
Rust: a safe and efficient high-level systems
programming language

Paulo Sérgio Almeida

JOIN 2015

If you could take only one programming language to a desert island

2

Introduction

State: Ownership, Moving, Borrowing, Lifetimes

Abstraction

Control Flow and Iteration

Conclusion

3

Many languages
Ada
Basic
C
C++
C#
Clojure
Common Lisp
Elixir
Erlang
Fortran
F#
Haskell
Java
JavaScript
Julia
Go

Groovy
Lua
Nim
OCaml
Objective C
Pascal
Perl
PHP
Python
Ruby
Rust
Scala
Scheme
Smalltalk
Swift

4

Some options (I)

I Mostly functional languages
I Haskell, Erlang, Clojure
I elegant and powerful
I slow in some domains
I memory consuming
I unpredictable performance

5

Some options (II)

I Classic imperative languages
I C, C++
I control
I speed
I good memory consumption
I the segmentation fault hell

6

Some options (III)

I Dynamic languages
I Python, Ruby, Perl
I nice for prototyping
I too slow
I too memory consuming

7

Some options (IV)

I Managed OO languages
I Java, C#
I fast
I can be memory consuming
I GC pauses
I spaghetti mutable state hell

8

Memory consumption in Java

I Why are most games written in C++ and not Java?
I Java:

class Point { int x; int y; }
class Rectangle { Point p1; Point p2; }

I How much memory for an array of 1M rectangles?
I around 2*2*4*1M = 16M bytes?
I more likely at least:

I (8+2*4 + 2*(8+2*4))*1M = 48M bytes (32 bit JVM)
I (16+2*8 + 2*(16+2*4))*1M = 80M bytes (64 bit JVM)

I And making it twice that for efficient GC . . .
I An order of magnitude more memory than in C/C++

9

Accidental mutable state sharing in OO languages

class Rectangle {
private Point p1;
private Point p2;
public void stretchToCorner(Rectangle other) {

if (...) { p2 = other.p1; } else ...
}

}

I Binary method to stretch Rectangle to touch other’s corner
I A point object becomes accidentally shared by two rectangles
I The Point should have been cloned, but easy to forget
I Class based encapsulation does not prevent this
I Can be subtle bug, with effects much after the invocation

10

One solution: immutable objects

I Apply lessons from functional languages
I Points being objects are too fragile and error-prone
I Such “objects” as Point should really be values

I and named vectors
I and used as values, like the mathematical concept

I Immutable object idiom, e.g., Java strings
I make all instance variables final
I do not let this escape in constructor
I do not allow mutation of reachable objects after construction

11

Problem with immutable objects: memory locality

I For fast execution, memory locality important
I cache
I TLB

I RAM access two orders of magnitude slower than L1 cache
I Array of rectangles traversal in C/C++:

I 4 rectangles per cache line
I Array of rectangles traversal in Java:

I it depends
I if rectangles have been updated at different moments . . .
I potentially 1/2 rectangle per cache line (or worse)

12

Reasoning about imperative programs (I)

I Functional decomposition
I Divide and conquer
I Divide task in sub-tasks: do this, do that

I Scope-based reasoning
I repeat for each sub-task
I each implementation declares temporary variables
I when scope ends, no lasting side-effects should remain

I i.e., to other things than parameters or result
I global variables
I state reachable from other vars from calling scope

13

Reasoning about imperative programs (II)

I Avoid state interference
I In each context / scope

I each variable should contain an independent (rep of) value
I assigning / updating x should not impact y

x = ...
y = ...
print(x)
y.update()
print(x)

I Second print should give same result

14

Garbage collection considered harmful

(Exaggerating a bit . . .)

I For functional languages: essential, transparent, wonderful
I For imperative languages: useful, . . . and dangerous
I WAT? But it is just a useful tool . . .
I Made language designers facilitate widespread sharing of

mutable state
I after all GC makes it easy
I easy 6= simple (see Rich Hickey talks)
I mutable state sharing is amazing source of complexity

I Made programmers lower their guards
I against the problems of mutable state sharing
I false sense of security: GC makes segfaults disappear
I so, we feel relaxed and just pass references around

15

Speaking of making things available because it is easy

I call it my billion-dollar mistake. It was the invention of
the null reference in 1965. [. . .] But I couldn’t resist the
temptation to put in a null reference, simply because it
was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in
the last forty years.

