Electronic Notes in Theoretical Computer Science 20 (1999)
URL: http://www.elsevier.nl/locate/entcs/volume20.html 27 pages

Type-checking Balloon Types

Paulo Sérgio Almeida

Departamento de Informdtica
Universidade do Minho
Braga, Portugal

Abstract

Current data abstraction mechanisms are not adequate to control sharing of state in
the general case involving objects in linked structures. The pervading possibility of
sharing is a source of errors and an obstacle to language implementation techniques.

Balloon types, which we have introduced in [2], are a general extension to pro-
gramming languages. They make the ability to share state a first class property of
a data type. The balloon invariant expresses a strong form of encapsulation: no
state reachable (directly or transitively) by a balloon object is referenced by any
external object.

In this paper we describe the checking mechanism for balloon types. It relies
on a non-trivial static analysis, described as an abstract interpretation. Here we
focus in particular on the design of the abstract domain which allows the checking
mechanism to work under realistic assumptions regarding possible object aliasing.

1 Introduction

Modern imperative languages (object-oriented languages in particular) have
benefited from advances such as structured control-flow, data abstraction [9,11],
subtype polymorphism [6,4], and bounded parametric polymorphism [7]. In
spite of all these advances, programming in object-oriented languages remains
an error prone activity, and reasoning (either people or static analysis tools)
remains difficult. We consider that one of the reasons for this is a flaw in
current data abstraction mechanisms: they do not provide an appropriate
mechanism to organise the state (i. e. the graph of objects) manipulated by
the program. The direct cause of the problem is the trivialisation of the use
of references (pointers), with no appropriate mechanism to control the prolif-
eration of inter-object references.

Not much has been done to address the problem; one of the few attempts
has been the Islands [12] proposal. Balloon Types, which we have introduced
in [2], is a general language/type-system mechanism which aims to resolve the
problem by making the ability to share state a first-class property of a data

(©1999 Published by Elsevier Science B. V. Open accessunder CC BY-NC-ND license,

http://creativecommons.org/licenses/by-nc-nd/3.0/

ALMEIDA

Point = { x,y:Int;
move (Int,Int)
} \
Rectangle = { p1,p2:Point;
rotate (Int)
}
rl,r2:Rectangle;

ol i rip2; Lo A
ri.iitate(;ol)p? Q QQ QQ Q

r2.rotate(4b);

Fig. 1. Two Rectangles Sharing State

type. A detailed presentation of balloon types and the checking mechanism,
can be found in [3].

In Section 2 we discuss briefly the problems caused by accidental state
sharing and why current data abstraction mechanisms do not provide appro-
priate support. We review the basic idea of balloon types in Section 3 and we
present the balloon invariant in Section 4.

Section 5 is the central part of the paper; it presents the checking mech-
anism for balloon types. The mechanism is based on an abstract interpreta-
tion [8] which a candidate program undergoes so as to check that the balloon
invariant will definitely hold at run-time. The abstract interpretation is some-
what involved and, due to space constraints, we will restrict to presenting the
more central part, the base abstract domain. We do, however, take some care
in discussing its design.

2 Sharing of State

In many object-oriented languages (eg. Smalltalk [10], Java [5]) variables of
user-defined types are references to objects, and the assignment has reference
semantics (copies just the reference). This makes sharing of objects by other
objects (static aliasing) possible. As an example, consider the type Rectangle
in Figure 1.

After the assignment both rectangles share a common point object. (As
in Simula [9] we have used the ‘:-" notation for reference assignment.) Con-
sider the operation rotate which updates the point objects that constitute a
rectangle; there would be interference between the two rotate operations, as
the first would modify a point that is accessed by the second.

Although sharing can be useful and may be desired in some cases, this is
probably not what the users of rectangle objects would desire. They would
expect that each rectangle is a self-contained object, and that operations on

2

ALMEIDA

Shape = { rotate(Int) }

Rectangle <: Shape

= { p1,p2:Point }
Circle <: Shape

= { c:Point; r:Real }
Polygon <: Shape

= { List[Point] }
Graph <: Shape

={ ...}

a:Array[Shapel;
for 1 =1 to N (TN T 1
al[i] .rotate(45);

Fig. 2. An array of shapes

different rectangles do not interfere.

Programmers can obtain a copy of a point instead of copying a reference
to it, but they can copy the reference accidentally. This can easily happen if
the available assignment operator copies just the reference.

Consider now a Shape type with several subtypes such as Rectangle and
Polygon. Some of these types may require pointer structures such as a linked
list of points in the case of polygon. Some of the structures may even contain
cycles. Suppose we have an array of shapes and a loop which rotates each of
the shapes in the array, as illustrated in Figure 2.

It could happen contrary to the programmer’s intent that two shapes share
the whole or part of the objects of their states, as illustrated by the dashed ar-
rows. This would imply that performing a rotate on one shape would interfere
with other rotate operations, contrary to the expectations of the programmer.

This pervading possibility of sharing state is what makes it difficult to
reason about programs in procedural or object-oriented languages. Contrast
the shapes example with plain integers:

a:Array[Int];
for 1 =1 to N
increment (a[il) ;

Although trivial for integers, it can be extremely difficult for the compiler
to determine in the case of shapes if the different iterations of the loop interfere.

3

ALMEIDA

3 Balloon Types

According to [15], a data abstraction is ‘an object whose state is accessible
only through its operations’. It may be thought that current data abstraction
mechanisms are appropriate enough for controlling sharing of state. The prob-
lem is that currently they just control the access to the state variables and
not to the whole reachable state; they consider it ‘other objects’. However,
to reason about program behaviour it matters precisely whether these ‘other
objects’ are shared.

