Rust: a safe and efficient high-level systems
programming language

Paulo Sérgio Almeida

JOIN 2015

Universidade do Minho

If you could take only one programming language to a desert island

Introduction

Many languages

Ada

Basic

C

C++

C#

Clojure
Common Lisp
Elixir
Erlang
Fortran
F#

Haskell
Java
JavaScript
Julia

Go

Groovy
Lua

Nim

0Caml
Objective C
Pascal
Perl

PHP
Python
Ruby

Rust
Scala
Scheme
Smalltalk
Swift

Some options (I)

» Mostly functional languages

>

vV vy vYyy

Haskell, Erlang, Clojure
elegant and powerful

slow in some domains
memory consuming
unpredictable performance

Some options (I1)

» Classic imperative languages
» C, C++

control

speed

good memory consumption

the segmentation fault hell

vV vy vYyy

Some options (I11)

» Dynamic languages
Python, Ruby, Perl

» nice for prototyping

> too slow

» too memory consuming

v

Some options (V)

» Managed OO languages
» Java, C#
fast
can be memory consuming
GC pauses
spaghetti mutable state hell

vV vy vYyy

Memory consumption in Java

» Why are most games written in C++ and not Java?

> Java:
class Point { int x; int y; }
class Rectangle { Point pl; Point p2; }
» How much memory for an array of 1M rectangles?
» around 2*¥2*¥4*1M = 16M bytes?
» more likely at least:
> (8+2*4 + 2*(8+42%4))*1M = 48M bytes (32 bit JVM)
> (16-42%8 + 2%(16+2*4))*1IM = 80M bytes (64 bit JVM)
» And making it twice that for efficient GC . ..
» An order of magnitude more memory than in C/C++

Accidental mutable state sharing in OO languages

class Rectangle {

v

v

v

v

v

private Point pi;

private Point p2;

public void stretchToCorner (Rectangle other) {
if (...) { p2 = other.pl; } else ...

}

Binary method to stretch Rectangle to touch other's corner
A point object becomes accidentally shared by two rectangles
The Point should have been cloned, but easy to forget

Class based encapsulation does not prevent this

Can be subtle bug, with effects much after the invocation

10

One solution: immutable objects

v

Apply lessons from functional languages

v

Points being objects are too fragile and error-prone

v

Such “objects” as Point should really be values

» and named vectors
» and used as values, like the mathematical concept

v

Immutable object idiom, e.g., Java strings

» make all instance variables final
» do not let this escape in constructor
» do not allow mutation of reachable objects after construction

11

Problem with immutable objects: memory locality

v

For fast execution, memory locality important

» cache
» TLB

RAM access two orders of magnitude slower than L1 cache

v

v

Array of rectangles traversal in C/C++:
> 4 rectangles per cache line

v

Array of rectangles traversal in Java:

> it depends
» if rectangles have been updated at different moments ...
» potentially 1/2 rectangle per cache line (or worse)

12

Reasoning about imperative programs (1)

» Functional decomposition

» Divide and conquer
» Divide task in sub-tasks: do this, do that

» Scope-based reasoning

» repeat for each sub-task

» each implementation declares temporary variables

» when scope ends, no lasting side-effects should remain
> i.e., to other things than parameters or result
> global variables
> state reachable from other vars from calling scope

13

Reasoning about imperative programs (1)

» Avoid state interference

> In each context / scope

» each variable should contain an independent (rep of) value
» assigning / updating x should not impact y

X = ...
y= ...
print(x)
y.update ()
print (x)

» Second print should give same result

14

Garbage collection considered harmful

(Exaggerating a bit .. .)

» For functional languages: essential, transparent, wonderful
» For imperative languages: useful, ...and dangerous
» WAT? But it is just a useful tool ...
» Made language designers facilitate widespread sharing of
mutable state
» after all GC makes it easy
» easy # simple (see Rich Hickey talks)
» mutable state sharing is amazing source of complexity
» Made programmers lower their guards

> against the problems of mutable state sharing
» false sense of security: GC makes segfaults disappear
» so, we feel relaxed and just pass references around

15

Speaking of making things available because it is easy

I call it my billion-dollar mistake. It was the invention of
the null reference in 1965. [...] But | couldn't resist the
temptation to put in a null reference, simply because it
was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in
the last forty years.