C.A.R. Hoare

I Fifty years later there is no excuse for null references
I “Variable may point to something” mindset must end
I Variables should always hold/refer something

16

Can we have it all?

I High-level functional idioms
I Immutability by default
I Less bugs than in Java (caused by mutable state sharing)
I Control of memory allocation, good memory consumption
I No segmentation faults or uninitialized memory access
I No need for runtime, or GC (and no GC pauses)
I Static typing for programming in the large
I Local type inference for “scripting flavor”
I Shared memory concurrency with no data-races

17

Can we have efficiency and safety?

18

Introduction

State: Ownership, Moving, Borrowing, Lifetimes

Abstraction

Control Flow and Iteration

Conclusion

19

Immutable bindings and mutable variables

I Rust adopts immutability by default
I Let binding binds immutable value to identifier

let x = 5;
x += 1; // error: re-assignment of immutable variable ‘x‘

I Variables are obtained using mut qualifier
let mut x = 5;
x += 1; // ok

20

Variables own representation of value

I Memory layout is dense:
I variables contain the object, not a reference to the object
I whether primitive types or composite types
I whether local variables or members of a struct

struct Point { x: i32, y: i32 }
struct Rectangle { p1: Point, p2: Point }

I Rectangle will be 16 bytes as in C/C++

21

Arrays and Vectors

I Arrays are const sized, inlined, on stack or object
let a1 = [1, 2, 3]; // 3 i32 on stack
let a2 = [0; 5]; // 5 zeroes on stack
let ap = [Point{x:1,y:2}, Point{x:2,y:3}]; // 2 Points on stack

// struct containing array of 5 i32
struct S { i: i32, a: [i32; 5] }

I Vectors: have header inlined, data on heap, grow dynamically

let mut v = vec![1, 2, 3]; // type Vec<i32>
let i = v.pop(); // remove last; i = 3; v = [1,2]
let l = v.len(); // l = 2;
v.push(4); // append 4; v = [1,2,4]

22

(Im)mutability is transitive

I Local variables / parameters can be declared mut
I Fields of structs do not take this qualifier
I They inherit transitively the mutability of owner variable

let mut r1 = Rectangle { p1: Point {x: 23, y: 34},
p2: Point {x: 14, y: 18} };

let r2 = Rectangle { ... }
r1.p1.x = 45; // ok;
r2.p1.x = 45; // error: cannot assign to immutable field ‘r2.p1.x‘

I We can assign to x field of p1 field of r1 because r1 is mut

23

Resource lifetime is scope based

fn f() {
let mut s = HashSet::new();
s.insert(7);
...

}

I Struct HashSet is kept on the stack
I It may point to other objects on heap
I When scope exits, destructor will be called
I Owned objects on heap will be freed

24

Variables can be returned

fn f() -> HashSet<i32> {
let mut s = HashSet::new();
s.insert(7);
...
s

}

I Function f returns an HashSet<i32>
I Last expression implicitly returned from function
I When scope exits, destructor is not called
I Ownership of HashSet is transferred to caller
I Including objects on heap owned by the HashSet
I Physically:

I at most just a memcpy of the stack allocated struct
I or nothing, under return value optimization

25

Variables can be passed to functions

fn f() {
let mut s = HashSet::new();
s.insert(7);
g(s);
s.insert(12); // error: use of moved value: ‘s‘

}

fn g(s: HashSet<i32>) { ... }

I Function g takes an HashSet<i32> as parameter
I Function f invokes it passing s
I Ownership of s has been transferred into g
I Function f can no longer use s afterwards
I Function g is responsible for freeing it

26

Move semantics in assignment and parameter passing

I Variables own values
I Like parameter passing, assignment also moves ownership

let s1 = HashSet::new();
s1.insert(7);
let s2 = s1;
s1.insert(12); // error: use of moved value: ‘s1‘

I In each scope we have a single owner of each resource
I There cannot be two variables aliasing shared mutable state

27

Single owner per resource

I Improves reasoning:
I can use composite values like primitive ones
I no side effects to other variables

let mut x = ...
let mut y = ...
println!("{}", x);
y.update();
println!("{}", x);

I We know that x remains unchanged after update on y

28

Opt-in copy semantics for POD types

I Isn’t move too restrictive and artificial sometimes?
I What about primitive types? We are used to copying them
I Plain-Old-Data types can be declared to be Copy

