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Abstract

Current data abstraction mechanisms are not adequate to control sharing of

state in the general case involving objects in linked structures. They only prevent

the direct access to the state variables of single objects, as opposed to considering

the state reachable by an object and the inter-object references, neglecting the

fact that an object is not, in general, self-contained. The pervading possibility of

sharing is a source of errors and an obstacle both to reasoning about programs

and to language implementation techniques.

This thesis presents balloon types, a general extension to programming lan-

guages which makes the ability to share state a �rst class property of a data type,

resolving a long-standing aw in existing data abstraction mechanisms. Balloon

types provide the balloon invariant, which expresses a strong form of encapsula-

tion of state: it is guaranteed that no state reachable (directly or transitively) by

an object of a balloon type is referenced by any `external' object.

The mechanism is syntactically very simple, relying on a non-trivial static

analysis to perform checking. The static analysis is presented as an abstract

interpretation based on a denotational semantics of a simple imperative �rst-order

language with constructs for creating and manipulating objects.

Balloon types are applicable in a wide range of areas such as program trans-

formation, memory management and distributed systems. They are the key to

obtaining self-contained composite objects, truly opaque data abstractions and

value types|important concepts for the development of large scale, provably cor-

rect programs.
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Chapter 1

Introduction

1.1 Motivation

The imperative model of computation involves performing operations on a mutable

state which evolves with time, either to converge to some result, or to interact with

an external dynamic system. Some operations change a part of the state, which is

then used by other operations; there are side-e�ects, which result in dependencies.

While some of these dependencies reect the tasks to be performed, there can also

exist accidental and undesired interference between instructions.

Some unexpected interference may be the manifestation of an error in the

program. Such bugs can be very hard to detect, and reasoning about the program

is also di�cult. Another kind of interference may reect a poor design in which

common state (such as auxiliary variables) is used by tasks that are not genuinely

dependent. This last case can lead to an unnecessary bottleneck: the serialisation

of tasks which could in fact be performed in parallel. These are some of the reasons

why, in imperative languages, the issue of how to organise the state becomes

important.

The more widely used languages in the `real world' follow the imperative model

of computation: either classic procedural languages like Pascal [77] or C [48], or

object-oriented languages like Smalltalk [35], C++ [71], Ei�el [62], and Java [8].

Modern imperative languages (object-oriented languages in particular) have ben-

e�ted from advances such as structured control-ow, data abstraction [27, 39],

subtype polymorphism [20, 6], and bounded parametric polymorphism [19]. In

spite of all these advances, programming in object-oriented languages remains an

error prone activity, and reasoning (either people or static analysis tools) remains

1



2 Chapter 1. Introduction

di�cult.

We argue that one of the reasons for this is a aw in current data abstraction

mechanisms: they do not provide an appropriate mechanism to organise the state

(i.e. the graph of objects) manipulated by the program. The direct cause of the

problem is the trivialisation of the use of references (pointers), with no appropriate

mechanism to control the proliferation of inter-object references.

If we look back, references were considered a dangerous feature [40, 78], like the

goto statement. Quoting [40]: `References are like jumps, leading wildly from one

part of a data structure to another. Their introduction into high-level languages

has been a step backward from which we may never recover.'

While the goto statement was successfully abolished in favour of structured

control-ow mechanisms, the same did not happen to references; they are impor-

tant to represent unbounded linked structures with possible mutable substructure

sharing. In modern object-oriented languages (e.g. Java) references have become

in fact the norm and not the exception.

Unfortunately, the widespread use of references was not accompanied by appro-

priate controlling mechanisms. Data abstraction mechanisms provided by current

languages provide insu�cient encapsulation: they just prevent the direct access to

the state variables of single objects, as opposed to considering the state reachable

by an object and the inter-object references, neglecting the fact that an object is

not in general self-contained.

1.2 Contribution

The contribution of this thesis is balloon types, a general language/type-system

mechanism for imperative languages:

� Balloons allow a cluster of objects to be treated as a self-contained composite

object.

� Balloons make the ability to share state a �rst class property of a data-type.

� Balloons are a support for data abstraction, by providing a strong form of

encapsulation of state.

� Balloons prevent the more insidious form of interference and facilitates rea-

soning about program correctness.
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� Balloons give user-de�ned types the same status as primitive types, which

need no longer be considered `special'.

� Balloons are a result in language design for analysability : a language mech-

anism that provides information/invariants which can be counted upon to

enhance the outcome of static analysis of programs, such as dependency

analysis towards parallelisation.

� Balloons are syntactically and conceptually minimal, hiding the complexity

from programmers by relying on a non-trivial static checking developed using

abstract interpretation.

The thesis characterises a long-standing problem in imperative languages; pro-

poses, as solution, a novel mechanism that, at minimal syntactical cost, makes

explicit in data-types an important invariant for reasoning about programs; for-

mulates the invariant considering usefulness and enforceability; presents a static

analysis to check the invariant; presents an extension of the mechanism that pro-

vides a stronger invariant; and discusses practical concerns for integrating the

mechanism into real object-oriented languages. We have presented an introduc-

tory paper about this work in [5].

1.3 Thesis Structure

The problem we address deserves a detailed introduction, which we present in

Chapter 2. We start by introducing some terminology; then, we argue why cur-

rent data abstraction mechanisms fail in supporting e�ective encapsulation in the

general case involving linked structures of objects; �nally, we discuss previous

approaches to the problem.

Chapter 3 introduces balloon types, the core contribution of the thesis. There

we de�ne the balloon invariant and present an overview of the checking mechanism

for balloon types.

Chapter 4 presents, in a problem independent setting, our approach to abstract

interpretation|the tool for program analysis used in developing the mechanism.

In Chapter 5 we describe the checking mechanism we have developed for bal-

loon types. For this we de�ne a simple language (RISO), a denotational semantics,

and present an abstract interpretation which is the basis of the checking mecha-

nism.
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In Chapter 6 we describe an e�cient way to handle functions, avoiding the

use of naive function spaces; this is important due to the complexity of the base

domains involved.

Chapter 7 presents opaque balloon types, an extension of the concept. It mo-

tivates the concept, describes the opaque balloon invariant, presents the nesting

interpretation, and outlines two approaches to a checking mechanism, based on

the nesting interpretation.

In Chapter 8 we focus on several issues related to incorporating balloon types

into real languages, such as modularity, subtype and parametric polymorphism,

and the existence of global variables.

We conclude in Chapter 9 by summarising what has been achieved and pointing

to research directions opened up by balloon types.



Chapter 2

State, Sharing, and Language

Design

In the �rst part of this chapter we establish some terminology, distinguish two

forms of aliasing, and identify problems which result from object sharing. In

particular, we explain why current data abstraction mechanisms do not provide

appropriate support for managing object sharing and discuss the fundamental aw

in the form of encapsulation provided. In the second part of the chapter we do a

survey of language mechanisms which attempt to solve some part of the problem.

2.1 Sharing and Encapsulation

2.1.1 Values, Objects, and Variables

The traditional notion of variable in an imperative language is a container for

a value at some point in the execution of a program. We say that the integer

variable i holds the value 4 at some point. If the assignment `i := i + 1' is then

performed, it makes i hold the value 5.

A value is an abstract mathematical entity, and a variable holds in fact a

representation of a value; it is, however, usual to say for short that `a variable

contains a value'.

A variable is also traditionally thought of as an independent assignable element.

If we have variables i and j with values 4 and 7, and then perform the assignment

`i := i + 1', the resulting values will be 5 and 7 respectively: the assignment

to i does not a�ect j. This is what students are told to expect when a `toy'

imperative language is introduced.

5



6 Chapter 2. State, Sharing, and Language Design

If we are to consider realistic imperative languages, either procedural or object-

oriented, the concept of object becomes important. An object contains state,

typically through a set of state variables (we use the term state variable for what

in di�erent places is referred to as instance variable or �eld). An object has also

some form of identity : we can speak of two di�erent objects having the same state;

identity is what distinguishes them [49, 10]. Identity gives objects the property

of being shareable. This can be done by allowing variables to be references to

objects; in this case the value of a variable is some kind of object identi�er. It is

possible that two di�erent variables have the same object identi�er as their value;

in this case we say that they reference the same object.

Unlike values such as integers, an object identi�er is not useful in itself, but only

as a means to access an object. For this reason, although every variable contains

a value, we distinguish the special case of references and say that a variable either

contains a value or is a reference to an object.

State variables of objects can also be references, making it possible to build

linked data structures, including recursive structures like lists or trees. The set of

objects together with the references in the state variables can be seen as a graph,

with objects as nodes and references as edges. In general it is possible to have

sharing of nodes and even cycles.

While the notion of value is not generally argued about, the notions of variable

and object are more debatable and sometimes blurred. We de�ne them in the way

we consider more consistent with the widespread intuition for the concepts.

The notion of variable is, like in mathematics, the association of a value to

a name, but with an imperative avour in that the associated value may change

with time. The term `object' comes from a physical or modelling sense, in that it

is an entity containing state and with an identity which can be `known' by other

objects.

Our usage is quite general, stressing the duality of value versus object, on

the lines of [58]; it suits both procedural and object-oriented languages. The

di�erence between these two variants of imperative languages is essentially the way

programs are organised. In procedural languages a program is organised as a set of

procedures which can have direct access to the state of di�erent objects. In object-

oriented languages the program is organised around what classes of objects there

are and what operations can be invoked for each di�erent class of objects. State

variables of each object are only, in principle, manipulated by the implementation

of these operations, which are, in turn, used by client code.
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Also, while there are some similarities between variable and object in the sense

that both are updateable, we stress some important di�erences. A variable is

accessed through a name and is assignable. An object is not normally assigned

in itself, the state is instead updated by assignments to its state variables. Also

an object is, in general, unnamed, even if it may be common that its lifetime is

related to some variable.

Objects are shareable, possibly being referenced by di�erent variables. On the

contrary, a variable is not shareable in itself (it is not in itself the content of other

variables); variables are, at most, part of an object which may itself be shared. In

any case, the name of the variable must be used for access.

To emphasise these di�erences, consider a simple imperative language with a

loop construct but without recursion. If there are no variables which are references,

we have a �xed number of variables to consider, referred to by names such as x,

y, and z. On the other hand, if there are references and objects are created,

the execution of the program can create a linked data structure, and we cannot

establish a bound for the size of this data structure: the number of objects is

unrelated to the number of identi�ers in the program. These di�erences have

important consequences for reasoning about programs; they will play a central

role throughout this thesis.

2.1.2 Aliasing

Even in the case of primitive types like integer, objects become relevant to describe

the behaviour of a program when aliasing is present. As a general model, we can

say that integer variables denote objects that contain (representations of) values.

In the case of integers aliasing can be created when using call-by-reference, as

illustrated in Figure 2.1.

During the invocation of procedure f variables i and j denote the same integer

object: they are said to be aliases for the same object. The increment of j changes

the object which is also denoted by i. As such, the two write statements will result

in `1' and `2'.

It can be remarked that in this case i and j are not really variables but are

constant references, as they refer always a given object. A similar remark applies

to x; in this case, as the lifetime of the object is connected to the `variable', it

is common to say that `the variable contains the object'. It is possible, however,

to have `true' variables which can reference di�erent integer objects at di�erent
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PROCEDURE f(VAR i:INTEGER, VAR j:INTEGER)

BEGIN

WRITE i;

j := j+1;

WRITE i

END

VAR x:INTEGER;

BEGIN

x := 1;

f(x, x)

END

2

ix j

Figure 2.1: Aliasing in integer objects due to call-by-reference

times; such is the case in Algol 68 [72].

Aliasing has been long ago recognised as a source of problems [40, 78] and some

attempts have been made to prevent it. The previous example would be invalid

in Pascal [77], due to using x twice as an argument, but in general aliasing cannot

be prevented at compile time (without being overly restrictive) given parameter

passing with reference semantics. An example is the call f(A[i], A[j]), when

the indexes cannot be determined at compile time.

Another example, involving Point objects is presented in Figure 2.2. Point

objects have state variables x and y of type Int, and a move method. Here one

point object is created and the reference assigned to p. A function is invoked using

this reference in both arguments.

We represent objects either by rectangles divided in cells (when we want to

consider their state variables) or by circles (when the representation of their state

is irrelevant and self-contained, as for integer objects). Variables are simply rep-

resented by their name, without any kind of box. References in state variables are

represented with full lines, while those in stack-based variables with dashed lines.

As in Simula [27] we have used the `:-' notation for reference assignment.

During the execution of the function both formal parameters refer to the same

object. The two move instructions would operate on the same object, and could

lead to surprising behaviour.

While the �rst example refers to a typical built-in type (integer) and the second

to a user-de�ned type (Point), these are similar cases. We have two stack-based
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Point = { x,y:Int;

move(Int,Int)

}

p : Point;

p :- new Point;

p.x := 1;

p.y := 2;

f(p, p);

f(p1, p2 : Point)

{

p1.move(10,20);

p2.move(10,20);

}

21

p p1 p2

Figure 2.2: Aliasing in Point objects

variables, in this case formal parameters, which refer to the same object. This

kind of aliasing we will call dynamic aliasing.

As in [42, 41] we will use the terms:

� dynamic aliasing when stack based variables (including parameters) are in-

volved (as above),

� static aliasing when only state variables of objects are involved.

Dynamic aliasing has a lifetime which depends on the execution of functions. It

will disappear when the corresponding variables cease to exist when some function

exits; thus the use of the word dynamic. On the contrary, static aliasing reects

the structure of the object graph: how the set of existent objects are interlinked,

regardless of the variables in the stack of invocation records. It ignores the (dy-

namic) control ow state of the program, and reects the more persistent state of

the graph of objects.

Static aliasing is more pervasive as it can be created during the execution

of a function, survive the end of the function and, at an unrelated point in the

program, result in interference between two instructions which do not use common

variables.

One nice property which holds for built-in types like integer in many program-

ming languages is that objects cannot be statically aliased: they cannot be shared

by several state variables of objects. This is a result of the assignment having
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value semantics: it copies the state of the object and not a reference to the object.

Consider the following example involving Point:

Point = { x,y:Int }

p:Point;

...

p.x := 1;

p.y := p.x;

increment(p.y);

print(p.x, p.y);

21

p

Programmers expect that the increment operation applied to p: y does not a�ect

p: x and that the outcome of the program is `1 2'.

This nice property can be summarised as follows: in primitive types, regardless

of whether dynamic aliasing occurs (due to call-by-reference), static aliasing does

not occur as the assignment has value semantics. The following cannot occur:

21 11

This nice property is true if languages impose some `reasonable' constraints,

like banning the explicit use of pointers, dereferencing and the `address-of' oper-

ator. Such constraints tend to be incorporated in modern languages like Ei�el or

Java. In more permissive languages like C++ [71] `anything is possible', including

storing in heap based objects pointers to stack based objects, with the danger of

creating dangling references: references to something that has ceased to exist.

2.1.3 Sharing of state

In many object-oriented languages (eg. Smalltalk [35], Java [8]) variables of user-

de�ned types are references to objects, and the assignment has reference semantics

(copies just the reference). This makes sharing of objects by other objects (static

aliasing) possible. As an example, consider the type Rectangle:



2.1. Sharing and Encapsulation 11

Rectangle = { p1,p2:Point;

rotate(Int)

}

r1,r2:Rectangle;

...

r2.p1 :- r1.p2;

r1.rotate(90);

r2.rotate(45);

r1 r2

After the assignment both rectangles share a common point object. Consider

the operation rotate which updates the point objects that constitute a rectangle;

there would be interference between the two rotate operations, as the �rst would

modify a point that is accessed by the second.

Although sharing can be useful and may be desired in some cases, this is

probably not what the users of rectangle objects would desire. They would expect

that each rectangle is a self-contained object, and that operations on di�erent

rectangles do not interfere.

Programmers can obtain a copy of a point instead of copying a reference to

it, but they can copy the reference accidentally. This can easily happen if the

available assignment operator copies just the reference.

Expanded types were introduced in Ei�el [62], whereas originally user-de�ned

types were always reference types. If a type is declared as expanded, variables will

hold the object itself and not a reference to the object; also parameter passing

and assignment copies the object. Expanded types solve the problem in this

particular case: the programmer just has to declare types Point and Rectangle

to be expanded.

However, accidental substructure sharing is still possible, because the mecha-

nism does not prevent an object of an expanded type from referring to objects of

non-expanded types, which can be shared themselves. In this case we could have

Rectangle expanded but Point declared accidentally as non-expanded.

2.1.4 Sharing and Unbounded Linked Structures

While in the previous example it is at least possible to prevent sharing by declar-

ing both Point and Rectangle as expanded, not always expanded types provide

su�cient support to prevent unwanted sharing. In the case of unbounded linked

structures such as linked lists the recursive nature of these types prevents them
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Shape = { rotate(Int) }

Rectangle <: Shape

= { p1,p2:Point }

Circle <: Shape

= { c:Point; r:Real }

Polygon <: Shape

= { List[Point] }

Graph <: Shape

= { ... }

a:Array[Shape];

for i = 1 to N

a[i].rotate(45);

Figure 2.3: An array of shapes

from being declared as expanded. This means that even if one type is declared as

expanded, objects of that type may need to reference a list, which cannot be an

expanded type and may itself be shared. Expanded types thus fail since they are

not able to prevent sharing of linked substructures.

Consider a Shape type with several subtypes such as Rectangle and Polygon.

Some of these types may require pointer structures such as a linked list of points

in the case of polygon. Some of the structures may even contain cycles. Suppose

we have an array of shapes and a loop which rotates each of the shapes in the

array, as illustrated in Figure 2.3.

It could happen contrary to the programmer's intent that two shapes share the

whole or part of the objects of their states, as illustrated by the dashed arrows.

This would imply that performing a rotate on one shape would interfere with other

rotate operations, contrary to the expectations of the programmer.

This pervading possibility of sharing state is what makes it di�cult to reason

about programs in procedural or object-oriented languages. Contrast the shapes

example with plain integers:

a:Array[Int];

for i = 1 to N

increment(a[i]);

Although trivial for integers, it can be extremely di�cult for the compiler to
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determine in the case of shapes if the di�erent iterations of the loop interfere.

Providing an unchecked directive so that a programmer who `knows' that they

do not interfere gives that `knowledge' to the compiler is dangerous. It can be

the case that the programmer is wrong and they do indeed interfere, for example

due to a bug in the implementation of some operation that causes the unwanted

sharing.

2.1.5 Data Abstraction and Encapsulation of State

According to [75], a data abstraction is `an object whose state is accessible only

through its operations'. It may be thought that current data abstraction mech-

anisms are appropriate enough for controlling sharing of state. The problem is

that currently they just control the access to the state variables and not to the

whole reachable state; they consider it `other objects'. However, to reason about

program behaviour it matters precisely whether these `other objects' are shared.

Only by thinking of the state associated with an object as the state directly or

transitively reachable by the state variables is it possible to argue about whether

the state is encapsulated (and not referenced by external objects), or is shared

(and part of it is also referenced by external objects). This is how we see state

and encapsulation of state.

The same view of state is expressed in [41], and a similar attitude towards

encapsulation can be perceived in [22]. Also [42] has this interesting remark: `the

big lie of object-oriented programming is that objects provide encapsulation.'

A widespread misconception is that if encapsulation (as we see it) is wanted it

is enough not to have functions of the type returning references to the state; this

is de�nitely false:

� There can be interaction between the state and the parameters received by

some function of the data type. This interaction can involve invocations

of operations which may cause some object from the state to become ref-

erenced by an object reachable by a parameter or vice-versa, breaking the

encapsulation of the state. An example is presented in Figure 2.4.

� The implementation of a binary method [14], while manipulating several in-

stances of the data type, may cause sharing of their states. This is illustrated

in Figure 2.5.
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Node = { val:Int; nxt:Node;

link(p:Node)

{

self.nxt :- p;

}

}

T = {

list:Node;

break(par:Node)

{

par.link(self.list)

}

}

t:T; n:Node;

...

t.break(n);

t n

Figure 2.4: An object from the state captured by an external object

T =

{

list:Node;

break(t:T)

{

self.list.link(t.list);

}

}

t1,t2:T;

...

t1.break(t2);

t1 t2

Figure 2.5: Creating substructure sharing between two instances
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These situations may happen accidentally, contrary to the expectations of the

implementor of the data type, with no warning or prevention by the compiler.

2.2 Approaches to Control of Sharing

2.2.1 Syntactic Control of Interference

Even before the widespread use of pointers, it was recognised that the use of call-

by-reference is a source of problems, due to the possibility of introducing aliasing

between parameters (and also global variables). This aliasing, together with the

manipulation of global variables, gives rise to interfering side-e�ects that Reynolds

denotes by interference.

In [69] he proposes that syntactic restrictions are introduced so that there is

no interference between identi�ers (eg. of variables or procedures). This means

that for example, a procedure cannot assign to a global variable used by another,

or that in an invocation no two arguments can be the same variable or a global

variable used by the procedure. To enable constructive interference, it is proposed

that interfering identi�ers must be grouped into a collection named by a single

identi�er. Also, to avoid being unnecessarily restrictive, the concept of passive

phrases is introduced: if no assignments to free variables are made an expression

is passive, and two such passive expressions do not interfere even if they share free

variables.

Although being a classic reference to some of the concerns that should be taken

more seriously in language design, the scope of this proposal is somewhat limited.

It does not consider pointers and it fails to address problems caused by arrays,

like the use of call-by-reference together with array indexing. An invocation like

`f(a[i],a[j])' can cause the two formal parameters to refer to the same array

element, something which should not be allowed. However, as the subscripts can

be the result of some arithmetic expression, this cannot be prevented at compile

time without being overly restrictive.

In Euclid [55, 67, 24] there were concerns about aliasing which resulted in

restrictions similar to Reynolds, preventing aliasing between formal parameters

or parameters and global variables. Moreover, arrays were also considered and,

recognising that static checking would be overly restrictive in the case of subscript

calculations, it was proposed that the potential for aliasing is detected statically

and that run-time checks are made: the so called legality assertions [79].
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With the recognition of the pitfalls of global variables [80] on one hand, and

with the introduction of dynamic data structures via references/pointers on the

other, the problem shifts from identi�ers to unnamed objects and references. These

approaches that focus on identi�ers as the sole channels of interference become

powerless on their own: they can serve at most as a complement. The main

problem becomes the interactions due to unnamed objects linked via references;

our approach addresses precisely this problem.

2.2.2 Banning References to Variables

A basic issue is what a reference can refer to. When references/pointers were

introduced in many high-level languages, as in Algol 68 or C, it was made possible

that they refer, not only to whole dynamically allocated objects, but also to local

variables of some procedure or state variables of an object. The address of a

variable could be obtained, either implicitly, or through an `address-of' operator

like `&' in C.

While this can be thought of allowing great generality of expression, it causes

problems. It becomes possible that the value of a variable changes with no as-

signment to the variable being made, which makes reasoning about the program

more di�cult. In our terminology, it confuses two concepts which should be kept

separate: variable and object. Moreover, in languages like C it is possible that a

reference to a stack-based variable is returned from a function and is used after

the variable ceases to exist|the so called dangling references.

The obvious solution to the problem is to allow references only to dynamically

allocated (unnamed) objects, and not to variables themselves. This clearly distin-

guishes the concepts of object and variable, as we argue: even if part of an object,

it is the object and not the variable which is (directly) shared; a variable can only

be changed through assignment.

Although these problems have been recognised and the obvious solution pro-

posed as early as in [78], languages in wide use like C++ still o�er the full freedom,

with all its problems. Common practice in modern language design tends, how-

ever, to correct the problem, by banning the possibility of `references to variables';

examples are Ei�el and Java.
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2.2.3 Part Objects

A rectangle is an example of a composite object. It is more appropriate to say that

a rectangle is composed of two part objects (two points), than to say that it is

associated with the points. The is-part-of relationship, which is one of the basic

data modelling concepts, cannot be represented by having just plain references

to objects, as discussed in [50]. The issue is whether a given point is part of a

rectangle or it is independent and referenced by several objects.

Many languages allow these two alternatives to be expressed. For rectangles

we may wish that the state variables contain, not references to points, but points

themselves. This last case is indeed the norm in classic procedural languages like

Pascal or C; these languages o�er records which can be made up of other records.

Proposals for part objects in object-oriented languages can be found in [13, 70];

part objects are possible in languages like C++ and Beta [53, 60].

This possibility of choice has been neglected in some object-oriented languages

in favour of only providing the general `variables are references to objects'. Notable

cases are Smalltalk and Java. In Java built-in types are `special': we can have `a

point is made up of two integers', but not `a rectangle is made up of two points';

we can only say `a rectangle is made up of two references to points'.

Unfortunately, even if a language provides `a variable contains an object', al-

though it makes possible to mimic the conceptual modelling of objects, it does

not solve the problems we have described. The reason is that the fundamental

issue (whether an object may be shared) does not depend on the object being or

not a physical part of another, but on whether it is possible to obtain (and store

elsewhere) references to an object. Languages which o�er part objects (like C++

and Beta) typically allow references (or pointers) to be obtained so that operations

may be invoked on these objects. These references to a part object may be stored

by the invoked function in some object, creating sharing.

Furthermore, a drawback with physical part objects is the inability to exploit

subtype polymorphism, as the part object must have a �xed size and cannot be

of di�erent classes at di�erent points in time.

A proposal [50] for object-oriented databases uses the concept of composite link

as a substitute to physical containment. However, it is concerned with relative

lifetimes of objects, and does not prevent part objects from being referenced by

third parties, nor the existence of dangling references.
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2.2.4 Object Ownership

Another proposal towards reasoning about linked structures and modeling com-

posite objects is described in [47], where the concept of object ownership is intro-

duced. Every object manipulated through references has an owner (an object),

constant throughout its lifetime, each object being existence-dependent upon its

owner (i.e. it ceases to exist when the owner does so).

Keywords private and protected are introduced (which should not be con-

fused with the same keywords in C++), as well as the concept of proprietorship:

every variable (of reference type) has a proprietor object; the proprietor of a

private variable is `the object in which it is declared' (by which the authors must

mean `the recipient object of the invocation', which in the case of parameters turns

out to be quite arti�cial); the proprietor of a protected variable is `the owner of

the object in which it is declared'; the proprietor of a public (the default) variable

is Void.

A rule is stated that the owner of an object referenced by a variable is the

proprietor of that variable. However, no language mechanism which could enforce

the rule statically is presented. The authors simply propose that a run-time check

is made; essentially, the reference assignment is rede�ned to cause a run-time

exception if the proprietors of the assigned-to and assigned-from variables are

di�erent. This requires run-time support and corresponding overhead, something

that, together with the possibility of having unexpected exceptions, makes the

concept unsuitable for production code (althougt it may serve during the test

phase).

Another weakness of the proposal concerns the failure to make a distinction

between being owner of an object and temporarily using an object received as

a parameter; this is not realistic in what concerns parameter passing, as briey

hinted at in the conclusions of the paper.

A �nal remark we make is that, via public state variables, an object can ref-

erence objects that are owned by Void and that can be referenced by any other

public variables. This means that public state variables of an object stored in a

private state variable can escape the encapsulation provided by the mechanism.

Unexpected substructure sharing and corresponding problems may, therefore, hap-

pen.
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2.2.5 Block Structure and Nested Types

Languages like Simula and Beta support block structure, and in particular nested

classes; this provides a form of locality with interesting properties as discussed

in [59, 17, 68].

As an example (from [59]) a class token declared within class grammar becomes

local; we can then declare instances of grammar `g1' and `g2', and we have that

`g1.token' and `g2.token' are di�erent types. This avoids accidental mixing of

tokens from di�erent grammars. Moreover, unlike C++, where nested classes are

only a way to structure the namespace, in Beta a nested class can access variables

in the containing class. In the example, a set T

1

of token objects can access a state

variable of a corresponding grammar object g

1

, and the same for a set of tokens

T

2

and grammar object g

2

; a token object can be seen as `belonging' to a given

grammar object.

However, this separation between tokens of di�erent grammars cannot be ob-

tained in general. One example is if the instances of grammar are accessed through

references: this implies the use of a common `grammar.token' type in accessing the

tokens; if tokens are to be linked between themselves, there can be some accidental

cross-linking between tokens from di�erent grammars.

Also, nesting does not prevent substructure sharing: a nested type can have

a component which is from a `global' type, and which can be shared. Although

a useful mechanism on its own, nesting does not solve the problem of sharing

prevention.

2.2.6 Expanded Types

Primitive types, like integer, commonly receive a special treatment|integer vari-

ables hold an object, which cannot be referenced from elsewhere. This is assured

by making both assignment and parameter passing have value semantics: they

copy the value associated with the object instead of a reference to the object. In

the resulting complete absence of aliasing we can simplify the description and say

that a variable holds a (representation of a) value. When this happens we can say

that we have a value type. This is the case of primitive types in Java.

It is natural to extend this to non-primitive types. One such attempt has been,

as we have mentioned, Ei�el's expanded types [62]. In Ei�el, any user-de�ned type

can be either a reference type or an expanded type. Primitive types like integer

and boolean are provided as expanded types.
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Expanded types in Ei�el are an example of the introduction of a property,

applying to all data types, which reduces the special treatment that some of

them|typically the primitive types|are subject to. (This is something which

we advocate, as will become clear later on.)

Expanded types can be used to build composite objects. Moreover, unlike when

using reference types in part objects, we are sure that the part objects which are

of some expanded type will not be shared with any other objects.

A drawback of expanded types is that we cannot pass objects to a function to

perform some update in-place, because parameter passing copies the object. In

the rectangle example, expanded types makes it impossible to pass references to

rectangles to a function which performs some in-place update like enlarging them.

Also, as for part objects and for the same reason, it is not possible to have subtype

polymorphism for expanded types.

The real problem of expanded types is, as we have mentioned, that an object of

an expanded type may contain references to other objects which may themselves

be shared. This means that objects from a user-de�ned expanded type are not in

general self-contained objects, in contrast with primitive types such as integer.

We have then, a di�erence between primitive types and general user-de�ned

expanded types, namely the possibility of substructure sharing. This possibility

can be, as we have discussed, a cause of unwanted interference. For this reason

expanded types fail in ful�lling the requisites for value types. In a very concrete

sense primitive types remain `special'.

2.2.7 Linear Types

Girard's linear logic [34] was a source of inspiration for experimental type-systems,

and the origin of the term linear types. A variable holds the single reference to

a linear object and can only be used exactly once; duplication and deallocation

must be explicit.

These type-systems were originally targeted to functional languages as a way

to allow update in-place and avoid the need for garbage collection. The issue was

therefore not a semantic one|whether values are shared is meaningless in seman-

tic terms|but an implementation one. Possible bene�ts are, however, obtained at

the cost of forcing the allocation and deallocation of (the representation of) linear

values to be explicit in the program text. We are interested in imperative lan-

guages, with mutable objects, where sharing becomes relevant for the semantics;
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here linear types can possibly make a di�erence by preventing some accidental

sharing from occurring.

Lafont [54] presents a linear functional language where there is exactly one

reference to each value. While this has the advantage that no garbage collection

is needed, it su�ers from the drawback that results from computations cannot be

shared. A shared value can be represented by a pointer to a closure|which forces

its reevaluation every time the value is used|or by copying the value each time

a reference to it is copied. Either way is less e�cient than the usual practice in

functional languages; the proposal is unsuitable for realistic use.

Wadler [74] presents a linear type-system for functional languages where both

linear and non-linear types are allowed to coexist. A restriction is imposed that

nonlinear data structures cannot have linear components. This causes an asymme-

try and some separation between linear and nonlinear types in terms of building

a new type from existing ones: linear types can always be built using any existing

type, but once de�ned they cannot be used as a component for a new nonlin-

ear type. This is a weakness from the software engineering point of view. (In

our approach there is also a binary classi�cation of data types but no such re-

striction is imposed.) The motive for this restriction comes from the `use-once'

nature of linear types; if a linear value were allowed as a component of a nonlinear

data structure, as this structure can be duplicated, the linear value could be used

several times.

Baker presents [9] Linear Lisp, a language with assignment but no sharing and

no need for garbage collection. The use of linear types is also discussed in [11],

which advocates the use of a graphical representation of a program as a data-ow

model to circumvent the di�culty to read programs in linear languages due to the

typical use of multiple returned values.

Even though linear types may be a relevant concept for language implementa-

tion, as in the case of functional languages, both `use-once' and `one-reference'

properties make them an unsuitable mechanism for imperative languages:

� A procedure may perform some operation on a mutable data structure, as

opposed to a function returning a result; the data structure will typically be

used afterwards by other procedures or functions, contradicting the use-once

rule.

� Also, the one-reference-only property is not appropriate: a function or pro-
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cedure operating on a given data structure will frequently use temporary

reference variables to traverse the structure; therefore there will exist two

references to some object: one from other objects in the structure and an-

other from the temporary variable.

The essential reason why linear types are not adequate for imperative languages

is the fact that they do not make the distinction between static and dynamic alias-

ing, something not surprising since they were conceived for functional languages.