C.A.R. Hoare

» Fifty years later there is no excuse for null references
» “Variable may point to something” mindset must end

» Variables should always hold/refer something

16

Can we have it all?

» High-level functional idioms

» Immutability by default

» Less bugs than in Java (caused by mutable state sharing)
» Control of memory allocation, good memory consumption
» No segmentation faults or uninitialized memory access

» No need for runtime, or GC (and no GC pauses)

» Static typing for programming in the large

» Local type inference for “scripting flavor”

» Shared memory concurrency with no data-races

17

Can we have efficiency and safety?

18

State: Ownership, Moving, Borrowing, Lifetimes

19

Immutable bindings and mutable variables

» Rust adopts immutability by default

» Let binding binds immutable value to identifier

let x = 5;

x += 13 // error: re-assignment of immutable variable
» Variables are obtained using mut qualifier

let mut x = 5;
x += 1; // ok

¢

T

¢

20

Variables own representation of value

» Memory layout is dense:
» variables contain the object, not a reference to the object
» whether primitive types or composite types
» whether local variables or members of a struct

struct Point { x: i32, y: i32 }
struct Rectangle { pl: Point, p2: Point }

» Rectangle will be 16 bytes as in C/C++

21

Arrays and Vectors

» Arrays are const sized, inlined, on stack or object

let a1l = [1, 2, 3];
let a2 = [0; 5];
let ap =

[Point{x:1,y:2}, Point{x:2,y:3}];

// 3 132 on stack
// 5 zeroes on stack
// 2 Points on stack

// struct containing array of 5 132

struct S { i: i32, a:

[i32; 5] }

» Vectors: have header inlined, data on heap, grow dynamically

let mut v = vec![1, 2, 3];
let i = v.pop();

let 1 = v.len();
v.push(4);

// type Vec<i32>
// remove last; 4 = 3; v = [1,2]
// = 2;

// append 4; v = [1,2,4]

22

(Im)mutability is transitive

» Local variables / parameters can be declared mut
» Fields of structs do not take this qualifier

» They inherit transitively the mutability of owner variable

let mut rl = Rectangle { pl: Point {x: 23, y: 34},
p2: Point {x: 14, y: 18} };
let r2 = Rectangle { ... }
rl.pl.x = 45; // ok;
r2.pl.x = 45; // error: cannot assign to immutable field ‘r2.pl.z

» We can assign to x field of p1 field of r1 because r1 is mut

23

Resource lifetime is scope based

fn £ {
let mut s = HashSet::new();
s.insert(7);

v

Struct HashSet is kept on the stack

v

It may point to other objects on heap

v

When scope exits, destructor will be called

v

Owned objects on heap will be freed

24

Variables can be returned

fn £() -> HashSet<i32> {
let mut s = HashSet::new();
s.insert(7);

v

Function f returns an HashSet<i32>

v

Last expression implicitly returned from function

v

When scope exits, destructor is not called

v

Ownership of HashSet is transferred to caller

v

Including objects on heap owned by the HashSet
Physically:

v

» at most just a memcpy of the stack allocated struct
» or nothing, under return value optimization

25

Variables can be passed to functions

fn £ {
let mut s = HashSet::new();
s.insert(7);

g(s);

s.insert(12); // error: use of moved value: ‘s‘
}
fn g(s: HashSet<i32>) { ... }

» Function g takes an HashSet<i32> as parameter

v

Function f invokes it passing s

v

Ownership of s has been transferred into g

» Function f can no longer use s afterwards

v

Function g is responsible for freeing it

26

Move semantics in assignment and parameter passing

» Variables own values

» Like parameter passing, assignment also moves ownership
let s1 = HashSet::new();
sl.insert(7);
let s2 = s1i;
sl.insert(12); // error: use of moved value: ‘sif

» In each scope we have a single owner of each resource

» There cannot be two variables aliasing shared mutable state

27

Single owner per resource

> Improves reasoning:

» can use composite values like primitive ones
» no side effects to other variables

let mut x
let mut y = ...
println! ("{}" x);
y.update() ;
println! ("{}", x);

» We know that x remains unchanged after update on y

28

Opt-in

v

copy semantics for POD types

Isn't move too restrictive and artificial sometimes?
What about primitive types? We are used to copying them
Plain-Old-Data types can be declared to be Copy
» any type that can be copied by a simple memcpy
primitive types are Copy