I any type that can be copied by a simple memcpy
I primitive types are Copy
I can be copy if all components are copy
I (types which manage resources or have destructor cannot)

I Useful for small structs; e.g., points, complex numbers
#[derive(Copy, Clone)]
struct C { re: f32, im: f32 }

let mut c1 = C { re: 4.5, im: 7.8 };
let c2 = c1;
c1.re += 1.0;

29

Opt-in to Copy does not change semantics

I Making type Copy does not change semantics
I Only allows more programs to be compiled
I If program already compiled, produces same result

I Improves local reasoning
I not need to review code if type definition changed

I Contrast with value types (e.g., C#, F#, Swift)
I reference vs. value semantics
I changing it forces careful code review

30

Implicit copies only involve memcpy

I Both move and copy can only involve memcpy
I Move in rust makes source of move compile-time inaccessible

I source can be left alone
I no need to update source, to make it “empty” but usable

I Comparing with C++
I No copy constructors
I No move constructors
I No hidden arbitrary implicit code being run
I No hidden effects depending on optimization of temporaries

31

Borrowing: references that grant temporary access

I What if we want to let a function use or update a resource?
I that we want to keep owning after the invocation

I The function can borrow the resource
fn f(p: &Point) -> i32 {

p.x + p.y
}

let mut p1 = Point { x: 2, y: 4 }
let i = f(&p1);
p1.x += 1;

I f cannot store p in an arbitrary place
I Here we have an immutable borrowing

I the point can be only read; not updated

32

Mutable borrowing: to update object

I We can have mutable references through &mut
fn f(p: &mut Point) {

p.x += 1;
p.y -= 1;

}

let mut p1 = Point { x: 2, y: 4 }
f(&mut p1);
p1.x += 1;

I f can update p
I as before, f cannot store p in an arbitrary place

33

Explicit references in Rust improve local reasoning

I C++ references are obtained implicitly
int i = 2;
f(i);
std::cout << i; // i = ?

Cannot know if i changed without looking at f’s declaration
I Rust:

let mut p = Point { x: 2, y: 4 }
f(&p);

p cannot have been updated
I Rust:

let mut p = Point { x: 2, y: 4 }
f(&mut p);

p may have been updated

34

Dereferencing a reference

I Either implicit (auto-dereferencing), e.g, for fields or methods

fn area(r: &Rectangle) -> i32 {
((r.p2.x - r.p1.x) * (r.p2.y - r.p1.y)).abs()

}

I Or explicit, C-like, e.g., for primitive types
fn inc(ir: &mut i32) {

*ir += 1;
}

I Reference itself can be updated, if mut
let mut x = 5;
let mut y = 7;
let mut r = &mut x;
*r += 1; // increments x
r = &mut y;
*r += 1; // increments y

35

Borrowed references can be returned only if it is safe

I Only if the object lifetime is long enough
I Otherwise, compile time error
I Error if trying to return reference to local var

fn return_var() -> &i32 {
let x = 5;
&x

}

36

Returning reference to object from caller scope

fn largest_coord(p: &mut Point) -> &mut i32 {
if p.x > p.y { &mut p.x } else { &mut p.y }

}

let mut p = Point { x: 5, y: 7 };
inc(largest_coord(&mut p));

I In this case a mutable reference to the interior of the Point
I Which the caller uses to operate on the largest coordinate
I Compiler relates lifetimes of result and parameter

37

Explicit lifetime parameters

I If several references involved, explicit lifetimes can be used
I Function can be generic over lifetime parameter(s)

fn greater<’a>(r1: &’a i32, r2: &’a i32) -> &’a i32 {
if *r1 > *r2 { r1 } else { r2 }

}

I Here ’a is a lifetime parameter
I Incorrect usage is compile-time flagged by the borrow checker

let x = 5;
let r;
{

let y = 7;
// error: ‘y‘ does not live long enough
r = greater(&x, &y);

}
println!("{}", r);

38

Several readers or one writer

I Remember readers-writers from concurrent programming?
I If one is mutating, no one else should be reading or mutating
I Rust enforces similar guarantees for single-threaded scopes
I In each scope, for each resource

I either there are several references (&T)
I or exactly one mutable reference (&mut T)

I A variable
I cannot be updated while borrowed
I cannot be accessed while mutably borrowed

