful when we have a complete
model of a domain, whereas ReFlO is a tool to be used both by
domain experts in the process of building those domain mod-
els, and later by other developers to optimize their programs.
ReFlO is able to export its models to code that can be used
with DxTer [9], [21] a tool that, like SPIRAL and AMPHION,
automates the search for the optimized implementation.

Several tools for PnF modeling have been proposed, such
as LabVIEW [3], Simulink [5], Weaves [52], Fractal [6], or
StreamIt [53]. However, they focus on component specification
and construction of systems composing those components. We
realized that transformations (in particular optimizations) play
an essential role when building efficient architectures using
components. LabVIEW does support optimizations, but only
when mapping a LabVIEW model to an executable. Users
can not define refinements and optimizations, but LabVIEW
compiler technicians can. More than a tool for the specification
of PnF graphs, ReFlO provides the ability for users to capture
domain specific graph transformations and to apply them to
PnF designs.

The interpretation framework provided by ReFlO offers a
way to perform model simulation/animation, which allows
developers to predict properties of the system being modeled
without having to actually build it. LabVIEW and Simulink
are typical examples of tools to simulate PnF architectures.
Ptolemy II [54] provides modeling and animation support for
heterogeneous models.

Other tools exist for different types of models, such as
UML [55], [56], or Colored Petri Nets [57]. Our work has
some similarities with Model-Driven Performance Engineering
(MDPE) [58]. However, we focus on endogenous transforma-
tions, and how those transformations improve architecture’s
quality attributes, not exogenous transformations, as it is
common in MDPE. Our solution for cost estimation can be
compared with the coupled model transformations proposed by
Becker [59]. However, the cost estimates (as well as other inter-
pretations) are transformed in parallel with the PnF graph, not
during M2T transformations. Other solutions have proposed
for component based systems [60]. KLAPER [61] provides a
language to automate the creation of performance models from
component models. Kounev [62] shows how Queueing Petri
Nets can be used to model systems, allowing prediction of its
performance characteristics. The Palladio Component Model [63]
provides a powerful metamodel to support performance pre-
diction, adapted to the different developer roles. We do not
provide a specific framework for cost/performance estimates,
as the expressiveness of ReFlO’s interpretations framework
allow us to support this capability.
ReFlO allows properties to be assigned to boxes. Properties

are similar to attributes in an attributed graph [64]. Those
properties are then used to specify pre- and postconditions.
Allowing the implementations to have stronger preconditions,
we may say that the rewrite rules may have applicability
predicates [64] or attribute conditions [45], that specify a predicate
over the attributes of a graph when a match/morphism is
not enough to specify whether a transformation can be ap-
plied. Pre- and postconditions were used in other component
systems, such as Inscape [16], with the goal of validating
component compositions. In our case, the main purpose of
pre- and postconditions is to decide when transformations can
be applied. Nevertheless, they may also be used to validate
component compositions.

13

Abstract interpretations [65], [66] define properties about a
program’s state, and specify how instructions affect those
properties. The properties are correct, but often imprecise. Still,
they provide useful information to allow compilers to perform
certain transformations. In ReFlO, postconditions play a sim-
ilar role. They compute properties about operation outputs
based on properties of their inputs, and the properties may
be used to decide whether a transformation can be applied or
not. As for abstract interpretations, the properties computed
by postconditions have to describe output values correctly. In
contrast, properties used to compute costs, for example, are
often just estimates, and therefore may not be correct, but in
this case approximations are usually enough. The Broadway
compiler [67] used the same idea of propagating properties
about values, to allow the compiler to transform the program.
The Broadway compiler separated the compiler infrastructure
from domain expertise, and like in ReFlO, the goal was to al-
low users to specify domain specific optimizations. Specifying
pre- and postconditions as properties that are propagated is
also not new. This was the approach used in the Inscape en-
vironment [68], [69]. Interpretations provide alternative views
of a PnF graph, that are synchronized as it is incrementally
changed [70].

9 CONCLUSIONS

ReFlO was motivated by a lack of technology that would help
us understand legacy pipe-and-filter (PnF) applications. Unless
PnF graphs are very simple, they are spaghetti diagrams—
difficult to understand, impossible to know if they are correct,
and without tool support, difficult to analyze. Existing PnF
tools, by in large, apply basic checks and convert a PnF graph
into an executable, but not much else.