>
» can be copy if all components are copy
> (types which manage resources or have destructor cannot)

Useful for small structs; e.g., points, complex numbers

#[derive(Copy, Clone)]
struct C { re: £32, im: £32 }

let mut ¢1 = C { re: 4.5, im: 7.8 };
let c2 = cl1;
cl.re += 1.0;

29

Opt-in to Copy does not change semantics

» Making type Copy does not change semantics

» Only allows more programs to be compiled
» If program already compiled, produces same result

» Improves local reasoning
» not need to review code if type definition changed
» Contrast with value types (e.g., C#, F#, Swift)

> reference vs. value semantics
» changing it forces careful code review

30

Implicit copies only involve memcpy

» Both move and copy can only involve memcpy

» Move in rust makes source of move compile-time inaccessible
> source can be left alone
> no need to update source, to make it “empty” but usable

» Comparing with C4++

No copy constructors

No move constructors

No hidden arbitrary implicit code being run

No hidden effects depending on optimization of temporaries

vV vyVvVvyy

31

Borrowing: references that grant temporary access

v

What if we want to let a function use or update a resource?
» that we want to keep owning after the invocation

The function can borrow the resource
fn f(p: &Point) -> i32 {

p-x + p.y
}

let mut pl = Point { x: 2, y: 4 }
let i = £(&pl);
pl.x += 1;

» f cannot store p in an arbitrary place

Here we have an immutable borrowing
» the point can be only read; not updated

32

Mutable borrowing: to update object

» We can have mutable references through &mut

fn f£(p: &mut Point) {
p.x += 1;
p.y =13

}

let mut pl = Point { x: 2, y: 4 }
f(&mut pl);
pl.x += 1;

» f can update p

» as before, £ cannot store p in an arbitrary place

33

Explicit references in Rust improve local reasoning

» C++ references are obtained implicitly
int i = 2;
f£(1);
std::cout << i; // i = ?

Cannot know if i changed without looking at f's declaration
> Rust:

let mut p = Point { x: 2, y: 4 }
£(&p);

p cannot have been updated

» Rust:
let mut p = Point { x: 2, y: 4 }
f (&mut p);

p may have been updated

34

Dereferencing a reference

» Either implicit (auto-dereferencing), e.g, for fields or methods

fn area(r: &Rectangle) -> i32 {
((r.p2.x - r.pl.x) * (r.p2.y - r.pl.y)).abs()
}

» Or explicit, C-like, e.g., for primitive types
fn inc(ir: &mut i32) {
*ir += 1;

}

» Reference itself can be updated, if mut

let mut x = 5;

let mut y = 7;

let mut r = &mut x;

*r += 1; // increments z
r = &mut y;

xr += 1; // increments y

35

Borrowed references can be returned only if it is safe

> Only if the object lifetime is long enough
» Otherwise, compile time error

» Error if trying to return reference to local var

fn return_var() -> &i32 {
let x = 5;
&x

36

Returning reference to object from caller scope

fn largest_coord(p: &mut Point) -> &mut i32 {
if p.x > p.y { &mut p.x } else { &mut p.y }
}

let mut p = Point { x: 5, y: 7 };
inc(largest_coord(&mut p));

> |In this case a mutable reference to the interior of the Point
» Which the caller uses to operate on the largest coordinate

» Compiler relates lifetimes of result and parameter

37

Explicit lifetime parameters

> |f several references involved, explicit lifetimes can be used

» Function can be generic over lifetime parameter(s)
fn greater<’a>(rl: &’a i32, r2: &’a i32) -> &’a i32 {
if *xr1l > *r2 { r1 } else { r2 }
}

» Here ’a is a lifetime parameter

» Incorrect usage is compile-time flagged by the borrow checker

let x = 5;
let r;
{
let y = 7;

// error: ‘y‘ does mot live long enough
r = greater(&x, &y);

}

println! ("{}", r);

38

Several readers or one writer

» Remember readers-writers from concurrent programming?
» |If one is mutating, no one else should be reading or mutating
» Rust enforces similar guarantees for single-threaded scopes
» In each scope, for each resource
» either there are several references (&T)
» or exactly one mutable reference (&mut T)
» A variable