Lastly, but a signi�cant weak point in linear types, is the fact that they do not

address the important issue of substructure sharing: two linear objects can share

a given non-linear object.

2.2.8 Unshareable Objects and Unique Pointers

A proposal related to linear types is presented in [64]. It introduces unshare-

able objects (u-objects)|there can only be one pointer to them in the system: a

unique pointer (u-pointer). It is proposed, as a mechanism to achieve this, that

assignment from a u-pointer copies the pointer and nulli�es the source variable,

i.e. moves the pointer.

However, the claim that there is only one pointer to a u-object in the system

is not true. Parameter passing is not treated as reference assignment, and does

not nullify a u-argument (the contrary would be unrealistic in an imperative lan-

guage). We can have, therefore, two pointers to a given object: the variable used

as argument and the formal parameter. The paper sees parameter passing in com-

mon object oriented languages (mentioning the case of Ei�el) as not duplicating

pointers; i.e. that a parameter refers to the variable used as argument and is not

`another' reference. We �nd this quite arti�cial: a parameter is no less a reference

than a local variable, and takes part in the aliasing problems that u-pointers are

supposed to address.

Even if the intention was to have just one pointer to an u-object in a given

procedure as opposed to the whole system (something not discussed in the paper),

this does not hold anyway. Although some simple cases can be prevented, such

as passing the same u-variable in two di�erent arguments, in general it cannot

be prevented due to the unrestricted aliasing which can exist for normal objects

containing u-variables. As an example, a reference to a u-object, residing in a

state variable of a normal object, can be passed as argument to a procedure in

which this object can also be reached; it is then possible, without being detected,
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to invoke another procedure with two di�erent arguments referring to the same

u-object.

This proposal, which attempts to achieve the one-reference-only property of

linear types is, thus, fundamentally awed. It constitutes an example of how

unrealistic it is to statically prevent dynamic aliasing in imperative languages

(without dealing with sharing in the object graph in an appropriate manner).

Again, as for linear types, the important issue of substructure sharing is not

addressed by this proposal: an u-object does not prevent objects it refers from

being shared by other objects.

2.2.9 Inductive Data Structures

It is proposed in [37] that programmers should be able to classify linked data

structures as either inductive or non-inductive; an inductive structure has no

cycles and each node has at most one parent. Inductive structures have bene�ts in

terms of program analyzability: the component substructures do not share storage,

breaking a link yields two independent structures, and a traversal following links

does not visit the same node more than once.

It is interesting that this proposal (unlike linear types and u-objects) distin-

guishes the data structure itself from temporary variables used to access it. There

is at most one pointer to a node of an inductive structure from other nodes, but

there can be more pointers from local variables, unlike in unshareable objects.

The proposal distinguishes between dynamic and static aliasing and recognises

the practical need in imperative languages for the use of temporary variables in

building or traversing a data structure, even though there is no sharing in the data

structure itself. For this reason this proposal is more realistic than linear types or

u-objects in terms of imperative languages.

Although just one of a range of mechanisms devoted to describing the `shape'

of a data structure, as considered below, it is a mechanism which emphasises

the importance of substructure disjointness and which is minimal in terms of

choices o�ered to the programmer (a binary classi�cation); these characteristics

are present in our own approach.

The proposal is, however, that the declaration is not a full part of the type-

system but more to be treated as a directive: either as an unchecked promise from

the programmer, or as an aid to the compiler in choosing an appropriate form of

aliasing analysis. Moreover, it is only contemplated declarations of recursive types
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whose �elds are either the type itself or scalar types; the possibility of �elds being

references to other (possibly non-inductive) types is not considered.

2.2.10 Euclid's Collections and FX's Regions

One concern in the design of Euclid [55, 67] was the possibility of aliasing in

accessing dynamically allocated objects. Pointer variables in Euclid are declared

as being pointers to a collection; there may exist several collections of objects of

the same type. A collection is a declared entity (with a name), in a sense like

a variable. A dynamically allocated object must be an element of a collection

and it is enforced that a pointer to a collection points only to objects within that

collection. Di�erent collections contain non-overlapping sets of objects.

A serious limitation of collections is that they are named entities like local

variables of some procedure. It is not possible to have a collection as a member

of a dynamically allocated object: although they contain dynamically allocated

objects, collections cannot be themselves dynamically allocated. The number

of collections and respective lifetimes is determined by the activation records in

existence. The above means that neither the number of collections can be related

to the size of the object graph nor is it possible to use collections to obtain a

hierarchical structure of objects. As a result, collections are a weak means of

organising the object graph.

In the language Turing [43], it is further imposed that collections cannot be

passed as parameters or declared in subprograms, making the possible uses of

collections in Turing even more restricted.

As described in [57], the language FX has an e�ect system with three base

kinds: types, e�ects and regions. E�ects describe the possible side-e�ects of an

expression and regions describe the area of the store where those side-e�ects may

occur. The e�ect system computes statically a conservative approximation of the

actual side-e�ects that an expression may have. Regions are similar to collections

and, although part of a more powerful e�ect system, they su�er from the same

essential problem: regions are named entities that cannot be part of a dynamically

created data structure.

2.2.11 Islands

Hogg recognised the problems posed by the uncontrolled possibility of static alias-

ing in object structures. Towards a solution he introduces the concept of Is-
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lands [42]. An island is the transitive closure of the set of objects accessible from

a bridge object. The bridge is the only entry point to the island: no other object

that is not a member of the island has a reference to an object in the island.

Like collections and regions, islands permit obtaining groups of disjoint objects.

Islands represent, however, an advance when compared to collections or regions.

Islands unify the unit of grouping with the main unit of abstraction|instances

of classes; an island is represented by a bridge object which can be subject to

the usual manipulations. On the contrary, a collection has no use in itself; no

operations can be applied to collections. Islands also overcome the main problem

with collections: an island is not a named entity. Islands are dynamically created

and can be used to obtain a hierarchical organisation of the object graph. In these

aspects islands are similar to our own mechanism; we will make a comparison

between them later on.

2.2.12 Shape Description Approaches

Some recent proposals have been made towards enhancing the description of re-

cursive structures by describing their possible `shape'. The description is intended

to be relatively precise, and the program is subject to some static checking mech-

anism towards validation. These proposals are of a more experimental nature,

and have not been put to the widespread use as many of the above described

mechanisms.

ADDS

In [38] ADDS (Abstract Description of Data Structures) is presented. It allows

a recursive data type to be augmented with a description about dimensions (dif-

ferent paths which can be traversed), and the direction (along a given dimension)

that each �eld traverses. It also allows specifying whether di�erent dimensions

are independent (disjoint) or dependent (potentially leading to a common node);

whether traversing in a given direction from di�erent nodes leads always to di�er-

ent nodes (traversing uniquely); and whether the linked structure is circular.

The authors claim that the ADDS declarations are then validated by a static

analysis that determines at which points in the program the data structures con-

form to the declarations. The lack of conformance is not an error, and the mecha-

nism allows for the recovery of the property after a temporary violation; the idea is

that the property is only exploited by some program transformation at the points
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it is valid.

Graph Types

Graph types [51] allows the description of data structures with sharing. A graph

type consists of a backbone, which is a spanning tree, augmented with extra edges

that are functionally determined by the backbone. The extra edges are speci�ed

by a language of regular routing expressions: regular expressions over a language

of directives like `move up/down' or `verify if this is root/leaf'.

Although many common data structures can be described, even for simple cases

like a doubly-linked circular list the routing expressions become cumbersome. A

reason for this, which is one of the problems with this approach, is the distinction

between edges in the backbone and extra edges; this division is arti�cial for some

data structures.

More importantly, as the extra edges depend functionally on the backbone,

they contain no information in themselves: two instances of a given graph type

with identical backbone will have identical extra edges, so two instances can be

compared by looking at the backbone only. Structures where the pattern of sharing

depends on the value itself, or provides information in itself cannot be represented.

Therefore, the sole purpose of the extra edges is to support e�cient access to the

data structure. However, traditional pointer manipulation is not permitted. Extra

edges can only be read, but cannot be directly assigned; they are reevaluated

automatically when an operation on the underlying backbone is performed. This

appeals to a sophisticated mechanism for optimising the amount of reevaluation

needed.

In [52] the authors remove the restrictions that extra edges are functionally

determined by the backbone. Extra edges are speci�ed by edge constraints that

allow di�erent extra edge con�gurations for a given backbone.

Shape Types

Related to the previous approach, shape types [32] allow the `shape' of a data

structure to be described; this is done using a formalism based on context-free

graph grammars [73]. Like the previous proposal, it is suitable for structures in

which the pattern of sharing is �xed; although possible in theory, it is quite unre-

alistic to use the mechanism for structures where the pattern of sharing depends

on some value or contains information itself.
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The manipulation of shape types is through shape transformers (essentially

single step rewritings); an algorithm for static checking that a transformer pre-

serves a shape invariant is presented. A notation for integrating shape types and

transformers in C is described, together with a translation into C code.

The manipulation of shapes can only be made through the transformers, no

direct pointer operations are allowed. Although the goal of banning the tradi-

tional error-prone pointer manipulation in favour of more high level manipulation

primitives is desirable, it is di�cult to achieve without incurring problems. In

this case in particular, as a shape is an independent entity, and no programmer

visible pointers are allowed into internal nodes, no traditional algorithms can be

written to traverse a shape. While traditionally recursive data structures are often

manipulated by recursive algorithms, here the programmer is limited to applying

transformers. Moreover, as a transformer is to be seen as an atomic operation

which preserves the shape invariant, transformers cannot be nested. Also, there

are several limitations on the class of transformers that can be used in the men-

tioned extension to C. We have, therefore, serious doubts about this proposal

being suitable for realistic use.

These mechanisms are described for individual recursive types; the situation

where nodes of several types are linked is not considered. The proposals mention

that nodes have some `value', typically some scalar like integer, which is not con-

sidered to cause problems. This does not consider the common situation where

the `value' �eld is in fact a reference to an object of some user-de�ned type, and

the consequent possibility of substructure sharing.

2.3 Discussion

We have described how accidental state sharing is a source of unexpected program

behaviour that can be di�cult to correct, and how the possibility of it happen-

ing (even if that is not the case) is an obstacle to reasoning about the program

or performing program transformations. We have argued that current language

mechanisms do not provide appropriate support to prevent accidental sharing, es-

sentially by disregarding the fact that an object is not normally self-contained,

and by neglecting substructure sharing.

While the emphasis of research was �rst on (named) variables and a limited

form of dynamic aliasing, the widespread use of references and linked structures
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shifted the focus towards (unnamed) objects and to include static aliasing.

In spite of the trend towards a `civilised' use of references by banning explicit

dereferencing and the address-of construct, the proliferation of their use, culmi-

nating in the `all variables of user-de�ned types are references' in Java, makes the

possibility of accidental object sharing more present than ever.

Some concepts like expanded types or part objects have some use, but are

not su�cient in themselves: they do not prevent substructure sharing, with the

disadvantage of not allowing subtype polymorphism. Physical containment is not

the solution to preventing unwanted sharing.

We consider linear types unsuitable to be adapted to imperative languages.

They fail to distinguish between static and dynamic aliasing; in practical terms,

they fail to distinguish between a data structure itself and the temporary variables

used in some traversal. Moreover, substructure sharing is, again, not considered.

Some attempts made to organise the object graph, like collections and regions,

use named entities; this is not appropriate to obtain hierarchical structures of

unnamed objects. Islands overcome this problem, being the proposal most related

to our own balloon types.

Mechanisms have been proposed to describe the shape of recursively de�ned

data structures. We have, however, some doubts about whether they are realistic

and would be accepted by programmers.

Language mechanisms to control sharing are examples of (using the expression

from [37]) language design for analyzability ; it is not enough that they provide

useful information/invariants to reason about the program: if they are not simple

from the programmer's point of view they will not be successful.

Something which recurs in the description of several proposals is the mention

of values or scalars of primitive types: it is assumed that nodes of the linked

structure being described contain (apart from references to other nodes) some

value which is self-contained (the examples typically use the integer type). This

means that, regardless of the virtues the mechanism may have, it will not handle

the problems which exist if the `value' is of some user-de�ned type, which may

not be self-contained.

Primitive types are, thus, treated as `special'; they possess some properties

which cannot be counted upon in user-de�ned types. This is something we consider

very undesirable for the scalability of any mechanism; the more complex situations

are bound to appear in large programs, where the percentage of user-de�ned types

is large.
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To change this situation, more information should be considered in the de-

scription of a data type, namely concerning sharing, so that language mechanisms

or reasoning about a language ignores whether a data type is primitive or user-

de�ned, and only looks at its de�nition. This is one of the essential points in our

mechanism.

We conclude by compiling a list of the relevant points that we have discussed,

which should be taken into account by language mechanisms:

� Single objects are not self-contained: reachable state and substructure shar-

ing must be addressed.

� Physical containment or similar implementation-oriented mechanisms do not

provide a solution.

� Duplication of references is inevitable, because imperative languages use

temporary variables to traverse already existing linked structures.

� Use of a reference by a temporary local variable must be distinguished from

its incorporation into a linked structure of undetermined lifetime; the di�er-

ent nature of dynamic and static aliasing must be recognised and addressed.

� Variables are named, objects are unnamed. It is not appropriate to use

named entities to organise a graph of unnamed objects.

� A mechanism should be, not only useful, but also syntactically simple and

conceptually relevant to be accepted by programmers.

� It should be irrelevant whether some data type is primitive or user-de�ned;

this is not accomplished by current abstraction mechanisms.





Chapter 3

Balloon Types

Here we introduce balloon types, the concept which is the core contribution of this

thesis. This chapter gives a general overview and describes the balloon invariant ;

more speci�c details, in particular the balloon type-checking mechanism, will be

addressed in subsequent chapters.

3.1 The Idea

We have discussed some problems caused by substructure sharing, have argued

that current data abstraction mechanisms provide an insu�cient form of encapsu-

lation, and have advocated that, in de�ning encapsulation of state, the transitively

reachable state should be considered.

However, even if technically possible, a data type should not always enforce

encapsulation of state (as we see it). Although encapsulation may be wanted for

some types, for others sharing may be needed. Designers of data types must be

able to choose.

The point we make is that current languages do not provide a suitable mech-

anism for making this choice. One source of problems is precisely because this

choice is not apparent (it may not even have been considered), and users of a data

type may have wrong expectations about the behaviour in terms of sharing.

The basic idea of balloon types is precisely to make the ability to share state

a �rst class property of data types, as important as the operations provided and

their signatures. Among other things: it becomes part of a type de�nition, it

is considered in type-checking, it a�ects what code programmers are allowed to

write, it is considered in reasoning about programs, and it is used in compiler

31
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optimisations.

We propose a binary classi�cation of data types with respect to sharing prop-

erties. Any data type is classi�ed as either a balloon type or a non-balloon type.

� Balloon types are used to prevent unwanted sharing of state, guaranteeing

a strong form of encapsulation. They result in cleaner semantics, being a

means to prevent unexpected interference.

� Non-balloon types correspond to what current languages o�er regarding user-

de�ned types. They allow full freedom of sharing and can be used to repre-

sent linked structures with possible substructure sharing.

Balloon types provide an invariant regarding the structure of the object graph;

essentially:

� Objects of a balloon type are unshareable by state variables of objects.

� All the state reachable by a balloon object is encapsulated, in the sense that

no part of it can be referenced by state variables of any `external' object.

Some examples of balloon types are primitive types such as integer, real and

boolean. People expect that they may be at most (and preferably not) dynamically

aliased, but not statically aliased (not shared by di�erent objects). There is no

more than one object owner of an integer object, and there are no objects which

can have a reference to part of the state of an integer object (a reference to some

bit).

In the example shown in Figure 3.1 the programmer has chosen Shape to

be a balloon type to obtain `nice' semantics in its use in programs. It prevents

accidental sharing even if each shape is a complex structure with internal sharing

and even cycles.

In the loop presented, the balloon invariant makes clear to both programmer

and compiler the absence of interference between iterations: performing a rotate

on a shape a[i] does not a�ect a shape a[j] (when i and j are di�erent). This

makes reasoning about the program easier and the compiler can perform loop

transformations such as parallelisation. This is accomplished with an almost neg-

ligible syntactic cost; if we compare Figure 2.3 with Figure 3.1, there is only one

extra keyword in the new program.

This �gure also illustrates that in spite of the binary classi�cation, both balloon

and non-balloon objects can be used as part of the state of each other. This results
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Shape = balloon { rotate(Int) }

Rectangle <: Shape

= { p1,p2:Point }

Circle <: Shape

= { c:Point; r:Real }

Polygon <: Shape

= { List[Point] }

Graph <: Shape

= { ... }

a:Array[Shape];

for i = 1 to N

a[i].rotate(45);

Figure 3.1: An array of balloon shapes

in a hierarchical organisation of the object graph, important for the scalability of

the mechanism.

We consider static type-checking as the useful thing to do regarding balloon

types:

� Whether some type is a balloon type is declared by one keyword (such as

balloon) in the de�nition of the type; no syntactic cost is imposed on client

code.

� A candidate implementation of the type undergoes a non-trivial compile-

time checking which enforces the run-time invariant for objects of the type;

the implementation may be accepted or rejected. No checking of non-balloon

client code is needed.

The emphasis is on extreme syntactic simplicity, placing the burden on the

compiler. We consider this important for the success of the integration of balloon

types in languages and the acceptance by programmers.

3.2 The Balloon Invariant

We now describe more precisely the run-time invariant which is enforced by balloon

types. Every object is an instance of either a balloon or a non-balloon type, and

thus the terms balloon and non-balloon object. First we present some de�nitions.
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De�nition 3.1 (Cluster) Let G be the subgraph of the object graph obtained

by removing all edges corresponding to references to balloon objects. A cluster is

the set of objects in a connected subgraph of G that is not contained in a larger

connected subgraph.

The set of all clusters is thus a partition of the set of all objects.

De�nition 3.2 (Internal) An object O is said to be internal to a balloon object

B i� :

� O is a non-balloon in the same cluster as B or

� O is a balloon referenced by B or by some non-balloon in the same cluster

as B or

� there exists a balloon B

0

internal to B and O is internal to B

0

.

De�nition 3.3 (External) An object is said to be external to a balloon object

B i� it is neither B nor internal to B.

Now we can state the invariant.

De�nition 3.4 (Balloon Invariant) If B is an object of a balloon type then:

I

1

There is at most one reference to B in the set of all objects.

I

2

This reference (if it exists) is from an object external to B.

I

3

No object internal to B is referenced by any object external to B.

Figure 3.2 clari�es these concepts. We should stress that the invariant is con-

cerned with the organisation of the object graph (objects and inter-object ref-

erences); it ignores references in variables from the chain of procedure calls (i.e.

temporary local variables). In other words, the invariant is concerned with static

aliasing, ignoring dynamic aliasing.

The invariant deserves some explanation, in particular why internal objects

were not simply de�ned as the objects in the state of the balloon (that is, reachable

by the transitive closure of the references relation). With such de�nition we would

have the `naive invariant'. However it would not be as useful or feasible of being

enforced as the chosen invariant; the reason for this is as follows.

During the execution of some operation of a balloon type several objects may

be created. Some of them may be temporary, only referenced by local variables (or
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B  cluster of B
(shaded objects)

x

external

objects

internal
objects

Figure 3.2: A balloon B and its internal and external objects

other similar objects), and not incorporated into the state of any `external' object,

being subject to garbage collection when the function terminates. The �gure shows

an object only referenced by a local variable (x). While they exist these objects

may store references to the state of a balloon. This violates the naive invariant as

these objects are not part of the state of the balloon but have references to the

state. Even if such scenario did not actually happen, the mere possibility of it

happening would lead to conservative rejection of code by a checking mechanism.

For both these reasons, the naive invariant would make the set of valid programs

unnecessarily restricted.

In the balloon invariant such temporary non-balloons are allowed and are clas-

si�ed as internal objects. They are allowed to be created and manipulated by a

procedure of a balloon type, but will be prevented from being returned to client

code, as we will discuss later. The state reachable by a balloon object is a subset

of the internal objects; it is encapsulated in the sense that it is prevented from

being referenced by external objects. We now present the three components of the

invariant in detail.

3.2.1 I

1

: Balloons Have a Single Owner

The �rst and simplest requirement for the usefulness of the concept is that

no two references stored in objects denote the same balloon, i.e. that a balloon

has a single owner. This can be motivated by the `array of shapes' example in
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Figure 3.3: Examples of situations which I

2

prevents

Figure 3.1. If several entries of the array could denote the same balloon, there

would be interference between di�erent iterations of the loop, even if the other

components of the invariant (I

2

and I

3

) were veri�ed.

The islands proposal has similarities with balloons; however, several references

to a bridge object are, in general, allowed from other objects. This would re-

sult in possible interference in the array of shapes example, which would prevent

transformations such as parallelisation or loop reordering.

The component I

1

would be all that is required if objects were atomic and did

not reference other objects. In the general case reachable state becomes relevant;

thus the other two components of the invariant.

3.2.2 I

2

: Balloons are Well-founded

The I

2

component expresses that a balloon object is not internal to itself,

or in other words, that there are no cycles in terms of clusters and inter-cluster

references (references to balloon objects). Without I

2

, the situations in Figure 3.3

would be possible.

I

2

can be seen as equivalent to a reasonable assumption normally made in set

theory. Suppose we draw a parallel between balloons and sets, and associate a

balloon B with a set whose elements are the non-balloon objects in the cluster of

B and the sets associated with the balloons referenced by B or by any non-balloon

in the cluster of B. An example is shown in Figure 3.4.

Then, I

2

parallels the axiom of foundation in set theory (see e.g. [33]), which

essentially says that sets cannot `contain themselves' (directly or transitively). If
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Figure 3.4: Balloons and (well-founded) sets

we start from a balloon and we follow the references to contained balloons, the

process must stop in a �nite number of steps; we cannot have a cycle of references

which results in an in�nite loop.

From a practical perspective, we want to have the assurance that, if we start

from a balloon B and access a state variable, we `enter' a nested object from where

we cannot `escape' and reach back to B. Consider the following program:

T = balloon { b1,b2:T ... }

f(b:T)

{

do_something(b.b1);

do_something(b.b2);

}

We want to be able to assume that there is no interference between the two

instructions; that they operate on disjoint objects. Such would not be the case if

I

2

is not enforced and cycles are allowed.

3.2.3 I

3

: Internal State is Encapsulated

The third component of the invariant expresses a strong form of encapsula-

tion. By stating that external objects cannot reference internal objects, it draws

a boundary, and makes `internal' and `external' as used here correspond to an

intuitive meaning of these words.

Without I

3

, even if the other two components of the invariant were veri�ed,

the so called internal objects of a balloon B could be shared with external balloon

objects. In Figure 3.5 we show an example where this happens: internal objects
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Figure 3.5: A situation which I

3

prevents

are inside dashed elipses, and di�erent dashed lines overlap. This is a kind of

sharing pattern which balloons are intended to prevent; such is expressed by I

3

.

3.2.4 An Equivalent Invariant

It will be useful to express the invariant in another form. For this we de�ne I

4

:

De�nition 3.5 (I

4

) From all objects that make up a cluster, at most one is a

balloon object.

We will show that we obtain an equivalent invariant if we substitute I

4

for I

3

in the balloon invariant. Towards that we �rst derive some lemmas.

Lemma 3.6 Given two balloon objects, B

1

internal to B

2

, if the balloon invariant

holds then B

2

is external to B

1

.

Proof Suppose, by way of contradiction, that B

2

is internal to B

1

. This can

only happen if B

2

is referenced by B

1

, if B

2

is referenced by a non-balloon in the

cluster of B

1

, or if B

2

is internal to a balloon B

3

which is internal to B

1

. In all

three cases B

2

is referenced by an object which is internal to B

2

, contradicting I

2

.

2

Lemma 3.7 I

1

^ I

2

^ I

3

) I

4

.

Proof Suppose that the balloon invariants I

1

, I

2

, I

3

hold and that, by way of

contradiction, a cluster C contains more than one balloon object; in particular
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suppose that it contains two balloons B

1

and B

2

. Then B

1

and B

2

reference non-

balloons in C (possibly the same non-balloon). There are two possible situations:

� B

2

is internal to B

1

. From Lemma 3.6 it follows that B

1

must be external to

B

2

. This means that we have B

1

, an object external to B

2

, with a reference

to an object internal to B

2

(a non-balloon in C), which contradicts I

3

.

� B

2

is external to B

1

. Again, I

3

is contradicted for the same reason (swapping

the roles of B

1

and B

2

).

2

Lemma 3.8 I

1

^ I

2

^ I

4

) I

3

.

Proof Suppose, by way of contradiction, that I

1

, I

2

, and I

4

hold, but I

3

does not

hold: there is some object O, internal to a balloon B, which is referenced by an

object E external to B. Object O is either balloon or non-balloon:

� If O is balloon, it is referenced by either B or an object internal to B. Either

way, no other reference can exist to O, namely from E, as this contradicts

I

1

.

� If O is non-balloon, it belongs to a cluster C which contains a balloon: either

B or a balloon internal to B. Moreover, object E which references (the non-

balloon) O, belongs to cluster C. E cannot be a non-balloon, as in this case

it would be internal to B. But it cannot either be a balloon, because C

would have more than one balloon, contradicting I

4

.

2

Proposition 3.9 I

1

^ I

2

^ I

3

, I

1

^ I

2

^ I

4

.

Proof Combine the two previous lemmas. 2

We have obtained an equivalent expression for the balloon invariant: I

1

^

I

2

^ I

4

. The balloon type-checking mechanism enforces this last expression. I

1

is

enforced by a simple rule concerning the reference assignment, which we present

next, while I

2

and I

4

are enforced by means of a static analysis of the candidate

program, which will be presented in Chapter 5.
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3.3 Reference Assignment|the Simple Rule

De�nition 3.10 (The Simple Rule) A reference to a (pre-existing) balloon can-

not be stored in any state variable of any object (by the reference assignment).

This means that no statement like

x.v :- b;

is allowed when b is of balloon type. It is important to note that the rule only

mentions state variables of objects. This means that stack based variables and

state variables of objects are treated di�erently by the type system.

The rule emphasises the di�erence between `temporarily' using a reference to

an object and storing the reference in some state variable of an object. This last

case is what creates sharing of objects by other objects, and it is forbidden for

balloon types.

By the simple rule, if only a reference assignment were provided by a language,

no objects at all could have a reference to a balloon object. Such is made possible

by providing the language with a copy assignment, as discussed below.

The simple rule is enough to enforce I

1

, while allowing great freedom in the use

of balloons: a reference to a balloon can be stored in variables, passed as argument

to functions and returned from functions. The only case prevented is storing the

reference in a state variable of some object. In particular, a function of a balloon

type can safely return a reference to an internal balloon and client code can use

the reference to invoke operations on it.

Example As an example, to illustrate the usefulness of balloon references despite

this restriction, consider a dictionary containing elements that can be searched

using a key. Here the elements are shapes and the keys are strings. We de�ne a

function which invokes a search to locate a shape and then rotates and moves the

shape:

DictShape = balloon Dictionary[Elem = Shape, Key = String];

rotate_and_move(ds:DictShape, name:String)

{

s:Shape;

s :- ds.search(name);

s.rotate(45);

s.move(10,15);

}
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Here both shape and dictionary of shape are balloon types. The simple rule

allows the search to safely return a reference to an internal shape of the dictionary,

as it will be forbidden to be stored in any object.

Dictionary here is a generic type. Parametric polymorphism, as well as sub-

typing, will be addressed in Chapter 8. For now we say informally that it will be

more useful that `balloonness' is not a property of a generic type itself but of its

instantiations. An implementation of a generic type can be type-checked to as-

sess the correctness of its instantiation as balloon/non-balloon for each possibility

regarding the type parameters being or not balloon types.

Balloon types can be an important contribution towards obtaining provably

correct programs. The uncontrolled possibility of state sharing in current lan-

guages result in unexpected modi�cations to the state manipulated by the imple-

mentation of a data type. Quoting [56]: `If modi�cations can occur elsewhere, then

we cannot establish the correctness of the implementation just by examining its

code; for example, we cannot guarantee locally that the representation invariant

holds.'

In balloon types|as opposed to current languages|the data type has complete

control: the balloon invariant ensures that the only way a client can gain access

to the state of a balloon is by a reference being returned by a function of the

data type, as the search function above. A function from a balloon type may

decide to return a reference to an internal balloon specially if the (composite)

value associated with this balloon does not matter for the representation invariant

of the data type.

In the example above, the contents of a shape are, in principle, irrelevant

to the implementation of the dictionary data type; returning a reference to an

internal shape does not prevent reasoning about the correctness of the dictionary

implementation. This is to be contrasted with the situation where references to

some linked structure used to hold shapes in the dictionary escape accidentally to

client code without being returned.

3.4 Copy Assignment

The simple rule implies that state variables of balloon type can only be made to

reference newly created balloons. Two cases should be provided for:

� The creation of an object using some constructor mechanism:
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x.shape := Rectangle(10,20,100,130);

� A general copy mechanism with the semantics of deep-copy (as in e.g. [49]),

which creates a copy of a balloon and all its reachable state, while preserving

internal sharing. It can be provided as a copy assignment :

x.shape := s;

This copy assignment|which we denote by `:=' as opposed to `:-' for reference

assignment|is the natural generalisation of the assignment for primitive types; it

copies the (composite) value associated with the object. It emphasises `obtain new

object' as opposed to `reference existing object'. To stress this we have used the

`:=' notation in the constructor example above where no physical copy is involved.

We put the emphasis on observable behaviour and reasoning about the pro-

gram rather than on an implementation directed de�nition. The copy does not

have to happen physically, being subject to possible optimisation. This contrasts

with current languages where it is close to impossible to optimise some built-in

deep-copy mechanism. As a result, programmers rarely use it and su�er from

unexpected interference or sometimes use it when it is not physically necessary.

Several possibilities for avoiding the deep-copy and performing only a pointer

copy include:

� If the balloon which is the source of the assignment is not used subsequently

until being `released'.

� The balloon invariant does not have to hold physically: an implementation

can share physically a balloon if that does not a�ect the outcome of the

program. If the balloon remains immutable sharing becomes irrelevant.

� Using a `copy on update': physically sharing a balloon and only copying it

if some operation which causes updates is performed.

Although this kind of optimisations are the norm in functional languages, in

current imperative languages the pervading possibility of mutable substructure

sharing makes such optimisations unrealistic. The balloon invariant can make

these optimisations more realistic; they will be the subject of further research.
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3.5 Type-checking Balloon Types|An Introduc-

tion

We now give an informal overview of the balloon type-checking mechanism. The

essence of the mechanism is performing the inductive step of using the assumption

that some types are balloons to check the implementation of some balloon type

which uses them. Methods of a balloon class can manipulate the state of several

instances of that class. Essentially the checking makes sure that, for any possible

execution, the several balloons involved will remain balloons; or in other words,

the invariant is preserved.

As an example, suppose a data type for arbitrarily large integers is required

(BigInt). These can be represented by a linked list of plain integers whose size

depends on how large the number is. BigInt being balloon guarantees that there

will not be accidental sharing of parts of linked lists corresponding to di�erent

BigInts. A fragment of a possible implementation is given in Figure 3.6.

The implementation manipulates the state of typically three balloon BigInts,

referenced by self, other and num. (It is possible that self and other refer to

the same balloon; the analysis works under this possibility of dynamic aliasing.)

Three variables are used to traverse the linked list of Node (a non-balloon type).

The analysis determines that during all possible executions these variables point

to the above mentioned balloons, and that no statement creates sharing of states

from any two di�erent balloons. A statement like

r.nxt :- p;

would be rejected by the checking mechanism: the analysis would assess that r and

p could point to non-balloons `belonging' to di�erent balloons, and that sharing

would be created, breaking the balloon invariant. Note that here the simple rule

does not apply because Node is a non-balloon type.

Although this is a simple example it serves to illustrate some points. Non-

balloons play the main role in the checking mechanism. The task of the analysis

is to make sure that for accepted programs both I

2

and I

4

hold. The analysis

essentially takes care that:

� non-balloons in clusters containing no balloon|free clusters|are prevented

from being captured by more than one balloon; or in other words, di�erent

clusters which may already have a balloon|captured clusters|are prevented

from becoming linked (merging the clusters), and
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balloon Int { operator + (Int): Int; ... }

balloon BigInt

{

private:

Node // nested declaration of a non-balloon type

{ public: val:Int; nxt:Node; }

lst:Node; // reference to the head of linked list

public:

operator + (other:BigInt): BigInt

{

p,q,r:Node;

carry:Int;

num:BigInt;

num :- new BigInt;

num.lst :- new Node;

r :- num.lst; p :- self.lst; q :- other.lst;

r.val := p.val + q.val;

if ( ... )

then carry := 0;

else carry := 1;

while (p.nxt and q.nxt) do

r.nxt :- new Node;

r :- r.nxt; p :- p.nxt; q :- q.nxt;

r.val := p.val + q.val + carry;

... // calc next carry

... // traverse the remainder of the largest BigInt

return num;

}

... // other operations on BigInt

}

Figure 3.6: The BigInt data type
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� non-balloons in any free cluster A are prevented from being captured by

some balloon `reachable' by A (some balloon B referenced by an object in

A or some balloon internal to that balloon B).