Only by thinking of the state associated with an object as the state directly
or transitively reachable by the state variables is it possible to argue about
whether the state is encapsulated (and not referenced by external objects), or
is shared (and part of it is also referenced by external objects). This is how
we see state and encapsulation of state.

However, even if technically possible, a data type should not always enforce
encapsulation of state (as we see it). Although encapsulation may be wanted
for some types, for others sharing may be needed. Designers of data types
must be able to choose.

The point we make is that current languages do not provide a suitable
mechanism for making this choice. One source of problems is precisely because
this choice is not apparent (it may not even have been considered), and users
of a data type may have wrong expectations about the behaviour in terms of
sharing.

The basic idea of balloon types is precisely to make the ability to share
state a first class property of data types, as important as the operations pro-
vided and their signatures. Among other things: it becomes part of a type
definition, it is considered in type-checking, it affects what code programmers
are allowed to write, it is considered in reasoning about programs, and it is
used in compiler optimisations.

We propose a binary classification of data types with respect to sharing
properties. Any data type is classified as either a balloon type or a non-balloon

type.

* Balloon types are used to prevent unwanted sharing of state, guaranteeing
a strong form of encapsulation. They result in cleaner semantics, being a
means to prevent unexpected interference.

* Non-balloon types correspond to what current languages offer regarding
user-defined types. They allow full freedom of sharing and can be used to
represent linked structures with possible substructure sharing.

Considering a snapshot of the run-time object structures at a given instant,
we can look at it as an object graph: a finite directed graph whose nodes
correspond to objects and whose edges correspond to inter-object references
(pointers); the nodes can be labeled as balloon or non-balloon, corresponding
to the classification of the corresponding object types.

4

ALMEIDA

Shape = balloon { rotate(Int) }

Rectangle <: Shape

= { p1,p2:Point }
Circle <: Shape

= { c:Point; r:Real }
Polygon <: Shape

= { List[Point] }
Graph <: Shape

={ ...}

a:Array[Shapel;
for 1 =1 to N
al[i] .rotate(45);

Fig. 3. An array of balloon shapes

Balloon types provide an invariant regarding the structure of the object
graph; essentially:

* Objects of a balloon type are unsharable by state variables of objects.

» All the state reachable by a balloon object is encapsulated, in the sense that
no part of it can be referenced by state variables of any ‘external’ object.

Some examples of balloon types are primitive types such as integer, real
and boolean. People expect that they may be at most (and preferably not) dy-
namically aliased, but not statically aliased (not shared by different objects).
There is no more than one object owner of an integer object, and there are no
objects which can have a reference to part of the state of an integer object (a
reference to some bit).

In the example shown in Figure 3 the programmer has chosen Shape to be
a balloon type to obtain ‘nice’ semantics in its use in programs. It prevents
accidental sharing even if each shape is a complex structure with internal
sharing and even cycles.

In the loop presented, the balloon invariant makes clear to both program-
mer and compiler the absence of interference between iterations: performing
a rotate on a shape a[il does not affect a shape a[j] (when i and j are
different). This makes reasoning about the program easier and the compiler
can perform loop transformations such as parallelisation. This is accomplished
with an almost negligible syntactic cost; if we compare Figure 2 with Figure 3,
there is only one extra keyword in the new program.

This figure also illustrates that in spite of the binary classification, both
balloon and non-balloon objects can be used as part of the state of each other.
This results in a hierarchical organisation of the object graph, important for

5

ALMEIDA

the scalability of the mechanism.

We consider static type-checking as the useful thing to do regarding balloon
types:
» Whether some type is a balloon type is declared by one keyword (such as

balloon) in the definition of the type; no syntactic cost is imposed on client
code.

* A candidate implementation of the type undergoes a non-trivial compile-
time checking which enforces the run-time invariant for objects of the type;
the implementation may be accepted or rejected. No checking of non-
balloon client code is needed.

The emphasis is on extreme syntactic simplicity, placing the burden on
the compiler. We consider this important for the success of the integration of
balloon types in languages and the acceptance by programmers.

4 The Balloon Invariant

We now describe more precisely the run-time invariant which is enforced by
balloon types. Every object is an instance of either a balloon or a non-balloon
type, and thus the terms balloon and non-balloon object. First we present
some definitions.

Definition 4.1 [Cluster| Let G' be the subgraph of the object graph obtained
by removing all edges corresponding to references to balloon objects. A cluster
is the set of objects in a connected subgraph of G' that is not contained in a
larger connected subgraph.

The set of all clusters is thus a partition of the set of all objects.
Definition 4.2 [Internal] An object O is said to be internal to a balloon
object B iff :

* O is a non-balloon in the same cluster as B or

* O is a balloon referenced by B or by some non-balloon in the same cluster
as B or

e there exists a balloon B’ internal to B and O is internal to B’.

Definition 4.3 [External] An object is said to be ezternal to a balloon object
B iff it is neither B nor internal to B.

Now we can state the invariant.
Definition 4.4 [Balloon Invariant] If B is an object of a balloon type then:

I; There is at most one reference to B in the set of all objects.
I, This reference (if it exists) is from an object external to B.

I3 No object internal to B is referenced by any object external to B.

6

ALMEIDA

.
i nternal

cluster of B B obj ects

(shaded obj ects)

ext ernal
obj ects

Fig. 4. A balloon B and its internal and external objects

Figure 4 clarifies these concepts. We should stress that the invariant is
concerned with the organisation of the object graph (objects and inter-object
references); it ignores references in variables from the chain of procedure calls
(i.e. temporary local variables). In other words, the invariant is concerned
with static aliasing, ignoring dynamic aliasing [13].