39

Several readers or one writer

fn largest_coord(p: &mut Point) -> &mut i32 {
if p.x > p.y { &mut p.x } else { &mut p.y }

}

let mut p = Point { x: 5, y: 7 };
{

let r = largest_coord(&mut p);
*r += 1;
//error: cannot assign to ‘p.x‘ because it is borrowed
p.x += 1;

}
p.x += 1; // ok

40

Single mutable reference prevents memory unsafety

I Consider iterating a vector and appending to other
fn push_all(from: &Vec<i32>, to: &mut Vec<i32>) {

for i in from {
to.push(*i);

}
}

I If both parameters could refer to same Vec
I iterator would traverse a range of memory
I appending to destination Vec could reallocate it
I iterator would traverse freed memory

I Cannot happen: two refs cannot alias mutable state
// error: cannot borrow ‘vec‘ as mutable because
// it is also borrowed as immutable
push_all(&vec, &mut vec);

41

Interior mutability

I Some types allow non mut variables to refer to mutable state
I Cell<T> allows update through explicit copies

I for Copy types
I RefCell<T> allows temporary mutable borrows

I checked at runtime
I Mutex<T> allows controlled mutation under concurrency

I locking the resource
I These are for advanced usages

I to be used rarely
I noticeable when used
I access to mutable state is controlled

I Analogous to explicit references in functional languages
I ML, Clojure

42

Other kinds of references

I For advanced uses, Rust exposes other reference types
I whole programs can be written without them

I Box<T>
I for exclusive mutable ownership of heap data

I Rc<T> – reference-counted pointer type
I for shared referencing of heap data
I to be used within each thread

I Arc<T> – atomically reference-counted pointer type
I for shared referencing of heap data
I when sharing data among threads; e.g., Arc<Mutex<T>>

I Rust philosophy:
I only pay performance cost when needed
I unlike Swift which has a single Arc-like reference

43

Introduction

State: Ownership, Moving, Borrowing, Lifetimes

Abstraction

Control Flow and Iteration

Conclusion

44

Rust emphasizes generic abstractions

I Not object-orientation
I Exposes many concepts

I structs, tuples, enums, functions, traits, impls
I These can be generic

I parameterized over types
I possibly bounded

45

Module based encapsulation

I The unit of structuring is the module
I with possibly nested modules

I Anything not pub is not visible outside module
I pub items are visible to client module that uses them
I pub can be applied to many concepts:

I fields
I structs
I enums
I functions
I traits

46

Module based encapsulation
pub struct Graph<N,E> { nodes: Vec<Node<N,E>> }

pub struct Node<N,E> {
neighbors: Vec<usize>,
edges: Vec<E>,
pub data: N

}

pub fn add_node<N, E>(g: &mut Graph<N,E>, data: N) {
g.nodes.push(Node {

neighbors: Vec::new(),
edges: Vec::new(),
data: data });

}

I Generic Graph type, parameterized over node and edge types
I Graph can be used outside module, nodes field cannot
I Both Node type and its data field visible outside module
I function add_node can access all fields

47

Methods

I Methods are functions that take object as first parameter
I Defined in impl blocks
I Special syntax with self
I As normal parameter passing, three ways to pass object:

I By reference, borrowing, with &self
I By mutable reference, mutably borrowing, with &mut self
I By move, transferring ownership, with self or mut self

I At calling side, object is auto-borrowed, if necessary

48

Taking &self

I The first choice
I Methods that merely perform computations

pub struct Circle {
pos: Point,
radius: f64,

}

impl Circle {
pub fn area(&self) -> f64 {

std::f64::consts::PI * (self.radius * self.radius)
}

}

let c = Circle { pos: Point{x:4.5, y:6.7}, radius: 2.3 };
let a = c.area();

49

Taking &mut self

I For mutator methods

pub struct Graph<N,E> {
nodes: Vec<Node<N,E>>,

}

impl<N,E> Graph<N,E> {
pub fn add_node(&mut self, data: N) -> usize {

let id = self.nodes.len();
self.nodes.push(Node {

neighbors: Vec::new(),
edges: Vec::new(),
data: data });

id
}

}

50

Taking self / mut self

I Takes ownership, allowing returning object (not reference)
I Efficient implementations exposing functional interface
I Example: String; from string.rs

impl<’a> Add<&’a str> for String {
type Output = String;