Although there may exist an arbitrarily large number of objects, in the body

of a method there is just a small number of variables (parameters, self and local

variables) from which to reach the graph of objects. The key to the analysis is to

keep track, for these variables, of the possibility of:

� di�erent variables pointing to objects in the same cluster,

� the cluster to which a variable points containing a balloon, and

� a free cluster `reaching' captured clusters.

Regarding the BigInt example, Figure 3.7 shows one possible fragment of the

object graph at some point in the execution of the `+' function. This scenario

would be summarised by the static analysis as (using the notation described in

Chapter 5, and s, o, n as a short for self, other and num):

sp oq nr

which essentially states that:

� if the non-balloon to which p points belongs to a cluster with one balloon,

that balloon is the one pointed to by s (and the analogous for (o,q) and

(n,r), and

� s, o and n do not necessarily point to the same balloon.

With this information the checker would determine that the mentioned assign-

ment `r.nxt :- p' breaks the balloon invariant, and would reject the program.

3.6 Opaque Balloon Types

The main balloon mechanism focuses exclusively on the control of static aliasing|

this is deliberate. The idea is that further constraints can be added on top of `plain'

balloons to focus on the control of dynamic aliasing, involving variables from the

chain of procedure calls. An important specialisation is the concept of opaque

balloon types.
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self

other

num

p

q

r

Figure 3.7: A scenario with BigInt objects

Informally, an opaque balloon type has the added invariant that objects do not

expose to clients any references to their internal state, even to be used temporarily

by variables from some procedure: they represent truly opaque data abstractions,

which guarantee that all the internal state remains unchanged between invocations

of operations from the data type.

As an example, if the dictionary of shapes was an opaque balloon type, client

code could not obtain a reference to a shape in the dictionary in order to update

it in-place. It would only be possible to obtain a copy of a shape, which could be

stored or operated upon with no e�ect on the shape in the dictionary.

Typical examples of opaque balloon types are the primitive types like integers.

They are not simply balloon types, but opaque balloon types: there cannot be

any reference to internal state of an integer (some bit) neither in external objects

nor in variables from client code.

In terms of language use the situation is analogous to plain balloons: opaque

balloons are declared using a keyword (such as opaque), and a candidate imple-

mentation undergoes a static check (on top of the plain balloon checking) in order

to be accepted or rejected. The exact de�nition of opaque balloon types and

respective checking mechanism are described in Chapter 7.



3.7. Value Types 47

3.7 Value Types

Typical primitive types like integer or boolean, are something more than just

opaque balloon types; they can be said to be value types: an integer variable is

associated with an integer value. (This term is also used in [46], which discusses

problems with expanded types in Ei�el.) The important property for reasoning

about programs using integer variables is that the value associated with a variable

cannot change as a result of operations on other variables.

In object-oriented languages this property holds for primitive types because a

variable contains an atomic representation of the value (as opposed to a reference

to a possibly shared object) and parameter passing copies the value. However,

if we are to be able to de�ne value types in general (eg. for stacks or sets), the

value will have to be represented by a group of objects and it is not possible for

a variable to `contain the value'. An example of this is the failure of expanded

types in Ei�el to provide appropriate support for value types: by not being able

to prevent sharing of linked substructures (as we have already discussed) they can

lead to subtle interference, unlike in primitive types.

It is important, not that the variable physically contains the object, which can

be seen `only' as an implementation issue, but that the group of objects which

represents the value can only be accessed by the variable. This happens if:

� we have an opaque balloon type, and

� the variable holds the only reference to the opaque balloon object.

This means we can have the concept of value types as a (slight) specialisation

of opaque balloon types. Value types will be declared by some keyword (such as

value), and on top of the opaque balloon type checking, for value types the use

of assignment or invocation with reference semantics will be forbidden in client

code, being only allowed (deep) copy operations.

It is important to note that these copy operations are conceptual; they do not

necessarily have to be performed physically. In fact, being only allowed assignment

and parameter passing with copy semantics, the group of objects which represent a

value will remain immutable after being computed and returned by some function

in the implementation of the data type. This means that they can be physically

shared and all conceptual deep copies in assignment or parameter passing in client

code will be implemented as simple pointer copies.
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In what concerns the implementation of a value type, if a function does not

modify an object passed as parameter, the corresponding conceptual copy can also

be optimised away. In the BigInt example no deep copies would exist at all. In

other cases, even if some copy is needed, internal objects of value type can be

physically shared, which means the copy does not need to be fully deep.

These situations are analogous to what happens in the implementation of func-

tional languages. Indeed, user-de�ned value types can contribute towards bridging

the gap between imperative and functional languages, concerning both program-

ming styles and language implementation techniques.

3.8 Taxonomy of Data Types According to State

Sharing

Currently we have a gap between primitive types and user-de�ned types. Primi-

tive types have nice properties which, even when they hold in some user-de�ned

types, cannot be counted upon to reason about programs or to perform compiler

optimisations. With value types, the traditional behaviour concerning interference

exhibited by traditional primitive types can be obtained in user-de�ned types if

desired, and can be counted upon. This means primitive types can truly cease to

be `special'.

By making the ability to share state an explicit property of a data type, pro-

viding the concepts of balloon, opaque balloon, and value types, we obtain a

taxonomy of data types with respect to state sharing. The position of a data type

in this taxonomy is what matters; whether a data type is primitive or user-de�ned

becomes irrelevant. We present this taxonomy in Figure 3.8: the main binary

classi�cation in balloon/non-balloon and the two specialisations of balloon types.

3.9 Summary

We have introduced the essential idea of balloon types: to make the ability to

share state a �rst class property of a data type. Balloon types provide a strong

form of encapsulation of state by considering, not only the state variables of an

object, but the reachable state. This is expressed by the balloon invariant, which

we took some care to de�ne, namely the concept of an object internal to a balloon.

The invariant concerns the structure of the object graph, ignoring local variables.



3.9. Summary 49

Opaque balloon types

Balloon types Non-balloon types

Shape

Circle Rectangle

Data types

Int Bool

Real BigInt

Complex

Value Types

DictShape

Node

Figure 3.8: Taxonomy regarding state sharing in data types

It essentially states that there is a single entry point to a balloon, there are no

cycles involving balloons, and internal objects are encapsulated.

We have presented `the simple rule' concerning reference assignment. This rule

forbids storing references to balloons in state variables of objects, but allows as-

signments to local variables; this is essential for parameter passing and, in general,

for being able to `use a balloon temporarily'. This reects the crucial distinction

between dynamic and static aliasing. We advocate the use of a copy assignment,

which copies a balloon and its reachable state, as the way to store balloons in

state variables.

We have introduced briey the checking mechanism for balloon types and dis-

cussed two specialisations of the concept: opaque balloon types constitute truly

opaque data abstractions which guarantee that no state reachable by an instance

can be manipulated by clients; value types have value semantics, being the gener-

alisation to user-de�ned types of what happens in primitive types such as integer.

We have also presented the taxonomy of data types according to state sharing

which results given balloon types and the two specialisations presented.





Chapter 4

A Framework for Abstract

Interpretation

Although this thesis is not devoted to abstract interpretation in itself, some lessons

were learnt in the process of applying it to the problem at hand. Here we present

our approach to abstract interpretation in a problem independent setting.

We base our approach on the framework by Abramsky [2], which we take as the

starting point. We do not attempt to develop a general framework, such as [26],

but simply address some speci�c issues. Our approach is essentially concerned

with the design of base abstract domains that are not lattices and the separation

of concerns between summarising information about concrete states and merging

control paths.

In the presentation, and without loss of generality, we avoid notational clutter

by considering just one base domain, and by focusing on a safety relation. The

remarks can be generalised to several base domains, and if a liveness relation is

required the dual remarks apply. We also omit the type � from each relation R

�

of a family fR

�

g (as it is understood from context) and overload a symbol R for

the logical relation and each relation in the family.

4.1 The Base Domains

It is generally assumed that domains of abstract states are lattices. A reason

for this is the need for a join or meet operation, as in de�ning the semantics of

conditionals and loops in the abstract interpretation. Having lattices in the base

domains also makes it possible to induce best abstract values for constants of

51
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higher-types, as described in [2].

In our experience of developing an abstract interpretation the �rst concern

was obtaining an abstract domain which represents the relevant information to

the static analysis in question. There was no concern about obtaining a lattice,

and the result turned out in fact not to be a lattice, but simply a cpo which is not

even bounded-complete (and therefore is not a Scott domain). The cpo obtained

was however the more natural way of summarising the relevant information and

should become the base domain for the abstract interpretation.

The particular problem we address (balloon checking) constitutes thus an ex-

ample which demonstrates that it is not always realistic to assume that the base

abstract domain is a lattice. This should serve to rethink some assumptions com-

monly made in existing frameworks. (Even the assumption sometimes made in

semantics of taking a domain to be a Scott domain|which cannot be made in

our particular abstract semantics|may come simply from `tradition' and not as

a conscious choice.)

For merging the information regarding di�erent control paths a completion of

the base cpo can be used. Di�erent completions can be used depending on the

compromise between information loss and requirements in terms of space/time of

the static analysis.

Our experience points to the clear separation between two aspects which are

commonly merged:

� How to summarise the relevant information about concrete states.

� How to merge the representations from di�erent control paths.

However, not having a lattice in a base abstract domain causes problems. In

terms of �nding best representatives for higher-type constants, not only is it not

possible to use the results from [2], but in general a best abstract value may not

exist. We will discuss some su�cient conditions for the existence of such a best

representative.

Even for constants of base types this problem arises; a way to have a best

abstract representative is if we have an abstraction function �, an order on abstract

states v, and a relation R de�ned (like in [2]) as:

s R a, �s v a:

There is, however, a problem of practical nature. This assumes an a priori order

on abstract states. In our experience, for a complex abstract domain the order is
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not derived as a �rst step but only after we have characterised what an abstract

state represents. This can be done by a concretisation function  : S

a

! P(S);

however, if we have an arbitrary concretisation function, and de�ne the relation

through this function (s R a, s 2 a), there is no guarantee that there will exist

a best representative for each concrete state. Our approach also takes these issues

into account.

4.1.1 Abstract States and the Abstraction Function

We start by de�ning the set of abstract states and an abstraction function. Con-

trary to the classic framework of the Cousot's [25], where the abstraction function

is from sets of concrete states to abstract states:

� : P(S)! S

a

;

we use, like [2], an abstraction function from a single state to an abstract state:

� : S ! S

a

;

which gives the abstract state that will best represent the given concrete state

when an order is imposed on the abstract domain. It will also be used to induce

a logical relation [66], as in the framework by Abramsky [2].

We use a surjective abstraction function, meaning that any abstract state is

intended to represent directly some concrete state. No abstract states exist just

for the sake of the abstract domain being a lattice (and in general that will not be

the case). The abstraction function just partitions the set of concrete states into

equivalence classes.

4.1.2 The Concretisation Function

To each abstract state we make correspond more concrete states, in addition to

the ones directly abstracted to it by �. This is accomplished by a concretisation

function

 : S

a

! P(S);

subject to the condition that for all s 2 S:

fsg � (�s):
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4.1.3 Order in the Abstract States

The concretisation function induces a partial order on the set of abstract states

according to set inclusion in the corresponding concrete states. For a

1

; a

2

2 S

a

:

a

1

v a

2

, a

1

� a

2

:

This way  becomes an order-embedding of S

a

into P(S), and we have de�ned

the largest order such that  is monotone:

a

1

v a

2

) a

1

� a

2

:

Remark While in terms of optimality it is desirable to de�ne the largest order,

for correctness purposes only monotonicity of  is required. As long as the de�ned

order makes  monotone ()) and we are intuitively satis�ed with it, there is no

real need to prove the reverse implication ((). Moreover, we will show below an

indirect way to check if we have an order-embedding which avoids the direct proof

of the reverse implication.

4.1.4 The Logical Relation

We then use the logical relation induced from the safety relation on the base

domains derived from �:

s R a, �s v a:

A question arises: given that the concretisation function de�nes a relation

between S and S

a

, how does that compare with the derived relation? Intuitively we

can hope that the derived relation coincides with what the concretisation function

expresses, that is:

s R a, s 2 a:

This is not, however, necessarily the case even if  is an order-embedding. As a

counter-example suppose:

S = fA;B;C;Dg S

a

= fa; b; c; dg

�A = a a = fAg

�B = b b = fBg

�C = c c = fC;Ag

�D = d d = fD;B;Cg
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If we de�ne a

1

v a

2

as a

1

� a

2

, we have C 2 d but C 6R d, because �C = c

but c 6v d.

Although possible this is an arti�cial example. For realistic concretisation

functions we may expect the relations to coincide. To check whether such is the

case we can use the fact that:

Lemma 4.1

s R a) s 2 a;

Proof If s R a holds, then �s v a, therefore (�s) � a; due to the constraint

fsg � (�s) imposed on , we obtain s 2 a. 2

As a result it is only necessary to check that the reverse implication s 2 a)

s R a holds to check whether the relations coincide. This is summarised in:

Proposition 4.2 Suppose �; ;v, as above,  monotone, and satisfying fsg �

(�s). If we have s 2 a) �s v a, then it follows that �s v a, s 2 a.

Moreover, they will only coincide if  is an order-embedding of S

a

into P(S),

that is:

Proposition 4.3 If s R a , s 2 a then it must be the case that a

1

v a

2

,

a

1

� a

2

.

Proof Suppose that the relations coincide, and that a

1

� a

2

. Let s

1

be such

that �s

1

= a

1

(always possible as � is surjective). Then we have: (�s

1

) � a

2

)

s

1

2 a

2

, s

1

R a

2

, �s

1

v a

2

, a

1

v a

2

. The reverse holds because v is

de�ned in a way such that  is monotone. 2

This gives an indirect way to check whether we have de�ned the largest order

on abstract states that makes  monotone.

4.2 First-order Constants

Not having a lattice in a base abstract domain causes problems. In terms of �nding

best representatives for higher-type constants, not only is it not possible to use the

results from [2], but in general a best abstract value does not exist. Such a best

value will, however, exist in some cases; we now discuss some su�cient conditions

for the existence of a best representative.
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4.2.1 A Pre-order on the Concrete States

The base concrete domain is frequently a at domain. It will be useful for presen-

tation purposes to de�ne a pre-order on concrete states according to the order of

their correspondents in the abstract domain:

s

1

<

�

s

2

, �s

1

v �s

2

:

This means smaller concrete elements have corresponding abstract elements which

are more precise (represent smaller sets) then larger elements. It is a pre-order

and not a partial order because two di�erent concrete states may correspond to

the same abstract state.

4.2.2 A First Condition: Monotonicity

Given a constant f : S ! S in the concrete domain, for which we want to obtain

a corresponding g, suppose f is monotone with respect to the above pre-order:

s

1

<

�

s

2

) fs

1

<

�

fs

2

:

Proposition 4.4 For any a there exists an a

�

such that, for all s:

�s = a) �(fs) = a

�

:

Proof Given any s

1

; s

2

such that �s

1

= �s

2

= a, we have s

1

<

�

s

2

, and so

fs

1

<

�

fs

2

, which is �(fs

1

) v �(fs

2

). But also s

2

<

�

s

1

and so �(fs

2

) v �(fs

1

);

this means �(fs

1

) = �(fs

2

) = a

�

. 2

This allows us to de�ne a function in the abstract domain: let g

�

be de�ned

by g

�

a = a

�

, for any given a.

Proposition 4.5 f R g

�

.

Proof We have f R g

�

if s R a) fs R g

�

a. Suppose s R a, that is �s v a, and

let s

1

be such that �s

1

= a. Then we have: �s v �s

1

, s

<

�

s

1

) fs

<

�

fs

1

,

�(fs) v �(fs

1

), �(fs) v g

�

a, fs R g

�

a. 2

Proposition 4.6 For any g such that f R g, we have g

�

v g.
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Proof Suppose f R g; then, whenever s R a we have fs R ga, that is �(fs) v ga.

For an s

1

such that �s

1

= a, we have s

1

R a, and so �(fs

1

) v ga. But as

g

�

a = �(fs

1

) we have g

�

a v ga. As this holds for any given a, we have g

�

v g. 2

Although the described condition is su�cient for the existence of a best repre-

sentative in the abstract domain, it is a strong condition which may not hold for

realistic functions; this has happened in our experience.

This condition means that any two concrete states s

1

and s

2

, such that �s

1

=

�s

2

, will be transformed to states which also have the same abstraction: �(fs

1

) =

�(fs

2

). Essentially it means that any pair of states which are undistinguishable

from the abstract point of view are transformed into a pair of again undistinguish-

able states.

4.2.3 A Less Demanding Condition

Given a constant f : S ! S in the concrete domain, suppose that for any a : S

a

there exists an s

a

, with s

a

R a, such that for any other s:

s R a) fs

<

�

fs

a

:

Then, we have that s R a implies fs R �(fs

a

). De�ning a function g

�

by g

�

a =

�(fs

a

), we have that f R g

�

.

On the other hand, for any g such that f R g, as s

a

R a, we must have

fs

a

R ga, that is �(fs

a

) v ga, or g

�

a v ga. As this holds for any a, then g

�

is the

best function related to f .

This condition for the existence of a best representative is weaker than the

one previously described. It just requires that for each abstract state there is a

representative concrete state that is mapped by the function to a state that is

larger than the mapping of any other corresponding concrete state.

Essentially the condition says that for any given abstract state a, the set of

states:

f�(fs) j s R ag

has a greatest element which we can take to be g

�

a, obtaining a best function

related to f :

g

�

a = �(fs

a

) =

G

f�(fs) j s R ag;

where we are taking the join of a directed set.
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4.3 Control Flow

It is usual for imperative languages to have control ow commands for conditionals

and loops. In de�ning the abstract semantics corresponding to these commands, it

is normally unrealistic to try to consider the condition which determines the path

that is taken. It is common practice to simply ignore the condition and assume

that any branch can be taken.

Given that an abstract state represents a set of possible concrete states, the

natural way to express the abstract semantics of a conditional is to use a join of the

result of each branch. This motivates the use of a lattice, as happens traditionally,

to ensure the existence of the join for every pair of abstract states.

In our approach we have base domains which are not necessarily lattices. We

use the base domain for representing information about the state as manipulated

by atomic commands, and use a completion of the base domain for composite

commands such as conditionals and loops.

A point to note is that even if the base domain happens to be a lattice, some

information is lost by performing a join|as the result, in general, represents a

set of states larger than the union of the sets represented by the operands to the

join. This information loss adds to the (almost inevitable) loss due to ignoring the

boolean condition that de�nes the branch taken.

In our approach we can avoid su�ering this extra loss by using for the comple-

tion the set of down-sets (order ideals) of the base domain, as long as we can a�ord

the size of the resulting domain. This way we maintain the information about the

outcome of the di�erent branches, incurring only the loss due to ignoring the condi-

tion. Using down-sets amounts in practice to using sets of incomparable elements

(antichains), as they are isomorphic.

On the other hand, if the size of the abstract domains is a problem, smaller

completions can be used. The extreme case is using the smallest completion of

the base domain|the Dedekind-MacNeille completion (also known as completion

by cuts or the normal completion), given by (see eg. [28]):

DM(D) = fA � D j A

ul

= Ag:

Either way, the choice of the completion to use is a separate issue from the

de�nition of the base domain. We consider, however, the completion by down-sets

the �rst choice to consider, as it avoids extra information loss. For this reason

and for the sake of concreteness, we will just consider using the completion by

down-sets in what follows.
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We use S

d

for the lattice of down-sets of the base abstract domain:

S

d

= O(S

a

):

We then de�ne R between concrete states s 2 S and elements d 2 S

d

as

s R d, 9a 2 d: s R a:

This means that a down-set d represent the union of the sets of concrete states

corresponding to each element in d. As we have a safety relation s R a, �s v a,

the above expression is equivalent to

s R d, 9a 2 Max d: s R a:

This con�rms the intuition that an antichain consisting of the maximal elements

represents the same concrete states as a whole down-set. Although we may present

an abstract interpretation using down-sets, a practical implementation of the static

analysis will only need to consider these frontier elements and not whole down-sets.

The join of elements in S

d

, which amounts to set union, becomes appropriate

to describe the abstract semantics of conditional-like commands on the lines of:

C

a

[[if e then c

0

else c

1

]] = �d: C

a

[[c

0

]]d t C

a

[[c

1

]]d;

the semantic function for composite commands being

C

a

: Com! S

d

! S

d

:

These semantic functions do not manipulate base states directly, but perform

operations on downsets, like joins (the conditional) and �xed point calculations

(the loop). One of the possible composite commands can be an atomic com-

mand; for this case C

a

makes use of the semantic function for atomic commands

A

a

, applying it to each element of the down-set and joining the principal ideals

corresponding to the resulting states:

C

a

[[a]]d =

G

e2d

#A

a

[[a]]e:

In fact, it is only necessary to consider each representative element of the down-set

(each maximal element):

C

a

[[a]]d =

G

m2Max d

#A

a

[[a]]m:
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This property is inherited by arbitrary composite commands and functions

(de�ned in terms of commands), and we have that elements f of a function space

S

d

! S

d

which occur in the abstract interpretation are not arbitrary (merely

continuous), but restricted in the sense that:

fd =

G

m2Max d

f#m:

Which means that to represent an element of a function space, we need only keep

the output for each principal ideal, as opposed to the whole graph of the function.

It also means that function application distributes with respect to the join

operation:

f(d

1

t d

2

) = fd

1

t fd

2

:

4.4 Avoiding Function Spaces

Representing functions and �nding the �xed points due to recursive de�nitions

in a e�cient way is one of the main problems in abstract interpretation. This

has been the target of research, an example being the frontier representation of a

function [23, 61, 44].

Here we do not describe a general method but simply the approach we use in

our speci�c problem, which has led to a very e�cient representation of functions.

Unfortunately, it is not generally applicable, as it relies on a `special' property

which may not hold. We do, however, draw attention to it as something to be

checked for in each particular problem; if it turns out to be applicable, it will

solve the intractability problems associated with the representation of functions.

To simplify the presentation we will not consider explicitly the parameters of a

function.

The possible e�ects of commands to a base abstract state amay be very diverse.

In our particular problem, however, the possible e�ects of a function invocation

on a state in the calling context are only to `move' it to a larger state: for every

possible function f and calling state a we have

fa w a;

that is, the functions are inations.

Moreover, a state can only be inated through a restricted number of opera-

tions. Also, we have a smallest (most precise) abstract state (?). It turns out
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that, looking at the e�ect of a function when applied to the most precise abstract

state allows us to determine what possible operations the function may perform

with e�ects on the calling state. This in turn allows us to extrapolate what will

be the e�ect of applying the function to any other state. In other words, for any

possible function f and calling state a,

fa = g(a; f?);

where g is a single computation which works for every function f which can be

de�ned in the language in question.

This way, having determined computation g, a function f : S

d

! S

d

can be

represented by a single element of S

d

(the response of the function to ?) instead

of its graph. Considering that a program may de�ne a set of k functions, with

possibly mutually recursive de�nitions, this allows us to compute a global �xed

point

�x�': : : : ' : : : ;

using, as the representation of the functions, a tuple

' = (f

1

: S

d

; : : : ; f

k

: S

d

);

instead of

' = (f

1

: S

d

! S

d

; : : : ; f

k

: S

d

! S

d

):

This will have a profound e�ect on the e�ciency of the static analysis, and can be

the di�erence between an intractable and a practical one.

As a remark, this kind of regularity is nothing very strange or unique and can

be seen to exist in other areas. As an example, an analogy can be drawn to linear

systems in control theory, where we have that, given a system F and signals u(t)

and v(t):

F (u+ v) = F (u) + F (v);

similar to the distributivity with respect to joins. Moreover, those systems can be

characterised through their response to a single signal containing all frequencies,

like the step function or the unit impulse, from which the response to any other

signal can be inferred by a unique computation (convolution):

F (u) = u
 F (�):

In our case the functions are inations and are distributive; these are not,

however, su�cient conditions for the `special property' to hold, and they may
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not be necessary conditions. It would be interesting to have some general char-

acterisation which could tell whether the property holds and if that is the case,

which provided an automated way to synthesize g, without considering speci�c

details and intuition about the problem. This is, however, beyond our aim, and

can eventually be considered as a topic of future research.

4.5 Summary

We have presented the approach to abstract interpretation that we will use in

the checking mechanism for balloon types. The central point concerned designing

base abstract domains that are not lattices and separating the issues of how to

summarise the relevant information about concrete states from how to merge the

representations from di�erent control paths.

We have discussed practical issues in deriving an order on the abstract domain

and a logical relation, presenting a series of steps which start from the de�nition

of the abstraction and concretisation functions. In this, we have discussed the

existence of a best representative for a given concrete state, and whether there is a

match between the logical relation and what the concretisation function expresses.

We have discussed the issue of obtaining abstract domains for composite com-

mands, dealing with control ow, through completions of the base domain. We

have focused, in particular, on the completion by down-sets.

Lastly, we have addressed the representation of functions in the abstract do-

main. Although the approach we use in our speci�c problem will not work in

general, it leads to a very e�cient representation; therefore, it is always worth to

consider whether it is applicable to a particular problem.



Chapter 5

Type-checking Balloon Types

In this chapter we present the essence of the checking mechanism for balloon

types: a static analysis which is presented as an abstract interpretation. Towards

this, we start by de�ning a simple language (RISO), and presenting a standard

denotational semantics, followed by the abstract semantics.

The mechanism as presented here involves a global program analysis, some-

thing which is not realistic nor intended. Modularity, as well as other relevant

issues for incorporating balloon types in `real' languages, will be addressed in

chapter 8.

5.1 RISO

We now de�ne RISO, an imperative language with recursive de�nition of functions

and shareable objects. RISO models accurately both the possibility of several

variables referring to the same object (dynamic aliasing) and the sharing of objects

by state variables of other objects (static aliasing). This is accomplished by making

every variable or state variable a reference to a possibly shared object.

Integers do not receive a special treatment: integer variables are also references

to possibly shared integer objects. It can be argued that the use of integers in

RISO does not correspond to realistic languages. We note, however, that RISO

should be regarded more as a target language that not only allows translating

some restrictive ways in which integers are treated in a particular language, but

which also allows di�erent possibilities of both dynamic and static aliasing to be

expressed in a orthogonal way for all data-types. The idea is to make no exception

so that all data-types are treated alike, and to provide full freedom of sharing so

63
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o : Op ::= + j � j � j = j = j < j >

e : Exp ::= n j x o y j isnull x

a : Asgn ::= x :� y j x :� y: z j x :� null j x :� new j

x: y :� z j x: y :� null j x: y :� new j

x <� e

c : Com ::= a j c

0

; c

1

j

if e then c

0

else c

1

j

while e do c j

x :� f

i

(x

1

; : : : ; x

a

i

)

d : Decl ::= f

1

(x

11

; : : : ; x

1a

1

) do c

1

return y

1

.

.

.

f

k

(x

k1

; : : : ; x

ka

k

) do c

k

return y

k

p : Prg ::= d do c

Figure 5.1: Abstract syntax of RISO

that restrictions can be later expressed. Integers are only included to give the

language a traditional form and make it naturally expressive without resorting to

arti�cial encodings; integers also play the role of boolean values (0 plays the role

of true and any other number the role of false).

The abstract syntax is given in Figure 5.1. We use n 2 N for numbers and

x, y and z|ranging over a set of identi�ers I|for identi�ers of both variables

and (object) state variables. An expression with integers is restricted to being a

number, an operation between integer variables and the test for the null reference.

We do not allow general expressions because side-e�ects are not only possible

but are a central part of what is being modelled. Allowing, for example, function

invocation in an expression would force us to consider issues such as evaluation

order. Such would complicate the semantics and be a distraction from what is

essential without changing the computational power of the language.

The reference assignment is denoted by `:�'. We use the traditional dot no-

tation to access state variables; null for the null reference; isnull for the test

for a null reference; and new for the creation of objects (including integer objects

which are initialised to zero). We also have the operator `<�' for performing up-

dates on integer objects (changing the associated integer value), because the `:�'

assignment does not modify the integer object but makes the variable reference
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some other object.

Commands are assignment, sequence, conditional, loop and function invoca-

tion. Function variables are represented by f

i

2 Fvar; being assumed that function

f

i

has arity a

i

. In an invocation both parameter passing and the return of the

result have the semantics of a reference assignment (:�); this is the interesting

case. A program consists of declarations of functions (which may be recursive or

mutually recursive), followed by the `main' command.

To avoid considering both type annotations and type-checking in the classic

sense (something which in this �rst-order non-polymorphic language is trivial but

also irrelevant and distracting), and to concentrate on the balloon aspect, we

assume a simple type checking of a type annotated version of RISO is performed,

producing:

� a set of object types T , with Int 2 T ,

� the set I of variable identi�ers in the program,

� a mapping typeof : I ! T (we assume, without loss of generality, that a

given identi�er cannot be used for di�erent object types in di�erent parts of

a program),

� a predicate balloon : I ! ftrue; falseg, corresponding to the annotation

which will be the subject of the checking, with balloonx = balloony if

typeof x = typeof y, and with balloonx = true if typeof x = Int,

� a program free of annotations, with the above described abstract syntax and

which is type correct in the simple sense that types are compatible in as-

signments and functions invocation, and for identi�ers x used in expressions

(Exp) typeof x = Int.

We also assume that in RISO programs we have that, for each function f

i

:

� formal parameters x

i1

; : : : ; x

ia

i

are part of the variables in its body c

i

;

� no assignments (:�) are made to any formal parameter x

ij

in the body c

i

.

This last assumption does not impair expressive power, as it is always possible

to copy the references in the parameters to local variables and use them instead.

(The intended semantics of RISO parameter passing is like in user-de�ned types in

object-oriented languages like Java; even if a reference assignment to a parameter
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were allowed in RISO, it would have no e�ect on the variable passed as actual

parameter.) The assumption helps simplify the description, because this way a

formal parameter always refers to the object referenced by the actual parameter,

and there is no need to introduce extra variables in describing the semantics. In

particular, it makes possible to use a `inlining' semantics for function invocation,

which turns out to be a quite elegant way of describing the e�ects of a function

(with side-e�ects) on the calling context.

We also make the assumption that in invocations:

x :� f

i

(x

1

; : : : ; x

a

i

)

all actual parameters x

1

; : : : ; x

a

i

are di�erent identi�ers. This will allow avoiding

notational clutter and does not impair expressive power, as temporary variables

can always be used; i.e. instead of some invocation:

y :- f(x,x);

we can use:

t1 :- x;

t2 :- x;

y :- f(t1,t2);

to obtain the same e�ect.

5.2 Standard Denotational Semantics of RISO

We now present a denotational semantics for RISO. It is the concrete semantics

to which the abstract semantics will be related. This semantics models accurately

both `heap allocated' objects and recursive de�nitions of functions, being suitable

to be adapted to real imperative languages. An important aspect is that `the

state' has two components:

� one is a mapping from variables to addresses;

� the other is a mapping from addresses to object values, de�ning the object

graph.

An object value can be an integer or a record, the latter represented by a mapping

from (state) variables to addresses. (We have chosen the term address without
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N discrete cpo of numbers

I �nite discrete cpo of identi�ers

A �nite at cpo of addresses

(?

A

denotes the null address)

V = [I ! A] pointed cpo of variable mappings

?

V

denotes the null mapping

O = (N + V )

?

pointed cpo of object values

(?

O

denotes the unde�ned object)

G = [A! O] pointed cpo of graphs of objects

?

G

denotes the null graph

S = G� V discrete cpo, `the state'

F = F

1

� � � � � F

k

pointed cpo of function environments, where

F

i

= [I

a

i

+1

! S ! S

?

]

Figure 5.2: Semantic domains

implying that it corresponds to physical addresses in some implementation. Others

may prefer the term object identi�er.)

The semantic domains are given in Figure 5.2. In the representation of object

graphs addresses not in use are mapped to the unde�ned object (?

O

). In the

representation of a record the identi�ers which are not part of the record remain

mapped to the null address (?

A

). This enables us to work with total mappings.

Note also the discreteness of S, instead of having the standard coordinatewise

order; otherwise most functions would not be monotone, and hence continuous.

Figure 5.3 lists the semantic functions. There is a function for each corre-

sponding syntactic set in the abstract syntax. This factors similar cases, which

helps in keeping down the size of the function de�nitions.

We use the functions A for the atomic commands (the assignments) and C for

general commands (assignment, sequence, conditional, loop and function invoca-

tion).