The invariant deserves some explanation, in particular why internal objects
were not simply defined as the objects in the state of the balloon (that is,
reachable by the transitive closure of the references relation). With such
definition we would have the ‘naive invariant’. However it would not be as
useful or feasible of being enforced as the chosen invariant; the reason for this
is as follows.

During the execution of some operation of a balloon type several objects
may be created. Some of them may be temporary, only referenced by local
variables (or other similar objects), and not incorporated into the state of
any ‘external’ object, being subject to garbage collection when the function
terminates. The figure shows an object only referenced by a local variable (x).
While they exist these objects may store references to the state of a balloon.
This violates the naive invariant as these objects are not part of the state of
the balloon but have references to the state. Even if such scenario did not ac-
tually happen, the mere possibility of it happening would lead to conservative
rejection of code by a checking mechanism. For both these reasons, the naive
invariant would make the set of valid programs unnecessarily restricted.

In the balloon invariant such temporary non-balloons are allowed and are
classified as internal objects. They are allowed to be created and manipulated
by a procedure of a balloon type, but will be prevented from being returned to
client code, as we will discuss later. The state reachable by a balloon object

7

ALMEIDA

is a subset of the internal objects; it is encapsulated in the sense that it is
prevented from being referenced by external objects.

5 Type-checking Balloon Types

In this section we present the essence of the checking mechanism for balloon
types: a static analysis, presented as an abstract interpretation, to verify that
the balloon invariant holds for all object graphs which may occur during the
execution of a given program. We use an approach to abstract interpretation
based on logical relations, inspired by Abramsky’s [1], which we describe in [3].
We define a simple language (RISO), and present a standard denotational
semantics, followed by the abstract semantics.

The mechanism as presented here involves a global program analysis, some-
thing which is not realistic nor intended. We cannot afford to discuss here
modularity, nor other relevant issues for incorporating balloon types in ‘real’
languages, but they are addressed in [3].

Due to space limitations, we will not address functions in RISO as well
as in the concrete and abstract semantics; we will concentrate on the base
domains and the semantics of simple statements; also, all proofs have been
omitted.

5.1 An Equivalent Invariant

It will be useful to express the invariant in another form. For this we define
I4I

Definition 5.1 [/;] From all objects that make up a cluster, at most one is
a balloon object.

It can be shown that the balloon invariant is equivalent to Iy A Iy A I,. The
balloon type-checking mechanism enforces this last expression. I; is enforced
by a simple rule concerning the reference assignment, which we present next,
while I and I are enforced by means of the abstract interpretation.

5.2 Reference and Copy Assignment
Programs with balloon types will be subject to the following rule:

Definition 5.2 [The Simple Rule] A reference to a (pre-existing) balloon can-
not be stored in any state variable of any object (by the reference assignment).

This means that no statement like

X.v :— b;

is allowed when b is of balloon type. It is important to note that the rule only
mentions state variables of objects. This means that stack based variables and
state variables of objects are treated differently by the type system.

8

ALMEIDA

The rule emphasises the difference between ‘temporarily’ using a reference
to an object and storing the reference in some state variable of an object.
This last case is what creates sharing of objects by other objects, and it is
forbidden for balloon types.

The simple rule is enough to enforce I;, while allowing great freedom in the
use of balloons: a reference to a balloon can be stored in variables, passed as
argument to functions and returned from functions. The only case prevented
is storing the reference in a state variable of some object. In particular, a
function of a balloon type can safely return a reference to an internal balloon
and client code can use the reference to invoke operations on it.

As an example, to illustrate the usefulness of balloon references despite
this restriction, consider a dictionary containing elements that can be searched
using a key. Here the elements are shapes and the keys are strings. We define
a function which invokes a search to locate a shape and then rotates and moves
the shape:

DictShape = balloon Dictionary[Elem = Shape, Key = String];

rotate_and_move(ds:DictShape, name:String)

{
s:Shape;
s :- ds.search(name);
s.rotate(45);
s.move(10,15);

+

Here both shape and dictionary of shape are balloon types. The simple
rule allows the search to safely return a reference to an internal shape of the
dictionary, as it will be forbidden to be stored in any object.

The simple rule implies that state variables of balloon type can only be
made to reference newly created balloons. This can be done with a general
copy mechanism with the semantics of deep-copy (as in e.g. [14]), which
creates a copy of a balloon and all its reachable state, while preserving internal
sharing. It can be provided as a copy assignment:

x.shape := s;

This copy assignment—which we denote by ‘:="as opposed to ‘: =’ for refer-
ence assignment—is the natural generalisation of the assignment for primitive
types; it copies the (composite) value associated with the object. It emphasises
‘obtain new object’ as opposed to ‘reference existing object’.

5.3 RISO

RISO is an imperative language with recursive definition of functions and
shareable objects. RISO models accurately both the possibility of several
variables referring to the same object (dynamic aliasing) and the sharing of

9

ALMEIDA

0:0p ==+[-[x]/|=]<]>
e:Exp »=n|zoy|isnullx
a:Asgn=x:—y|x:—y.z|2r:—null |z :— new |

z.y:— 2z |z.y:—null | 2.y :— new |

r<—e

Fig. 5. Abstract syntax of RISO

objects by state variables of other objects (static aliasing). This is accom-
plished by making every variable or state variable a reference to a possibly
shared object.

Integers do not receive a special treatment: integer variables are also ref-
erences to possibly shared integer objects. It can be argued that the use of
integers in RISO does not correspond to realistic languages. We note, how-
ever, that RISO should be regarded more as a target language that not only
allows translating some restrictive ways in which integers are treated in a par-
ticular language, but which also allows different possibilities of both dynamic
and static aliasing to be expressed in a orthogonal way for all data-types.
The idea is to make no exception so that all data-types are treated alike, and
to provide full freedom of sharing so that restrictions can be later expressed.
Integers are only included to give the language a traditional form and make
it naturally expressive without resorting to artificial encodings; integers also
play the role of boolean values (0 plays the role of true and any other number
the role of false).

