Proceedings of the 14th International Conference on Computational Science and Its Applications - ICCSA.
Identifying bad design patterns in software is a successful and inspiring research trend. While these patterns do not necessarily correspond to software errors, the fact is that they raise potential problematic issues, often referred to as code smells, and that can for example compromise maintainability or evolution. The identication of code smells in spreadsheets, which can be viewed as software development environments for non-professional programmers, has already been the subject of con uent researches by dierent groups. While these research groups have focused on detecting smells on concrete spreadsheets, or spreadsheet instances, in this paper we propose a comprehensive set of smells for abstract representations of spreadsheets, or spreadsheet models. We also propose a set of refactorings suggesting how spreadsheet models can become simpler to understand, manipulate and evolve. Finally we present the integration of both smells and refactorings under the MDSheet framework.