Using both A and C instead of having a single C gives emphasis to the actual

atomic actions (as opposed to combinations of actions) and avoids the need for

a function environment in describing the semantics of the atomic actions. A

function environment is necessary in the case of general commands as they may

involve function invocations.
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O : Op! (N

?

�N

?

)! N

?

E : Exp! S ! N

?

A : Asgn! S ! S

?

C : Com! F ! S ! S

?

D : Decl! F

P : Prg! S

?

Figure 5.3: Semantic functions

Semantic functionD maps a declaration of functions to a function environment.

Finally P maps a program to its denotation: the resulting state of executing the

given command starting from the null graph of objects and null variable mapping,

with the function environment as given by the declaration. A program is a closed

unit; the meaning of a program is not expressed in terms of some environment; this

only happens for sub-parts of a program. The de�nition of the semantic functions

is given in Figure 5.4.

The semantic functions reect what we have informally described, and we will

only make a few remarks. Accessing a state variable of an object x: y causes

program abortion if x is the null reference, to what corresponds ?; these cases

are expressed using the let� ( �:� construct.

The semantics for declaration of functions involves a global �xed point calcula-

tion due to possible mutually recursive de�nitions. It is de�ned to have the same

result as `inlining' the body of the function on the calling context, after renaming

formal to actual parameters and `hiding' local variables under new names.

Making the inlined body act on the calling context state while avoiding con-

icts with local variables requires performing a domain extension (

+

j ). In the

extended state, identi�ers corresponding to local variables are initialised to the

null reference, while the object graph remains the same:

(g; v)

+

j X = (g; v[x 7! ?

A

j x 2 X]):

A domain restriction is performed `after' applying the renamed body, to return

back to the original set of identi�ers in the calling context.

We use the symbol `var' overloaded to both a function which gives the identi-

�ers for variables in a piece of syntax (with an obvious de�nition which we omit),

and to a function which gives the variables in a state s : S (var(g; v) = dom v).



5.2. Standard Denotational Semantics of RISO 69

E [[n]] = �(g; v): bnc

E [[x o y]] = �(g; v):O[[o]](g(vx); g(vy))

E [[isnull x]] = �(g; v):

8

<

:

b0c if vx = ?

A

;

b1c otherwise.

A[[x :� y]] = �(g; v): bg; v[x 7! vy]c

A[[x :� y: z]] = �(g; v): leta( vy: bg; v[x 7! gbacz]c

A[[x :� null]] = �(g; v): bg; v[x 7! ?

A

]c

A[[x :� new]] = �(g; v): leta( allocg: bg[bac 7! o]; v[x 7! bac]c

where o =

8

<

:

b0c if typeof x = Int;

b?

V

c otherwise.

A[[x: y :� z]] = �(g; v): leta( vx: bg[bac 7! gbac[y 7! vz]]; vc

A[[x: y :� null]] = �(g; v): leta( vx: bg[bac 7! gbac[y 7! ?

A

]]; vc

A[[x: y :� new]] = �(g; v): leta

x

( vx: let a

n

( alloc g:

bg[ba

n

c 7! o][ba

x

c 7! gba

x

c[y 7! ba

n

c]]; vc

where o =

8

<

:

b0c if typeof y = Int;

b?

V

c otherwise.

A[[x <� e]] = �(g; v): leta( vx: let i( E [[e]](g; v): bg[bac 7! bic]; vc

C[[a]] = �': �s:A[[a]]s

C[[c

0

; c

1

]] = �': �s: let s

0

( C[[c

0

]]'s: C[[c

1

]]'s

0

C[[if e then c

0

else c

1

]] = �': �s: let i( E [[e]]s:

8

<

:

C[[c

0

]]'s if i = 0;

C[[c

1

]]'s otherwise.

C[[while e do c]] = �': �x�h: �s: let i( E [[e]]s:

8

<

:

let s

0

( C[[c]]'s: hs

0

if i = 0;

bsc otherwise.

C[[x :� f

i

(x

1

; : : : ; x

a

i

)]] = �': �s: '

i

(x; x

1

; : : : ; x

a

i

)s

D[[d]] = �x�': (

�!

'

0

k

); where

'

0

i

= �(x;

�!

x

a

i

): �s:

C[[c

i

[ren z=z j z 2 var c

i

][

�!

x

a

i

=

����!

ren x

ia

i

]; x :� ren y

i

]]'(s

+

j X) j var s

with X a set of new identi�ers, jXj = jvar c

i

j ;

and ren : var c

i

! X; bijective;

d as given by the abstract syntax in Figure 5.1.

P[[d do c]] = C[[c]]D[[d]](?

G

;?

V

)

Figure 5.4: Semantic function de�nitions
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The semantic functions make use of a function alloc : G ! A, which we

do not need to specify fully; we only assume this function satis�es the following

properties, typical of a memory allocation function:

8g 2 G:((8a 2 A n ?

A

: ga 6= ?

O

)) alloc g = ?

A

)

^ ((9a 6= ?

A

: ga = ?

O

)) allocg 6= ?

A

^ g(allocg) = ?

O

):

That is, it returns the null address (?

A

) if there are no free memory addresses,

and returns a free memory address otherwise.

5.3 Base States in the Abstract Interpretation

Here we describe the way we abstract the relevant properties about concrete states.

To best understand the structure of the resulting domain, the presentation is

divided in two parts.

� First we describe a domain which represents the information about clusters:

whether di�erent variables may reference objects in the same cluster and

whether the cluster is free (does not contain any balloon object) or cap-

tured. This would be the base domain used if only invariant I

4

needed to be

enforced.

� Then we present the base domain used in the actual abstract interpretation

(which must also take invariant I

2

into account). This domain is obtained by

re�ning each original state into several states, by adding information about

cluster relationships: whether a free cluster may `reach' a captured cluster.

From the set of concrete states S, we will concentrate essentially on the set of

valid states S

b

|the set of states in which the invariant holds. This set will be

abstracted to a set C.

All invalid concrete states are represented by one more abstract state. We do

not need to further discriminate them because if an invalid state results at some

point, the analysis terminates and the outcome is `invalid program'. Thus, we

only need to discriminate relevant information about valid concrete states.

5.3.1 Representing Clusters

A concrete state (a variable mapping and an object graph) is a complex structure.

We do not, however, need to manipulate it directly. The relevant (for now) in-
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formation about concrete states can be summarised by two functions (which only

serve presentation purposes and are not used in the actual static analysis):

� P :S

b

! P(I � I) maps a valid state to an equivalence relation on I. We

have (x; y) 2 Ps i� in the state s, x and y reference objects in the same

cluster.

� B:S

b

�P(I)! N gives the number of balloons in all clusters referenced by

the given set of identi�ers in the given state.

We now state properties of these functions that will be useful later. These

properties follow directly from the above de�nitions.

Lemma 5.1 For all s 2 S

b

, x; y 2 I, and X; Y � I:

B(s; Psfxg) = B(s; fxg);

X � Y ) B(s;X) � B(s; Y ); and

(8x 2 X; y 2 Y: (x; y) 62 Ps)) B(s;X [ Y ) = B(s;X) +B(s; Y ):

From these properties it immediately follows that:

Lemma 5.2 For all s 2 S

b

, x; y 2 I, and X � I:

B(s;X) �

P

x2X

B(s; fxg); and

(8x; y 2 X:B(s; fx; yg) � 1)) B(s;X) � 1:

These lemmas formalise the intuitive expectations about P and B.

Abstract States and the Abstraction Function

Each element of S

b

is abstracted into an element of a �nite set C, which constitutes

a direct representation of what is expressed by the above functions. Elements of

C have the form (p; b) 2 P(I � I)� (I ! f0; 1g) such that:

� p is an equivalence relation on the set of identi�ers I; de�ning a partition

according to what variables reference objects in the same cluster.

� b is a function from equivalence classes to f0; 1g; representing the number

of balloons in the cluster corresponding to the given equivalence class. b is

presented as a function with domain I and the invariant x p y ) bx = by.
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We use a function to f0; 1g because in a valid state a cluster can have at most

one balloon (as expressed by invariant I

4

). The abstraction function �:S

b

! C is

de�ned directly in terms of P and B:

� = �s: (Ps; �x:B(s; fxg)):

The way C is de�ned, for each element of C there will be at least one concrete

state abstracted into it; that is, � is surjective.

The Concretisation Function

While a concrete state in S

b

is abstracted to a single state in C, each element of

C represents a set of concrete states which is larger than the set of those elements

abstracted to it. For a given abstract state (p; b):

� If x and y are not both mapped to 1 by b, and are not in the same equivalence

class in p, then in the corresponding concrete states, x and y de�nitely do

not reference objects in the same cluster.

If they are both mapped to 1 by b or belong to the same equivalence class,

then nothing can be assumed: theymay reference objects in the same cluster.

� If bx = 0 it means that there is de�nitely no balloon in the cluster referenced

by x. If bx = 1 it means that there may exist one balloon in the cluster

referenced by x. (This is included in the following point.)

� There is at most one balloon in the union of all clusters referenced by the

set of identi�ers in an equivalence class which is mapped to 1 by b.

This is given by the concretisation function :C ! P(S

b

):

 = �(p; b): fs 2 S

b

j 8x; y 2 I: ((bx = 0 _ by = 0) ^ x 6p y ) (x; y) 62 Ps)

^ B(s; pfxg) � bxg:

This choice of what an abstract state represents follows from the assumptions

that must be made and the purpose of the analysis, as we now explain:

� Here we aim to check that invariant I

4

is not broken; towards this, we want

to forbid two clusters from being merged when each cluster may have one

balloon object. From this it follows that it matters to know that either

de�nitely there are no balloons in a cluster or there may exist one. (It is

irrelevant to know that there is de�nitely one.)
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� In order to decide whether an operation that may merge clusters is to be

allowed, the states have been designed so that a variable x that references

a cluster with no balloons (bx = 0), de�nitely references a di�erent cluster

than other variable in a di�erent equivalence class. In this case x can be

used in such operation, with the result of merging the equivalence classes in

the abstract semantics.

However, due to loss of information in the analysis, we may not be sure

whether clusters have been actually merged. Therefore, when two variables

are in the same equivalence class they may reference di�erent clusters.

� When two variables x and y reference clusters which possibly have one bal-

loon (bx = by = 1), they may be in di�erent equivalence classes and reference

objects in the same cluster. The reason is that if both variables point to pos-

sibly captured clusters, they must be forbidden to appear in some operation

which may merge the clusters when more than one cluster may be involved.

In this case there is no point in trying to establish that the variables involved

de�nitely point to di�erent clusters.

More than unnecessary, it is indeed important that no assumption is made.

The reason is that, when a procedure of some balloon type has several pa-

rameters of that type, the checking must assume that they may point to

di�erent balloons (under a modular checking no assumptions can be made

regarding client code), and the corresponding variables must be in di�erent

equivalence classes. However, it may be the case that dynamic aliasing ex-

ists, and several variables point to the same cluster. The mechanism must

work under this possibility of dynamic aliasing.

Even if preventing dynamic aliasing may be desirable, such can only be ac-

complished either by an overly conservative static mechanism, or by dynamic

checking. Therefore, absence of dynamic aliasing is something which we do

not assume/enforce in the balloon mechanism.

� The �nal remark we make is about variables in the same equivalence class

mapped to 1 by b. They may point to di�erent clusters, but they must be

allowed to be used together in operations that possibly merge the clusters

(if they had not already been merged). Thus, we must assume that at most

one balloon is present even if more than one cluster is involved.
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The pair of functions � and  satisfy the expected property that the abstraction

of a given concrete state s represents a set of concrete states which include s. That

is, for all s 2 S

b

:

fsg � (�s):

Proof From the de�nitions it follows that, given an arbitrary s

1

2 S

b

, we have

�s

1

= (Ps

1

; �x: B(s

1

; fxg)), and s 2 (�s

1

) if and only if

8x; y 2 I:((B(s

1

; fxg) = 0 _ B(s

1

; fyg) = 0) ^ (x; y) 62 Ps

1

) (x; y) 62 Ps)

^ B(s; Ps

1

fxg) � B(s

1

; fxg):

For s = s

1

the �rst component of the condition holds as it takes the form X ^

Y ) Y , while the second component holds because from Lemma 5.1 we have that

B(s

1

; P s

1

fxg) = B(s

1

; fxg). Therefore we have s

1

2 (�s

1

). 2

We now present some examples of abstract states and corresponding concrete

states. We use a graphic notation to refer to elements of C; this is not only much

more compact but also more ilustrative than using tuples and plain set notation.

An element (p; b) represented as xy z means that there are two equivalence classes

de�ned by p|fx; yg and fzg|and that b maps fx; yg to 1, and fzg to 0.

Concrete states are also exempli�ed graphically, in this case by drawing a graph

of objects. It is indeed relevant to remark that throughout the presentation of the

abstract interpretation we make no direct manipulation of the components g and

v of a concrete state s = (g; v). We use a state s as an atomic entity; relating

concrete and abstract states as well as reasoning in general is made through the

predicates P and B we have de�ned and their corresponding properties as stated

in Lemmas 5.1 and 5.2 (which simply describe trivial facts about graphs, connect-

edness and clusters as de�ned). This means that the concrete semantics could

have been written using another representation for states; we have chosen one

which makes the semantics naturally `concrete' and realistic.

Figure 5.5 contains some examples of concrete and abstract states when two

variables (x and y) are involved. For two variables there are six possible abstract

states. The �gure shows six representative concrete states (labeled a through f),

each one abstracted into one of the possible states, as shown in the table. In the

table are also shown (ticked), for each abstract state, which are the corresponding

concrete states. For example, a and c belong to (x y ), and all concrete states

belong to ( x y ). All cells in the diagonal are ticked, as required by fsg � (�s)

for all concrete states s. We remark that in state d, variables x and y point to
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di�erent clusters, as a reference from a non-balloon to a balloon does not make

the objects belong to the same cluster; therefore �d = x y .

Order in the Abstract States

The function  induces a partial order on C such that  becomes an order-

embedding of C into P(S

b

); that is, such that for all c

1

; c

2

2 C we have c

1

v

c

2

, c

1

� c

2

. This happens if we de�ne the order as:

De�nition 5.3

(p

1

; b

1

) v (p

2

; b

2

), (b

1

v b

2

) ^ 8x; y 2 I:

(x p

1

y ^ x 6p

2

y ) b

2

x = b

2

y = 1)

^ (x 6p

1

y ^ x p

2

y ) b

1

x+ b

1

y � b

2

x):

(Here b

1

v b

2

means the usual pointwise ordering: 8x 2 I: b

1

x � b

2

x.) Fig-

ure 5.6 shows C, which is a pointed cpo, in the case when I = fx; y; zg. With the

above order we have for example: x y z v xy z and xy z v x y z .

To show that the de�ned order makes  an order-embedding we will show �rst

that c

1

v c

2

) c

1

� c

2

, and then that s 2 c ) �s v c (so that we can use

Propositions 4.2 and 4.3). We will also make use of the following lemma:

Lemma 5.4 Let F stand for 8x 2 I: B(s; pfxg) � bx and G stand for 8x; y 2

I: x p y ) B(s; fx; yg) � bx. We have F , G.

Proof Suppose F holds; if x 6p y the implication in G holds trivially; if x p y,

we have fx; yg � pfxg, and so B(s; fx; yg) � B(s; pfxg), therefore we have

B(s; fx; yg) � bx.

Suppose G holds; either bx = 0, in which case we have for all z 2 pfxg that

bz = 0 and B(s; fz; zg) � 0, and therefore B(s; pfxg) = 0; or we have bx = 1,

in which case we have for all y 2 pfxg that B(s; fx; yg) � 1, and therefore

B(s; pfxg) � 1. 2

Lemma 5.5 c

1

v c

2

) c

1

� c

2

.

Proof We have  in the form  = �c: fs j

V

i

F

i

(s; c)g. We show that c

1

v c

2

as

de�ned above implies that 8s 2 c

1

: 8i: F

i

(s; c

1

) ) F

i

(s; c

2

), from which follows

immediately that c

1

v c

2

) c

1

� c

2

.

Some F

i

are (bx = 0 _ by = 0) ^ x 6p y ) (x; y) 62 Ps; they have the form

Gc) Hs. The expression 8s: (Gc

1

) Hs)) (Gc

2

) Hs) is equivalent to Gc

2

)
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x
y

x
y

x
y y

x

x y
x

y

a) b)

d)c)

f)e)

s �s x y xy x y x y xy x y

a x y

p p p p p p

b xy

p p p

c x y

p p p

d x y

p p p

e xy

p p

f x y

p

Figure 5.5: Examples of concrete and abstract states



5.3. Base States in the Abstract Interpretation 77

x y z

� �
� �
� �
� �
� �
� �

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

x yz

☎ ☎
☎ ☎
☎ ☎
☎ ☎
☎ ☎
☎ ☎

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

y xz

q q q
q q q

q q q
q q q

q q q
q q q

q

✂ ✂
✂ ✂
✂ ✂
✂ ✂
✂ ✂
✂ ✂

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

z xy

❦ ❦ ❦ ❦
❦ ❦ ❦ ❦

❦ ❦ ❦ ❦
❦ ❦ ❦

❦ ❦ ❦ ❦
❦ ❦ ❦ ❦

❦ ❦ ❦ ❦
❦

✂ ✂
✂ ✂
✂ ✂
✂ ✂
✂ ✂
✂ ✂

xyz

✟ ✟
✟ ✟
✟ ✟
✟ ✟
✟ ✟
✟ ✟

✾✾
✾✾

✾✾
✾✾

✾✾
✾✾

▲▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲
▲▲▲

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲❲❲ x y z

▼▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼

x y z

▲▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲
▲▲▲

x y z

❑❑❑
❑❑❑

❑❑❑
❑❑❑

❑❑❑
❑❑

xyz

✻✻
✻✻

✻✻
✻✻

✻✻
✻

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
x yz

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
y xz

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙ z xy

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
xy z

✄ ✄
✄ ✄
✄ ✄
✄ ✄
✄ ✄
✄ ✄

✿✿
✿✿

✿✿
✿✿

✿✿
✿✿

xz y

❦ ❦ ❦
❦ ❦ ❦

❦ ❦ ❦
❦ ❦ ❦

❦ ❦ ❦
❦ ❦ ❦

❦ ❦ ❦
❦ ❦ ❦

❦ ❦ ❦
❦

✆ ✆
✆ ✆
✆ ✆
✆ ✆
✆ ✆
✆

✾✾
✾✾

✾✾
✾✾

✾✾
✾

yz x

❣ ❣ ❣ ❣ ❣
❣ ❣ ❣ ❣ ❣

❣ ❣ ❣ ❣ ❣
❣ ❣ ❣ ❣ ❣

❣ ❣ ❣ ❣ ❣
❣ ❣ ❣ ❣ ❣

❣ ❣ ❣ ❣ ❣
❣ ❣ ❣ ❣ ❣

❣ ❣ ❣ ❣ ❣
❣ ❣ ❣

✆ ✆
✆ ✆
✆ ✆
✆ ✆
✆ ✆
✆

x yz

▲▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲
▲▲▲

y xz

❀❀
❀❀

❀❀
❀❀

❀❀
❀❀

z xy x y z

✄ ✄
✄ ✄
✄ ✄
✄ ✄
✄ ✄
✄ ✄

x y z

r r r
r r r

r r r
r r r

r r r
r r r

x y z

❧ ❧ ❧
❧ ❧ ❧

❧ ❧ ❧
❧ ❧ ❧

❧ ❧ ❧
❧ ❧ ❧

❧ ❧ ❧
❧ ❧ ❧

❧ ❧ ❧

x y z

Figure 5.6: The C

fx;y;zg

cpo

Gc

1

, in this case to (b

2

x = 0 _ b

2

y = 0) ^ x 6p

2

y ) (b

1

x = 0 _ b

1

y = 0) ^ x 6p

1

y.

This expression, anded with b

1

v b

2

, simpli�es to (b

2

x = 0 _ b

2

y = 0) ^ x 6p

2

y )

x 6p

1

y, which is equivalent to x p

1

y ^ x 6p

2

y ) b

2

x = b

2

y = 1.

The remainder of the de�nition of v is just a simpli�cation of the predicate

x p

2

y ) (x p

1

y ) b

1

x � b

2

x) ^ (x 6p

1

y ) b

1

x + b

1

y � b

2

x). (We have always

x p x and so (x p

2

y ) (x p

1

y ) b

1

x � b

2

x) is equivalent to b

1

x � b

2

x.) We now

show that the above predicate implies that 8s 2 c

1

: F

i

(s; c

1

) ) F

i

(s; c

2

) with

F

i

(s; c) = (x p y ) B(s; fx; yg) � bx). (The previous lemma allows us to use this

expression intead of B(s; pfxg) � bx as in the de�nition of .) We do this by a

case analysis. Suppose the above predicate holds. If x 6p

2

y then F

i

(s; c

2

) and so

trivially F

i

(s; c

1

)) F

i

(s; c

2

). If x p

2

y there are two cases to consider:

� If x p

1

y then we must have b

1

x � b

2

x; if F

i

(s; c

1

) it means thatB(s; fx; yg) �

b

1

x, and so B(s; fx; yg) � b

2

x; therefore F

i

(s; c

2

);

� if x 6p

1

y (in which case F

i

(s; c

1

) is true) then we must have b

1

x+ b

1

y � b

2

x.

It is true that for all s 2 c

1

we have B(s; fxg) � b

1

x, B(s; fyg) � b

1

y,
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B(s; fx; yg) � B(s; fxg) + B(s; fyg) � b

1

x + b

1

y. Therefore B(s; fx; yg) �

b

2

x and so F

i

(s; c

2

) is true.

2

Lemma 5.6 s 2 c) �s v c.

Proof We must show that if s 2 (p; b), then (Ps; �x:B(s; fxg) v (p; b), that is:

8x; y 2 I: B(s; fxg) � bx

^ ((x; y) 2 Ps ^ x 6p y ) bx = by = 1)

^ ((x; y) 62 Ps ^ x p y ) B(s; fxg) +B(s; fyg) � bx)

Suppose that s 2 (p; b); then for all x; y 2 I:

� B(s; pfxg) � bx; it is always true that B(s; fxg) � B(s; pfxg), therefore it

follows that B(s; fxg) � bx.

� If (x; y) 2 Ps we have :((bx = 0 _ by = 0) ^ x 6p y); if also x 6p y then it

follows that bx = 1 ^ by = 1.

� If (x; y) 62 Ps then B(s; fx; yg) = B(s; fxg) + B(s; fyg); if also x p y then

B(s; fx; yg) � B(s; pfxg); as we have B(s; pfxg) � bx, then B(s; fxg) +

B(s; fyg) � bx.

2

Proposition 5.7 �s v c, s 2 c.

Proof Combine the two previous lemmas and Proposition 4.2. 2

Proposition 5.8 c

1

v c

2

, c

1

� c

2

.

Proof Combine the previous proposition and Proposition 4.3. 2

The size of C

The size of C

I

grows exponentially with the number of identi�ers in I; more

precisely:

jC

I

j =

n

X

k=0

 

n

k

!

B

k

B

n�k

;
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where n = jIj and B

i

is the i

th

Bell number, the number of partitions of a set

of i elements. There is no simple closed formula for B

i

, but it can be calculated

recursively by (see eg. [7]):

B

0

= 1;

B

n+1

=

n

X

k=0

 

n

k

!

B

k

:

5.3.2 Extending the Representation to Cluster Relation-

ships

We begin by making an informal presentation. By the simple rule, a reference to a

balloon can be stored in some object only through the copy assignment, which gives

a newly created balloon; therefore, the reference is stored in an external object. To

enforce I

2

|the only reference to a balloon B is from an external object|we must

prevent the external object which references a balloon from becoming internal.

To do this, we must prevent any balloon B from capturing non-balloons in a free

cluster which references either B or some balloon which contains B. (Only free

clusters need surveillance, as non-balloons in captured clusters no longer can be

captured; this is assured by the mechanism which enforces I

4

.)

The abstract states as presented above partition variables according to clusters,

but do not contain information about relationships between di�erent clusters. As

an example, the abstract state x y z can correspond to any of the three cases in

Figure 5.7. While in the �rst case (on the left) it would we acceptable to perform

an instruction like `y.a :- x', in the other two cases performing this instruction

would break I

2

.

To enforce I

2

, the previously described abstract states are re�ned in order to

distinguish these situations: to a free cluster is now associated a set of which

captured clusters may be `reachable' by the free cluster. If a captured cluster is

not in this set, then it is de�nitely not `reachable' by the free cluster. (Every

captured cluster is associated with at most one free cluster.)

The original state x y z is now re�ned into four states: x y z , x y z , x z y ,

and x y z . The graphic notation for abstract states is similar to the previous one,

with the added possibility of a free cluster `reaching' a set of captured clusters.

The three cases in Figure 5.7 are now abstracted as x y z , x y z , and x y z

respectively. (Note how the nesting in the third case is not relevant; y and z
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x

z

y

x

y

z

x

z

y

Figure 5.7: Three cases abstracted into the same state

x y z

s s s
s s s

❑❑❑
❑❑❑

❑❑❑
❑❑❑

❑❑❑
❑❑❑

❑

x z y

❑❑❑
❑❑❑

x y z

x y z

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

x yz

❧ ❧ ❧
❧ ❧ ❧

❧ ❧ ❧
❧ ❧ ❧

❧ ❧ ❧
❧ ❧ ❧

❧ ❧ ❧
❧ ❧ ❧

❧ ❧ ❧
❧

x yz

s s s
s s s

s s s
s s s

s s s
s s s

s

y x z

❑❑❑
❑❑❑

x y z

x y z

Figure 5.8: Fragment of the extended C

fx;y;zg

cpo

could even refer to the same cluster, as before.) Figure 5.8 shows a fragment

of the extended C

fx;y;zg

cpo, corresponding to re�ning the following three states:

x y z v x yz v x y z .

Abstract States and The Abstraction Function

We now formalise what we have just described. The set of base abstract states C

is extended to become a set of triples (p; b; r). For each state, the components p

and b are as before, while the component r describes `cluster reachability': it is a

binary relation on the set of identi�ers I, subject to:
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x r y ^ y p z ) x r z;

x r y ^ x p z ) z r y;

x r y ) bx = 0 ^ by = 1; and

x r z ^ y r z ) x p y:

The �rst two conditions state that r de�nes a relation from clusters to clusters,

the third states that it is from free to captured clusters, and the fourth states that

no more than one (free) cluster is related to any given (captured) cluster.

To de�ne the abstraction function, once again we use an auxiliary predicate

which gives the relevant information:

� R : S

b

� I� I ! bool, is a predicate such that R(s; x; y) is true if and only if

in the state s, variable x references an object in a free cluster F , there exists

a balloon object B referenced by an object in F , and variable y references

either B or an object internal to B.

The abstraction function � : S

b

! C becomes:

� = �s: (Ps; �x:B(s; fxg); f(x; y) j R(s; x; y)g);

where the �rst two components of the resulting abstract state are as before. The

abstraction function remains surjective.

The Concretisation Function

The new concretisation function is also based on the previous one:

 = �(p; b; r):fs 2 S

b

j 8x; y 2 I:

((bx = 0 _ by = 0) ^ x 6p y ) (x; y) 62 Ps) ^ B(s; pfxg) � bx

^ ((bx = 0 ^ by = 1 ^ x 6r y) _ x p y ) :R(s; x; y))g:

For the new pair of abstraction and concretisation functions it remains true

that, for all s 2 S

b

:

fsg � (�s):

Proof For an arbitrary s

1

2 S

b

we have �s

1

= (p

1

; b

1

; r

1

), with r

1

= f(x; y) j

R(s

1

; x; y)g. It remains to prove that for s = s

1

we have (b

1

x = 0 ^ b

1

y = 1 ^

x 6r

1

y) _ x p

1

y ) :R(s; x; y); this becomes (b

1

x = 0 ^ b

1

y = 1 ^ :R(s

1

; x; y)) _

x p

1

y ) :R(s

1

; x; y). Either x 6p

1

y and the above is true, or x p

1

y, which means

that (x; y) 2 Ps

1

, R(s

1

; x; y) must be false, and the above holds as well. Therefore

we have s

1

2 (�s

1

). 2
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Order in the Abstract States

As before,  induces a partial order on C; the new order becomes:

De�nition 5.9

(p

1

; b

1

; r

1

) v (p

2

; b

2

; r

2

), (b

1

v b

2

) ^ 8x; y 2 I:

(x p

1

y ^ x 6p

2

y ) b

2

x = b

2

y = 1)

^ (x 6p

1

y ^ x p

2

y ) b

1

x + b

1

y � b

2

x)

^ (x r

1

y ^ x 6r

2

y ) x 6p

2

y ^ b

2

x = 1):

We notice that C has a least element ?

C

, given by:

?

C

= (f(x; x) j x 2 Ig; f(x; 0) j x 2 Ig; ;):

Figure 5.9 shows the C cpo in the case when I = fx; y; zg.

Lemma 5.10 c

1

v c

2

) c

1

� c

2

.

Proof Suppose c

1

v c

2

; it remains to show that if s 2 c

1

then F (s; c

2

) holds,

with F (s; (p; b; r)) = ((bx = 0 ^ by = 1 ^ x 6r y) _ x p y ) :R(s; x; y)). Suppose

s 2 c

1

; then we have F (s; c

1

). Either :R(s; x; y) in which case F (s; c

2

) holds

trivially, or R(s; x; y). In this last case we have :(b

1

x = 0 ^ b

1

y = 1 ^ x 6r

1

y) ^

x 6p

1

y, and also b

1

y = 1 (as y references an object in a captured cluster); therefore

(b

1

x = 1 _ x r

1

y) ^ x 6p

1

y. If b

1

x = 1, as c

1

v c

2

, we must have b

2

x = 1 and

x 6p

2

y; therefore F (s; c

2

) holds. If x r

1

y we must have x r

2

y _ (x 6p

2

y ^ b

2

x = 1).

Both if x 6p

2

y ^ b

2

x = 1 or if x r

2

y (in which case x 6p

2

y) we have that F (s; c

2

)

holds. 2

Lemma 5.11 s 2 c) �s v c.

Proof It remains to show that if s 2 c then F (s; c) holds, with F (s; (p; b; r)) =

(R(s; x; y) ^ x 6r y ) x 6p y ^ bx = 1). Suppose that s 2 (p; b; r); then we have

(bx = 0 ^ by = 1 ^ x 6r y) _ x p y ) :R(s; x; y). Either :R(s; x; y) in which case

F (s; c) holds; or R(s; x; y) and we have (bx = 1 _ by = 0 _ x r y) ^ x 6p y. In this

case (being R(s; x; y) and x 6p y) we need to prove (x 6r y ) bx = 1); this holds

whether bx = 1 or x r y; we cannot have by = 0 in this case where R(s; x; y) (as

y points to a captured cluster in s). 2

Proposition 5.12 �s v c, s 2 c.

Proof Combine the two previous lemmas and Proposition 4.2. 2
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x y z
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� �
� �
� �
� �
� �
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Figure 5.9: The extended C
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Proposition 5.13 c

1

v c

2

, c

1

� c

2

.

Proof Combine the previous proposition and Proposition 4.3. 2

We have thus that, not only  is an order-embedding (which means we have

obtained the largest order appropriate to our concretisation function), but also the

safety relation on the base domain derived from � (i.e. s R c, �s v c) coincides

with what is expressed by :

s R c, �s v c, s 2 c:

(We use the the same letter R for the logical relation and for the above auxiliary

predicate; they are used in di�erent contexts and no confusion should arise.)

5.3.3 Invalid States and Non-termination

Having de�ned C, invalid states in S are considered by adding a > to C, which

represents all states in S|both valid and invalid states. The abstraction and

concretisation functions are extended to � : S ! C

>

and  : C

>

! P(S) by

making �(s) = > if s 62 S

b

, and (>) = S. The order v becomes

c

1

v c

2

, c

2

= > _ c

1

= (p

1

; b

1

; r

1

) v (p

2

; b

2

; r

2

) = c

2

The relation R is also extended to become R : S ! C

>

; it is as before s R c ,

�s v c, s 2 c, with the extended �, , and v.

The standard semantics also uses a ? to represent non-termination or abor-

tion (when an invalid operation occurs, such as dereferencing a null reference).

Although it can be useful on its own to determine that a program aborts or does

not terminate, this is not needed for our balloon checking purpose, and we do not

use any dedicated abstract state to represent it. Instead we make ? R c for all

c 2 C

>

: for any possible abstract state, non-termination or abortion is a possible

corresponding outcome in the standard semantics. This way, in establishing the

correspondence between semantics, we can simply ignore the ? outcome in the

standard semantics, namely in the `let� ( �:�' construct.

We can use the fact that C has a least element to be able to maintain s R c,

�s v c , s 2 c, by extending � and  with �? = ?

C

and making ? 2 c for

all c 2 C

>

.