The abstract syntax is given in Figure 5. We use n € N for numbers and
x, y and z—ranging over a set of identifiers /—for identifiers of both variables
and (object) state variables. An expression with integers is restricted to being
a number, an operation between integer variables and the test for the null
reference.

The reference assignment is denoted by “:—’. We use the traditional dot
notation to access state variables; null for the null reference; isnull for
the test for a null reference; and new for the creation of objects (including
integer objects which are initialised to zero). We also have the operator ‘<—’
for performing updates on integer objects (changing the associated integer
value), because the “:—’ assignment does not modify the integer object but
makes the variable reference some other object.

To avoid considering both type annotations and type-checking in the classic
sense (something which in this first-order non-polymorphic language is trivial
but also irrelevant and distracting), and to concentrate on the balloon aspect,
we assume a simple type checking of a type annotated version of RISO is
performed, producing:

10

ALMEIDA

a set of object types T', with Int € T',
* the set I of variable identifiers in the program,

» a mapping typeof : I — T (we assume, without loss of generality, that a
given identifier cannot be used for different object types in different parts
of a program),

 a predicate balloon : I — {true, false}, corresponding to the annotation
which will be the subject of the checking, with balloonz = balloony if
typeof x = typeofy, and with balloon z = true if typeof x = Int,

* a program free of annotations, with the above described abstract syntax
and which is type correct in the simple sense that types are compatible in
assignments, and for identifiers = used in expressions (Ezp) typeof z = Int.

5.4 Standard Denotational Semantics of RISO

We now present a denotational semantics for RISO. It is the concrete seman-
tics to which the abstract semantics will be related. This semantics models
accurately both ‘heap allocated’ objects and recursive definitions of functions,
being suitable to be adapted to real imperative languages. ‘The state’ has two
components:

* one is a mapping from variables to addresses;

* the other is a mapping from addresses to object values, defining the object
graph.

An object value can be an integer or a record, the latter represented by a map-
ping from (state) variables to addresses. (We have chosen the term address
without implying that it corresponds to physical addresses in some implemen-
tation. Others may prefer the term object identifier.)

The semantic domains are given in Figure 6. In the representation of
object graphs addresses not in use are mapped to the undefined object (Lo).
In the representation of a record the identifiers which are not part of the record
remain mapped to the null address (L 4). This enables us to work with total
mappings. Note also the discreteness of S, instead of having the standard
coordinatewise order; otherwise most functions would not be monotone, and
hence continuous.

Figure 7 lists the semantic functions. There is a function for each cor-
responding syntactic set in the abstract syntax. This factors similar cases,
which helps in keeping down the size of the function definitions.

The definition of the semantic functions is given in Figure 8.

The semantic functions reflect what we have informally described, and we
will only make a few remarks. Accessing a state variable of an object z.y
causes program abortion if x is the null reference, to what corresponds L;
these cases are expressed using the let — <= —. — construct.

11

ALMEIDA

N discrete cpo of numbers

~

finite discrete cpo of identifiers
A finite flat cpo of addresses
(L4 denotes the null address)
V=[I— A] pointed cpo of variable mappings
Ly denotes the null mapping
O = (N +V), pointed cpo of object values
(Lo denotes the undefined object)
G =[A— O] pointed cpo of graphs of objects
L& denotes the null graph
S=GxV discrete cpo, ‘the state’

Fig. 6. Semantic domains

OiOp—)(NLXNL)—)NL
E:Fxp—>S— N,
A:Asgn— S — S|

Fig. 7. Semantic functions

The semantic functions make use of a function alloc : G — A, which we do
not need to specify fully; we only assume this function satisfies the following
properties, typical of a memory allocation function:

Vge G.((Vae A\ Ls.ga# Lp) = allocg = 1,)
A((Fa# La.ga=1p)=allocg# La A g(allocg) = Lo).

That is, it returns the null address (L 4) if there are no free memory addresses,
and returns a free memory address otherwise.

5.5 Base States in the Abstract Interpretation

Here we describe the way we abstract the relevant properties about concrete
states. To best understand the structure of the resulting domain, the presen-
tation is divided in two parts.

* First we describe a domain which represents the information about clusters:

12

ALMEIDA

&n] = Mg, v). [n]
Elz oyl = Mg v). Ofo](g(v), g(vy))

. 0] if vx = Ly,
E[isnull x] = \g,v). { '

|1] otherwise.
Al =] = Mg, v)- g, vlz = vyl
Az :—y. 7] = Mg, v).leta < vy. |g,v[r — gla]z]]
Az :— null] = A(g,v). |g,v[x— L4]]
Afz :—new] = A(g,v).leta < allocg. |g[|a]| — o], vz — |a]]]
here o — 0] if typeofz = Int,
| Ly | otherwise.

Alz.y :— 2] = ANg,v).leta < vz. |g[|a] — gla]ly — vz]],v]

Alz.y :— null] = A(g,v).leta < vz. |g[|la| — glal[y — La]],v]
Alz.y :— new] = A(g,v).leta, < vx.leta, < allocg.

L9llan] = olllaz] = glau]ly = Lan]], 0]

0] if typeofy = Int,
where 0 =
| Ly | otherwise.

Afz <— €] = Mg, v).leta <= vx.leti <= E[e](g,v). Lg[la] — [i]], v]

Fig. 8. Semantic function definitions

whether different variables may reference objects in the same cluster and
whether the cluster is free (does not contain any balloon object) or cap-
tured. This would be the base domain used if only invariant I, needed to
be enforced.