#[inline]
fn add(mut self, other: &str) -> String {

self.push_str(other);
self

}
}

I Strings can be added, functional style, no wasteful cloning
let s1 = "Hello ".to_string();
let s2 = s1 + "big";
let s3 = s2 + " world";
println!("{}", s3);

51

Associated functions
I There are no constructors; no special new
I Associated functions do not take self (“static methods”)
I By convention, function new commonly provided

impl<N,E> Graph<N,E> {

pub fn new() -> Graph<N,E> { Graph { nodes: Vec::new() } }

pub fn with_capacity(n: usize) -> Graph<N,E> {
Graph { nodes: Vec::with_capacity(n) }

}

pub fn empty(nodes: Vec<N>) -> Graph<N,E> {
let mut g = Graph { nodes: Vec::with_capacity(nodes.len()) };
for x in nodes { g.add_node(x); }
g

}
}

let mut g: Graph<&str,()> = Graph::empty(vec!["Alice", "Bob"]);

52

Traits

I Notion of interface / protocol
I which can be implemented for several types
I even a posteriori for existing types
I allowing extension methods

I Serve as bounds for parametric polymorphism
I with impls checked at definition against bounds;
I not at instantiation (C++ templates nightmare)
I generic impls monomorphized and statically dispatched

I Allow subtype polymorphism via trait objects
I for heterogeneous containers
I for dynamic dispatching

53

A posteriori implementation for existing types

I Not necessarily structs

trait Measure {
fn norm(&self) -> f64;

}

impl Measure for f64 {
fn norm(&self) -> f64 { self.abs() }

}

impl Measure for (f64, f64) {
fn norm(&self) -> f64 {

(self.0 * self.0 + self.1 * self.1).sqrt()
}

}

5.6.norm()
(23.2, 45.4).norm()

54

Traits as bounds for parametric polymorphism

impl<T: Measure> Measure for [T] {
fn norm(&self) -> f64 {

let mut sum = 0.0;
for x in self.iter() {

let n = x.norm();
sum += n * n;

}
sum.sqrt()

}
}

[3.4, 4.5].norm()
[(23.2, 45.4), (34.2, 56.1)].norm()

55

Operator overloading
use std::ops::{Add, Mul};

#[derive(Copy, Clone)]
pub struct C(f64, f64);

impl Add for C {
type Output = Self;
fn add(mut self, other: Self) -> Self {

self.0 += other.0;
self.1 += other.1;
self

}
}

impl Mul for C {
type Output = Self;
fn mul(self, other: Self) -> Self {

let (a, b) = (self, other);
C(a.0*b.0 - a.1*b.1, a.0*b.1 + a.1*b.0)

}
}

56

Operator overloading
impl Mul<f64> for C {

type Output = Self;
fn mul(mut self, other: f64) -> Self {

self.0 *= other;
self.1 *= other;
self

}
}

impl Mul<C> for f64 {
type Output = C;
fn mul(self, other: C) -> C { other * self }

}

fn main() {
let c1 = C(3.4, 2.3);
let c2 = C(5.2, 6.4);
let c3 = c1 + c2;
let c4 = c1 * c2;
let mut c5 = 0.2 * c3 + 0.8 * c4;
c5 = c5 * 1.3;

}
57

Subtype polymorphism and dynamic dispatch

trait Shape { fn area(&self) -> f64; }

struct Circle { pos: Point, radius: f64 }

struct Rectangle { p1: Point, p2: Point }

impl Shape for Circle { fn area(&self) -> f64 { ... } }

impl Shape for Rectangle { fn area(&self) -> f64 { ... } }

let c = Circle { pos: Point{x:3.4,y:6.7}, radius: 2.3 };
let r = Rectangle { p1: Point{x:2.3,y:4.5}, p2: Point{x:5.6,y:7.8} };
let a1 = c.area(); // static dispatch
let a2 = r.area(); // static dispatch
let shapes: [&Shape; 2] = [&c, &r]; // array of trait objects
for s in shapes.iter() {

println!("{}", s.area()); // dynamic dispatch
}

58

Closures

I Anonymous functions
I Capture variables from enclosing scope into an environment
I Not restricted to using values: may update variables
I Possible to be statically dispatched and with no allocation
I Variants according to how environment is passed to call

I Fn – call borrows the environment &self
I FnMut – call borrows mutably the environment &mut self
I FnOnce – call moves the environment self

I And according to how variables are captured
I by reference
I by mutable reference
I by move