5.4. Atomic Commands 85

5.3.4 The Null Reference

An important remark is that no attempt is made to represent the special case of the

null reference in the abstract domain. This is so because as no information is kept

about the structure of objects it is unrealistic to try to determine that a variable

de�nitely contains the null reference. Moreover, a null reference typically occurs

as an end-marker of a linked structure; variables which traverse these structures

contain a non-null reference most of the time.

With no general representation devoted to the null reference, we decided also

not to explore the possibility (in the domain as it is) of allowing a variable x of

balloon type to be in an equivalence class mapped to zero (i.e. x ), representing

concrete states where variable x contains the null reference. It would be a source

of irregularity and complexity in the mechanism (semantic functions would have to

be made more complex to explore the information provided) with dubious bene�ts.

We have therefore decided that if a variable x is of balloon type, the only states

considered by the analysis are those where x is in equivalence classes mapped to

one (i.e. x ). As an example, if there are three variables, x and z of non-balloon

type and y of balloon type, the analysis only considers states in C

fx;y;zg

greater or

equal than x y z . The domain will remain a pointed cpo with the previous state

as bottom, instead of x y z . To emphasize that the bottom of the e�ectively used

domain is in general di�erent from x y z , and due to its role (as we will describe)

we will use the symbol 1 to denote it:

1 = (f(x; x) j x 2 Ig; fx 7!

8

<

:

1 if balloonx;

0 otherwise.

j x 2 Ig; ;):

5.4 Atomic Commands

5.4.1 Operations on Base Abstract States

We now de�ne some operations on abstract states which will be used in de�ning

abstract semantics for the atomic commands (the assignments). These operations,

not only serve to factorise similar cases, but are meaningful in themselves. We

will use a notation resembling `function update' (i.e. f [x 7! y]).

De�nition 5.14 (p; b; r)[x�] = (p

0

; b

0

; r

0

), where

p

0

= p

�

j fxg [ f(x; x)g;
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b

0

=

8

<

:

b[x 7! 1] if balloonx;

b[x 7! 0] otherwise.

r

0

= r

�

j fxg:

This operation detaches an identi�er from the equivalence class where it was,

and makes it become an equivalence class on its own. Moreover, this new equiv-

alence class will be `captured' or `free' according to whether the identi�er is from

a balloon or a non-balloon type. For example, if balloonx then

xy
z [x�] =

x y
z ;

xy z [x�] = x y z ;

and if : balloonx then

xy z [x�] = x y z ;

xy z [x�] = x y z ;

xy z [x�] = x y z :

De�nition 5.15 (p; b; r)[x� y] = (p

0

; b

0

; r

0

), where

p

0

=

8

>

<

>

:

p if x = y;

(p

�

j fxg [ f(x; y); (y; x)g)

+

otherwise.

b

0

= b[x 7! by];

r

0

= r

�

j fxg [ f(z; x) j z r yg [ f(x; z) j y r zg:

This operation moves an identi�er from an equivalence class to another. Some

examples are:

wx yz [x� y] = w xyz ;

wx yz [x� y] = w xyz ;

wx yz [x� y] = w xyz ;

wx yz [x� y] = w xyz ;

w x y z [x� y] = w xy z :

De�nition 5.16 (p; b; r)[x�� y] =

8

>

>

>

<

>

>

>

:

> if x 6p y ^ bx = by = 1;

> if x r y _ y r x;

(p

0

; b

0

; r

0

) otherwise, where

p

0

= (p [ f(x; y); (y; x)g)

+

;
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b

0

= b[z 7! bx t by j z p x _ z p y];

r

0

=

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

r [f(z; w) j (z p x _ z p y) ^ (x r w _ y r w)g if bx = by = 0;

r nf(w; z) j w p y ^ w r zg

[ f(w; z) j w r x ^ (y p z _ y r z)g if bx = 1 ^ by = 0;

r nf(w; z) j w p x ^ w r zg

[ f(w; z) j w r y ^ (x p z _ x r z)g if bx = 0 ^ by = 1;

r if bx = by = 1:

This operation merges equivalence classes; it de�nes the e�ect on abstract

states corresponging to the merging of clusters in valid concrete states. It is

de�ned for all elements in C; for some of them the corresponding merging of

clusters leads to an invalid state; therefore this operation has > as a possible

outcome. The possible cases are:

� If x 6p y and bx = by = 1, there exists one corresponding concrete state with

x and y pointing to two di�erent clusters both containing a balloon object.

Merging the clusters breaks invariant I

4

; therefore we must have > as the

corresponding abstract state. One example is

x y [x�� y] = >:

� If x and y are related by r, there exists a corresponding concrete state for

which merging the clusters breaks invariant I

2

; therefore we must have > as

the corresponding abstract state. One example is

x y [x�� y] = >:

� In the remaining cases, merging clusters in any corresponding concrete state

does not lead to breaking the invariant; there will result a valid state, with

a corresponding abstract state in C; some examples are:

x yz [x�� y] = xyz ;

x w y z [x�� y] = xy w z ;

x y z [x�� y] = xy z ;

w x y z [x�� y] = w xy z ;

xy z [x�� y] = xy z :

De�nition 5.17 (p; b; r)[x

+

! y] = (p; b; r

0

), where

r

0

= r nf(w; z) j w r z ^ y p zg [ f(w; z) j x p w ^ y p zg:
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A

a

[[x :� y]] = �c: c[x� y]

A

a

[[x :� y: z]] = �(p; b; r):

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(p; b; r)[x� y] if : balloonx;

(p; b; r)[x�][y

+

! x] if balloonx ^ by = 0;

(p; b; r)[x�][w

+

! x] if balloonx ^ 9w:w r y;

(p; b; r)[x�] otherwise.

A

a

[[x :� null]] = �c: c[x�]

A

a

[[x :� new]] = �c: c[x�]

A

a

[[x: y :� z]] = �c:

8

<

:

> if balloon z;

c[x�� z] otherwise.

A

a

[[x: y :� null]] = �c: c

A

a

[[x: y :� new]] = �c: c

A

a

[[x <� e]] = �c: c

Figure 5.10: Abstract semantics for assignments

This operation, which is only de�ned if bx = 0 and by = 1, adds the equivalence

class where y is to the set of equivalence classes related (by r) to the one where x

is. Some examples are:

x y z [x

+

! y] = x y z ;

x z y [x

+

! y] = x y z :

5.4.2 Abstract Semantics for Assignments

We now de�ne the abstract semantic function for assignments in terms of the

above operations. The semantic function is

A

a

: Asgn! C ! C

>

with the de�nition shown in Figure 5.10.

Proposition 5.18 For all a 2 Asgn, A[[a]] R A

a

[[a]].

Proof (Sketch) We must show that, for all a 2 Asgn, s 2 S, and c 2 C, whenever

s R c we have A[[a]]s R A

a

[[a]]c. Suppose we have s R c, that is (g; v) R (p; b; r).

We must show that the states which result after performing an assignment are

also related; the possible cases are:
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� A[[x :� y]]s R A

a

[[x :� y]]c.

The object graph g of s remains the same, and x takes the value of y in v.

This operation is accurately represented in the abstract domain by removing

x from the equivalence class where it was and adding it to the equivalence

class where y is, and making corresponding adjustments to b and r.

� A[[x :� y: z]]s R A

a

[[x :� y: z]]c.

The object graph remains the same, and x takes the value of a state variable

in the object referenced by y. If x (and z) is non-balloon, y: z refers to a non-

balloon object in the same cluster as the object referenced by y. Therefore,

the corresponding operation in the abstract domain is the same as for x :� y.

Otherwise, x is balloon, and y: z refers to a balloon object in a cluster di�er-

ent from the one referenced by y. No representation is kept in the abstract

domain for the structure of an object and therefore there will be some loss

of information in this case: we must put x on its own in a new equivalence

class (which will be mapped by b to 1). (This is one of the reasons why

the concretisation function was de�ned so that ( w x ) represents states in

which w and x may or may not point to the same cluster.) In what concerns

inter-cluster relationships, the assignment makes x refer to an object in a

cluster reachable from y; in the abstract domain there are three cases for

the corresponding operation:

{ if by = 0 we must say that y `reaches' the cluster referenced by x, i.e.

add the new equivalence class of x to those related to the equivalence

class of y;

{ otherwise (being by = 1), if there exists some variable w which relates

to y, we must add the new equivalence class of x to those related to the

equivalence class of w;

{ otherwise, no identi�er will relate to x.

� A[[x :� null]]s R A

a

[[x :� null]]c.

The object graph remains the same, and x becomes the null reference. There-

fore, x does not reference any object in any cluster referenced by other

variable. In the abstract domain this corresponds to removing x from the

equivalence class where it was and making x on its own a new equivalence

class, with corresponding adjustments to b and r.
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� A[[x :� new]]s R A

a

[[x :� new]]c.

A new cluster consisting of only one object is added to the object graph,

and x is made to reference it. In the abstract domain this corresponds to

making x into a new equivalence class, as in the previous case.

� A[[x: y :� z]]s R A

a

[[x: y :� z]]c.

This assigment changes the object graph by updating a state variable of

an object. If z is balloon, the assignment stores a reference to a balloon

in a state variable of an object, something which may violate I

1

(if there

exists already one reference to the object); therefore the resulting state in

the abstract domain must be >. (This corresponds to the simple rule.) If z is

non-balloon, the assignment merges clusters (if x and z do not already point

to objects in the same cluster). The corresponding operation in the abstract

domain is what we denote by [��]; the possible cases were described in

detail when it was de�ned.

This statement can also result in the division of a cluster in two, which would

correspond to a smaller abstract state. however, not having information in

the abstract domain about the structure of objects, we must incur an infor-

mation loss and do not represent the corresponding division of equivalence

classes.

� A[[x: y :� null]]s R A

a

[[x: y :� null]]c.

A state variable of an object is made to be the null reference. Either it

results in a state which has the same corresponding abstract state as before;

or it may cause the division of a cluster in two or make a cluster cease to

be `reached' by another, with corresponding abstract state which is smaller

than the original. We must, as in the previous case, be conservative and use

the larger of the two possible outcomes in the abstract domain; in this case

we must maintain the abstract state before the operation.

� A[[x: y :� new]]s R A

a

[[x: y :� new]]c.

A state variable of an object is made to reference a newly created object. In

the abstract domain this has exactly the same e�ect as the previous case.

� A[[x <� e]]s R A

a

[[x <� e]]c.

The value of an integer object is changed. This has no e�ect on the abstract

representation.
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2

5.5 Composite Commands, Functions and the

Program

Composite commands include conditionals; a join operation in the abstract domain

becomes the natural choice in de�ning their semantics and our approach is, as we

have discussed, to use a completion of the base abstract domain|the set of down-

sets|in de�ning the abstract semantics for commands. We de�ne thus the lattice:

D = O(C

>

);

and de�ne R between s 2 S and o 2 D as:

s R o, 9c 2 o: s R c:

A composite command may include function invocations; this leads to the

use of an environment for functions in describing the semantics of composite com-

mands (as we have already done in the standard semantics). The abstract semantic

function for commands is thus

C

a

: Com! F

a

! D! D;

with

F

a

= F

a

1

� � � � � F

a

k

;

where

F

a

i

= [I

a

i

+1

! D ! D]:

The de�nition of C

a

is given in Figure 5.11.

Proposition 5.19 For all c 2 Com, C[[c]] R C

a

[[c]].

Proof We must show that, for all c 2 Com, ' 2 F , '

a

2 F

a

, s 2 S, and o 2 D,

whenever ' R '

a

and s R o we have C[[c]]'s R C

a

[[c]]'

a

o. The proof is by induction

on the structure of commands; for an assignment a, the abstract function either

propagates > or returns the join j of the principal ideals generated by the elements

which result from applying the semantic function for assignments to each maximal

element in o. As s R o, for at least one such maximal element m we must have
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C

a

[[a]] = �'

a

: �o:

8

>

<

>

:

> if o = >;

F

c2Max o

#A[[a]]c otherwise.

C

a

[[c

0

; c

1

]] = �'

a

: �o: C

a

[[c

1

]]'

a

(C

a

[[c

0

]]'

a

o)

C

a

[[if e then c

0

else c

1

]] = �'

a

: �o: C

a

[[c

0

]]'

a

o t C

a

[[c

1

]]'

a

o

C

a

[[while e do c]] = �'

a

: �x�h: �o: h(C

a

[[c]]'

a

o) t o

C

a

[[x :� f

i

(x

1

; : : : ; x

a

i

)]] = �'

a

: �o: '

a

i

(x; x

1

; : : : ; x

a

i

)o

Figure 5.11: Abstract semantics for composite commands

D

a

[[d]] = �x�'

a

: (

�!

'

0

k

);

where

'

0

i

= �(x;

�!

x

a

i

): �o:

C

a

[[c

i

[ren z=z j z 2 var c

i

][

�!

x

a

i

=

����!

ren x

ia

i

]; x :� ren y

i

]]'

a

(o

+

j X) j var o

with X a set of new identi�ers, jXj = jvar c

i

j ;

and ren : var c

i

! X; bijective;

d as given by the abstract syntax in Figure 5.1.

P

a

[[d do c]] = C

a

[[c]]D

a

[[d]]#1

Figure 5.12: Abstract semantics for functions and the program

s R m, and soA[[a]]s R A

a

[[a]]m, and also A[[a]]s R j; therefore C[[a]]'s R C

a

[[a]]'

a

o.

All remaining cases are trivial (compare the de�nitions in Figures 5.4 and 5.11).

2

Note how the integer expression in the conditional and loop is ignored, and

the conservative join is used; this is why there is no abstract semantic function for

integer expressions. Also, the domain for function environment matches perfectly

a function invocation. The remaining abstract semantic functins, for declaration

of functions (F

a

: Decl ! F

a

) and the program (P

a

: Prg ! D), are given in

Figure 5.12.

Again, there is a perfect match between the concrete and abstract counterparts

(compare with Figure 5.4). Domain extension for abstract states is de�ned to
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reect the initialisation to null references in the concrete domain:

(p; b; r)

+

j X = (p [f(x; x) j x 2 Xg; b[x 7!

8

<

:

1 if balloonx;

0 otherwise.

j x 2 Xg; r):

This is naturally lifted to down-sets as:

o

+

j X =

G

m2Max o

#(m

+

j X):

By the de�nition of

+

j we have that if s R c then (s

+

j X) R (c

+

j X), and

therefore if s R o we have (s

+

j X) R (o

+

j X). Given that the concrete and abstract

interpretations are related for all possible commands (previous proposition), it

follows trivially that:

Proposition 5.20 For all d 2 Decl, D[[d]] R D

a

[[d]].

And �nally, given that (?

G

;?

V

) R 1, we have that:

Proposition 5.21 For all p 2 Prg, P[[p]] R P

a

[[p]].

As all the abstract states except > represent sets of concrete states where the

balloon invariant holds, it follows that for any given program p, if P

a

[[p]] 6= >

D

then the balloon invariant holds in the �nal state resulting from running p (if the

program does not abort or diverge).

Moreover, the invariant will also hold at any intermediate state during the

execution of p, as desired. This follows from the fact that semantic functions

for commands `memorise' >: once > results at any intermediate state, it will

be propagated to the �nal result. This way, if at any intermediate point in the

program the balloon invariant is broken, the corresponding abstract state (>) is

propagated to the �nal result (even if the balloon invariant happens to hold in the

�nal state).

Balloon type-checking a program p can thus be as follows: if P

a

[[p]] 6= >

D

the

program is accepted, otherwise the program is rejected.

5.6 Summary

We have presented the basis for the checking mechanism for balloon types: an

abstract interpretation whose outcome serves to decide on the acceptance of the

program. For this we de�ned a small but illustrative imperative language (RISO),
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together with a corresponding concrete denotational semantics. To concentrate on

the essentials, we have only assumed a at set of declarations of functions (no dec-

larations of data types), having postponed modularity to a separate chapter. Here

we have focused on having variables which are references to possibly shared ob-

jects, and having classic control ow structures and �rst-order functions (possibly

mutually recursive).

A central point in the abstract interpretation is the base domain itself, in

contrast with typical abstract interpretations for functional languages where the

base domains are simple and the emphasis is on the higher-order features. As

a remark, it was indeed the complexity we faced in representing information for

the static analysis which led us to use a formal approach and to abandon an

error-prone ad-hoc approach.

The base domain was carefully designed, tailored to the problem at hand.

We have presented it in two stages. First information about clusters: whether

variables may reference the same cluster and whether it may contain a balloon

object; then, information about cluster relationships.

Then, we have presented the abstract semantics for assignments and, �nally,

the abstract semantics for composite commands and functions. The representation

of functions here was a naive one, not the one we intend to use in some realistic

implementation, which we have left to be addressed in the next chapter.



Chapter 6

Avoiding Function Spaces

There is an aspect in the described abstract interpretation which makes it unsuit-

able as a static analysis: the naive way the recursive declaration of functions is

treated. While being an elegant description of the interprocedural component of

the semantics and allowing the concrete and abstract interpretations to be trivially

related, the naive representation of a function by a function leads to computational

complexity problems.

In our case, even though we have a �rst-order language, we have a quite com-

plex base domain (C) with size growing exponentially with the number of identi-

�ers, and use the completion by down-sets (D) for the state in the case of com-

mands. The representation of a function is by an element of F

a

i

= [I

a

i

+1

! D !

D], we have a tuple of such elements, and we need to calculate a �xed point of a

function from tuples to tuples. This is most unrealistic from an implementation

point of view. To make matters worse, the `inlining' semantics, with the asso-

ciated domain extension (adding the local variables to the caller environment),

means that we have no bound on the number of identi�ers, as opposed to having

a small number of identi�ers to consider separately in each function. The above

means that we need something more than just some general purpose technique in

abstract interpretation (like frontiers [23, 44]) in order to obtain a feasible static

analysis.

During the development of the abstract domain and semantic functions we

have observed a property to hold in our particular interpretation, which can be

exploited to obtain a compact representation of functions and be the solution to a

realistic static analysis. We now describe it, starting with the intuition behind it.

95
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6.1 Intuition

Two relevant points can be made regarding functions. The �rst is that the se-

mantics of function declaration and invocation are de�ned so that the e�ect of

an invocation is the same as if the body of the function is inlined in the calling

context (after renaming of formal to actual parameters and renaming of local vari-

ables to avoid conicts). The second is that in the body of a function there are

no assignments to formal parameters.

From these two points it follows that the possible e�ects of a function on the

calling state are the ones due to an arbitrary composite command, which does not

contain function invocations, and does not make assignments to variables from

the calling state. (Although may make assignments to some extra variables that

correspond to the local variables in the function.)

Moreover, to see what are the possible e�ects on a base state we can ignore

conditionals and loops; they have only the e�ect of merging di�erent antichains of

base states and do not modify a base state itself. We can, therefore, concentrate

on the possible e�ects of sequences of assignments.

Looking at the e�ect of a sequence of assignments which contains no assignment

to a set of variables A, when considering the domain restricted to A (i.e. ignoring

local variables of the function, which may be assigned), we can observe that the

state can only become larger. The state moves up via a few possible operations

which can either cause merging, capture, or reaching. It is not possible for these

operations to be `undone' or for di�erent input states to be moved to some `�xed'

state. This means that the e�ect of a function on the calling context has an

incremental nature.

The above points in the direction that: knowing the response of the function

to the 1 state (the more precise state, which allows for more merging, captures

and reaching to be made) characterises the `increment', and makes it possible to

extrapolate the response of the function to any other input state. Actually, for the

property to hold, we need to instrument the 1 with `shadow' variables for balloon

parameters, as we discuss later.

As an example, suppose a calling context with non-balloon variables x; y, and

an invocation f(x; y) (we ignore for now the returned variable). If f is

f(x,y) do

x.a :- y

the response to the 1 state is xy , expressing that the function merges x and y.
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(We have used the same identi�ers in actual and formal variables to make it easier

to compare states.)

The response of the function to input x y will be xy , and the response to

both x y and x y will be >. In all cases the output states can be calculated by

`applying' the merging expressed by xy to the input states, via a simple algorithm.

It should be obvious that the response to 1, xy , does not de�ne the body of

f univocally (as there can be many di�erent commands with the same response

to 1). However, it characterises f because any other command with the same

response to 1 will have the same e�ect on the calling state. Some examples are

g(x,y) do

y.a :- x

and

h(x,y) do

l :- new;

x.a :- l;

l.a :- y

where l is a local variable of non-balloon type. For these functions, both the

response to 1 and to the above mentioned states is the same as for f .

We can have, therefore, a compact representation of each function f

i

: an ele-

ment of D (the response to 1) instead of an element of F

a

i

= [I

a

i

+1

! D ! D].

Towards this we need to substitute the direct function application in the seman-

tics of function invocation by a computation which combines the input state and

the response to 1 to obtain the output state. In particular, we need to de�ne the

`simple algorithm' which performs this computation.

Although both the input state and the representation of a function will be

elements of D, each maximal element can be considered individually (as in the

semantic function C

a

[[a]]), and we can concentrate on elements of C. We need,

therefore, to de�ne a function which combines i : C (one of the maximal elements

of the input state) and f : C (one of the maximal elements of the response to 1)

and returns o : C

>

(one of the possibilities to be joined in the output). We will

call this function apply, as it `applies' the representation of a function to an input

to obtain an output: o = apply(f; i).
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6.2 The Apply Function

This function takes two elements, i = (p

i

; b

i

; r

i

) and f = (p

f

; b

f

; r

f

), and returns

either > or (p; b; r). There are two main aspects to consider in the function: one is

determining whether the output is or not >; another is computing the components

(p; b; r) in the case when the output is not >.

It turns out that, to decide whether the output is >, it is useful to determine

tentative p, b, and r: the components that would result if the output is not >. We

consider now each of these components in turn. The output can be > only due to

an operation [x�� y] being performed at some point when either:

� x and y are in di�erent equivalence classes mapped to 1, i.e. x y (which

we address while considering component b); or

� x and y are `related', i.e. x y or y x (which we address while considering

component r.

6.2.1 The p Component

If the output is not >, the resulting p will depend only on the components p

i

and

p

f

. A set of identi�ers fx; y; zg in a given equivalence class in p

f

, means that some

operations were performed, like [x�� y]; [x�� z] or [y �� z]; [z �� x], or other

combinations possibly involving local variables. The e�ect will be that x, y and z

will be in the same equivalence class in p, together with whatever other identi�ers

were in each of the equivalence classes of x, y and z in p

i

. As an example, given

i = xy zw ;

f = x yz w ;

the output should be

o = xyzw :

Another example is

i = ab cd ef ;

f = a bc de f ;

o = abcdef :

This is accomplished by making the union of p

i

and p

f

and taking the transitive

closure:

p= (p

i

[ p

f

)

+

:



6.2. The Apply Function 99

6.2.2 The b Component

If the output is not >, an equivalence class X in p will be mapped to 1 if at

least one of the equivalence classes in p

f

or p

i

which are merged to make up X is

mapped to 1; otherwise it will be mapped to 0. As examples, we have

i = x y ;

f = xy ;

o = xy ;

and

i = x yx ;

f = xy z ;

o =
xyz

:

This is accomplished by making:

b = fx 7!

F

fb

i

y j y 2 dom b

i

^ x p yg

t

F

fb

f

y j y 2 dom b

f

^ x p yg j x 2 dom(b

i

[ b

f

)g:

Now we show how to detect whether the result is > due to an operation like

x y [x��y] being performed, merging two di�erent captured equivalence classes.

There are three cases to consider:

� The two captured equivalence classes exist in the input state. An example

is

i = x yz w ;

f = xy zw ;

o = >:

This situation is detected by the predicate

9(x; y) 2 p: b

i

x = 1 ^ b

i

y = 1 ^ x 6p

i

y:

� The two equivalence classes become captured during the execution of the

function. To detect if a function creates some capture (as opposed to ma-

nipulating already captured equivalence classes), it is not enough to test
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whether equivalence classes in p

f

are mapped to 1 by b

f

and to use a predi-

cate analogous to the previous one:

9(x; y) 2 p: b

f

x = 1 ^ b

f

y = 1 ^ x 6p

f

y:

It is necessary to consider whether variables are of balloon or non-balloon

type. The apply function operates on the response to 1, but this is not a

unique state common to all functions, but depends on whether parameters

are of balloon type. As an example, if we have a function with parameters

x, y, and z, with balloonx, balloony, and : balloon z, the corresponding 1

is x y z . If the function does not perform any action at all (and therefore

does not cause any capture) the response to 1 will be 1 itself:

f = x y z :

This function when applied to an input

i = xy z

should produce an identical output

o = xy z :

However, the above predicate would be true resulting (incorrectly) in >. The

function creates capture only if all the identi�ers in a captured equivalence

class in the response to 1 are not already captured in 1; i.e. are not of

balloon type. This can be detected by:

9x 2 I: b

f

x = 1 ^ (8y 2 p

f

fxg:: balloony):

To detect that we have two such equivalence classes captured by the function

and merged, resulting in >, we can use:

9(x; y) 2 p: x 6p

f

y ^ b

f

x = 1 ^ (8z 2 p

f

fxg:: balloon z)

^ b

f

y = 1 ^ (8z 2 p

f

fyg:: balloonz)

An example (where all variables are of non-balloon type) is:

i = xy zw ;

f = x yz w ;

o = >:
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� One equivalence class is already captured in the input state, while the other

becomes captured during the execution of the function. An example is

i = x yz ;

f = xy z ;

o = >:

This can be detected by a predicate which combines the two previous cases:

9(x; y) 2 p: b

i

x = 1 ^ b

f

y = 1 ^ (8z 2 p

f

fyg:: balloonz):

The second and third cases can be factorised into a single predicate, which

simpli�es to:

9(x; y) 2 p: b

f

x = 1 ^ (8z 2 p

f

fxg:: balloon z)

^ (b

i

y = 1 _ (x 6p

f

y ^ b

f

y = 1)):

6.2.3 The r Component

As for the previous components, we will �rst show how to calculate r supposing

the output is of the form (p; b; r); then we show how to decide if the output is >.

First some intuition should be given regarding the appearance of x y as part

of f . As a function cannot assign to parameters, the only way a parameter can

become `reached' is by being captured into a reached cluster. (This means that if

the argument is already captured it cannot become reached due to the function,

as it would result in >.) An example is the function

f(x,y,z,w) do

b :- y.b;

b.a :- z

where parameters are of non-balloon type and b is of balloon type. The response

to 1 of this function would be

f = x y z w :

For this function we have the following examples of input/output:

i = xy zw ;

o = xy zw ;
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and

i = x y z w ;

o = x y z w :

Other simple examples of input/output for di�erent functions are:

i = x y z w ;

f = x yz w ;

o = x yz w ;

and

i = x yz w ;

f = x y z w ;

o = x yz w :

Other examples with more variables, which show several aspects combined are:

i = a b c d e f ;

f = a bc d e f ;

o = a bc d e f ;

and

i = a b cd e f ;

f = a bc de f ;

o = a bcde f :

These examples show that, in calculating r, there is the need to:

� Merge the reaching in the input with that added by the function: this can

be accomplished by making the union of the relations, extending it to other

identi�ers in the resulting equivalence classes, and taking the transitive clo-

sure.

� Make an adjustment to remove x r y when bx = 1, according to the rules

for well-formedness of (p; b; r).
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Component r can, thus, be computed by the following:

r

1

= r

i

[ r

f

;

r

2

= f(x; w) j 9y; z: x p y ^ y r

1

z ^ z p wg;

r

3

= r

+

2

;

r = r

3

nf(x; y) j x r

3

y ^ bx = 1g:

Now we show how to detect whether the result is > due to an operation like

x y [x�� y] being performed. Two simple examples when > occurs are:

i = x y ;

f = xy ;

o = >;

and

i = xy ;

f = x y ;

o = >:

These situations could be detected by a predicate like:

9x; y: (x r

i

y _ x r

f

y) ^ x p y:

The above predicate would not, however, detect > in the following case:

i = x y z w ;

f = xw yz ;

o = >:

Here > results due to sequences of operations like:

x y z w

[y��z]

�! x yz w

[x��w]

�! >;

or

x y z w

[x��w]

�! z xw y

[y��z]

�! >:

We must use a predicate which detects reaching created during the execution

of the function. For this we cannot, however, use the �nal r as calculated above,

because some reaching has already been removed so that x r y does not hold when
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bx = 1, as one of the requirements to have (p; b; r) well formed. In this example,

(p; b; r) calculated by the above formulae would be:

(p; b; r) = xw yz ;

where we have r= ;.

We can, however, detect all reaching which results from the invocation by using

r

3

, where no removal has yet been performed, and test whether related identi�ers

have become merged in p. This way we can have the following predicate to test

for the occurrence of >:

9(x; y) 2 p: x r

3

y:

We have by now predicates which test the possible cases when > can occur, and

formulae for calculating (p; b; r) otherwise; combining them we have the function

apply : C � C ! C

>

:

De�nition 6.1

apply = �((p

f

; b

f

; r

f

); (p

i

; b

i

; r

i

)):

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

> if 9(x; y) 2 p: b

i

x = 1 ^ b

i

y = 1 ^ x 6p

i

y;

> if 9(x; y) 2 p: b

f

x = 1 ^ (8z 2 p

f

fxg:: balloon z)

^ (b

i

y = 1 _ (x 6p

f

y ^ b

f

y = 1));

> if 9(x; y) 2 p: x r

3

y;

(p; b; r) otherwise,

where

p = (p

i

[ p

f

)

+

;

b = fx 7!

F

fb

i

y j y 2 dom b

i

^ x p yg

t

F

fb

f

y j y 2 dom b

f

^ x p yg j x 2 dom(b

i

[ b

f

)g;

r

1

= r

i

[ r

f

;

r

2

= f(x; w) j 9y; z: x p y ^ y r

1

z ^ z p wg;

r

3

= r

+

2

;

r = r

3

nf(x; y) j x r

3

y ^ bx = 1g:

6.3 Equivalent Semantics for Functions

We can now reformulate the abstract semantics to an equivalent one, making use of

the apply function, and avoiding function spaces in the representation of functions.
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The only changes are to the representation of functions, to the semantics for the

declaration of functions, and to the semantics of the function invocation.

The representation of a function is now the `response to 1'. The new environ-

ment for functions becomes:

F

a

= F

a

1

� � � � � F

a

k

;

with

F

a

i

= D:

The semantics for declaration of functions becomes:

D

a

[[d]] = �x�'

a

: (

�!

'

0

k

);

where

'

0

i

= (C

a

[[c

i

]]'

a

#1

0

) j (fy

i

;

�!

x

ia

i

g [ shadowA);

A = fx

ij

j j 2 f1; : : : ; a

i

g ^ balloonx

ij

g;

1

0

= (1

+

j shadowA)[shadow x

+

! x j x 2 A];

d as given by the abstract syntax in Figure 5.1.

As before, a �xed point is calculated, but now on a much smaller domain,

resulting in a tuple of the `response to 1' of each body for the functions involved.

For our approach to work, we need to solve a technical problem, which we do

through what we call shadow variables, as we now discuss.

Under the base domain and operations that we have de�ned, reaching is only

tracked when starting from a free variable, because non-balloons in captured clus-

ters no longer can be captured. While this domain and operations preserve the

relevant information if we are dealing with a �xed set of identi�ers, the same can-

not be said if we work with a given domain and then extend it to include more

identi�ers. Unfortunately, this is exactly what we do in our approach to dealing

with function invocations.

The problem lies with formal parameters of balloon type. As they start mapped

to 1 by b, no reaching starting from them is tracked in calculating the response to

1. However, when calculating the e�ect of the function on the calling environment,

there may be some variable which reaches one of such arguments of balloon type.

This means that using a simple `response to 1' does not give the correct result; it

discards essential information.

To solve this problem, we use a shadow variable for each formal parameter

of balloon type. Each shadow behaves as a non-balloon variable, starts reaching
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; x
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; : : : ; x
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g= shadow x
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j balloonx
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^ 9u: u r
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x

j

]

�

j fshadow x
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j balloonx
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^ :9u: u r

i

x

j

g;

and z a new identi�er.

Figure 6.1: Abstract semantics of function invocation

the corresponding parameter, and keeps track of reaching which may be needed

to be propagated to the calling environment. In calculating the representation of

a function, we use a 1 extended with the shadow variables. In the semantics we

have used a function `shadow' that maps a variable to an unused identi�er (and

we also use this function lifted to sets).

Note that the domain of the representation of a function is restricted to the

formal parameters, shadow variables and the returned variable, forgetting all other

local variables. This is important to keep down the size of the domains involved.

For the semantics of function invocation, instead of the previous direct (and

naive):

C

a

[[x :� f

i

(x

1

; : : : ; x

a

i

)]] = �'

a

: �o: '

i

(x; x

1

; : : : ; x

a

i

)o

we now have the semantics as in Figure 6.1.

If either the input or the function representation is >, the output will be also

>. Otherwise we make use of the apply function, performing the join over both

the maximal elements of the input state and the maximal elements of the function

representation. In doing this, several points are addressed:

� A renaming of formal to actual parameters in the function representation is

made to place the computation in the domain of the calling environment.