* Then we present the base domain used in the actual abstract interpretation
(which must also take invariant I, into account). This domain is obtained
by refining each original state into several states, by adding information
about cluster relationships: whether a free cluster may ‘reach’ a captured
cluster.

From the set of concrete states S, we will concentrate essentially on the
set of valid states S,—the set of states in which the invariant holds. This set
will be abstracted to a set C.

All invalid concrete states are represented by one more abstract state. We
do not need to further discriminate them because if an invalid state results

13

ALMEIDA

at some point, the analysis terminates and the outcome is ‘invalid program’.
Thus, we only need to discriminate relevant information about valid concrete
states.

5.5.1 Representing Clusters

A concrete state (a variable mapping and an object graph) is a complex struc-
ture. We do not, however, need to manipulate it directly. The relevant (for
now) information about concrete states can be summarised by two functions
(which only serve presentation purposes and are not used in the actual static
analysis):

e P:S, — P(I x I) maps a valid state to an equivalence relation on I. We
have (z,y) € Ps iff in the state s, and y reference objects in the same
cluster.

* B:S,xP(I) — N gives the number of balloons in all clusters referenced by
the given set of identifiers in the given state.

Abstract States and the Abstraction Function
Each element of S, is abstracted into an element of a finite set C', which

constitutes a direct representation of what is expressed by the above functions.
Elements of C' have the form (p,b) € P(I x I) x (I — {0,1}) such that:

* p is an equivalence relation on the set of identifiers I; defining a partition
according to what variables reference objects in the same cluster.

* b is a function from equivalence classes to {0, 1}; representing the number
of balloons in the cluster corresponding to the given equivalence class. b is
presented as a function with domain I and the invariant x p y = bx = by.

We use a function to {0,1} because in a valid state a cluster can have
at most one balloon (as expressed by invariant I4). The abstraction function
a: Sy, — C'is defined directly in terms of P and B:

a = As. (Ps,\z. B(s, {z})).

The way C'is defined, for each element of C' there will be at least one concrete
state abstracted into it; that is, a is surjective.

The Concretisation Function

While a concrete state in S, is abstracted to a single state in C', each
element of C' represents a set of concrete states which is larger than the set of
those elements abstracted to it. For a given abstract state (p, b):

* If x and y are not both mapped to 1 by b, and are not in the same equivalence
class in p, then in the corresponding concrete states, x and y definitely do
not reference objects in the same cluster.

If they are both mapped to 1 by b or belong to the same equivalence
class, then nothing can be assumed: they may reference objects in the same

14

ALMEIDA

cluster.

o If bx = 0 it means that there is definitely no balloon in the cluster referenced
by x. If bx = 1 it means that there may exist one balloon in the cluster
referenced by z. (This is included in the following point.)

e There is at most one balloon in the union of all clusters referenced by the
set, of identifiers in an equivalence class which is mapped to 1 by b.

This is given by the concretisation function v: C' — P(Sy):

vy=Ap,b).{s€ Sy |Vr,yel. (bx=0Vby=0)Azpyy= (x,y) & Ps)
A B(s,p{z}) < bx}.

This choice of what an abstract state represents follows from the assump-
tions that must be made and the purpose of the analysis, as we now explain:

* Here we aim to check that invariant I, is not broken; towards this, we want
to forbid two clusters from being merged when each cluster may have one
balloon object. From this it follows that it matters to know that either
definitely there are no balloons in a cluster or there may exist one. (It is
irrelevant to know that there is definitely one.)

* In order to decide whether an operation that may merge clusters is to be
allowed, the states have been designed so that a variable z that references
a cluster with no balloons (bx = 0), definitely references a different cluster
than other variable in a different equivalence class. In this case x can be
used in such operation, with the result of merging the equivalence classes
in the abstract semantics.

However, due to loss of information in the analysis, we may not be sure
whether clusters have been actually merged. Therefore, when two variables
are in the same equivalence class they may reference different clusters.

* When two variables x and y reference clusters which possibly have one
balloon (bx = by = 1), they may be in different equivalence classes and
reference objects in the same cluster. The reason is that if both variables
point to possibly captured clusters, they must be forbidden to appear in
some operation which may merge the clusters when more than one cluster
may be involved. In this case there is no point in trying to establish that
the variables involved definitely point to different clusters.

More than unnecessary, it is indeed important that no assumption is
made. The reason is that, when a procedure of some balloon type has several
parameters of that type, the checking must assume that they may point to
different balloons (under a modular checking no assumptions can be made
regarding client code), and the corresponding variables must be in different
equivalence classes. However, it may be the case that dynamic aliasing
exists, and several variables point to the same cluster. The mechanism
must work under this possibility of dynamic aliasing.

Even if preventing dynamic aliasing may be desirable, such can only be

15

ALMEIDA

accomplished either by an overly conservative static mechanism, or by dy-
namic checking. Therefore, absence of dynamic aliasing is something which
we do not assume/enforce in the balloon mechanism.

e The final remark we make is about variables in the same equivalence class
mapped to 1 by b. They may point to different clusters, but they must be
allowed to be used together in operations that possibly merge the clusters
(if they had not already been merged). Thus, we must assume that at most
one balloon is present even if more than one cluster is involved.

The pair of functions o and ~ satisfy the expected property that the ab-
straction of a given concrete state s represents a set of concrete states which
include s. That is, for all s € Sj:

{s} € v(as).

We now present some examples of abstract states and corresponding con-
crete states. We use a graphic notation to refer to elements of C; this is not
only much more compact but also more ilustrative than using tuples and plain
set notation. An element (p,b) represented as [Xy]z means that there are two
equivalence classes defined by p—{z,y} and {z}—and that b maps {z,y} to
1, and {z} to 0. Concrete states are also exemplified graphically, in this case
by drawing a graph of objects.