» cannot be updated while borrowed
» cannot be accessed while mutably borrowed

39

Several readers or one writer

fn largest_coord(p: &mut Point) -> &mut i32 {
if p.x > p.y { &mut p.x } else { &mut p.y }

}
let mut p = Point { x: 5, y: 7 };
{
let r = largest_coord(&mut p);
*r += 1;
//error: cannot assign to ‘p.z‘ because it is borrowed
p.x += 1;
}

p.x +=1; // ok

40

Single mutable reference prevents memory unsafety

» Consider iterating a vector and appending to other
fn push_all(from: &Vec<i32>, to: &mut Vec<i32>) {
for i in from {
to.push(*1i);
}
}

» If both parameters could refer to same Vec

» iterator would traverse a range of memory
» appending to destination Vec could reallocate it
» iterator would traverse freed memory

» Cannot happen: two refs cannot alias mutable state

// error: cannot borrow ‘vecf

as mutable because
// it is also borrowed as immutable

push_all(&vec, &mut vec);

41

Interior mutability

» Some types allow non mut variables to refer to mutable state
» Cell<T> allows update through explicit copies
» for Copy types
» RefCell<T> allows temporary mutable borrows
» checked at runtime
> Mutex<T> allows controlled mutation under concurrency
» locking the resource
» These are for advanced usages
» to be used rarely
> noticeable when used
» access to mutable state is controlled
» Analogous to explicit references in functional languages

» ML, Clojure

42

Other kinds of references

» For advanced uses, Rust exposes other reference types
» whole programs can be written without them
» Box<T>
» for exclusive mutable ownership of heap data
» Rc<T> — reference-counted pointer type
» for shared referencing of heap data
» to be used within each thread
» Arc<T> — atomically reference-counted pointer type
» for shared referencing of heap data
» when sharing data among threads; e.g., Arc<Mutex<T>>
» Rust philosophy:

» only pay performance cost when needed
» unlike Swift which has a single Arc-like reference

43

Abstraction

a4

Rust emphasizes generic abstractions

» Not object-orientation
» Exposes many concepts

» structs, tuples, enums, functions, traits, impls
» These can be generic

» parameterized over types
» possibly bounded

45

Module based encapsulation

v

v

v

v

The unit of structuring is the module
» with possibly nested modules

Anything not pub is not visible outside module

pub items are visible to client module that uses them
pub can be applied to many concepts:

>

vV vy vYyy

fields
structs
enums
functions
traits

46

Module based encapsulation

pub struct Graph<N,E> { nodes: Vec<Node<N,E>> }

pub struct Node<N,E> {
neighbors: Vec<usize>,
edges: Vec<E>,
pub data: N

pub fn add_node<N, E>(g: &mut Graph<N,E>, data: N) {
g.nodes.push(Node {
neighbors: Vec::new(),
edges: Vec::new(),
data: data });

» Generic Graph type, parameterized over node and edge types
» Graph can be used outside module, nodes field cannot

» Both Node type and its data field visible outside module

» function add_node can access all fields

47

Methods

Methods are functions that take object as first parameter

v

v

Defined in impl blocks

v

Special syntax with self

v

As normal parameter passing, three ways to pass object:
» By reference, borrowing, with &self
» By mutable reference, mutably borrowing, with &mut self
» By move, transferring ownership, with self or mut self

v

At calling side, object is auto-borrowed, if necessary

48

Taking &self

» The first choice
» Methods that merely perform computations

pub struct Circle {
pos: Point,
radius: f64,

}

impl Circle {
pub fn area(&self) -> £f64 {
std::f64::consts: :PI * (self.radius * self.radius)

}

let ¢ = Circle { pos: Point{x:4.5, y:6.7}, radius: 2.3 };
let a = c.area();

49

Taking &mut self

» For mutator methods

pub struct Graph<N,E> {
nodes: Vec<Node<N,E>>,

}

impl<N,E> Graph<N,E> {
pub fn add_node(&mut self, data: N) -> usize {

let id = self.nodes.len();

self .nodes.push(Node {
neighbors: Vec::new(),
edges: Vec::new(),
data: data });

id

50

Taking self / mut self

» Takes ownership, allowing returning object (not reference)
» Efficient implementations exposing functional interface

» Example: String; from string.rs
impl<’a> Add<&’a str> for String {
type Output = String;