� Each shadow variable is either renamed to a variable in the calling environ-

ment which reaches the corresponding actual parameter, or is removed from

the domain. In choosing a variable to which rename a shadow variable, when
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several are possible, we resort to assuming a total order on I and taking the

greatest candidate.

� The returned variable y

i

which must be assigned to x is considered as follows:

while calculating the function representation, y

i

is kept in the domain; when

making use of the apply function, y

i

is renamed to an unused identi�er z (as

opposed to x); this allows both computing the e�ect of x to the resulting

state (as the original x is used) and obtaining the `value' of the returned

variable; the identi�er z is used so that the function apply does not `add'

the e�ect of the return variable to the input state as it does for parameters;

only as a �nal step is x discarded from the domain and z renamed to x, to

consider the assignment.

6.4 Summary

We have presented a compact and e�cient way to represent and compute func-

tions in the abstract semantics, which replaces a naive function space by a single

element. This makes use of the incremental nature of the e�ect of functions on the

calling environment in our particular abstract semantics, which makes it possible

to extrapolate the response of a function to any state knowing only the response

to the more precise state. This extrapolation is made by an `apply' function which

we have derived and which is used in the abstract semantics for functions.





Chapter 7

Opaque Balloon Types

Plain balloon types are the �rst step in a hierarchy of mechanisms providing

invariants that are useful to reason about programs. The balloon invariant is

a basic support: it concerns static aliasing. By organising the object graph, it

removes a �rst big obstacle in analysing programs with linked data structures.

Dynamic aliasing is an important aspect in establishing the possibility of in-

terference between instructions, and in reasoning about programs. It has been left

out from the concerns of the plain balloon mechanism, to be considered by the

next layer in the hierarchy.

Opaque balloon types are an extension to plain balloon types; they constitute

this next layer, devoted to dynamic aliasing. Here we motivate the concept, de-

�ne the opaque balloon invariant and present the essentials of the corresponding

checking mechanism.

The checking mechanism for opaque balloon types builds on what we call nest-

ing interpretation, an abstract interpretation obtained by making a re�nement

in the representation of cluster relationships and extending it with what we call

nesting level information. We describe the nesting interpretation for the intrapro-

cedural case.

We conclude by outlining two approaches to obtaining a checking mechanism

for opaque balloon types, making use of the nesting interpretation.

7.1 Introduction

In the preview of opaque balloons given in Chapter 3 we focused on the issue of re-

turning references to client code: `objects do not expose to clients any references to

109
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their internal state, even to be used temporarily by variables'. While not exposing

internal state is the central issue, in the general case where mutually recursive data

structures and functions are present, some care must be taken in de�ning what

should be the properties of opaque balloon types and the corresponding checking

mechanism.

The informal description does not cover the situation where some code external

to an opaque balloon type T is invoked from T itself and is granted access to both

an object O : T and an object internal to O. For this reason, we will arrive at the

precise de�nition of opaque balloon types from the perspective of the creation of

dynamic aliasing.

The intuition about dynamic aliasing is that it cannot be prevented by a static

mechanism without being overly conservative. This is true if we are trying to

prevent direct aliases, i.e. to prevent x and y from referencing the same object. It

is enough to recall the classic array subscript problem:

i := f(...);

j := g(...);

x :- a[i];

y :- a[j];

where it cannot be statically prevented that x and y are aliases without rejecting

useful code, when the subscripts cannot be determined at compile time.

Even though it may be unrealistic to prevent aliasing as above, we can try

to prevent what could be called indirect aliasing: the possibility of aliases being

obtained using x and y as starting references, when x and y are not aliases them-

selves. (If p and q are of di�erent types they cannot be aliases|unless one is a

subtype of the other.)

As an example, if we have `p: Point' and `r: Rectangle', p and r will

reference di�erent objects. However, p may reference one of the points in the

state of the rectangle, as in Figure 7.1; this may be the case even if both Point

and Rectangle are balloon types: the balloon invariant does not concern dynamic

references. This situation can lead to interference between instructions. Suppose

both types have a move operation, which we apply to both p and r:

p.move(3,2);

r.move(2,4);

These two instructions would interfere, both updating the coordinates of a common

point object. This may be an undesired accidental situation, and is an obstacle

to reasoning about programs.
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r

p

Figure 7.1: A dynamic reference to an internal object

The motivation behind opaque balloon types is to prevent the above situation

from happening. As a �rst approximation we may say that, if Rectangle is an

opaque balloon type, given a fragment of code with a Rectangle variable:

...

r: Rectangle

...

at run-time no variable in client code can reference an object internal to the

rectangle referenced by r. (That is, in addition to state variables of external

objects, as stated by the balloon invariant, also local variables in client code are

prevented from referencing internal objects of a rectangle.)

Opaque balloon types enhance the characterisation of user-de�ned types given

by plain balloons in what already happens for primitive types like integer:

� no variable can reference internal state of an integer object;

� although dynamic aliasing between variables x and y may exist (due to call

by reference), a simple reference equality test is enough to see whether x and

y may reach common state.

7.2 Opaque Balloon Invariant

From what we have discussed, the invariant should allow some arbitrary function

to have references to objects internal to an opaque balloon O, as long as it is

not able to reach O itself. An example is a function invoked from the code in

the implementation of an opaque balloon type. The class Rectangle could be

something like:
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r

p

Figure 7.2: A reference to a point of an unrelated rectangle

class Rectangle

{

p1,p2: Point;

move(dx:Int, dy:Int)

{

p1.move(dx,dy);

p2.move(dx,dy);

}

...

}

The move method for rectangles invokes the corresponding move for each point

in the rectangle. These methods from Point have access to objects internal to a

rectangle, but not to the rectangle object itself.

In particular, the invariant should allow arbitrary code to have access both

to an object of an opaque balloon class C and to objects internal to a di�erent

instance of C; an example would be performing an invocation `f(r,p)' with r and

p as in Figure 7.2. (In this case, as p refers to an object internal to a rectangle,

the chain of invocations must have started from the rectangle class.)

Before presenting the invariant itself, we �rst de�ne a basic notion on which it

relies; this notion characterises the scenario that should not happen if the invariant

is to hold.

De�nition 7.1 (Pierce) In a given state, the pair of variables (x; y) pierces bal-

loon object O if O is reachable by x and y refers to an object internal to O.
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x

vy

z

u

Figure 7.3: Piercing balloons

De�nition 7.2 (Pierce) In a given state, the pair of variables (x; y) pierces bal-

loon class C if (x; y) pierces an object O of class C.

Figure 7.3 illustrates this notion; supposing that all balloons present are from

the same opaque balloon class C, the following pairs of variables pierce class C:

(x; y), (x; z), (y; z), and (u; v).

We emphasise that for a pair (x; y) to pierce class C, when y references an

object internal to O, the issue is not whether x refers to an object non-internal

to O: x must reach O. As examples from the same �gure, the following pairs do

not pierce C: (x; v), (y; v), (z; v), (u; y), (v; y), (u; z), and (v; z). The rationale for

the de�nition is that, if in a given context O cannot be reached, it is as if O does

not exist, and having a reference to an internal object should not be considered

as piercing O.

The opaque balloon invariant will be de�ned in terms of the lack of piercing.

It is, however, easy to see that what we have described informally as the property

of opaque balloons, and which we will de�ne formally via piercing, cannot apply

to the code in the class which implements the opaque balloon type itself. The

code for the rectangle type will be able to have rectangle variables and access

their internal objects. This will happen at least for the self variable and for

parameters of binary methods.

In de�ning the opaque balloon invariant it is essential, therefore, that a pro-

gram is organised as a set of data types, and to distinguish the class implementing

the opaque balloon type from the rest of the program. (This is in contrast with
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the plain balloon invariant, which is formulated only in terms of the object graph,

regardless of whether the program is organised around data types or it is a at

set of functions, as in RISO.) We can now state the opaque balloon invariant.

De�nition 7.3 (Opaque Balloon Invariant) If C is a class implementing an

opaque balloon type, in the execution of a method m of any class other than C

no pair of variables in m pierces class C.

7.3 Nesting Interpretation

7.3.1 Revising Cluster Relationships

In plain balloon checking, information is kept about whether some free cluster

`reaches' a given captured cluster; there is no need to track relationships between

captured clusters, as non-balloons in such clusters can no longer be captured. It

is enough to know that in a state x y , x and y may point to di�erent captured

clusters; there is no attempt to express whether they de�nitely point to di�erent

clusters, or to clusters unreachable from each other.

In the opaque balloon checking there is the need to establish the possibility

of piercing involving pairs of variables. This requires information about cluster

relationships even when only captured clusters are involved.

For example, in Figure 7.3, there is no piercing involving (y; v), as they point to

separated clusters. In some cases where free clusters are involved, this separation

can be inferred from an abstract state. This case is abstracted as x yz u v , from

which we know that y and v cannot point to the same cluster, and that the balloons

of the corresponding clusters cannot be one internal to the other.

However, no such information exists when no free clusters are present. In the

same example, if variables x and u are not considered, the corresponding abstract

state will be yz v , where no relationship between captured clusters is represented.

Therefore, the absence of piercing involving (y; v) cannot be inferred.

In the checking mechanism for opaque balloon types we make a modi�cation

in the component r of a state (p; b; r), in order to obtain a re�ned set of states

representing the extra relevant information. The basic idea is to allow captured

clusters to be related; if they are not related it means they are de�nitely separated

and no piercing occurs. Towards this we use modi�ed versions of predicate R,

abstraction and concretisation functions, and order from Section 5.3.2. Predicate

R becomes:
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� R : S

b

� I � I ! bool, is a predicate such that R(s; x; y) is true if and only

if in the state s, variable x references an object in a cluster X, there exists

a balloon object B referenced by an object in X and variable y references

either B or an object internal to B.

This modi�ed predicate describes `reaching' regardless of whether it is from a

free or a captured cluster. Given the above de�nition, if we have :R(s; x; y) then,

in state s, the pair (x; y) does not pierce any object; therefore, x and y can be

used simultaneously as arguments to an arbitrary external function invoked from

a method in an opaque balloon type.

The abstraction function � : S

b

! C becomes:

� = �s: (Ps; �x:B(s; fxg); f(x; y) j R(s; x; y) _ (x; y) 2 Psg):

Under the modi�ed R, the component r of an abstract state (p; b; r) leads to

a larger set of states. The conditions of well-formedness of r are now:

x p y ) x r y;

x r y ^ by = 0) x p y;

x r y ^ y r z ) x r z;

As before, it is a relation from clusters to clusters, but now captured clusters

may also be related, which introduces more possibilities. Relation r is transitively

closed to mimic R. As a matter of convenience, we have made clusters related to

themselves. Relation r has now the form of a pre-order.

The new concretisation function is based on the previous one, becoming:

 =�(p; b; r): fs 2 S

b

j 8x; y 2 I:

((bx = 0 _ by = 0) ^ x 6p y ) (x; y) 62 Ps) ^ B(s; pfxg) � bx

^ (x 6r y _ x p y ) :R(s; x; y)) ^ (x 6r y ) (x; y) 62 Ps)g:

The last part in the concretisation function, x 6r y ) (x; y) 62 Ps, states that if

x and y are not related by r (in which case we have also x 6p y), then they do not

reference objects in the same cluster. (This is not covered by p when bx = by = 1.)

The partial order on C becomes:

(p

1

; b

1

; r

1

) v (p

2

; b

2

; r

2

), (b

1

v b

2

) ^ (r

1

vr

2

) ^ 8x; y 2 I:

(x p

1

y ^ x 6p

2

y ) b

2

x = b

2

y = 1)

^ (x 6p

1

y ^ x p

2

y ) b

1

x+ b

1

y � b

2

x):

(Here r

1

vr

2

is the usual r

1

�r

2

.) Under the modi�ed r and R, and concreti-

sation function and order, the properties fsg � (�s), c

1

v c

2

) c

1

� c

2

, and

s 2 c) �s v c hold as before.
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Figure 7.4: Levels in opaque balloons

7.3.2 Nesting Levels

With r as de�ned above, given an abstract state with x 6r y, it is possible to

perform an invocation of an external function `f(x,y)' from an opaque balloon

class C; this because (x; y) does not pierce any class, in particular C.

If x r y we may have R(s; x; y), but there are situations where (x; y) does not

pierce class C and it is still valid to perform `f(x,y)'. Figure 7.4, presents a state

s during the execution of a method of opaque balloon class C, whose objects are

represented with a thicker `membrane'.

In the state shown, although we have R(s; x; y) and that (x; y) pierces object

A, (x; y) does not pierce class C. In other words, although a balloon membrane

lies between x and y, this membrane is not of an object of class C. This means

that we could perform an invocation `f(x,y)' of a function external to C. On

the contrary, a C membrane lies between x and z, the pair (x; z) pierces class C,

and it is not possible to perform `f(x,z)', as it would break the opaque balloon
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invariant.

Comparing these two cases, we can say that x and y are at the same nesting

level in terms of class C, and that z is one level inner. Nesting level, or simply

level, turns out to be the relevant information in deciding whether or not to allow

x and y to be used together as arguments invoking external code, when we have

x r y.

This analysis suggests that we extend an abstract state with level information

l : I ! N , associating each variable with a level (an integer). When abstracting a

concrete state levels start from 0 in variables referencing free clusters, and increase

by 1 for each entry into an opaque balloon of class C. Like the opaque balloon

invariant, the checking mechanism considers each class individually, with no inter-

class analysis (and interprocedural analysis at most within the class). This allows

the level information to be relative to the class being checked, here denoted `class

C'; there is no need to tag a level with a class. In terms of the level information,

the state in the same �gure would be abstracted to:

l = fx 7! 0; y 7! 0; z 7! 1; w 7! 2; u 7! 0; v 7! 1g:

In each equivalence class in p, all variables not of class C have the same level,

which is one more than the level of variables of class C. This constrains l, making

it essentially a function from equivalence classes to levels.

Level information is also useful when :R(s; x; y) and :R(s; y; x) but, due to a

conservative calculation of r, we may have x r y or y r x. If no level information

existed, x and y would have to be prevented from being used together as arguments

to external functions. The level information makes such invocations acceptable

if x and y are at the same level. This could be the case checking `f(y,u)' (in

the same �gure) and y r u due to a conservative calculation of r. (Although the

calculation of levels may be itself conservative, as we discuss below.)

By adding levels to abstract states we obtain tuples (p; b; r; l). While before

there were `few' possible states and we managed to use a compact graphical nota-

tion, that is no longer possible. We can, however, use a graphical notation which,

although less compact, is still useful to represent states in an intuitive fashion. A

state is represented as follows: r being a pre-order, we represent it by drawing the

corresponding diagram; each node in the diagram corresponds to an equivalence

class in p; b is represented using the old notation; l is represented by attaching

a number to each node (which is the smallest of the two levels in case the node

contains both variables of the self class and of other types). Figure 7.5 presents
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Figure 7.5: Two concrete states and corresponding abstract states

two concrete states and corresponding states into which they are abstracted.

The order on the abstract states is now:

(p

1

; b

1

; r

1

; l

1

) v (p

2

; b

2

; r

2

; l

2

), (p

1

; b

1

; r

1

) v (p

2

; b

2

; r

2

)

^ 8x; y: x r

1

y ) l

1

x� l

1

y = l

2

x� l

2

y:

This order takes into account both the (p; b; r) and the level information. Levels

of two given identi�ers only matter for concrete states where those identi�ers

are related via R. In an abstract state where x 6r y, we have :R(s; x; y) in

the corresponding concrete states, and the relative level between x and y in the

abstract state is not relevant; this is what happens for z and u in state a

a

in

Figure 7.5.

Under this order we have, correctly, a

a

v a

b

for the abstract states in the same

�gure. Indeed, a

b

also represents the concrete state s

a

; in a

b

we have z and u
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in the same equivalence class in p, which means that they are either in the same

cluster (as in s

b

) or in di�erent clusters not related via R (as in s

a

).

As only the relative level between identi�ers related through r matters, we

need to impose a well-formedness condition to abstract states in order to prevent

di�erent abstract states from representing the same information. If the following

two states were allowed:

a

1

=

a

2

c

3

e

1

② ②
②

b

3

d

4

f

2

a

2

=

a

1

c

4

e

2

② ②
②

b

2

d

5

f

3

we would have a

1

v a

2

and a

2

v a

1

; they would represent the same set of concrete

states. This means that we would have, not a partial order, but a pre-order

of abstract states. To avoid the above situation we need to normalise the level

information in abstract states. This is done by having the condition that in each

connected diagram in r there is at least one identi�er with level zero. That is,

given an abstract state (p; b; r; l), we have:

8x 2 I: 9y 2 (r [ r

op

)

+

fxg: ly = 0:

The valid abstract state corresponding to a

1

and a

2

is:

a

0

c

2

e

0

② ②
②

b

1

d

3

f

1

7.3.3 Equivalence Classes of Levels

As happens in general when abstracting information, levels cannot be represented

exactly; abstract states must represent a set of possibilities. A variable may present

di�erent levels at a given point, due to branches in the control path. A typical

example is a loop where a variable descends an arbitrary number of steps into a

recursive data structure (of opaque balloons of the class being checked) as in:

while (...)

x :- x.a;

...

As there may be no bound on the number of iterations, after the loop a state must

represent, not a single level, but a range of levels for variable x.

When the level of a variable x varies as above, independently from some other

variable y, it is not essential to quantify the possible variation; it is enough to
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express that the levels of x and y uctuate independently. In this case, if variables

x and y are related by r, they must be prevented from being used together as

arguments of external functions, regardless of the amount of variation.

On the other hand, the level of several variables may vary in a related fashion.

As an example, consider variables x, y, and z, with known levels, x and y traversing

together a given data structure in a loop like:

while (...)

x :- x.a;

y :- y.a;

...

f(x,y);

Even if the number of iterations is unknown, after the loop the relative levels of

x and y remain as before (although we cannot compare the levels of x or y with

z). If prior to the loop the levels of x and y are the same, they will remain the

same during and after the loop; this allows an invocation with these variables as

arguments to be accepted. Knowing the relative levels of x and y is, precisely,

what matters in deciding whether to accept an invocation `f(x,y)' of an external

function, when the variables are related by r. (The kind of analysis where one

aims to track pointer following in `lockstep' has been addressed in [29, 30]. In our

case, we have an analysis tailored to our needs and assumptions, where we follow

`opaque balloon entering' as opposed to individual pointer derreferencing.)

From this discussion, the level information is represented by elements (l; s) of

a domain L, where:

� l : I ! N is a function mapping each variable to a level, as before;

� s: P(I�I), is a relation de�ning equivalence classes of variables whose levels

may vary simultaneously starting from the value given by l, or expressing

that a variable has a �xed level.

An abstract state becomes a tuple (p; b; r; l; s) 2 C�L. Variables with a `�xed'

level do not appear in s, while a set of variables whose levels vary simultaneously

forms an equivalence class: x s y means that the possible levels for x and y are

lx + n and ly + n respectively, for n 2 f0; 1; : : : ; !g. With the exception of the

variables with �xed level, s is an equivalence relation.

Each equivalence class i in s gives rise to a n

i

, which represents an indepen-

dent variation. A state (p; b; r; l; s) with k equivalence classes in s generates a
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k-dimensional space of abstract states (p; b; r; l); it represents the union of the sets

of concrete states associated with the points in the space de�ned.

The graphical notation for abstract states is extended by connecting nodes in

each equivalence class in s by a curly line. As an example, a state (p; b; r; l; s)

with component (p; b) = x y z u v , component r = f(x; y); (y; z); (x; u); (u; v)g

�

,

component l = fx 7! 0; y 7! 2; z 7! 5; u 7! 1; v 7! 3g, and s = f(u; z); (z; u)g

�

can

be represented as follows:

x

0

⑥ ⑥
⑥ ❆❆

❆

y

2

u

1

v6
v6
v6
v6

z

5

v

3

In addition to the normalisation of levels in each connected diagram, as we

have discussed, for abstract states (p; b; r; l; s) we need to impose another condition

of well-formedness to prevent several abstract states from representing the same

information; the reason is the same as before. Now, if all identi�ers in a r connected

diagram are in the same s equivalence class, this represents the same situation as

if all of them are `�xed'; this is because all generated points represent the same

normalised (p; b; r; l). In this case, the state is made well-formed by making all of

them �xed. This new condition of well-formedness is:

8x 2 I: 9y; z 2 (r [ r

op

)

+

fxg: y 6s z:

As an abstract state represents a set of the `old' (4-tuple) states, we have

a

1

v a

2

when, in addition to being ordered in the (p; b; r) component, they respect:

� if the level of an identi�er varies in a

1

, then it varies in a

2

;

� if the level of an identi�er varies in a

2

, then it must start from a value less

or equal than in a

1

;

� if the levels of two identi�ers vary together in a

2

, then either they vary

together or they are �xed in a

1

;

� if the levels of two identi�ers vary together or are both �xed in a

2

, then their

relative level in a

2

is the same as in a

1

.

Levels in a

1

and a

2

cannot be compared directly; we must o�set one of them.

This is because, as we have discussed, levels only matter for identi�ers related
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through r; each connected diagram D in a

1

, which is normalised so that levels

start at 0 in some identi�er x, may be part of a larger connected diagram in

a

2

where l

2

x > 0. To compare levels between a

1

and a

2

, we o�set the level of

identi�ers in D by l

2

x.

An example of a pair of comparable abstract states is:

a

0

② ②
② ❊❊

❊

b

1

e

2

c

0

f

0

d

3

/o/o/o/o
g

4

v

a

0

② ②
② ❊❊

❊

b

1

e

2

c

3

f

4

d

5

/o/o/o/o
g

7

The order on abstract states which we have described can be written as:

De�nition 7.4

(p

1

; b

1

; r

1

; l

1

; s

1

) v (p

2

; b

2

; r

2

; l

2

; s

2

),

(p

1

; b

1

; r

1

) v (p

2

; b

2

; r

2

) ^ 8x; y: (x s

1

x) x s

2

x)

^ (x s

2

x) l

2

x � l

1

x + l

2

4

r

1

;l

1

x) ^ (x s

2

y ) x s

1

y _ x 6s

1

x)

^ (x s

2

y _ (x 6s

2

x ^ y 6s

2

y)) (l

1

x + l

2

4

r

1

;l

1

x)� (l

1

y + l

2

4

r

1

;l

1

y) = l

2

x� l

2

y);

where

4

r;l

z =

F

fw j (w; z) 2 (r [ r

op

)

+

^ lw = 0g:

Here,4

r;l

z gives an identi�er with level 0 (in l) in the connected diagram (de�ned

by r) where z lies. The join is simply a way to choose one identi�er if several

candidates exist; in this we assume a total order on the set of identi�ers.

7.3.4 Abstract Semantics

Atomic Commands

We now de�ne the semantic function for assignments. For a state (p; b; r; l; s) we

need only consider components r, l, and s; components p and b of a resulting

state remain as before (presented in Figure 5.10). The semantic functions are

presented in Figure 7.6 (assignments to variables) and Figure 7.7 (assignments to

state variables and integer objects). Function norm performs both normalisations

that we have discussed towards making a state well-formed.

While most cases are relatively straightforward, some deserve special attention,

in particular A

a

[[x :� y: z]] and A

a

[[x: z :� y]].
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A

a

[[x :� y]] = �(p; b; r; l; s): norm(p

0

; b

0

; r

0

; l

0

; s

0

); where

r

0

=

8

>

<

>

:

r if x = y;

(r

�

j fxg [ f(x; y); (y; x)g)

+

otherwise.

l

0

= l[x 7! ly]

s

0

=

8

>

>

>

>

<

>

>

>

>

:

s if x = y;

s

�

j fxg if x 6= y ^ y 6s y;

(s

�

j fxg [ f(x; y); (y; x)g)

+

otherwise.

A

a

[[x :� y: z]] = �(p; b; r; l; s): norm(p

0

; b

0

; r

0

; l

0

; s

0

); where

r

0

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

r if : balloonx ^ x = y;

(r

�

j fxg [ f(x; y); (y; x)g)

+

if : balloonx ^ x 6= y;

r

�

j fxg [ f(x; x)g [ f(x; w) j y r w

^ :(self y ^ (w 6s w _ w s y) ^ lw � ly)g

[ f(w; x) j w r y _ (y r w ^ ((y s y ^ y 6s w)

_ (self y ^ lw � ly+1) _ (: self y ^ lw � ly)))g

otherwise.

l

0

=

8

<

:

l[x 7! ly + 1] if self y;

l[x 7! ly] otherwise.

s

0

=

8

>

>

>

>

<

>

>

>

>

:

s if x = y;

s

�

j fxg if x 6= y ^ y 6s y;

(s

�

j fxg [ f(x; y); (y; x)g)

+

otherwise.

A

a

[[x :� null]] = �(p; b; r; l; s): norm(p

0

; b

0

; r

0

; l

0

; s

0

); where

r

0

= r

�

j fxg [ f(x; x)g

l

0

= l[x 7! 0]

s

0

= s

�

j fxg

A

a

[[x :� new]] = �(p; b; r; l; s): norm(p

0

; b

0

; r

0

; l

0

; s

0

); where

r

0

= r

�

j fxg [ f(x; x)g

l

0

= l[x 7! 0]

s

0

= s

�

j fxg

Figure 7.6: Abstract semantics for assignments
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A

a

[[x: z :� y]] = �(p; b; r; l; s):

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

> if balloony;

> if x 6p y ^ bx = by = 1;

> if x 6p y ^ (x r y _ y r x);

norm(p

0

; b

0

; r

0

; l

0

; s

0

) otherwise, where

r

0

= (r [f(x; y); (y; x)g)

+

l

0

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

l if bx = by;

l[w 7! lw + lx + 1 j y r w] if bx = 1 ^ by = 0 ^ self x;

l[w 7! lw + lx j y r w] if bx = 1 ^ by = 0 ^ : self x;

l[w 7! lw + ly j x r w] otherwise.

s

0

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

s if bx = by;

s if bx = 1 ^ by = 0 ^ x 6s x;

(s nf(u; v); (v; u) j y r u ^ y 6r vg

[ f(x; u); (u; x) j y r u ^ u 6s ug)

+

if bx = 1 ^ by = 0 ^ x s x;

s if by = 1 ^ bx = 0 ^ y 6s y;

(s nf(u; v); (v; u) j x r u ^ x 6r vg

[ f(y; u); (u; y) j x r u ^ u 6s ug)

+

if by = 1 ^ bx = 0 ^ y s y;

A

a

[[x: y :� null]] = �c: c

A

a

[[x: y :� new]] = �c: c

A

a

[[x <� e]] = �c: c

Figure 7.7: Abstract semantics for assignments (cont.)

� In A

a

[[x :� y: z]], when x is of balloon type we recall that x moves to an

equivalence class of its own in p. To calculate which identi�ers x becomes

related to (via r) in the more precise way under the information available

we use, not only r itself, but also the level information. In particular, when

y is of the opaque balloon type being checked, x increases one level, and x

need not be related to identi�ers w in levels up to y, as R(s; x; w) will be

false.

Identi�ers related to y become related to x, as well as those identi�ers w to

which y relates and, according to the level information, it may be the case

that R(s; w; x) for one of the possible concrete resulting states.

� In A

a

[[x: z :� y]], when x is in a captured cluster and y in a free cluster (or
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vice-versa), as the clusters are merged, we need to o�set the levels of the

group of identi�ers to which y relates to make them start at the level of x

(or one above).

Also, if in this case x has a uctuating level, we must update the equivalence

classes of levels for the group of identi�ers to which y relates, so that the ones

which were �xed become uctuating together with x, and the ones which

were uctuating become disconnected from any other identi�er outside that

group.

Composite Commands

The poset of base abstract states with elements (p; b; r; l; s) and order as in Def-

inition 7.4 now has in�nite width (there is an in�nite number of incomparable

elements). This means that we cannot use for composite commands the comple-

tion by down-sets as we have done for plain balloon types, because it would result

in a lattice of in�nite height.

However, we have designed the level representation so that the join exists

for elements that are comparable in the (p; b; r) component. Given two elements,

(p

1

; b

1

; r

1

; l

1

; s

1

) and (p

2

; b

2

; r

2

; l

2

; s

2

), with (p

1

; b

1

; r

1

) v (p

2

; b

2

; r

2

), their join exists

and is given by (p

1

; b

1

; r

1

; l

1

; s

1

) t (p

2

; b

2

; r

2

; l

2

; s

2

) = (p

2

; b

2

; r

2

; l; s), where:

l = fx 7! (l

1

x + l

2

4

r

1

;l

1

x) u l

2

x j x 2 Ig;

s = f(x; y) j (l

1

x + l

2

4

r

1

;l

1

x)� (l

1

y + l

2

4

r

1

;l

1

y) = l

2

x� l

2

y

^ (x s

1

y _ (x 6s

1

x ^ y 6s

1

y)) ^ (x s

2

y _ (x 6s

2

x ^ y 6s

2

y))

^ (x 6s

1

x ^ x 6s

2

x) l

1

x + l

2

4

r

1

;l

1

x 6= l

2

x)g:

The join of two such elements results in the greatest (p; b; r) component and a

(l; s) component that covers both states:

� l maps each identi�er to the minimum of the two corresponding levels in the

operands (with l

1

adjusted);

� two identi�ers are put in the same equivalence class in s when (after adjusting

l

1

): they have the same relative levels in both operands; they are, for each

operand, either �xed or varying simultaneously; and each has a di�erent

level according to the operand when they are �xed in both operands.
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To obtain states for composite commands we use sets of states (p; b; r; l; s) that

are incomparable even considering only the (p; b; r) component; this is possible by

making use of the available joins for states that are comparable in (p; b; r). The

domain for composite commands is now:

D = fX � C � L j (p

1

; b

1

; r

1

; l

1

; s

1

); (p

2

; b

2

; r

2

; l

2

; s

2

) 2 X

) (p

1

; b

1

; r

1

) 6v (p

2

; b

2

; r

2

)g

>

;

This way, an abstract state is a set with at most as many elements as the width

of C. The order on D is:

X v Y , Y = > _ ((p; b; r; l; s) 2 X ) 9(p

0

; b

0

; r

0

; l

0

; s

0

) 2 Y:

(p; b; r; l; s) v (p

0

; b

0

; r

0

; l

0

; s

0

));

It is desirable that D is a join-semilattice, as the semantics for conditionals and

loops is expressed using joins. Unfortunately, joins in D do not exist in general.

This can be illustrated by the following example. Given X = fu; vg and Y = fwg,

with (p

w

; b

w

; r

w

) v (p

u

; b

u

; r

u

), (p

w

; b

w

; r

w

) v (p

v

; b

v

; r

v

), w 6v u, w 6v v, we can

have two minimal upper bounds of fX; Y g, U

1

= fu tw; vg and U

2

= fu; v twg,

but no least upper bound. Also, there is no reason to choose one over the other,

if some upper bound|if not the least|is to be kept.

We can, however, de�ne an operation (

�

t) to `join' two states X; Y , obtaining

an upper bound which, although being more conservative, does not require making

an arbitrary choice as in the example above. X

�

t Y results in > if either operand

is >; or forms the union X[Y of the operands and approximates it by an element

of D through a function d�e:

X

�

t Y =

8

<

:

> if X = > _ Y = >;

dX [ Y e otherwise.

dXe results in a set whose elements are, for each maximal element in X con-

sidering only components (p; b; r), the join over the corresponding principal ideal:

dXe = f

F

f(p; b; r; l; s) 2 X j (p; b; r) v (p

m

; b

m

; r

m

)g

j (p

m

; b

m

; r

m

) 2 Maxf(p; b; r) j (p; b; r; l; s) 2 Xgg;

The abstract semantics for composite commands are almost independent of

the particular base states, and remain as before in most cases (as in Figure 5.11),
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with

�

t being used instead of t for conditionals and loops. In what concerns the

assignment (as a composite command), the semantics is now de�ned making use

of d�e:

C

a

[[a]] = �': �o:

8

<

:

> if > 2 A;

dAe otherwise.

where

A =

8

<

:

f>g if o = >;

fA

a

[[a]]c j c 2 og otherwise.

7.4 Type-checking Approaches

The nesting interpretation forms the basis of opaque balloon checking. We have

not, however, described any mechanism to actually decide on the acceptance of

code. For plain balloon types we have presented an interpretation which decides

on the acceptance of a whole program, having postponed modularity issues to

Chapter 8. In the case of opaque balloon types, not only is it essential for the

invariant itself to assume that a program is organised as a set of data types, but

we assume from the start that the checking mechanism will consider each data

type individually. A global program analysis, which has been considered (at least

in theory) for plain balloon types, is here discarded from the start.

The opaque balloon invariant states that, while executing code external to an

opaque balloon class C, no pair of variables pierces class C. A checking mechanism

to enforce the invariant must verify that:

� In the body of methods of each opaque balloon class C, when an invocation

of external code is made, no piercing relative to C involving arguments

exists. If at the point where the invocation occurs we have an abstract state

X as described in the nesting interpretation, we can check that no piercing

involving arguments exists by verifying that, for each (p; b; r; l; s) in X, each

pair of arguments to the invocation is:

{ either unrelated via r, or

{ at the same level in l and either in the same equivalence class in s or

�xed.