Figure 9 contains some examples of concrete and abstract states when
two variables (x and y) are involved. For two variables there are six possible
abstract states. The figure shows six representative concrete states (labeled
a through f), each one abstracted into one of the possible states, as shown
in the table. In the table are also shown (ticked), for each abstract state,
which are the corresponding concrete states. For example, a and ¢ belong to
v(x®), and all concrete states belong to (). All cells in the diagonal
are ticked, as required by {s} C (as) for all concrete states s. We remark
that in state d, variables z and y point to different clusters, as a reference
from a non-balloon to a balloon does not make the objects belong to the same
cluster; therefore ad = Xy .

Order in the Abstract States

The function v induces a partial order on C' such that v becomes an order-
embedding of C into P(Sy); that is, such that for all ¢;,¢; € C' we have
c1 C ¢y < e € yeg. This happens if we define the order as:

Definition 5.3

(p1,01) C (p2,ba) & (b1 E by) AV, y € 1.
(xpryANxphy= byr =0by=1)
N@phyNspry=bix+by < box).

16

ALMEIDA

AN LN

I

a) b)

Yo
) - @
c) d)
X y
X — //y \\ \\
e) f)
s| as |Xy XM Xy N

=)

il
<< |IE]

Ql

VARV
b xy V|V
¢| X[Vi V|V
d Xy AR RY
e| &Y YAR%
f|Em Vi

Fig. 9. Examples of concrete and abstract states

(Here by T by, means the usual pointwise ordering: Vo € I.bjx < byx.)
Figure 10 shows C, which is a pointed cpo, in the case when I = {z,y, z2}.
With the above order we have for example: iz C g and z C @g.

Lemma 5.4 ¢; C ¢ = ve1 € ves. O
Lemma 5.5 s € yc = asCc. O
Proposition 5.6 as C ¢ < s € ve. a
Proposition 5.7 ¢; C ¢y < vep C yes. O

17

ALMEIDA

X[V [Z]

"

z_ Eyz [©xz 2 xy XYlz X2y _FAX

N

§E y Xz ZX_ ﬁ §@z gi

Fig. 10. The Cy, 4 .} cpo

5.5.2 FEztending the Representation to Cluster Relationships

We begin by making an informal presentation. By the simple rule, a reference
to a balloon can be stored in some object only through the copy assignment,
which gives a newly created balloon; therefore, the reference is stored in an
external object. To enforce Iy,—the only reference to a balloon B is from
an external object—we must prevent the external object which references a
balloon from becoming internal. To do this, we must prevent any balloon
B from capturing non-balloons in a free cluster which references either B or
some balloon which contains B. (Only free clusters need surveillance, as non-
balloons in captured clusters no longer can be captured; this is assured by the
mechanism which enforces I,.)

The abstract states as presented above partition variables according to
clusters, but do not contain information about relationships between different
clusters. As an example, the abstract state x[¥][z] can correspond to any of
the three cases in Figure 11. While in the first case (on the left) it would we
acceptable to perform an instruction like ‘y.a :- %', in the other two cases
performing this instruction would break I5.

To enforce I, the previously described abstract states are refined in order
to distinguish these situations: to a free cluster is now associated a set of
which captured clusters may be ‘reachable’ by the free cluster. If a captured

18

ALMEIDA

AN
N
N

N
N

Z z
AN

@
VAN y
N

@
X < X
N

AN

N

C

Fig. 11. Three cases abstracted into the same state

VIZ] X[VZ]

s

Fig. 12. Fragment of the extended Cy,,, .y cpo

cluster is not in this set, then it is definitely not ‘reachable’ by the free cluster.
(Every captured cluster is associated with at most one free cluster.)

The original state x[¥1[Z is now refined into four states: x[¥[@, xM @,
x[2 ¥, and x[¥[Z. The graphic notation for abstract states is similar to the
previous one, with the added possibility of a free cluster ‘reaching’ a set of
captured clusters. The three cases in Figure 11 are now abstracted as g@,
x[y] @, and x[y][z respectively. (Note how the nesting in the third case is not
relevant; y and z could even refer to the same cluster, as before.) Figure 12
shows a fragment of the extended CYy, ,) cpo, corresponding to refining the
following three states: xy[z C x[¥z] C x[Y[Z.

Abstract States and The Abstraction Function

We now formalise what we have just described. The set of base abstract
states C' is extended to become a set of triples (p,b,r). For each state, the
components p and b are as before, while the component r describes ‘cluster

19

ALMEIDA

reachability’: it is a binary relation on the set of identifiers I, subject to:
TTrYNypz=xrz,
TTryYyNTpz=2zry,
xry=br=0Aby =1, and
TrzANyrz=xpuy.

The first two conditions state that r defines a relation from clusters to clusters,
the third states that it is from free to captured clusters, and the fourth states
that no more than one (free) cluster is related to any given (captured) cluster.

To define the abstraction function, once again we use an auxiliary predicate
which gives the relevant information:

* R:SyxIxI— bool,is a predicate such that R(s,z,y) is true if and only if
in the state s, variable x references an object in a free cluster I, there exists
a balloon object B referenced by an object in F', and variable y references
either B or an object internal to B.

The abstraction function « : S, — C' becomes:

a = As. (Ps,\x. B(s,{z}),{(z,y) | R(s,z,9)}),

where the first two components of the resulting abstract state are as before.
The abstraction function remains surjective.

The Concretisation Function
The new concretisation function is also based on the previous one:

v=Ap,b,r){s €S, | Vx,y €l
(bx=0Vby=0)ANzyy= (r,y) € Ps) A B(s,p{z}) < bx
A(bx=0ANby=1ANzyy)Vapy=-R(sz,y))}

For the new pair of abstraction and concretisation functions it remains
true that, for all s € Sy:

{s} € 7(as).