MDE places such tools in context of a much larger
paradigm—the ability, indeed desire, to derive PnF applica-
tions using domain-specific rewrites that are implicitly used by
experts, capturing and systematizing domain knowledge that
would otherwise be lost or easily forgotten. Given a legacy PnF
application, ReFlO makes it possible to derive its design with
rewrite rules that are used by experts, and as we showed in
this paper, rules that can be proven correct. To the best of our
knowledge, this is the first derivation of Gamma that has been
proven correct.

In this paper, we presented the core ideas behind ReFlO.
We showed that the Perry Substitution Principle, rather than
the Liskov Substitution Principle, is a foundation for ReFlO
graph rewrites. We explained how a few basic operations (re-
fine, flatten, abstract, optimize, find optimization, and expand)
could be used by designers to derive PnF designs. Further,
ReFlO is itself an extensible framework in which different
interpretations of a PnF graph (which arise in checking pre-
and postconditions, or cost evaluations) can be both added
and composed as needed. Further, we illustrated a technique
that we have used to populate ReFlO libraries with domain
knowledge—ie different derivations of a design utilize different
fundamental rewrites of a domain.

We believe ReFlO is a valuable step toward interactive
design tools that aid domain-specific program development
and knowledge collection.

Availability: ReFlO is available online at http://www.
cs.utexas.edu/users/schwartz/DxT/reflo/. All PnF
figures in this paper are screenshots from ReFlO. ReFlO is
a Eclipse [71] plugin. The modeling languages were specified

using Ecore [72], and the model editors were implemented
using the GEF [73] and GMF [74]. The model transformations
and model validation were implemented using the Epsilon [32]
family of languages.

Acknowledgements: We gratefully acknowledge support
for this work by NSF grants CCF 0724979 and OCI-1148125. Rui
Gonçalves and João Sobral are funded by ERDF - European Re-
gional Development Fund through the COMPETE Programme
(operational programme for competitiveness) and by National
Funds through the FCT - Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-010152. Rui Gonçalves
is additionally funded by FCT grant SFRH/BD/47800/2008.

REFERENCES

[1] D. Garlan and M. Shaw, “An introduction to software architec-
ture,” Carnegie Mellon University, Tech. Rep., 1994.

[2] I. Crnkovic, Building Reliable Component-Based Software Systems,
M. Larsson, Ed. Artech House, Inc., 2002.

[3] “The LabVIEW Environment,” http://www.ni.com/labview/.
[4] M. M. Gorlick and R. R. Razouk, “Using weaves for software

construction and analysis,” in ICSE ’91: Proceedings of the 13th
international conference on Software engineering, 1991, pp. 23–34.

[5] “Simulink - Simulation and Model-Based Design,” http://www.
mathworks.com/products/simulink/.

[6] E. Bruneton, T. Coupaye, and J. Stefani, “The Fractal Component
Model,” http://fractal.ow2.org, 2004.

[7] D. S. Frankel, Model Driven Architecture: Applying MDA to Enter-
prise Computing. John Wiley & Sons, Inc., 2003.

[8] C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich, “Re-
port on a knowledge-based software assistant,” Kestrel Institute,
Tech. Rep., 1983.

[9] B. Marker, J. Poulson, D. Batory, and R. van de Geijn, “Designing
linear algebra algorithms by transformation: Mechanizing the ex-
pert developer,” in iWAPT ’12: International Workshop on Automatic
Performance Tuning, 2012.

[10] D. Das, “Making database optimizers more extensible,” Ph.D.
dissertation, The University of Texas at Austin, 1995.

[11] N. Wirth, “Program development by stepwise refinement,” Com-
munications of the ACM, vol. 14, no. 4, pp. 221–227, 1971.

[12] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,”
ACM Transactions on Programming Languages and Systems, vol. 16,
no. 6, pp. 1811–1841, 1994.

[13] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A language
and environment for architecture-based software development
and evolution,” in ICSE ’99: Proceedings of the 21st international
conference on Software engineering, 1999, pp. 44–53.

[14] Wikipedia, “Component-based software engineering,” http://
en.wikipedia.org/wiki/Component-based software engineering,
2013.