128 Chapter 7. Opaque Balloon Types

It is important to mention that the absence of piercing can be counted upon

in some situations with no need for the nesting interpretation. This is the

case when only references to opaque balloon objects of other classes are

involved. The reason is that the class being checked will be in this case

`external code' with respect to these classes, which means that we can count

on the invariant itself to know that none of these balloons can be internal to

each other. This situation is bound to occur frequently, namely when using

primitive types such as integer or real.

� Methods of each opaque balloon class C do not return references to an

object internal to any object of class C manipulated. Again, this can be

done checking that no references are returned in identi�ers that have a level

greater than 0 or in some equivalence class in s.

A general solution to checking opaque balloon types would be to extend the

nesting interpretation to consider function invocation. The extended interpreta-

tion would make the veri�cations above, resulting in > in the cases leading to the

invariant being broken, or computing the e�ect of the invocation on the calling

abstract state otherwise. However, the base domain in the nesting interpretation

is already quite complex; we have doubts whether it would be realistic to extend

the nesting interpretation to function invocation (with the corresponding problems

of representing functions in an e�cient way, and having to calculate �xed points

due to recursive functions) and to base the checking mechanism on it. Therefore,

we leave it to be considered as a possibility for future research.

A simple alternative is to use a more conservative way of computing the e�ect

of an invocation:

� making use of the representation of functions in the plain balloon checking

mechanism in order to calculate the components p, b and r;

� using the knowledge that, in public methods or external functions, param-

eters and result cannot be related at di�erent levels; in particular, the re-

turned reference must have the same level as a parameter from which it is

reached; assuming, otherwise, a worse case approximation to calculate the

level component.

We now outline two approaches to check opaque balloon types; in both of them

each opaque balloon class is considered in isolation. The �rst approach, more
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conservative, considers each method individually; the second approach checks the

class as a whole.

7.4.1 Extending Absence of Piercing to Every Invocation

When a function in (the interface of) an opaque balloon type is invoked from ex-

ternal code, assuming the invariant holds, we can count on the absence of piercing

involving parameters to the function. This means that, given parameters x, y,

and z, we can represent the situation on entry by the state

x

0

y

0

z

0

and analyse the body, making the veri�cations described above when an invocation

of an external function or the end of the body is encountered.

There is, however, one problem: this absence of piercing between parameters

will not necessarily hold in methods of class C when they are invoked from within

C. This is what happens, in particular, when the class has private methods; these

are not in the interface of the opaque balloon type, being only invoked from within

the class. No assumption can be made while checking their bodies unless some

constraint is imposed when they are invoked.

Being conservative, we can devise a way to do checking, considering each

method in isolation. The idea is to extend the absence of piercing to every method

invocation, using it to perform an inductive step of assuring that it will hold for

an invocation performed within a method m, assuming that it held on entry to

m. More precisely:

� a method is checked under the assumption that no piercing involving param-

eters exists upon entry, represented by the abstract state

x

0

y

0

z

0

for

parameters x, y, and z, as we have mentioned;

� when analysing the body, the absence of piercing between arguments to

an invocation is checked for, not only for external functions, but for every

invocation (including the own methods, public or private, of the class being

checked).

Although this may seem arbitrarily conservative, it is a natural extension of

what already happens in external code. Under this constraint, although piercing

may exist in opaque balloon code between local variables or between these and

parameters, its absence on entry to a method provides support to reason about
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each method in isolation, leading to more disciplined interactions between the

methods that implement an opaque balloon type. If experimental evidence does

not show it to be overly conservative, this can be an interesting possibility for

opaque balloon checking.

7.4.2 Nesting Constraint Propagation

A less conservative checking mechanism can be obtained, without relying on a

full interprocedural nesting interpretation within the class, using only the simple

approximation described above in calculating the e�ect of an invocation.

Contrary to the approach in the previous section, here we do not impose the

absence of piercing between parameters. This implies, however, that we cannot

count on it, which means that the mechanism must be more complex than the

previous one.

There are situations where piercing between parameters of a method of the

opaque balloon class being checked will be irrelevant and can be allowed; this is

the case if:

� the method invokes external code with all arguments being references to

opaque balloon objects of other classes, or

� the method invokes other methods in the class, for which the absence of

piercing between parameters is irrelevant (for these two reasons).

An example is shown in �gure 7.8, where all the methods of class O may be invoked

with no restrictions regarding piercing between parameters.

On the other hand, a method that contains invocations of external code in-

volving arguments of non-opaque types may be unacceptable, regardless of how

it is invoked, or acceptable but only if invoked with parameters complying with

some constraints on their relative level, when they are related.

As an example, in Figure 7.9 the private method aux invokes an external

function with two arguments. An invocation of aux where the parameters (self

and other) are related (through r) is only valid if the level of other is one greater

than the level of self. This constraint can be seen to be satis�ed by the invocation

in the body of method m; this is because m is only invoked from external code and,

therefore, we can count on its parameters being either unrelated or at the same

level.
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opaque balloon O

{

private:

val:Int;

nxt:O;

sum(other:O):Int

{

Int n := self.val + other.val;

return n;

}

sqr_sum(other:O):Int

{

Int n := self.sum(other);

return n * n;

}

public:

m(other:O)

{

Int x,y,z;

x := self.sum(other);

y := self.sqr_sum(other.nxt);

z := self.sqr_sum(self.nxt);

}

}

Figure 7.8: Example where piercing between parameters is irrelevant

In the same �gure, method err invokes the external function using both other

and other.nxt as arguments, causing piercing between them in external code,

regardless of how it is invoked. This means that it must be agged as invalid by

the checking mechanism.

To illustrate the way the checking mechanism can generate constraints on the

invocation of a method or ag it as invalid, we now consider the simple case of a

method met, containing an invocation of external code:

met(x,y)

{

...

ext_fun(u,v);

...

}

A nesting interpretation is performed, with the parameters of met unrelated in the
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opaque balloon O

{

private:

val:Int;

nxt:O;

aux(other:O)

{

ext_fun(self.nxt, other);

}

err(other:O)

{

ext_fun(other.nxt, other);

}

public:

m(other:O)

{

o1,o2:O;

o1 :- self;

o2 :- other.nxt;

while (...) do

o1.aux(o2);

o1 :- o1.nxt;

o2 :- o2.nxt;

...

}

}

Figure 7.9: Constraints in the relative levels of parameters

initial state; i.e.

x

0

y

0

The state at the invocation point is then looked at, and one of the following

may happen:

� met is valid regardless of how it is invoked, if in the elements in the state at

the invocation point, u and v are related to by at most one of the parameters,

and are unrelated or at the same relative level; examples are:

x

0

y

0

v

0

u

2

and

x

0

y

0

❋❋
❋

u

2

v

2

� met is invalid regardless of how it is invoked, if in some element in the state at

the invocation point, u and v are related to by at most one of the parameters,
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and are related at di�erent levels; an example is:

x

0

y

0

u

2

v

3

� met is acceptable subject to constraints on its invocation, if in some element

in the state at the invocation point, u and v are related to by di�erent

parameters, and are both �xed or in the same equivalence class in s; an

example is:

x

0

y

0

u

2

/o/o
v

3

This state would generate the constraint regarding parameters of met:

x r y _ y r x) lx = ly + 1 ^ (x s y _ (x 6s x ^ y 6s y))

This constraint means that it is acceptable to perform an invocation `met(a,b)'

with calling states such as:

a

0

b

0

or

b

0

a

1

but it is unacceptable to perform the same invocation with calling states

such as:

a

0

b

0

or

b

0

a

2

or

a

0

b

1

In the general case where a method may invoke other methods for which con-

straints may exist, or if the methods are mutually recursive, the same approach

to generating constraints applies:

� When an invocation of a method with constraints is encountered, the proce-

dure for generating constraints is the same as for an invocation of external

code. An external invocation is just a special case of a constrained method

having the constraint `if the parameters are related they must be at the same

level'.

� In the case of mutual recursion we have cyclic dependencies. We start by

assuming no constraints in methods; then we do an iterative process where
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in each iteration we analyse the methods under the current constraints, gen-

erating new constraints; we iterate until either a �xed point is reached or

inconsistent constraints are generated leading to `invalid'.

After the constraints are generated for all methods in the class, if the `in-

valid' outcome did not occur, public methods are checked to comply with their

constraints, considering the state `parameters related at the same level' which

corresponds to the possible invocations by client code.

7.5 Summary

We have presented opaque balloon types, an extension to balloon types, which

constitute the next layer in a hierarchy of mechanisms devoted to controlling

object sharing.

Opaque balloon types are devoted to dynamic aliasing|not to direct aliases

to a given object|but to the more rewarding issue, which can only be addressed

after introducing balloon types, of preventing aliasing involving any part of the

state reachable by an object and any dynamic reference in a given context.

Client code manipulating an opaque balloon object O can be assured that no

variable references any state reachable by O. Opaque balloon types o�er, thus, a

strong form of encapsulation of state, present in primitive types such as integer,

but not o�ered for user-de�ned types by any current data abstraction mechanism.

The opaque balloon invariant turned out to demand a careful de�nition, based

on a concept that we have called piercing. As the basis for a checking mechanism

to enforce the invariant, we have developed the nesting interpretation. This we

did by re�ning the information about cluster relationships and adding what we

call nesting levels.

Finally, we have sketched two alternatives for a checking mechanism for opaque

balloon types, based on the nesting interpretation. These can form the starting

point to obtain an actual checking mechanism, tuned to the particular assumptions

that can be made about the language in question.



Chapter 8

Language Issues

The balloon checking mechanism was presented in the context of the simple RISO

language. There are several issues related to incorporating balloon types in real

languages which were left to be discussed now. We will address modular checking,

global variables, subtype and parametric polymorphism, and (briey) concurrency

and distributed systems. In some cases we do not intend to present `the solution',

but to consider several possibilities in the design space.

8.1 Modularity

The checking mechanism for plain balloon types as previously described is a global

program analysis: the whole program undergoes a static analysis, and is accepted

or rejected according to the outcome. This is quite unrealistic; although global

analyses may be considered for optimisation purposes, they are unacceptable for

type checking:

� programmers expect to be able to construct modules, have them individually

type-checked and use them in other parts of the program;

� they expect to be able to change the implementation of a module without it

a�ecting the type correctness of the rest of the program|as long as there is

no change in the interface of the module;

� libraries are an essential component and may be provided without source

code or may even be written in di�erent languages.

For these reasons, from the moment the idea was conceived modularity was

taken into account. For presentation purposes only did we describe the checking

135
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mechanism as a global interprocedural analysis of RISO programs containing a

`at' set of function declarations. A modular checking mechanism can be based

on the static analysis as described, including performing �xed-point calculations

due to loops and mutual recursion in functions within the module, but ignoring

external code and using conservative approximations of functions external to the

module.

Another point which we consider important for the integration of balloon-types

in languages is that non-balloon types, like current user-de�ned types, should be

able to be freely coded, with no restrictions and no need for a static analysis as the

checking mechanism. Therefore, in non-balloon classes there are no restrictions

other than the simple rule in the use of balloons and no restrictions in the use of

non-balloons; non-balloon classes are not subject to static analysis (unless they

are part of a module containing balloon classes).

The simple rule was essential towards this, by allowing a reference to a balloon

to be freely propagated in client code without requiring any form of static analysis.

Interestingly, this is what happens in current languages such as Java: the simple

rule is implicit because for the only possible `balloons' (the primitive types) the

assignment has value semantics, and no special restrictions exist for the `non-

balloons' (the user-de�ned types).

8.1.1 Constraints and Conservative Approximations

Not only is it necessary to use approximations of functions, but we must also

impose constraints on the functions which belong to the interface of a balloon

type, i.e. on the public methods of a class which implements a balloon type.

Constraints are necessary because these functions may be invoked by non-balloon

client code which is not subject to static analysis. A public method in balloon

class B is forbidden to:

� make a balloon of class B capture non-balloons which come as parameters.

� return a reference to a non-balloon which is internal to some balloon of class

B;

The �rst constraint applies because non-balloons that come as parameters may

already `belong' to some balloon or if captured could make the balloon `internal

to itself', violating I

2

. The second constraint is necessary because a reference to

an internal non-balloon could be stored in some external object by non-balloon
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client code. A special case of these constraints is that in a balloon class there can

be no public non-balloon state variables|as they are equivalent to a pair of get

and set functions. With these constraints each balloon class C `takes care of itself',

without making assumptions about how it is used.

To verify that these constraints are met by a class B, the analysis checks that:

� non-balloon parameters to a public method do not become part of the same

equivalence class as a variable of class B.

� a public method in class B does not return a variable of non-balloon type

that belongs to the same equivalence class as a variable of class B;

The above constraints are also helpful in the approximation of functions: they

can be counted upon to hold in functions from any balloon type, which allows

an approximation better than a `blind' worse case. In checking client code which

invokes a method of B, `b.f(x,y,z)' where x, y, and z are of non-balloon type,

although it is assumed that parameters can be merged, the �rst constraint ensures

that they are not `captured' (a state b x y z cannot be transformed into another

like bx y z due to the invocation). Therefore, this function is approximated by

using b xyz as the response to 1 ( b x y z ).

An advantage of not considering the implementation of other types and relying

on approximations is that the mechanism can be used in the presence of subtype

polymorphism, which is essential in object-oriented languages. The reason is that

it is not relevant what code will be executed, which due to dynamic dispatch

depends on the class of the object; only the type information (including the above

constraints) regarding external functions is used.

In the case of opaque balloon types being used in a plain balloon type, not only

does what we say above apply, but we can also make use of the opaque balloon

invariant to simplify checking. In the analysis of a function in a balloon class B,

as no internal objects of an opaque balloon can be accessed, the relevant set of

identi�ers I|which de�nes the cpo C

I

|need not include those corresponding to

opaque balloon types. This means that variables of opaque balloon types (includ-

ing all primitive types such as integer or real) can be ignored. This is important

because the size of C

I

has an exponential growth with the number of identi�ers

in I.

The points made in the two previous paragraphs also apply when interfacing

with code written in other languages. One example is the primitive types: the
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implementation of integers may be in assembly, without undergoing the static anal-

ysis we developed, but it is enough that integers are declared as (opaque) balloon

types to be considered in type-checking user-de�ned code, as long as the imple-

mentor of integers is trusted. This emphasises the importance of the knowledge

obtained by making the ability to share state a property of a type, independently

of whether the implementation is checked by the mechanism we have developed.

8.1.2 Units of Modularity

The more simple option for a modular checking mechanism is to make the unit of

modularity coincide with the class. Each class is checked individually and, apart

from counting on the constraints that exist in functions of balloon types, blind

approximations of external functions are used.

Looking at each class individually means that some programs may be rejected

when such would not be the case were a global analysis performed. It is possible

to increase the range of accepted programs by simultaneously analysing a group of

classes, if not the whole program. This is specially important when a small group

of classes cooperate tightly. It may happen that a balloon class uses some auxiliary

non-balloon classes for some internal data structures, and it may be useful to have

a more precise knowledge of the e�ect of functions from these non-balloon classes.

Constructs can be provided so that the checking mechanism considers groups

of classes simultaneously; we now discuss some of the more obvious (and not

mutually exclusive) options.

A Module as a Set of Classes

Some construct for module of balloon type checking as a set of classes could be

introduced. It could look something like:

module

{

class A { ... }

class B { ... }

...

}

All classes within a module would be analysed together. A weak point in this

construct is that a class would belong to one module only; di�erent modules do

not intersect. This does not allow the internals of an `auxiliary' class A to be
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considered by several classes, say B and C, unless these latter classes are also in

the same module. It could be the case that these classes are unrelated and would

be arti�cial to put them in the same module. Moreover, it could be that B uses a D

and C uses an E, which would also have to be in the same module if their internals

were to be considered. Soon the size of a module could become unmanageable.

Expressing Dependence

The previously described situation is dealt with by expressing that a class depends

on the internals of other classes. This can be done like:

class A { ... }

class B depends on A,D { ... }

class C depends on A,E { ... }

class D { ... }

class E { ... }

This allows a class A to be considered by di�erent unrelated classes during

their checking. From a programmer's perspective it expresses in a natural way

that some class B is checked relying on the behaviour of some class A (and not just

its interface), and that internal changes to A may invalidate B.

Inheritance

A situation which should be treated like the previous case is the use of inheritance

(a mechanism to reuse code, which should not be confused with subtyping, even

if they frequently coincide). Consider the following example where class B inherits

from A and overrides method g:

class A

{

f() { self.g() ... }

g() { ... }

}

class B inherits A

{

override g() { ... }

}

Class A is checked considering the interaction between f and g. Namely, the

constraints which f must obey if it is a public method are checked considering the

e�ects of the original g.
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In class B method f is inherited, but the invocation of g in its body will now

refer to the new g de�ned in B. This means that in checking B it is not correct to

assume that the constraints which held in f are still valid in the context of class

B. This implies that, while checking B, the de�nitions of the inherited parts must

be considered.

In terms of modularity the inherits should, therefore, be considered analogous

to the depends on: the checking of class B considers the internals of class A, and

so internal changes to A a�ect the acceptance of B.

While this lack of modular checking is not a pleasant property, interestingly

it parallels the tight coupling between super and subclasses when reusing code:

programmers are often required to look at the inherited code in order to write and

understand the subclass.

This inability of a class to be self-contained (concerning modular checking)

in the presence of inheritance can be overcome by a more conservative checking

mechanism with no interprocedural analysis even in the intra-class case. This

could, however, lead to fewer programs being accepted. Whether or not to use a

more conservative checking will be a language design issue.

Nested Classes

If a language has a mechanism of nested classes, it can also be used to provide a

unit of modularity for balloon checking. A given balloon class would be checked

by considering simultaneously its nested classes. In the following program class A

would be analysed together with B and C.

class A

{

class B { ... }

class C { ... }

...

}

Nested classes enable the following design option: as nested classes are not

used outside, the constraints we have described need not be imposed in the case

of balloon classes nested in a balloon class; this is possible because the containing

class is subject to checking.

In languages like Beta a nested class is allowed to manipulate state variables

in a containing class, as discussed in [59]. In this case, the points we make below

concerning global variables apply.
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8.1.3 Increasing Interface Information

We designed the balloon mechanism as syntactically minimal: nothing more than

a keyword in the de�nition of the data type is necessary. It can, however, be

useful under modular checking to have more information explicit (syntactically

agged), that can be counted upon by the mechanism. Extra information can be

provided by optional keywords in the interface of the data type. This is analogous

to providing keywords such as const in C++.

For a modular balloon checking mechanism in particular, it can be useful to

have extra information regarding formal parameters of non-balloon type. As it is,

the mechanism assumes that an invocation of some function from another module

`f(x,y,z)' may cause x, y and z to be `merged' if they are of non-balloon type:

for example, a state x y z goes to xyz , and x y z goes to xyz .

Information about non-balloon variables can be provided by a keyword like

free, meaning that the parameter will not be `merged' with other parameters.

non-balloon type T { ... }

f(free a:T, b:T, c:T) { ... }

Given the above function, some code containing an invocation `f(x,y,z)' will

be checked assuming that x will not be `merged' with either y or z: for example,

a state x y z goes to x yz , and x y z goes to x yz . This way the checking

mechanism is less conservative, which means that more programs will be accepted.

The free quali�er can also be extended to the result of a function, this time

meaning that the result is in a separate equivalence class from any parameter

(and that, therefore, it can be subsequently captured by some balloon, even if

some parameter was already captured).

The safe use of the free keyword implies that the function containing the

keyword must be checked to comply with the obligations stated in the signature.

While this is similar to the checking of the constraints that public functions in

balloon types must obey under a modular checking mechanism, it means that

non-balloon code containing the free keyword must undergo a static analysis. In

the case of libraries and interfacing between languages, the library provider has

to be trusted, as for the balloon information.

While we cannot predict what would be the reaction of programmers to such

a keyword, we stress that it is an optional aid, and that the balloon mechanism

was conceived without it. We also make the observation that this keyword is

meaningful in itself as describing what is to be expected from a function. While
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some aspects have been traditionally covered in signatures of functions, examples

being var in Pascal and const in C++, the free quali�er addresses something

which has been neglected. Under one perspective, we can say that there are three

kinds of use that a function can give to a reference passed as parameter (or to

reachable objects):

� inspect the state of the object;

� modify a `self-contained' part of the state of the object.

� create object linking, either by storing the reference to the object in `other'

objects or vice-versa.

It is this last case that creates object sharing (static aliasing), and which is the

cause of many problems, as the sharing created may remain after the function

terminates, and is very di�cult to `track'. In balloon types this last case is for-

bidden. In non-balloon types, although by default no restriction applies, because

this last case is a source of problems, and not always needed, it can be useful to

signal that it does not occur for a given parameter of a function. This is precisely

what the free quali�er does.

8.2 Global Variables

Global variables can be accessed by di�erent objects, with no need for parameter

passing. One example of global variables in object-oriented languages are the so

called class variables: global variables with class scope. One of two points of view

can be adopted regarding global variables.

Under a permissive point of view, plain balloon types deal exclusively with

the graph of objects. Global variables are named entities, which reference objects

exactly like local variables do; they are not themselves part of the object graph,

and do not take part in the balloon invariant. Global variables exist in a �xed �nite

number; therefore, the possibility of interference due to global variables would be

something to be detected/prevented by an independent mechanism, which could

build on approaches such as Reynold's Syntactic Control of Interference [69].

Even adopting this point of view, global variables can be used to propagate ref-

erences between objects without need for parameter passing. To keep the balloon

checking mechanism modular, some restriction must be imposed. An attractive

possibility is to have the rule that global variables must be of balloon type: they



8.3. Subtype Polymorphism 143

will contain some information globally accessible, but they will be self-contained

and will not contribute to the propagation of sharing through the object graph.

Under a more restrictive point of view, more in the spirit of balloon types, two

invocations of a parameterless operation on two di�erent balloon objects should

not be able to access common state. The two invocations:

x.left.f();

x.right.f();

which could arise in a divide-and-conquer situation, should never interfere, some-

thing which a compiler should be able to explore; this is one of the motivations

for the introduction of balloon types. In this case we must prevent global vari-

ables from being manipulated by classes which implement balloon types or by

non-balloon classes of objects internal to a balloon.

One way to keep the balloon checking mechanism modular is to make the abil-

ity to manipulate global variables explicit in the interface of a data type. Then, if

a type is declared not to manipulate global variables, a candidate implementation

will be rejected if it directly involves global variables or if it uses a type declared

as being able to do so. Balloon types are part of the ones prevented from manip-

ulating global variables, while non-balloon types will be declared as being or not

being able to do so.

While this can be seen by some as `yet another nuisance' in programming a data

type, it amounts to documenting the data type regarding the existence of invisible

communication channels between instances. Again, we see this as improving the

conditions for reasoning about data types.

8.3 Subtype Polymorphism

Object-oriented languages support what is known as subtype polymorphism. Look-

ing at types as sets of values, the subtype relation can be regarded as set inclusion.

If S is subtype of T (which we can write as S <: T ), then S describes a subset of

the values described by T .

A type system uses a subtype relation together with a subsumption rule: if

S <: T and e : S then e : T . Subsumption means in practice that we can use an

expression of type S where an expression of type T is expected. In the program:
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x:T;

y:S;

f(p:T) { ... }

x :- y;

f(y);

the assignment and invocation are type correct if S <: T .

If we make the balloon information part of object types we must also consider

it in subtyping. Suppose we have an object type T which is balloon. To have

S <: T , S must also be balloon. This is because a subtype must respect all

invariants present in the supertype, namely the balloon invariant. (Otherwise we

could have x : T and x being assigned a reference to an object which does not

respect the balloon invariant, and the information that x is of balloon type would

be useless.)

If we have T non-balloon, the �rst impression is that we could have a subtype S

which is balloon; after all, a subtype can add invariants which are not present in the

supertype. But we are not discussing a type system for functional languages where

only values matter; mutable object sharing is relevant. If there are restrictions in

the use of references to objects of a type S, these restrictions must also be present

in a supertype T . In the case of the balloon mechanism, references of balloon

type S are forbidden to be assigned to state variables (by the simple rule). If a

non-balloon type T was (wrongly) considered as a supertype of S, then a reference

of type S could be assigned to a variable of type T , which could be subsequently

assigned to a state variable of some object, by-passing the simple rule and possibly

creating sharing of a balloon object:

non-balloon T { ... }

balloon S { ... }

x:T;

y:S;

x :- y;

z.v :- x;

From the above it follows that in our proposed model, where any object type

must be either balloon or non-balloon, both subtypes and supertypes of a balloon

type must also be balloon types, and analogously for non-balloon types. This

means having two disjoint type hierarchies, one for balloon types and other for

non-balloon types. Within each hierarchy the usual subtyping rules [20, 6] apply.

Having two disjoint hierarchies goes against having a lattice of types with a

bottom and a top. Object-oriented type systems sometimes make use of a Null
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type (containing only the null value) as the bottom of the hierarchy and a Any

type as the top of the hierarchy.

Null is made the bottom of the hierarchy as it is mathematically `nice' and so

that a variable of any other type can have null as a possible value. This is however

a rather arti�cial situation; the null value does not represent an object (which

can be updated and store information), but is simply a marker for `no object'.

Also it cannot respond to method calls (unless by causing some sort of runtime

exception), when it would be required to respond to any possible invocation to be

considered a subtype of any other type. The above are some of the reasons why

the null value is a special case which should be considered as such, instead of

making arti�cial attempts to using a Null type as an ordinary object type which

is put on the bottom of the hierarchy. The null value does not cause problems for

making balloons part of the type system. Variables of any object type T , balloon

or non-balloon, can be allowed to have the null value (in addition to referring to

objects of some class which implements T ); it does not interfere with the balloon

invariant.

If on the other hand Null is to be used as an ordinary object type and put

at the bottom of the type hierarchy, then object types cannot be simply classi�ed

into balloon/non-balloon: Null will have a special status, being neither balloon

nor non-balloon.

Contrary to Null, the Any type poses genuine problems and deserves some

attention. As we have discussed, under a binary classi�cation of object types into

balloon/non-balloon, it is not possible to have a Any object type.

If we do not restrict object types to a binary classi�cation, and assume that

some type can be a supertype of both balloon and non-balloon types, then types

such as Any could exist. However, for the type system to be sound, these types

must be subject to restrictions.

Given a type T with B <: T and N <: T , where B is balloon and N is non-

balloon, a variable x : T can point to both balloon and non-balloon objects. As x

can point to balloon objects, the simple rule must apply for type T . On the other

hand, as x can point to non-balloon objects, not only cannot the balloon invariant

be counted upon, but while checking code which uses T it must be assumed that

sharing may be created as if x is of non-balloon type. Variables of any type U

(including Any) supertype of T will also be able to refer to balloon and non-balloon

objects, and must be subject to identical treatment. These types, with respect to

balloon information, can be positioned as unde�ned. With this third classi�cation,
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Balloon types Non-balloon types

Undefined types

Any

Null

Figure 8.1: Lattice of types given the unde�ned classi�cation

and if the Null type is also considered on its own, it is possible to have a lattice

of types as in Figure 8.1.

Although a possible option, we do not see it as a good solution. These

undefined types combine the restrictions of both balloon and non-balloon types

with no associated bene�t. Unlike non-balloons, they are not much suitable to

be used in auxiliary linked structures, due to the simple rule. Unlike balloons, a

checking mechanism cannot count upon them to `take care of themselves' while

checking code which uses them. This makes it doubtful whether much useful code

can be written with them.

We defend the binary division in balloon/non-balloon for object types of vari-

ables (parameters, local variables and state variables), and remark that this di-

vision does not apply to higher-order types or type parameters, as we discuss

below. The expressiveness which is demanded in many cases when types such as

Any are used (like in generic container types) can be achieved through parametric

polymorphism.
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8.4 Parametric Polymorphism

When a function has many types given by an expression involving a type param-

eter, it is said to exhibit parametric polymorphism. In the actual coding the type

parameter may be, depending on the language, explicit or implicit. An impor-

tant example of a language with parametric polymorphism is ML [63], where it

is possible, for example, to de�ne a function which gives the length of a list with

elements of an arbitrary type:

fun length [] = 0

| length (x::xs) = 1 + length xs

Although no explicit type parameter is used (or any type information at all),

a polymorphic type is inferred for the function:

8t:List[t]! Int;

where we have used universal quanti�cation of a type variable to express the

polymorphic type, as in [19].

As well as generic functions, it is useful to be able to de�ne generic data types;

this is the case for the so called `container' types. An example is the dictionary

data type:

type Dictionary[Elem,Key]

{

insert(Key,Elem);

search(Key):Elem;

}

which can be instantiated for di�erent types of elements or search keys, as in:

DictShape = Dictionary[Elem = Shape, Key = String];

ds1, ds2: DictShape;

PhoneBook = Dictionary[Elem = Int, Key = String];

pb1, pb2: PhoneBook;

8.4.1 Subtype-bounded Parametric Polymorphism

It is important to be able to impose bounds on type parameters (as opposed to

unbounded universal quanti�cation), to express requirements that type parameters

must conform to. As an example, suppose the Point type:
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type Point = {x:Int; y:Int}

and a move procedure:

all[P <: Point]

move(p:P, dx:Int, dy:Int)

{

p.x := p.x + dx;

p.y := p.y + dy;

}

Move is polymorphic (in the type of the �rst parameter) as it can be applied to an

in�nite set of types, as long as they are subtypes of Point and, therefore, objects

of these types have x and y state variables. We could have, for example:

type ColourPoint = {x:Int; y:Int; c:Colour}

cp: ColourPoint;

move(cp, 2, 1);

where ColourPoint is a subtype of Point. The type of move is:

8t <: Point: t� Int� Int! Unit:

We are in the presence of bounded parametric polymorphism; as before, we have

a universal quanti�cation of the type parameter, which is also bounded using, in

this case, the subtype relation. The `classic' ML parametric polymorphism can be

seen as a special case, where the type `Any' is used as bound:

8t: e(t) = 8t <: Any: e(t):

Bounded parametric polymorphism allows, therefore, expressing a wider range of

situations. These issues are discussed in [19].

We discuss now how balloon types can be incorporated in a language, coexisting

with parametric polymorphism. Variables in a program (parameters of functions,

local variables or state variables of objects) range over object types which, as

we have argued, should be either balloon or non-balloon types; we have argued

that the unde�ned types in Figure 8.1 should not be allowed for types of variables.

However, from what we have just described, if the same applies to type parameters,

it will preclude describing useful generic types where a type parameter ranges over

both balloon and non-balloon types; it can be overconstraining to be forced to use
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in the bound a type which is already classi�ed into balloon or non-balloon. In

particular, it would mean that type parameters could not be bounded by the Any

type, precluding important cases of generic code.

For these reasons, type parameters should be able to range or be bounded by,

not only balloon or non-balloon types, but also the `unde�ned' types. These will

be allowed to be used for type parameters but not for types of variables.

It is important to stress that, even though in a generic function or type a

variable can be declared to have type T , with T a type parameter bounded by

an `unde�ned' type, when T is instantiated it will be as either a balloon or a

non-balloon type. This is very di�erent from what we have argued against in the

previous section: having a variable of an `unde�ned' type which can (by subtype

polymorphism) reference balloon or non-balloon objects in di�erent moments at

run-time.

An implementation of a generic type containing a type parameter T bounded

by an `unde�ned' type can be, therefore, checked twice to contemplate both possi-

bilities: T being balloon and T being non-balloon. If there are n type parameters

we have 2

n

possibilities; this is not, however, a practical problem because a generic

type has typically very few type parameters, 1 or 2 in most cases. A generic type

itself can be left with the balloon classi�cation unde�ned; each instantiation will

de�ne whether it is balloon or non-balloon. A checking of the generic type is

made for each case, which means that we have a total of 2

n+1

cases. The dictio-

nary is one example where it would be useful to leave both type parameters (Elem

and Key) and the type itself with an unde�ned balloon classi�cation; one possible

instantiation would be:

type Shape = balloon ...

type String = balloon ...

type DictShape = balloon Dictionary[Elem = Shape, Key = String];

ds1, ds2: DictShape;

Although more than one checking is needed, we are still close to the `one

checking per generic' philosophy of bounded parametric polymorphism, and not

to the brute force `one checking per instantiation' as in C++'s templates.

8.4.2 Match-bounded Parametric Polymorphism

As a last point we address the recent developments in object-oriented type systems,

which recognise that subtyping is not the best relation on which to base bounded
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parametric polymorphism. The central issue is that subtyping fails to hold due to

the negative occurrences of the recursion variable in a recursive type; essentially

due to binary methods [14].