#[inline]

fn add(mut self, other: &str) -> String {
self.push_str(other);
self

}

» Strings can be added, functional style, no wasteful cloning

let s1 = "Hello ".to_string(Q);
let 82 = s1 + "big";

let s3 = s2 + " world";
println! ("{}", s3);

51

Associated functions

» There are no constructors; no special new

» Associated functions do not take self (“static methods”)

» By convention, function new commonly provided
impl<N,E> Graph<N,E> {

pub fn new() -> Graph<N,E> { Graph { nodes: Vec::new() } }

pub fn with_capacity(n: usize) -> Graph<N,E> {
Graph { nodes: Vec::with_capacity(n) }
}

pub fn empty(nodes: Vec<N>) -> Graph<N,E> {
let mut g = Graph { nodes: Vec::with_capacity(nodes.len()) };
for x in nodes { g.add_node(x); }

g

}

let mut g: Graph<&str,()> = Graph::empty(vec!["Alice", "Bob"]);

52

Traits

» Notion of interface / protocol

» which can be implemented for several types

» even a posteriori for existing types

» allowing extension methods
» Serve as bounds for parametric polymorphism

» with impls checked at definition against bounds;

» not at instantiation (C++ templates nightmare)

» generic impls monomorphized and statically dispatched
» Allow subtype polymorphism via trait objects

» for heterogeneous containers
» for dynamic dispatching

53

A posteriori implementation for existing types

» Not necessarily structs

trait Measure {
fn norm(&self) -> f64;
}

impl Measure for f64 {
fn norm(&self) -> f64 { self.abs() }
}

impl Measure for (f64, £64) {
fn norm(&self) -> f64 {
(self.0 * self.0 + self.1 * self.1).sqrt()
}
}

5.6.norm()
(23.2, 45.4) .norm()

54

Traits as bounds for parametric polymorphism

impl<T: Measure> Measure for [T] {
fn norm(&self) -> £f64 {
let mut sum = 0.0;
for x in self.iter() {
let n = x.norm();
sum += n * n;
}

sum.sqrt ()

}

[3.4, 4.5].norm()
[(23.2, 45.4), (34.2, 56.1)] .norm()

55

Operator overloading
use std::ops::{Add, Mull};

#[derive(Copy, Clone)]
pub struct C(£f64, £64);

impl Add for C {
type Output = Self;
fn add(mut self, other: Self) -> Self {
self.0 += other.0;
self.1 += other.1;
self

}

impl Mul for C {
type Output = Self;
fn mul (self, other: Self) -> Self {
let (a, b) = (self, other);
C(a.0%b.0 - a.1*b.1, a.0*b.1 + a.1%*b.0)

56

Operator overloading

impl Mul<f64> for C {
type Output = Self;
fn mul (mut self, other: f64) -> Self {
self.0 *= other;
self.1 *= other;
self

}

impl Mul<C> for £64 {

type Output = C;

fn mul(self, other: C) -> C { other * self
}

fn main() {
let c1 = C(3.4, 2.3);
let c2 = C(5.2, 6.4);
let c3 = cl + c2;
let c4 = cl * c2;
let mut ¢c5 = 0.2 * c3 + 0.8 * c4;
cb = cb *x 1.3;

Subtype polymorphism and dynamic dispatch

trait Shape { fn area(&self) -> £64; }

struct Circle { pos: Point, radius: f64 }

struct Rectangle { pl: Point, p2: Point }

impl Shape for Circle { fn area(&self) -> f64 { ... } }

impl Shape for Rectangle { fn area(&self) -> f64 { ... } }

let
let
let
let
let
for

C
r

Circle { pos: Point{x:3.4,y:6.7}, radius: 2.3 };
Rectangle { pl: Point{x:2.3,y:4.5}, p2: Point{x:5.6,y:7.8} };

al = c.area(); // static dispatch
a2 = r.area(); // static dispatch
shapes: [&Shape; 2] = [&c, &rl; // array of trait objects

s in shapes.iter() {
println! ("{}", s.area());