[15] D. Batory and S. W. O’Malley, “The design and implementation of
hierarchical software systems with reusable components,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 1, no. 4, pp. 355–398, 1992.

[16] D. E. Perry, “Version control in the inscape environment,” in
ICSE ’87: Proceedings of the 9th international conference on Software
Engineering, 1987, pp. 142–149.

[17] R. F. Paige, D. S. Kolovos, and F. A. C. Polack, “Refinement
via consistency checking in MDA,” Electronic Notes in Theoretical
Computer Science, vol. 137, no. 2, pp. 151–161, 2005.

[18] T. L. Riché, R. C. Gonçalves, B. Marker, and D. Batory, “Pushouts
in software architecture design,” in GPCE ’12: Proceedings of the
11th ACM international conference on Generative programming and
component engineering, 2012, pp. 84–92.

[19] R. C. Gonçalves, “Parallel Programming by Transformation,”
Ph.D. dissertation, Departamento de Informática, Universidade
do Minho, (To appear).

[20] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin, “On
the use of higher-order model transformations,” in ECMDA-FA
’09: Proceedings of the 5th European Conference on Model Driven
Architecture - Foundations and Applications, 2009, pp. 18–33.

14

[21] B. Marker, D. Batory, and C. Shepherd, “DxTer: A program
synthesizer for dense linear algebra,” The University of Texas at
Austin, Department of Computer Science, Tech. Rep., 2012.

[22] B. Marker, A. Terrel, J. Poulson, D. Batory, and R. van de Geijn,
“Mechanizing the expert dense linear algebra developer,” in
PPoPP ’12: Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, 2012, pp. 289–290.

[23] D. Batory and B. Marker, “Correctness Proofs of the Gamma
Database Machine Architecture,” University of Texas Department
of Computer Science TR-11-17, 2011.

[24] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker,
H. I. Hsiao, and R. Rasmussen, “The gamma database machine
project,” IEEE Transactions on Knowledge and Data Engineering,
vol. 2, no. 1, pp. 44–62, 1990.

[25] F. Baru, “DB2 Parallel Edition,” IBM Sys. Journal, vol. 34, no. 2,
1995.

[26] B. H. Bloom, “Space/Time Trade-Offs in Hash Coding with
Allowable Errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426,
1970.

[27] J. M. Neighbors, “Software construction using components,”
Ph.D. dissertation, Department of Information and Computer
Science, University of California, Irvine, 1980.

[28] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A
language for streaming applications,” in CC ’02: Proceedings of
the 11th International Conference on Compiler Construction, 2002, pp.
179–196.

[29] “Dataflow application areas,” http://www.ni.com/labview/
applications/, 2013.

[30] “TreeMap (Java Platform SE 7),” http://docs.oracle.com/javase/
7/docs/api/java/util/TreeMap.html, 2013.

[31] “ATL - a model transformation technology,” http://www.eclipse.
org/atl/.

[32] “Epsilon,” http://www.eclipse.org/gmt/epsilon/.
[33] D. Varró, “Model transformation by example,” in MODELS ’06:

Proceedings of the 11th international conference on Model Driven
Engineering Languages and Systems, 2006, pp. 410–424.

[34] T. Baar and J. Whittle, “On the usage of concrete syntax in
model transformation rules,” in PSI ’06: Proceedings of the 6th
international Andrei Ershov memorial conference on Perspectives of
systems informatics, 2006, pp. 84–97.

[35] M. Wimmer, M. Strommer, H. Kargl, and G. Kramler, “Towards
model transformation generation by-example,” in HICSS ’07: Pro-
ceedings of the 40th Annual Hawaii International Conference on System
Sciences, 2007.

[36] Y. Sun, J. White, and J. Gray, “Model transformation by demon-
stration,” in MODELS ’09: Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems,
2009, pp. 712–726.

[37] H. Saada, X. Dolquesa, M. Huchard, C. Nebut, and H. Sahraoui,
“Generation of operational transformation rules from examples of
model transformations,” in MODELS ’12: Proceedings of the 15th
International Conference on Model Driven Engineering Languages and
Systems, 2012, pp. 546–561.

[38] D. Varró and Z. Balogh, “Automating model transformation by
example using inductive logic programming,” in SAC ’07: Pro-
ceedings of the 2007 ACM symposium on Applied computing, 2007,
pp. 978–984.