59

Fn closures

I Call takes environment as &self
I Do not have side effects on environment
I Environment variables can be read with closure in scope

let (min, max) = (5,8);
let between = &|x| x >= min && x < max;
println!("{}", between(9)); // false
use_closure(between);

fn use_closure<F>(f: &F) where F: Fn(i32) -> bool {
println!("{}", f(6)); // true
println!("{}", f(4)); // false

}

60

FnMut closures

I Call takes environment as &mut self
I Can have side effects on environment
I Updated environment variables cannot be accessed with

closure in scope

let (min, max) = (5,8);
let mut tot = 0;
{

let check = &mut |x| if x >= min && x < max { tot += 1; };
check(7);
use_closure(check);

}
println!("{}", tot); // 2

fn use_closure<F>(f: &mut F) where F: FnMut(i32) {
f(6);
f(4);

}

61

FnOnce closures

I Call takes environment as self
I Allow environment variables to be moved out of closure
I Can only be called once

use std::thread;

fn main() {
let data = vec![1, 2, 3];
thread::spawn(|| {

let v = data;
thread::sleep_ms(300);
println!("{:?}", v);

});
thread::sleep_ms(600);

}

62

Moving environment into closure

I When closure should survive creation scope
I e.g., function which returns adder closure
I e.g., to spawn threads

I move keyword forces environment move
I Closures are unsized types

I must be put into Box to be returned

fn make_adder(x: i32) -> Box<Fn(i32) -> i32> {
Box::new(move |y| x + y)

}

let a = make_adder(5);
println!("{}", a(7)); // 12

63

Introduction

State: Ownership, Moving, Borrowing, Lifetimes

Abstraction

Control Flow and Iteration

Conclusion

64

Decision making

I Cover all cases elegantly
I language makes impossible to forget case
I extract relevant data for each case

I Ingredients
I enum: discriminated unions of rich data
I pattern matching
I exaustiveness of match construct

I Blends with imperative idioms
I does not force expression-orientation
I allowing break and return

I Blends with ownership system
I allowing borrowing of matched substructure

65

Enums

I Sum types, which represent one of several variants
I Each may: have no data, be tuple-like, or be struct-like
I Can declare struct-like alternatives without pre-existing types
I Space reserved for largest variant, like C unions
I Can represent alternatives inlined, without allocation

I Unlike OO-idiom of using subclassing

I Mutable var or &mut allows changing variant in-place

66

Message type with enum

enum Msg<K,V> {
Insert(V),
Get(K),
Put(K, V),
Delete(K)

}
use Msg::*;

fn handle<K,V>(msg: Msg<K,V>) {
match msg {

Insert(v) => { /* code here */ }
Get(k) => { /* code here */ }
Put(k, v) => { /* code here */ }
Delete(k) => { /* code here */ }

}
}

67

Binary tree with enum

enum BinaryTree<T> {
Leaf(T),
Node(Box<BinaryTree<T>>, T, Box<BinaryTree<T>>)

}
use BinaryTree::*;

impl<T> BinaryTree<T> {
fn depth(&self) -> u32 {

match *self {
Leaf(_) => 0,
Node(ref l, _, ref r) => 1 + max(l.depth(), r.depth())

}
}

}

I Needs explicit Box to avoid infinite size
I ref allows borrowing matched substructure

68

Error handling

I No exceptions (checked or unchecked)
I Panic to unwind stack and abort thread

I assert-like, for irrecoverable errors; e.g., bugs

I Failures reported through Option and Result enums
I Macros to help in achieving safety and elegance

I e.g., try!()

69

Early return within match under error
enum MyError { IO(io::Error), Parse{line: String, number: u32} }
use MyError::*;
fn sum_lines(file_name: &str) -> Result<u64, MyError> {

let mut file = match File::open(file_name) {
Ok(file) => file,
Err(err) => return Err(IO(err))

};
let (mut sum, mut cnt) = (0, 0);
for line in BufReader::new(&mut file).lines() {

cnt += 1;
let line = match line {

Ok(line) => line,
Err(err) => return Err(IO(err))

};
let num: u64 = match line.parse() {

Ok(num) => num,
Err(_) => return Err(Parse{line: line, number: cnt})

};
sum += num;

}
Ok(sum)

}
70

Elegant error handling with try!