Order in the Abstract States
As before, v induces a partial order on C'; the new order becomes:

Definition 5.8

(p1,b1,71) C (p2,bo,12) < (b1 E be) AV, y € 1.
(xpryANzphy=box=by=1)
ANEphyNzpy=bx+by<br)
ANxriyANzphy=xphyAbr=1).

20

ALMEIDA

We notice that C' has a least element 1., given by:
le= ({(x,x) | LS [},{(iU,O) | LS I}a(b)
Figure 13 shows the C' cpo in the case when I = {z,y, z}.

Lemma 5.9 c¢; C ¢, = ve1 C ves. O
Lemma 5.10 s € yc = as C c. O
Proposition 5.11 asC c < s € ve. a
Proposition 5.12 ¢; C ¢y < e € yes. O

We have thus that, not only 7 is an order-embedding (which means we have
obtained the largest order appropriate to our concretisation function), but also
the safety relation on the base domain derived from a (i.e. s R ¢ < as C ¢)
coincides with what is expressed by 7:

sRees asCes s e e

(We use the the same letter R for the logical relation and for the above aux-
iliary predicate; they are used in different contexts and no confusion should
arise.)

5.5.3 Invalid States and Non-termination
Having defined C', invalid states in S are considered by adding a T to C, which
represents all states in S—both valid and invalid states. The abstraction and

concretisation functions are extended to o : S — Ct and v : Ct — P(S) by
making a(s) =T if s € Sy, and y(T) = S. The order C becomes

aCeec=TVe=(p,b,r)C (p,b,1r) =c

The relation R is also extended to become R : S — C7; it is as before
sRcs asC c& s € ye, with the extended «, v, and C.

The standard semantics also uses a | to represent non-termination or abor-
tion (when an invalid operation occurs, such as dereferencing a null reference).
Although it can be useful on its own to determine that a program aborts or
does not terminate, this is not needed for our balloon checking purpose, and
we do not use any dedicated abstract state to represent it. Instead we make
1L R ¢ for all ¢ € C+: for any possible abstract state, non-termination or
abortion is a possible corresponding outcome in the standard semantics. This
way, in establishing the correspondence between semantics, we can simply ig-
nore the 1 outcome in the standard semantics, namely in the ‘let — < —. =’
construct.

We can use the fact that C' has a least element to be able to maintain
s Res as C c< s € ye, by extending o and v with al = 1~ and making
L eryctorall ce Cr.

21

ALMEIDA

X ¥ 2]

v x7] Xz Xyl XMz

SR

Hyz Txz Xy*i Ky Xz x
vz Myz @xz @xy xz Xy Kz
Xyz yxz zxy Myz x@z xy[@

xyz

Fig. 13. The extended Cy, , .y cpo

22

ALMEIDA

5.6 Atomic Commands

5.6.1 Operations on Base Abstract States

We now define some operations on abstract states which will be used in defin-
ing abstract semantics for the atomic commands (the assignments). These op-
erations, not only serve to factorise similar cases, but are meaningful in them-
selves. We will use a notation resembling ‘function update’ (i.e. flz +— y]).

Definition 5.13 (p,b,r)[z>] = (p/, V', "), where

P =p [{x} U{(z,2)},

" bz — 1] if balloonz,

bz — 0] otherwise.

r=r T{x}

This operation detaches an identifier from the equivalence class where it
was, and makes it become an equivalence class on its own. Moreover, this new
equivalence class will be ‘captured’ or ‘free’ according to whether the identifier
is from a balloon or a non-balloon type. For example, if balloon x then

&z [z =P 7,
&z [r>] = X[z,
and if = balloonz then
il =37,
Ezla>] = x[z,
o] = X 2.
Definition 5.14 (p,b,7)[x > y] = (p', 0, r"), where

. p ifrx =y,
(p [{z} U{(x,y), (y,2)})" otherwise.
V' =blx — by,

r'=r {z}U{(z,2) | zry} U{(z,2) [yrz}.
This operation moves an identifier from an equivalence class to another.
Some examples are:
ﬁ ﬁ [x >y|l= W Xyz
Wx]yz |z B> y| = W] Xyz
WX VZ]

J=
yz[z > y]=
3z [z > y] = w Xy,
2 [z > y] = wEyal,
2 [z > y]=wxy@.

23

ALMEIDA

T ifxyynbr=by=1,
Definition 5.15 (p,b,r)[zx><y]=< T ifxryVvyraz,

(p',0',r") otherwise, where

p'=pU{(zy), @2},

V=blz—brUby|zpxVzpuyl,
(TU{(z,w)|(szVzpy)/\(xeryrw)} if bx = by =0,
r\{(w,z) |lwpyANwr z}

U{(w,2) |lwrzA(ypzVyrz)} ifbr=1Aby=0,
r\{(w,2) [wpz Awrz}

U{(w,2) lwryA(xpzVarz)} ifbr=0Aby=1,

r if bx =by =1.

\

This operation merges equivalence classes; it defines the effect on abstract
states corresponging to the merging of clusters in valid concrete states. It is
defined for all elements in C'; for some of them the corresponding merging of
clusters leads to an invalid state; therefore this operation has T as a possible
outcome. The possible cases are:

e If x yy and bx = by = 1, there exists one corresponding concrete state with
x and y pointing to two different clusters both containing a balloon object.
Merging the clusters breaks invariant I;; therefore we must have T as the
corresponding abstract state. One example is

M@z >yl =T.

o If x and y are related by r, there exists a corresponding concrete state for
which merging the clusters breaks invariant I5; therefore we must have T
as the corresponding abstract state. One example is

x>y =T.