[39] A. Egyed, N. R. Mehta, and N. Medvidovic, “Software connectors
and refinement in family architectures,” in IW-SAPF-3: Proceedings
of the International Workshop on Software Architectures for Product
Families, 2000, pp. 96–106.

[40] R. Heckel and S. Thöne, “Behavior-preserving refinement relations
between dynamic software architectures,” in WADT’ 04: Proceed-
ings of the 17th International Workshop on Algebraic Development
Techniques, 2004, pp. 1–27.

[41] T. Mens and P. Van Gorp, “A taxonomy of model transformation,”
Electronic Notes in Theoretical Computer Science, vol. 152, pp. 125–
142, 2006.

[42] Y. Sun, J. Gray, and J. White, “MT-scribe: an end-user approach
to automate software model evolution,” in ICSE ’11: Proceedings
of the 33rd International Conference on Software Engineering, 20011,
pp. 980–982.

[43] G. Rozenberg, Handbook of Graph Grammars and Computing by
Graph Transformation, Vol I: Foundations. World Scientific, 1997.

[44] A. Habel, Hyperedge Replacement: Grammars and Languages.
Springer-Verlag New York, Inc., 1992.

[45] G. Taentzer, “AGG: A graph transformation environment for
modeling and validation of software,” in Applications of Graph
Transformations with Industrial Relevance. Springer Berlin / Hei-
delberg, 2004, vol. 3062, pp. 446–453.

[46] G. M. Lohman, “Grammar-like functional rules for representing
query optimization alternatives,” in SIGMOD ’88: Proceedings of
the 1988 ACM SIGMOD international conference on Management of
data, 1988, pp. 18–27.

[47] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price, “Access path selection in a relational database
management system,” in SIGMOD ’79: Proceedings of the 1979
ACM SIGMOD international conference on Management of data, 1979,
pp. 23–34.

[48] R. Diaconescu, K. Futatsugi, and S. Iida, “Component-based al-
gebraic specification and verification in CafeOBJ,” in FM ’99: Pro-
ceedings of the Wold Congress on Formal Methods in the Development
of Computing Systems-Volume II, 1999, pp. 1644–1663.

[49] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and J. F. Quesada, “Maude: specification and pro-
gramming in rewriting logic,” Theoretical Computer Science, vol.
285, no. 2, pp. 187–243, 2002.

[50] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson,
D. Padua, M. Veloso, and R. W. Johnson, “Spiral: A generator
for platform-adapted libraries of signal processing algorithms,”
International Journal of High Performance Computing Applications,
vol. 18, no. 1, pp. 21–45, 2004.

[51] M. R. Lowry, A. Philpot, T. Pressburger, and I. Underwood,
“Amphion: Automatic programming for scientific subroutine li-
braries,” in ISMIS ’94: Proceedings of the 8th International Symposium
on Methodologies for Intelligent Systems, 1994, pp. 326–335.

[52] M. M. Gorlick and R. R. Razouk, “Using Weaves for Software
Construction and Analysis,” in ICSE, 1991.

[53] W. Thies, “Language and compiler support for stream programs,”
Ph.D. dissertation, MIT, 2008.

[54] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs,
Y. Xiong, and S. Neuendorffer, “Taming heterogeneity - the
ptolemy approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–
144, 2003.

[55] B. Combemale, X. Crégut, J.-P. Giacometti, P. Michel, and M. Pan-
tel, “Introducing simulation and model animation in the MDE
topcased toolkit,” in ERTS ’08: 4th European Congress Embedded
Real Time Software, 2008.

[56] D. Dotan and A. Kirshin, “Debugging and testing behavioral UML
models,” in OOPSLA ’07: Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications
companion, 2007, pp. 838–839.

[57] A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup,
M. S. Stissing, M. Westergaard, S. Christensen, and K. Jensen,
“CPN tools for editing, simulating, and analysing coloured petri
nets,” in ICATPN ’03: Proceedings of the 24th international conference
on Applications and theory of Petri nets, 2003, pp. 450–462.

[58] M. Fritzsche and J. Johannes, “Putting performance engineering
into model-driven engineering: Model-driven performance engi-
neering,” in Models in Software Engineering. Springer-Verlag, 2008,
pp. 164–175.