impl From<io::Error> for MyError {
fn from(err: io::Error) -> MyError {

IO(err)
}

}

fn sum_lines(file_name: &str) -> Result<u64, MyError> {
let mut file = try!(File::open(file_name));
let (mut sum, mut cnt) = (0, 0);
for line in BufReader::new(&mut file).lines() {

cnt += 1;
let line = try!(line);
let num: u64 = try!(

line.parse().map_err(|_| Parse{line: line, number: cnt}));
sum += num;

}
Ok(sum)

}

71

Iterators

I Iterator: base trait for external iteration
I Iterator state in object
I Implementations must define next method returning Option
I Syntactic sugar for Range iterators

0..n // iterator over numbers 0 <= i < n

I for loop uses iterator

72

Containers from library provide iterators

I Vec
for x in [1, 5, 7].iter() {

println!("{}", x);
}

I HashSet
let mut s = HashSet::new();
s.insert("alice");
s.insert("bob");
for e in s {

println!("{}", e);
}

I HashMap
let mut h = HashMap::new();
h.insert("alice", 3);
h.insert("bob", 5);
for (k,v) in h {

println!("key:{}, value:{}", k, v);
}

73

Iterators can borrow, mutably borrow, or own

I Given vector of P’s
let mut v = vec![P {x:2, y:4}, P {x:6, y:7}];

I Iterate borrowing immutably
let mut sum = 0;
for p in &v {

sum += p.x;
}

I Iterate borrowing mutably
for p in &mut v {

p.x += 1;
}

I Iterate over moved container
let mut s = HashSet::new();
for p in v {

s.insert(p);
}
v[0].x += 1; // error: use of moved value: ‘v‘

74

User defined iterators; example: fibonacci numbers
pub struct Fibonacci { curr: u64, next: u64, stop: u64 }

impl Iterator for Fibonacci {
type Item = u64;
fn next(&mut self) -> Option<u64> {

let res = self.curr;
if res >= self.stop {

None
} else {

self.curr = self.next;
self.next += res;
Some(res)

}
}

}

pub fn fibonacci(stop: u64) -> Fibonacci {
Fibonacci { curr: 0, next: 1, stop: stop }

}

for i in fibonacci(1000) { println!("{}", i); }

75

Consuming an iterator

I Collecting items
let s: HashSet<_> = fibonacci(400).collect();
let v: Vec<_> = fibonacci(200).collect();

I collect generic on result type
I type inference based on destination allows same code

I Folding
fn sum_squares(n: u32) -> u32 {

(1..n+1).fold(0, |sum, x| sum + x*x)
}

I Partitioning according to predicate
let (even, odd): (Vec<_>, _) =

fibonacci(100).partition(|&n| n % 2 == 0);

76

Iterator adapters

I Take iterator, return transformed iterator
I Classic ones: map, filter, zip, take, skip, cycle, . . .
I Are lazy: do nothing until consumed

warning: unused result which must be used: iterator adaptors are
lazy and do nothing unless consumed, #[warn(unused_must_use)] on by default
fibonacci(100).filter(|&i| i % 3 == 0);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I “Sum of the first 10 odd numbers that are not multiples of 3”

let sum = (0..)
.filter(|&n| n % 2 != 0 && n % 3 != 0)
.take(10)
.fold(0, |s, n| s + n);

77

Introduction

State: Ownership, Moving, Borrowing, Lifetimes

Abstraction

Control Flow and Iteration

Conclusion

78

Mutable state taken seriously

I Functional idioms are already widespread
I But purely functional languages can be limiting
I Current OO languages create mutability spaghetti

I makes some people think functional is the only way-out
I Much research on these problems for ages; starting in the 70s

I ends up mostly in experimental/research languages
I If successful, Rust can be the first widespread language

I taking mutable state seriously
I while allowing safe and “bare metal” efficient programs
I with high-level abstractions

79

For another day

I Concurrency
I leverages ownership, borrowing and immutability
I concurrency related traits: Send, Sync
I guarantee of no data races checked at compile-time
I possible to create threads that operate safely on creator stack

I Macros
I syntactic abstraction, at compile time
I hygienic

I Unsafe blocks and raw pointers
I to be used very exceptionally
I e.g., used in the implementation of standard library
I if one never uses unsafe, one never gets segfaults

80

	Introduction
	State: Ownership, Moving, Borrowing, Lifetimes
	Abstraction
	Control Flow and Iteration
	Conclusion