* In the remaining cases, merging clusters in any corresponding concrete state
does not lead to breaking the invariant; there will result a valid state, with
a corresponding abstract state in C'; some examples are:

xyz [z ><y]=xyz,
xw yl Z[r><yl=xyW@,
2 [z ><y| =V,
7 [z ><y|=wEKa@,
¥ 7[r ><y]= K92

WX Y@

Definition 5.16 (p,b,7)[z = yl = (p, b, r"), where

r=r\{(w,2) |lwrzAypzyU{(w,2) |zpwAypz}.
24

ALMEIDA

Az :— y] = Ac. clx > y]
y
(p,b,7)[z >] if = balloon z,
+ :
p,b,r)|xz>]ly — x| if balloonx A by = 0,
Az :—y. 7] = Ap, b, 7). ¢ (gl .\]
(p, b, r)[x>][w = z] if balloonx A Jw.w r y,
| (p, b, r)[x1>] otherwise.
Az :— null] = Ac.clz>]
Az :— new] = Ac.clad>]
T if balloon z,
A[z.y :— 2] = Ac.
clxr >< 2] otherwise.
A%[z.y :— null] = Ac.c

A%[z.y :— new] = Ae.c
Az <— €] = Ae.c

Fig. 14. Abstract semantics for assignments

This operation, which is only defined if bx = 0 and by = 1, adds the
equivalence class where y is to the set of equivalence classes related (by r) to
the one where x is. Some examples are:

xF@Er 5yl = x5 @,
XZ @z >yl =x0@.

5.6.2 Abstract Semantics for Assignments
We now define the abstract semantic function for assignments in terms of the
above operations. The semantic function is

A Asgn — C — Ct
with the definition shown in Figure 14.

Proposition 5.17 For all a € Asgn, AJa] R A"[a]. 0

6 Conclusion

The pervading possibility of sharing objects due to the uncontrolled prolifera-
tion of inter-object references is a source of errors and makes reasoning about
programs difficult. Balloon types make the ability of sharing a first class prop-
erty of a data type and provide an invariant that expresses a strong form of
encapsulation of state. Given the benefits that static type-checking is known
to provide, we have developed a static checking mechanism for balloon types.

25

ALMEIDA

The mechanism relies on a static analysis of the candidate program in order
to check that the balloon invariant holds at run-time. Given the complexity
of the balloon invariant (and after having tried ad-hoc methods and having
found errors in the mechanism), we have resorted to developing the static
analysis as an abstract interpretation.

While it is common that in abstract interpretations for functional lan-
guages base domains are simple and it is the higher-order features that deserve
attention, here the base domain is considerably complex, and we have devoted
our attention to presenting it.

Balloon types and its checking mechanism exemplify how we can improve
type systems of programming languages by: designing minimal concepts which
provide important invariants; using the knowledge in the invariants inductively
in the checking mechanism itself; designing the checking mechanism using
semantics-based methods like abstract interpretation. This way we can obtain
languages with higher level concepts which improve the ability to reason about
programs.

References

[1] Abramsky, S., Abstract interpretation, logical relations, and Kan extensions,
Journal of Logic and Computation 1 (1990), pp. 5-40.

[2] Almeida, P. S., Balloon types: Controlling sharing of state in data types, in:
Proceedings ECOOP’97, volume 1241 of LNCS, Springer-Verlag, 1997, pp. 32—
59.

[3] Almeida, P. S., “Control of Object Sharing in Programming Languages,” Ph.D.
thesis, University of London, Imperial College, Department of Computing
(1998).

[4] Amadio, R. M. and L. Cardelli, Subtyping recursive types, ACM Transactions
on Programming Languages and Systems 15 (1993), pp. 575-631.

[5] Arnold, K. and J. Gosling, “The Java Programming Language,” Addison-
Wesley, 1996.
URL: http://www.aw.com/cp/javaseries.html.

[6] Cardelli, L., A semantics of multiple inheritance, in: Semantics of Data
Types, volume 173 of LNCS, Springer-Verlag, 1984, pp. 51-67, full version in
Information and Computation 76(2/3):138-164, 1988.

[7] Cardelli, L. and P. Wegner, On understanding types, data abstraction, and
polymorphism, ACM Computing Surveys 17 (1985), pp. 471-522.

[8] Cousot, P. and R. Cousot, Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approzimation of fizpoints, in:
Proceedings 4th ACM Symposium on Principles of Programming Languages,
1977, pp. 238-252.

26

ALMEIDA

[9] Dahl, O.-J., B. Myhrhaug and K. Nygaard, The SIMULA 67 common base
language., Publication S-22, Norwegian Computing Center, Oslo (1970).

[10] Goldberg, A. and D. Robson, “Smalltalk-80: The Language and its
Implementation,” Addison-Wesley, 1983, 736 pp.

[11] Hoare, C. A. R., Proof of correctness of data representations, Acta Informatica
1 (1972), pp. 271-281.

[12] Hogg, J., Islands: Aliasing protection in object-oriented languages, Proceedings
OOPSLA’91. SIGPLAN Notices 26 (1991), pp. 271-285.

[13] Hogg, J., D. Lea, A. Wills, D. deChampeaux and R. Holt, The Geneva
convention on the treatment of object aliasing. Followup report on ECOOP’91
workshop W3: Object-oriented formal methods, OOPS Messenger 3 (1992),
pp- 11-16.

[14] Khoshafian, S. and G. Copeland, Object identity, Proceedings OOPSLA’86.
SIGPLAN Notices 21 (1986), pp. 406-416.

[15] Wegner, P., Dimensions of object-based language design, Proceedings
OOPSLA’87. SIGPLAN Notices 22 (1987), pp. 168-182.

27