[59] S. Becker, “Coupled model transformations,” in WOSP ’08: Pro-
ceedings of the 7th international workshop on Software and performance,
2008, pp. 103–114.

[60] H. Koziolek, “Performance evaluation of component-based soft-
ware systems: A survey,” Performance Evaluation, vol. 67, no. 8,
pp. 634–658, 2010.

[61] V. Grassi, R. Mirandola, and A. Sabetta, “From design to analysis
models: a kernel language for performance and reliability analysis
of component-based systems,” in WOSP ’05: Proceedings of the 5th
international workshop on Software and performance, 2005, pp. 25–36.

[62] S. Kounev, “Performance modeling and evaluation of distributed
component-based systems using queueing petri nets,” IEEE Trans-
actions on Software Engineering, vol. 32, no. 7, pp. 486–502, 2006.

[63] S. Becker, H. Koziolek, and R. Reussner, “The palladio compo-
nent model for model-driven performance prediction,” Journal of
Systems and Software, vol. 82, no. 1, pp. 3–22, 2009.

[64] H. Bunke, “Attributed programmed graph grammars and their
application to schematic diagram interpretation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 4, no. 6, pp.
574–582, 1982.

[65] P. Cousot and R. Cousot, “Abstract interpretation: a unified
lattice model for static analysis of programs by construction or

15

approximation of fixpoints,” in POPL ’77: Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, 1977, pp. 238–252.

[66] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Springer-Verlag, 1999.

[67] S. Z. Guyer and C. Lin, “Broadway: A compiler for exploiting the
domain-specific semantics of software libraries,” Proceedings of the
IEEE, vol. 93, no. 2, pp. 342–357, 2005.

[68] D. E. Perry, “The inscape environment,” in ICSE ’89: Proceedings
of the 11th international conference on Software engineering. ACM,
1989, pp. 2–11.

[69] ——, “The logic of propagation in the inscape environment,”
ACM SIGSOFT Software Engineering Notes, vol. 14, no. 8, pp. 114–
121, 1989.

[70] I. Ráth, G. Varró, and D. Varró, “Change-driven model trans-
formations,” in MODELS ’09: Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems,
2009, pp. 342–356.

[71] “Eclipse,” http://eclipse.org.
[72] “Eclipse Modeling Framework,” http://www.eclipse.org/

modeling/emf/.
[73] “Graphical Editing Framework,” http://www.eclipse.org/gef/.
[74] “Eclipse graphical modeling framework,” http://www.eclipse.

org/gmf/.

APPENDIX

Figure 22 is not the last word on Gamma’s graph. Optimiza-
tions identical to those presented in Section 3.2.4 are used to
optimize the processing of cascading joins, where the output
of one join becomes the input of another (see Figure 28).

Fig. 28. CascadeJoin graph.

Applying the refinements parallelhjoin and
bloomfilterhjoin, as described in Section 6.2, we get
the graph depicted in Figure 29(a). This example further
shows the importance of deriving the PnF graphs, instead
of just using pre-built optimized implementations for the
operations present in the initial PIM (in this case, HJOIN
operations). The use of the optimized implementations for
HJOIN would have resulted in an implementation equivalent
to the one depicted in Figure 29(a). However, when we
compose two (or more) instances of HJOIN, new opportunities
for optimization arise. We have again a serialization bottleneck,
formed by a composition of boxes MERGE (that merges the
output streams of the first group of HJOINs) and HSPLIT
(that hash-splits the stream again).

Here again, refinement is insufficient to derive Gamma’s graph;
encapsulation boundaries must be broken to eliminate serialization
bottlenecks. Unlike the bottlenecks in the previous section,
cascading joins use different keys to hash the tuples, so the
partitioning of the stream before its merge is different than
the partitioning after the hash-split. Therefore, we cannot use
algorithm mhs identity to optimize this subgraph.14 Instead,
we use a rewrite that removes these bottlenecks by swapping
(MERGE, HSPLIT) pairs (algorithm mhs hsplitmerge). Each
input stream is hash-split into two substreams, that are sent

14. We prevent algorithm mhs identity from being chosen using
preconditions.

to the each MERGE box. The substreams with the same hash
values are then merged.

16

(a)

(b)

Fig. 29. Rotation of MERGE and HSPLIT.