// dynamic dispatch

58

Closures

v

Anonymous functions

v

Capture variables from enclosing scope into an environment

v

Not restricted to using values: may update variables

v

Possible to be statically dispatched and with no allocation

v

Variants according to how environment is passed to call
» Fn — call borrows the environment &self
» FnMut — call borrows mutably the environment &mut self
» FnOnce — call moves the environment self

v

And according to how variables are captured

» by reference
» by mutable reference
» by move

59

Fn closures

» Call takes environment as &self
» Do not have side effects on environment
» Environment variables can be read with closure in scope

let (min, max) = (5,8);

let between = &|x| x >= min && x < max;
println! ("{}", between(9)); // false
use_closure(between) ;

fn use_closure<F>(f: &F) where F: Fn(i32) -> bool {
println! ("{}", £(6)); // true
println! ("{}", £(4)); // false

60

FnMut closures

» Call takes environment as &mut self

» Can have side effects on environment

» Updated environment variables cannot be accessed with
closure in scope

let (min, max) = (5,8);
let mut tot = 0;

{
let check = &mut |x| if x >= min && x < max { tot += 1; };
check(7);
use_closure(check) ;

}

println! ("{}", tot); // 2

fn use_closure<F>(f: &mut F) where F: FnMut(i32) {

£(6);
£(4);

61

FnOnce closures

» Call takes environment as self
» Allow environment variables to be moved out of closure
» Can only be called once

use std::thread;

fn main() {
let data = vec![1, 2, 3];
thread: :spawn(| | {
let v = data;
thread: :sleep_ms (300);
println! ("{:7}", v);
b
thread: :sleep_ms(600) ;

62

Moving environment into closure

» When closure should survive creation scope
» e.g., function which returns adder closure
> e.g., to spawn threads
» move keyword forces environment move
» Closures are unsized types
» must be put into Box to be returned
fn make_adder(x: i32) -> Box<Fn(i32) -> i32> {

Box: :new(move |y| x + y)

}

let a = make_adder(5);
println! ("{}", a(7)); // 12

63

Control Flow and lteration

64

Decision making

v

Cover all cases elegantly

» language makes impossible to forget case
» extract relevant data for each case

v

Ingredients
» enum: discriminated unions of rich data
» pattern matching
» exaustiveness of match construct

v

Blends with imperative idioms

» does not force expression-orientation
» allowing break and return

v

Blends with ownership system
» allowing borrowing of matched substructure

65

Enums

v

v

v

v

v

v

Sum types, which represent one of several variants
Each may: have no data, be tuple-like, or be struct-like
Can declare struct-like alternatives without pre-existing types

Space reserved for largest variant, like C unions
Can represent alternatives inlined, without allocation
» Unlike OO-idiom of using subclassing

Mutable var or &mut allows changing variant in-place

66

Message type with enum

enum Msg<K,V> {
Insert(V),
Get (K),
Put (K, V),
Delete (K)

}

use Msg: :*;

fn handle<K,V>(msg: Msg<K,V>) {
match msg {
Insert(v) => { /* code here */ }
Get(k) => { /* code here #/ }
Put(k, v) => { /* code here */ }
Delete(k) => { /* code here */ }

67

Binary tree with enum

enum BinaryTree<T> {

Leaf (T),

Node (Box<BinaryTree<T>>, T, Box<BinaryTree<T>>)
}

use BinaryTree: :*;

impl<T> BinaryTree<T> {
fn depth(&self) -> u32 {
match *self {
Leaf(_) => 0,
Node(ref 1, _, ref r) => 1 + max(l.depth(), r.depth())

» Needs explicit Box to avoid infinite size

» ref allows borrowing matched substructure

68

Error handling

v

No exceptions (checked or unchecked)
Panic to unwind stack and abort thread

v

» assert-like, for irrecoverable errors; e.g., bugs

v

Failures reported through Option and Result enums

v

Macros to help in achieving safety and elegance
> eg., try! O

69

Early return within match under error

enum MyError { IO(io::Error), Parse{line: String, number: u32} }
use MyError::*;
fn sum_lines(file_name: &str) -> Result<u64, MyError> {
let mut file = match File::open(file_name) {
Ok(file) => file,
Err(err) => return Err(I0(err))
};
let (mut sum, mut cnt) = (0, 0);
for line in BufReader: :new(&mut file).lines() {
cnt += 1;
let line = match line {
Ok(line) => 1line,
Err(err) => return Err(I0(err))
};
let num: u64 = match line.parse() {
Ok (num) => num,
Err(_) => return Err(Parse{line: line, number: cnt})

};

sum += num;
}
Ok (sum)

Elegant error handling with try!