In the dictionary example, the search operation could require that Key provides

some compare operations like equal or less; these operations take another Key

as parameter and return Bool; they are examples of binary methods. We could

hope to use a type Comparable as a bound in expressing these requirements in

the dictionary type:

type Comparable

{

equal(Comparable):Bool;

less(Comparable):Bool;

}

type Dictionary[Elem, Key <: Comparable]

...

and hope to instantiate the dictionary, as above, with the search key being String,

de�ned as:

type String

{

equal(String):Bool;

less(String):Bool;

concat(String):String;

...

}

However, String is not a subtype of Comparable, due to the subtyping rules for

recursive types [6]. Indeed, Comparable does not admit interesting subtypes at

all. This means that subtyping is not appropriate to describe bounded parametric

polymorphism in many useful cases.

A relation called matching was introduced in Emerald [12] and PolyTOIL [15]

as a complement to subtyping. Matching, originally presented as similar to F-

bounded subtyping [18], and later [1] based on higher-order subtyping, can be

informally seen as describing `protocol extension'. We have that X matches Y

(written X <# Y ) if X provides all operations of Y and possibly some more,

and (typically) preserves recursive structure. This is exactly what happens be-

tween String and Comparable; we have that String <# Comparable. Matching

turns out to be more appropriate than subtyping as the relation on which to base

bounded parametric polymorphism, as described in [16].
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In what concerns integrating balloon types with match-bounded parametric

polymorphism, all that we have said for the subtype-bounded case applies exactly,

replacing subtyping by matching. The dictionary example can be successfully

written using match-bounded parametric polymorphism:

type Dictionary[Elem, Key <# Comparable]

...

type Shape = balloon ...

type String = balloon ...

type DictShape = balloon Dictionary[Elem = Shape, Key = String];

ds1, ds2: DictShape;

8.5 Concurrency and Distributed Systems

Balloons are a general concept. The balloon invariant can be regarded as a graph-

theoretical notion: it describes a property of a graph with two `kinds' of nodes.

Balloons give structure to a global state (a pool of unnamed objects), regardless of

the transient computations which are performed and their associated `temporary

views into the state' (i.e. local variables).

We have not mentioned issues such as object location: objects can reside in

the memory of a machine, in a persistent object store, or be spread across a

distributed system. De�ning self-contained sets of objects, balloons are indeed

relevant for distributed systems, as candidate units of object placement, migration,

replication, and parameter/result passing to remote invocations. In the above

cases, single objects would have too �ne a granularity and would not be, in general,

self-contained.

In what concerns computation, it does not matter whether we have sequential

execution or several concurrent threads. The balloon invariant applies to both

cases, as it ignores dynamic aliasing involving local variables of threads. An im-

portant point is that essentially the same checking mechanism can be applied to

a concurrent model of execution. This is because the mechanism works under

minimal assumptions about dynamic aliasing and does not consider the internal

structure of objects. (Here we assume that local variables are private to each

thread and only the pool of objects is shared.)

We make a clear distinction between (active) threads of execution and (passive)

objects; and a corresponding distinction between local variables in threads and

state variables of objects. In a model like actors [3], where objects are `active',
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the distinction becomes blurred. However, in `real' systems there are usually many

more passive objects than active threads of execution; therefore, the distinction

we make is important.

When several threads operate on shared data, concurrency control mechanisms

are needed; balloons are also useful in this respect. In general, more than one

thread can have references to a given balloon, it being indeed unrealistic to try to

prevent this from happening. Balloons can, however, be used as units of locking,

so that only one thread `enters' a balloon. A thread which enters a plain balloon

B can safely operate on any object in the cluster of B; however, it will have to

perform locking of internal balloons, as dynamic references to these objects may

exist in other threads.

Opaque balloons are particularly suitable as units of concurrency control: a

thread which locks and enters an opaque balloon will be able to operate on any

internal object with no need for further locking. This does not preclude intra-

balloon concurrency: while `inside' an opaque balloon, several sub-threads can be

created to operate concurrently on di�erent internal balloons.

8.6 Summary

We have addressed some issues related to incorporating balloon types in pro-

gramming languages. A basic issue concerns modularity; here we have discussed

constraints to be imposed on functions in the interface of a balloon type so that

we can obtain a modular checking mechanism. Modularity can be achieved at the

cost of using approximations of functions, with the result of accepting fewer pro-

grams. Approximations must be used anyway in object-oriented languages with

subtype polymorphism (where the code being invoked depends on the class of the

object); they are also suitable when using libraries provided with no source code.

A simple option for a modular checking mechanism is to make the unit of mod-

ularity coincide with the class. We have discussed the possibility of considering

groups of classes simultaneously, useful when some classes cooperate tightly. We

have also considered the use of an optional keyword (free) in non-balloon param-

eters of functions. This would enhance the quality of the approximations, being

also useful in itself from the programmer's point of view.

Global variables are a hidden source of interference as they can be manipulated

with no need for parameter passing. Under a permissive point of view, global

variables do not matter for the balloon invariant; but as they can be used to
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propagate sharing, we must restrict their use; an attractive possibility is to allow

global variables only of balloon type. More in the spirit of balloon types, we

must prevent global variables from being manipulated by classes which implement

balloon types or by non-balloon classes of objects internal to a balloon. One way

to keep the checking mechanism modular is to make the ability to manipulate

global variables explicit in the interface of a data type.

When integrating balloon types in languages with subtype polymorphism, the

balloon property must be considered in subtyping. For types of variables, both

the subtypes and supertypes of a balloon type must be balloon, and analogously

for non-balloon types. This means having two disjoint hierarchies. The Null type

is a special case and does not pose problems; Any cannot, however, be used as a

type of a variable.

Regarding parametric polymorphism, it will be useful to have unde�ned types

with respect to the balloon property. Unde�ned types, such as Any, will be able

to be used as the bound for type variables. However, a type variable must be

instantiated by either a balloon or a non-balloon type in order for a generic type

to be able to be used as the type of a variable. An implementation of a generic

type with type parameters bounded by unde�ned types will be checked for the

possible combinations of substituting type paramters by balloon or non-balloon

types. Balloon types integrate well with parametric polymorphism: unbounded

or bounded either by subtyping or (more appropriately) by matching.

We have concluded with a comment on how balloon types are a general concept,

discussing, in particular, their usefulness for concurrent and distributed systems.
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Conclusion

9.1 Discussion

In Chapter 2 we described how accidental state sharing is a source of problems

and how current language mechanisms do not provide an appropriate solution.

We also compiled a list of key points which should be taken into account.

Our concept, balloon types, meets all these key points: it considers reachable

state and substructure sharing; it does not resort to physical containment; it allows

duplication of references to be used by local variables; it recognises the di�erent

nature of dynamic and static aliasing; it does not use named entities to organise

the object graph; it is syntactically simple and conceptually relevant; it makes it

possible that primitive types are not longer considered `special'.

Most approaches we have mentioned fail to address many of these points, but

there is one proposal, Islands [42], which takes most of these points into account,

and which we now compare with our own approach. Similar to a balloon, an island

de�nes a cluster of objects to which there are no references stored in external

objects. There are however not only some di�erences in the invariants enforced,

but major di�erences in the mechanisms:

� Islands have a considerable syntactic cost by requiring access modes to vari-

ables to be spread both in the signatures of all the methods in a class and

in client code.

In balloons, one keyword in the de�nition of the type summarises the concept

they represent, and no syntactic cost is imposed on client code.

� The detection by the compiler of whether a class is a bridge (entry to an

island) is purely syntactic according to the access modes.

155
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The use of a static analysis in balloons enables minimising restrictions while

maintaining syntactic simplicity.

� The knowledge that class A is a bridge is not used to help in assessing

whether a class B (which uses A) is also a bridge. The knowledge that a

class is a bridge is something that does not a�ect what code can be written

(more than the individual signatures of the operations provided), and can

be determined a posteriori.

Balloons are a full part of the type system: whether type T is balloon or

not a�ects what code can be written. Although we rely on static analysis,

the mechanism is not an a posteriori alias analysis of a program. Using the

knowledge that type T is balloon is essential in checking the implementation

of a balloon type which uses T . The use of induction is a key element in the

balloon checking mechanism.

Making the ability to share objects a full part of the type system is a central

contribution of balloon types. Most research in type systems has privileged a

functional setting, having been done by a community of theory-oriented people,

using the lambda calculus as the starting point.

On the other hand, although aliasing has been the topic of much research

(see for example the survey by Deutsch [31]), aliasing is mainly considered for

implementation purposes. Many static analyses concerning aliasing have been

developed, towards some optimisation. However, because aliasing itself is not

part of the underlying type-system, there is not much these analyses can `hold on

to'. As very little can be assumed, many di�culties are encountered. In order

to avoid being overly conservative, one has to resort to complex global program

analyses, with their inherent disadvantages.

Such approaches should not be criticised; they put the emphasis on existing

code|many of these analyses were developed for Fortran or C. However, di�-

culties will persist if sharing remains ignored by the language itself. We are not

concerned with short term solutions; our proposal is a long term one, addressing

a fundamental and missing element in type systems of imperative languages. Bal-

loon types provide a missing support that further analyses towards optimisation

can `hold on to'. As the balloon mechanism itself uses static analysis, the support

it provides could not be o�ered by a purely syntactical mechanism requiring no

e�ort; this is a hint on the added value of balloon types.
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Although we make use of static analysis, the emphasis of balloon types is not

on static analysis itself but on what they aim to provide. One of the original ideas

behind the mechanism was to provide support to static analysis but not to involve

static analysis itself (or at most some simple static analysis); the one we had to

resort to was far more complex than expected.

We should also report that it was important to build a static analysis tailored to

the mechanism. We did not have much success in reusing previous static analyses.

Having worked with static analysis before (in [4]), we started a sketch of the

static analysis for balloon types based on existing analyses (namely [21]). We

tried to adapt the analysis to our purpose, but due to the assumptions we had

to make (about aliasing, modularity, integration with object-oriented languages)

and the particularity of the balloon invariant, after some versions and some errors

being discovered, we ended up abandoning it. Then we started to use abstract

interpretation and built an abstract domain tailored to the assumptions we had

to make and to the balloon invariant.

It can be argued that the use of static analysis in the checking mechanism is a

potential problem. Indeed, widely used languages do not use static analysis in the

type system; it is typically simple for a programmer to know whether a program

is type correct and to understand the error messages from the compiler. With the

use of a static analysis in type checking, even if we do not have a global program

analysis, the de�nition of what is an acceptable program becomes more complex.

About this we can say that under a simple checking more programs would be

rejected, even increasing syntactical complexity.

The use of static analysis in the checking mechanism will require more sophis-

ticated error reporting to be developed, in order for the compiler to give the reason

why some code may break the balloon invariant. The good side is that, perform-

ing a static analysis, the compiler `knows' more, in general (for example about

object creation, and uses of local variables). This means that it can be more eas-

ily extended to consider issues other than balloon checking, such as uninitialised

variables or null references. This points towards having more `smart' compilers.

Under this perspective, balloon types are an example of how type checking can be

extended in order to raise the level of abstraction in imperative languages.

In what concerns balloon types in particular, we emphasise that it is only

the checking of code implementing a balloon type that requires a static analysis.

For client non-balloon code only the simple rule concerning reference assignment
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applies. This means that even if it turns out that in some cases beginner program-

mers may feel some di�culty in understanding error reports for balloon code, every

programmer bene�ts from having balloon types available in libraries constructed

by more experienced programmers.

The checking mechanism for opaque balloon types turned out to be much more

complex than expected. In a �rst impression one would think that, after having the

balloon invariant, not much more than `preventing references from being returned'

would be needed to obtain opaque balloons. As it turned out, even the de�nition of

opaque balloons itself needed considerable attention. This has happened because

we strived to maintain generality, in particular, taking into account recursive data

structures of opaque balloons, which led to the introduction of nesting levels.

We should, however, point out that opaque balloon types with recursive struc-

ture in the data will not be a common case: to have full freedom of pointer

manipulation, recursive structures of non-balloons can be used to build the in-

ternal state in the implementation of a data type, which will be made itself an

opaque balloon type. An example of this is the BigInt type (in Figure 3.6), which

makes use of the recursive non-balloon type Node. The checking mechanism for a

data type which is not recursive in the data will be considerably less involved, as

there is no need for the level information.

Opaque balloon types represent truly opaque data abstractions, while plain

balloon types still allow references to the state to escape to clients, leaving still

open considerable possibilities of interference. This raises the question of whether

all balloon types should be opaque, and no plain balloon types should be o�ered.

The issue is that having too many choices available is in itself a source of com-

plexity which programmers must face.

Here we have concentrated on creating the mechanisms on a hierarchical fash-

ion, rather than addressing the issue of which ones to provide in a speci�c language.

This will be a design decision (although an important one) which has to be made

after collecting empirical evidence on what can be expressed by the di�erent mech-

anisms; it will also depend on what other mechanisms are o�ered by the language

in question.

Plain balloon types should be o�ered in languages without higher-order fea-

tures, so that objects in a balloon container can be operated upon from client

code through dynamic references being returned (as in the dictionary of shapes

in Chapter 3). On the other hand, if enough higher-order features are provided,
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many situations can be expressed with opaque balloon types: instead of return-

ing references to client code, the container type can provide some kind of `map'

function, to which the operation to be applied is passed as argument.

The dynamic aliasing which exists when references are returned will still be

an obstacle to analysing code. Due to this, we argue that the combination of

higher-order features with opaque balloons, if proven expressive enough, should

be preferable.

9.2 Summary of Contributions

We have described how accidental state sharing is a source of unexpected program

behaviour and an obstacle to reasoning about programs or performing program

transformations. We have argued that current language mechanisms provide only

a weak form of encapsulation, neglecting the fact that an object is not normally

self-contained and failing to deal with substructure sharing. We have exposed

weaknesses of other proposals and have compiled a list of relevant points which

should be taken into account by language mechanisms. Of these, we stress the

need to make an appropriate distinction in the treatment of dynamic and static

aliasing.

We have proposed to make the ability to share state a �rst class property of

data types, introducing the concept of balloon types. Every data type becomes

either balloon or non-balloon: non-balloon types allow state sharing, while balloon

types prevent unwanted sharing guaranteeing a strong form of encapsulation of

state through the balloon invariant. This is proposed with minimal syntactical

cost: only an extra keyword in the de�nition of a data type, and no syntactic cost

on client code. The use of balloons by client code is subject only to a `simple rule'

regarding reference assignment.

Complexity is hidden from the programmer by relying on a non-trivial compile-

time mechanism to check the implementation of balloon types, assuring that the

balloon invariant will hold at run-time. The checking mechanism is based on a

static analysis which we developed formally using abstract interpretation. Special

concern was devoted to the representation of functions, avoiding the naive function

space, and obtaining an e�cient abstract interpretation.

As a side-e�ect, balloon checking was in itself an interesting case study in

the use of abstract interpretation, from which some lessons were learnt; these

were essentially in the design of abstract domains, namely concerning the separa-
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tion between summarising information about concrete states and merging control

paths.

We have developed opaque balloon types, a specialisation of balloon types

providing a stronger invariant; client code is assured that no variable references

any state reachable by an opaque balloon object. This represents a very strong

form of encapsulation of state, present in primitive types such as integer, but not

o�ered for user-de�ned types by any current data abstraction mechanism. Opaque

balloons are truly opaque data abstractions which guarantee that all internal state

remains unchanged between invocations of operations from the data type. This is

an important property to reason about data types. We have developed an abstract

interpretation which forms the basis for a checking mechanism for opaque balloon

types, and sketched two alternatives for such a mechanism.

Although these concepts have not been implemented, this has not been merely

an abstract mathematical exercise; practical issues were taken into account while

developing balloon types. Issues related to incorporating balloon types in pro-

gramming languages have been addressed: modularity, global variables, subtype

and parametric polymorphism, and (shortly) concurrency and distributed systems.

To summarise, we have presented balloon types, a general language/type-system

mechanism for imperative languages which: makes the ability to share state a

�rst class property of data types; provides a strong form of encapsulation of state;

allows a cluster of objects to be treated as a self-contained composite object; and

gives user-de�ned types the same status as primitive types, which need no longer

be considered `special'. This solves a long-standing aw in current data abstraction

mechanisms.

9.3 Research Directions

In this thesis we have de�ned the balloon mechanism. The next logical step will

be to implement the mechanism and to put it into use. One task will be to

develop an e�cient implementation of the checking mechanism itself. This will

involve choosing appropriate data structures. More important are the language

issues that will arise from integrating balloon types into languages. Two lines of

research can be followed: one is to add balloon types to `real' languages; the other

is to design languages with balloon types.

In the �rst approach we can chose a popular language and augment it with
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balloon types. A good candidate will be the Java language: it is widespread, it

is relatively simple (compared with languages such as C++), and the memory

model is appropriate (objects are passed by reference and contain references to

other objects). Java is, indeed, a language where balloon types would be welcome,

as the little support to prevent sharing in user-de�ned types which exists in C++

(physical containment) is not provided in Java. In this approach compatibility is a

key issue; many problems to face will be related to language advocacy, as opposed

to strictly technical issues.

If we are not so worried about obtaining short term bene�ts, but more con-

cerned with long term advances in programming languages, the second approach

can be more rewarding. The problem with the �rst approach is that, as balloon

types is not a simple `feature' but a fundamental concept, the best result will be

obtained not by adding balloon types to an otherwise unchanged language, but by

designing the whole type system taking into account the interactions between the

di�erent concepts. As an example, subtyping is strongly a�ected by balloon types;

in order to have a reasonably expressive language, it will be important to have

parametric polymorphism together with balloon types. As Java does not support

parametric polymorphism, both concepts must be considered and added together.

(One can, instead, consider experimental extensions of Java, such as Pizza [65],

supporting parametric polymorphism.) We can always reuse the syntactic look of

Java; as long as we design the type system as a whole and we are not hindered by

backward compatibility issues we will be able to obtain a more advanced language.

Regardless of the approach taken, it will be important to write code and collect

empirical evidence about the usability of the concept. This can help making design

choices; one example is whether to provide both plain and opaque balloons or only

opaque balloons, as we have discussed. We also need to evaluate whether the static

checking mechanism allows expressive enough code to be written. Another aspect

which will demand research is, as we have already mentioned, error reporting, in

order to make the compiler explain in a programmer understandable form why

the mechanism has rejected a piece of code.

Another line of research consists of exploring the mechanism towards obtaining

better language implementations. Contrary to mechanisms involving unchecked

annotations, the invariants provided by the balloon mechanism will be able to be

counted upon by the language implementation towards making program transfor-

mations.
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One such transformation, which motivated the development of balloon types,

is parallelisation. Traditionally di�cult due to the pervading possibility of alias-

ing, code analysis towards parallelisation will bene�t from the balloon invariant.

Static aliasing involving non-balloons internal to some balloon will be con�ned to

a small group of objects as opposed to the whole object graph. In balloons, no

static aliasing exists at all and code analysis needs only concentrate on dynamic

aliasing. This opens up research possibilities into parallelisation techniques that

take advantage of these properties. Opaque balloons types will be specially ap-

pealing. An opaque balloon will be able to be treated as a single unit, which

means that classic parallelisation techniques dealing with arrays but which work

only for primitive types will be able to be adapted for user-de�ned types.

The knowledge about the organisation of the object graph can also be explored

in memory management. It is easy to see a garbage collector taking advantage

of the balloon invariants. As an example, if an opaque balloon object becomes

garbage while executing client code, all internal objects will also be garbage and

can be collected. In the case of plain balloons the situation is not so simple and

needs some research.

An important issue is object copying. As we have discussed in Chapter 3, the

copying of balloons can be subject to optimisations and the balloon invariant does

not have to hold physically, as long as the outcome is the same. This motivates

research towards avoiding deep copies and managing physical sharing. In this, it

will be relevant to detect whether objects remain immutable or when updates are

performed. This requires the development of static analyses, with the possible

introduction of some syntactic mechanism.

In value types the (conceptual) copy will be the only variant allowed in assign-

ment or parameter passing; therefore, optimising away copies will be the essential

point in future research concerning value types. (The checking mechanism is es-

sentially one for opaque balloon types.) As we have discussed, one possibility is to

have simple pointer copies in client code, share physically the objects representing

the value, and to detect whether functions in the implementation of the value type

would modify the objects manipulated (including self) so as to avoid physical

copies. Keeping a copy shallow by sharing nested values, and detecting the pos-

sibility of update in place must also be pursued. More generally, implementation

techniques from functional languages should be considered and reassessed in this

context.

Distributed systems is an area where balloon types have great potential: a
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single object is too small a unit that incurs in large communication overheads due

to protocols; balloons provide a way to obtain self-contained clusters of objects

which can be `chunked' and treated as a single unit. This means that balloons

can be used to explore new directions in traditional topics in distributed systems,

such as object placement and migration, replication, parameter passing to remote

invocations, and granularity issues. Balloons can also be useful as candidate units

of locking in concurrency control mechanisms.

Other than putting the balloon mechanism to use and exploring it towards

improving language implementations, another line of research is extending the

mechanism itself.

In the area of the integration between imperative and functional languages, as

well as providing value types, research should be made towards providing higher

order facilities to languages with balloon types. This is not to mean supporting

every combination of features. For example, allowing higher order operations in-

volving non-balloons could lead to much e�ort developing a corresponding static

checking mechanism, when such generality may lead to error-prone programs in-

volving side-e�ects which are di�cult to understand. Instead, careful language

design can lead to a more restrictive mechanism, which may be expressive enough,

understandable by programmers, and not too complex to implement.

An example is restricting the functions to be manipulated to functions where

the ground types are balloon types, allowing the creation of closures that only make

use of a self-contained group of objects. Closures could be treated as objects and,

therefore, there would be the rule that they cannot share balloon objects owned

elsewhere, and can only manipulate copies of such objects. This way, a closure

would access a self-contained set of data and would not cause unsuspected side-

e�ects. These are examples of how balloon types can be used in research towards

the integration of functional and imperative languages.

Research can also be made towards obtaining extensions of the balloon mech-

anism which prevent further the possibility of aliasing. Opaque balloon types do

not prevent di�erent variables to refer to the same balloon, while value types are

used to obtain immutable objects and to program in a functional style. We can

think of a specialisation of opaque balloon types which goes further in preventing

dynamic aliasing but still allows for mutable objects (i.e `between' opaque balloon

and value types).

An attractive possibility is to explore a specialisation of opaque balloons with
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the further rule that there cannot be dynamic aliasing involving parameters of

a function, as in Pascal or Fortran in call-by-reference. As we have discussed, a

static checking mechanism would be overly conservative, but we could use dynamic

checking based on simple pointer comparison, which would be a small overhead, as

we are dealing with operations on composite objects. As opaque balloons already

take care of preventing aliasing involving internal objects, with this extra rule we

will have obtained the counterpart for composite objects of what happens in Pascal

or Fortran for single objects. The knowledge provided by this absence of aliasing

could be explored in the checking mechanism for the implementation of such types,

which would be based on the one for opaque balloons. A simple improvement

towards enhancing precision would be to explore the absence of `reaching' between

parameters; a more fundamental direction to be explored under the absence of

aliasing is to consider the structure of objects (i.e. the state variables) of the class

being checked.



Appendix A

Mathematical Terminology and

Notation

Here we present briey the mathematical terminology and notation we use in this

thesis. Most of it is based on one of [36, 28, 76, 45]. We do not intend nor can we

a�ord a detailed treatment. An introduction to these topics can be found on the

above referenced works.

A.1 Logical Expressions

We use the following operators to build logical expressions:

: not

^ and

_ or

) implies

, if and only if

8 for all

9 exists

Operator : has the highest precedence, followed by ^ and _; these are followed

by ) and this by ,. In 8x: P (x) and 9x: P (y) these operators bind x as far as

possible to the right.
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A.2 Sets

A set X with elements a

1

; : : : ; a

n

is written as fa

1

; : : : ; a

n

g. If x belongs to X we

write x 2 X, otherwise x 62 X. We write fx 2 X j P (x)g for the set of elements

x belonging to X such that predicate P (x) holds; when X is implicit from the

context we abbreviate it as fx j P (x)g. We use the following notation regarding

sets:

; empty set

jXj size of X

X � Y X is subset of Y

P(X) = fA j A � Xg powerset of X

X n Y set di�erence

X [ Y set union

X � Y cartesian product

A.3 Relations

A (binary) relation R: X ! Y is a set of ordered pairs (x; y), subset of X � Y .

We write x R y if (x; y) 2 R, and x 6R y otherwise. We also use x R

1

y R

2

z to

abbreviate x R

1

y ^ y R

2

z. Given a relation R on a set X, we say that:

R is reexive if x R x for all x 2 X;

R is symmetric if x R y ) y R x;

R is antisymmetric if x R y ^ y R x) x = y;

R is transitive if x R y ^ y R z ) x R z.

For a relation R on a set X and relations R

1

: X ! Y and R

2

: Y ! Z, we

de�ne:

I

X

= f(x; x) j x 2 Xg identity relation on X

R

2

� R

1

= f(x; z) j 9y: x R

1

y R

2

zg composition of R

1

and R

2

R

0

= I

X

R

n+1

= R �R

n

R

+

=

S

n2!

R

n+1

transitive closure of R

R

�

= R

+

[ I

X

transitive reexive closure of R

R j A = f(x; y) 2 A� A j x R yg domain restriction of R to A

R

�

j A = R j (X n A) domain subtraction of R by A

For a relation R: X ! Y , we de�ne:



A.4. Functions 167

dom R = fx j 9y: x R yg domain of R

R

op

= f(y; x) j x R yg opposite of R

RA = fy j 9x 2 A: x R yg direct image of A under R

A.4 Functions

A function f : X ! Y is a relation such that dom f = X and such that x f y and

x f z implies that y = z. We write fx for the unique y such that x f y.

We write a function as fa 7! b; c 7! d; : : :g, which is the same as f(a; b); (c; d); : : :g,

but emphasises that we are dealing with a function and not merely a relation. We

write a function also as fx 7! e(x) j P (x)g; an example is fx 7! x + 1 j x 2

f1; 2; 3gg.

Function Update A common notation in semantics to describe a function

which results from another by a modi�cation is the `function update':

f [x 7! y] = f n f(x; fx)g [ f(x; y)g:

We also use a variant with multiple updates:

f [x 7! e(x) j P (x)] = f n f(x; fx) j P (x)g [ f(x; e(x)) j P (x)g:

Lambda Notation We also make use of lambda notation to de�ne functions.

We write:

�x: e

for the function that maps y to the result of evaluating e with the free occurrences

of x in e replaced by y. When using this notation, either the domain where x lies

in is implicit from the context, or we can use the variant �x : X: e.

A.5 Order

Preorder A preorder on a set P is a reexive transitive relation

<

�

on P . When

<

�

is implicit from the context we say that P is an ordered set.

Partial Order A partial order on a set P is an antisymmetric preorder v on

P . A partially ordered set can also be called a poset.
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Comparable and Incomparable Elements x and y are comparable if either

x

<

�

y or y

<

�

x; otherwise they are incomparable.

Total Order or Chain A total order on a set P is a partial order � on P where

all pairs of elements are comparable.

(We tend to use the symbols � for a total order, v for a partial order that is

not a total order, and

<

�

for a preorder that is not a partial order.)

Antichain An antichain is an ordered set where all pairs of elements are incom-

parable. A set P , ordered as an antichain, is written P .

Height and Width The height of a poset is the size of its largest chain; the

width of a poset is the size of its largest antichain.

Monotone Given ordered sets A and B, a function f : A ! B is said to be

monotone if x

<

�

A

y implies fx

<

�

B

fy.

Ination A function f : A! A on an ordered set A is said to be an ination if

x

<

�

fx for all x in A.

Order Ideal A subset D of an ordered set P is an order ideal (or a down-set) if

d 2 D, x 2 P and x

<

�

d implies x 2 D. The following constructs result in order

ideals:

#A = fy j 9x 2 A: y

<

�

xg order ideal generated by A

#x = fy j y

<

�

xg principal order ideal generated by x

The set of order ideals of an ordered set P , ordered by set inclusion, is a poset

denoted by O(P ).

Maximal and Greatest, Minimal and Least An element x of an ordered

set P is maximal if for all y 2 P , y 6= x, we have x 6

<

�

y; it is a greatest element

of P if for all y 2 P , we have y

<

�

x. Dually, we have that x is minimal if for all

y 2 P , y 6= x, we have y 6

<

�

x. Also, x is a least element of P if for all y 2 P , we

have x

<

�

y. The set of maximal elements of P is written MaxP .
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Top and Bottom By antisymmetry, a poset contains at most one least and one

greatest element. The least element of a poset P , if it exists, is called bottom,

written ?

P

or simply ?. The greatest element of a poset P , if it exists, is called

top, written >

P

or simply >.

Bounds If P is an ordered set and S a subset of P , x 2 P is an upper bound of

S if y

<

�

x for all y 2 S. The set of all upper bounds of S is written S

u

.

If P is a poset and S a subset of P , the least element of S

u

, if it exists, is called

the least upper bound of S, and written

F

S (read as `join of S'). The least upper

bound

F

fx; yg, if it exists, can be written as x t y. Dually, we write the set of all

lower bounds of S as S

l

and the greatest lower bound of x and y as xu y (read as

x meet y).

Join Semilattices A non-empty poset P is a join semilattice if x t y exists in

P for all x; y 2 P .

Lattices A non-empty poset P is a lattice if x t y and x u y exists in P for all

x; y 2 P .

Cpos A poset P is a complete partial order (cpo) if it has a least upper bound

F

n2!

x

n

in P for all chains x

0

v � � � v x

n

v � � � in P . If a cpo P has a least

element ? we say P is a pointed cpo.

Continuous Functions and Function Spaces A monotone function f : A!

B between cpo's A and B is said to be continuous if for all chains x

0

v � � � v x

n

v

� � � in A we have

G

n2!

fx

n

= f

G

n2!

x

n

:

The function space denoted by [A! B] is a cpo; this is the set of all continuous

functions between cpo's A and B:

ff : A! B j f is continuous g

ordered pointwise, that is:

f v g , 8x 2 A: fx v gx:

If B is pointed, then [A! B] is also pointed.
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Fixed Points A continuous function f : P ! P on a pointed cpo P has a least

�xed point �x f (that is, f(�x f) = �x f and for any other x such that fx = x we

have �x f v x), given by:

�x f =

G

n2!

f

n

?:

Products and Sums The product of cpo's P

1

; : : : ; P

n

, is a cpo denoted by

P

1

� � � � � P

n

; it is made up of elements (x

1

; : : : ; x

n

) from the cartesian product

of the underlying sets, with order de�ned coordinatewise, that is:

(x

1

; : : : ; x

n

) v (y

1

; : : : y

n

), x

1

v y

1

^ � � � ^ x

n

v y

n

:

The sum of cpo's P

1

; : : : ; P

n

, is a cpo denoted by P

1

+ � � �+P

n

; it is made up of

elements from the disjoint union of the underlying sets (using injection functions if

they intersect), with two elements being comparable if they `come' from the same

P

i

and are comparable there (i.e. as if the diagrams are put side by side).

Lifting If we have a cpo P , we can construct a pointed cpo P

?

(P lifted) by

adding a ? and using a function b�c such that:

bxc = byc ) x = y; and 8x: bxc 6= ?:

The cpo P

?

is made up of elements

fbxc j x 2 Pg [ f?g

and order

x v y , x = ? _ 9x

0

; y

0

: x = bx

0

c ^ y = by

0

c ^ x

0

v y

0

:

Let Construction It can be useful to evaluate an expression e

1

on a lifted

cpo A

?

and depending on the outcome: if it is not ?, pass it to a function

(�x: e

2

) : A ! B (B is pointed); if it is ?, `bypass' the function and return ?

directly. This is the purpose of the let construct:

letx( e

1

: e

2

=

8

<

:

? if e

1

= ?;

(�x: e

2

)y if 9y: e

1

= byc
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A.6 Substitution

We use the notation � � � [y=x] to mean � � � with x replaced by y. This notation is

used in very di�erent cases, including substituting identi�ers in a piece of syntax.

It should not be confused with [x 7! y] used in the special case of function update;

they produce very di�erent results even when applied to a function:

f(x; 3); (z; 5)g[x 7! 4] = f(x; 4); (z; 5)g

f(x; 3); (z; 5)g[y=x] = f(y; 3); (z; 5)g

We also use the following two variants of this notation to handle multiple

substitutions simultaneously: � � � [y

1

; : : : ; y

n

=x

1

; : : : ; x

n

] (here all x

i

's must be dif-

ferent); and � � � [e(x)=x j P (x)].

A.7 Vector Notation

We use the vector notation

�!

x

n

as a syntactic abbreviation of x

1

; : : : ; x

n

, what-

ever these elements are. This abbreviation does not include any surrounding

element, such as parenthesis. This way we can use f

�!

x

n

g for the set fx

1

; : : : ; x

n

g

and (x

0

;

�!

x

n

; 1) for the tuple (x

0

; x

1

; : : : ; x

n

; 1). (We have borrowed this versatile

form of vector notation from [45].)
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