impl From<io::Error> for MyError {
fn from(err: io::Error) -> MyError {
I0(err)
}
}

fn sum_lines(file_name: &str) -> Result<u64, MyError> {
let mut file = try!(File::open(file_name));
let (mut sum, mut cnt) = (0, 0);
for line in BufReader: :new(&mut file).lines() {
cnt += 1;
let line = try!(line);
let num: u64 = try!(

line.parse() .map_err(|_| Parse{line: line, number:

sum += num;
}
Ok (sum)

cnt}));

71

[terators

» Tterator: base trait for external iteration
> |terator state in object
» |Implementations must define next method returning Option
» Syntactic sugar for Range iterators
0..n // iterator over numbers 0 <= 4 < n
» for loop uses iterator

72

Containers from library provide iterators

» Vec
for x in [1, 5, 7].iter() {
println! ("{}", x);
}

» HashSet

let mut s = HashSet::new();
s.insert("alice");
s.insert ("bob");
for e in s {
println! ("{}", e);
}

» HashMap

let mut h = HashMap: :new();
h.insert("alice", 3);
h.insert("bob", 5);
for (k,v) in h {

println! ("key:{}, value:{}", k, v);
}

Iterators can borrow, mutably borrow, or own

» Given vector of P's
let mut v = vec![P {x:2, y:4}, P {x:6, y:7}];

» lterate borrowing immutably
let mut sum = O;
for p in &v {
sum += p.x;

}
> |terate borrowing mutably

for p in &mut v {
p.x += 1;
}

> |terate over moved container

let mut s = HashSet::new();
for p in v {

s.insert(p);
}

v[0].x += 1; // error: use of moved value: ‘v

74

User defined iterators; example: fibonacci numbers

pub struct Fibonacci { curr: u64, next: u64, stop: u64 }

impl Iterator for Fibomacci {
type Item = u64;
fn next(&mut self) -> Option<u64> {
let res = self.curr;
if res >= self.stop {
None
} else {
self.curr = self.next;
self.next += res;
Some (res)

}

pub fn fibonacci(stop: u64) -> Fibonacci {
Fibonacci { curr: O, next: 1, stop: stop }

}

for i in fibonacci(1000) { println!("{}", i); }

75

Consuming an iterator

> Collecting items

let s: HashSet<_> = fibonacci(400).collect();
let v: Vec<_> = fibonacci(200).collect();

» collect generic on result type
» type inference based on destination allows same code

» Folding

fn sum_squares(n: u32) -> u32 {
(1..n+1).f01d(0, |sum, x| sum + x*x)

}

» Partitioning according to predicate

let (even, odd): (Vec<_>, _) =
fibonacci(100) .partition(|&n| n % 2 == 0);

76

Iterator adapters

» Take iterator, return transformed iterator
> Classic ones: map, filter, zip, take, skip, cycle, ...

» Are lazy: do nothing until consumed

warning: unused result which must be used: iterator adaptors are
lazy and do nothing unless consumed, #/warn(unused_must_use)] on b
fibonacci(100).filter(|&i|l i % 3 == 0);

» “Sum of the first 10 odd numbers that are not multiples of 3"

let sum = (0..)
.filter(l&nl|l n % 2 '= 0 & n % 3 != 0)
.take(10)
.f0l1d(0, |s, n|l s + n);

77

Conclusion

78

Mutable state taken seriously

v

Functional idioms are already widespread

v

But purely functional languages can be limiting
Current OO languages create mutability spaghetti
» makes some people think functional is the only way-out

v

v

Much research on these problems for ages; starting in the 70s
» ends up mostly in experimental/research languages

v

If successful, Rust can be the first widespread language
» taking mutable state seriously
» while allowing safe and “bare metal” efficient programs
» with high-level abstractions

79

For another day

» Concurrency

» leverages ownership, borrowing and immutability

concurrency related traits: Send, Sync

guarantee of no data races checked at compile-time

possible to create threads that operate safely on creator stack

v vy

» Macros
» syntactic abstraction, at compile time
> hygienic

» Unsafe blocks and raw pointers

» to be used very exceptionally
» e.g., used in the implementation of standard library
» if one never uses unsafe, one never gets segfaults

80

	Introduction
	State: Ownership, Moving, Borrowing, Lifetimes
	Abstraction
	Control Flow and Iteration
	Conclusion

