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ABSTRACT
Label Ranking (LR) problems, such as predicting rankings
of financial analysts, are becoming increasingly important
in data mining. While there has been a significant amount
of work on the development of learning algorithms for LR
in recent years, preprocessing methods for LR are still very
scarce. However, some methods, like Naive Bayes for LR
and APRIORI-LR, cannot deal with real-valued data di-
rectly. As a make-shift solution, one could consider con-
ventional discretization methods used in classification, by
simply treating each unique ranking as a separate class. In
this paper, we show that such an approach has several disad-
vantages. As an alternative, we propose an adaptation of an
existing method, MDLP, specifically for LR problems. We
illustrate the advantages of the new method using synthetic
data. Additionally, we present results obtained on several
benchmark datasets. The results clearly indicate that the
discretization is performing as expected and in most cases
improves the results of the learning algorithms.

1. INTRODUCTION
A reasonable number of learning algorithms has been cre-

ated or adapted for LR in the recent years [14, 11, 7, 5, 3].
LR studies the problem of learning a mapping from instances
to rankings over a finite number of predefined labels. It can
be considered as a variant of the conventional classification
problem [4]. However, in contrast to a classification setting,
where the objective is to assign examples to a specific class,
in LR we are interested in assigning a complete preference
order of the labels to every example. An additional differ-
ence is that the true (possibly partial) ranking of the labels
is available for the training examples.

Discretization, from a general point of view, is the pro-
cess of partitioning a given interval into a set of discrete
sub-intervals. It is usually used to split continuous inter-
vals into two or more sub-intervals which can be treated
as nominal values. This pre-processing technique enables
the application to numerical data of learning methods that
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are otherwise unable to process them directly (like Bayesian
Networks and Rule Learning methods). In theory, a good
discretization should have a good balance between the loss
of information and the number of partitions [13].

Discretization methods come in two flavors, depending on
whether they do, or do not involve target information. These
are usually referred as supervised and unsupervised, respec-
tively. Previous research found that the supervised meth-
ods produce more accurate discretization than unsupervised
methods [8]. To the best of our knowledge, there are no su-
pervised discretization methods for LR. Hence, our proposal
for ranking-sensitive discretization is a useful contribution
for the LR community.

We propose an adaptation of a well-known supervised dis-
cretization method, the Minimum Description Length Prin-
ciple (MDLP) [10], for LR. The method uses an entropy-like
measure for a set of rankings based on a similarity measure
for rankings. Despite this basic heuristic approach, the re-
sults observed show that the method is behaving as expected
in an LR setting.

The paper is organized as follows: section 2 introduces the
LR problem and the task of association rule mining. Sec-
tion 3 introduces discretization and section 4 describes the
method proposed here. Section 5 presents the experimental
setup and discusses the results. Finally, Section 6 concludes
this paper.

2. LABEL RANKING
The LR task is similar to classification. In classification,

given an instance x from the instance space X, the goal is to
predict the label (or class) λ to which x belongs, from a pre-
defined set L = {λ1, . . . , λk}. In LR the goal is to predict
the ranking of the labels in L that are associated with x.
We assume that the ranking is a total order over L defined
on the permutation space Ω. A total order can be seen as
a permutation π of the set {1, . . . , k}, such that π(a) is the
position of λa in π.1

As in classification, we do not assume the existence of
a deterministic X → Ω mapping. Instead, every instance is
associated with a probability distribution over Ω. This means
that, for each x ∈ X, there exists a probability distribution
P (·|x) such that, for every π ∈ Ω, P (π|x) is the probability
that π is the ranking associated with x. The goal in LR is
to learn the mapping X → Ω. The training data is a set
of instances T = {< xi, πi >}, i = 1, . . . , n, where xi are
the independent variables describing instance i and πi is the
corresponding target ranking.

1This assumption may be relaxed [4].



Given an instance x with label ranking π, and the rank-
ing π̂ predicted by an LR model, we need to evaluate the
accuracy of the prediction. For that, we need a loss function
on Ω. One such function is the number of discordant label
pairs,

D(π, π̂) = #{(i, j)|π(i) > π(j) ∧ π̂(i) < π̂(j)}

which, if normalized to the interval [−1, 1], is equivalent to
Kendall’s τ coefficient [12], which is a correlation measure
where D(π, π) = 1 and D(π, π−1) = −1 (here, π−1 denotes
the inverse order of π).

The accuracy of a model can be estimated by averaging
this function over a set of examples. This measure has been
used for evaluation in recent LR studies [4] and, thus, we
will use it here as well. However, other correlation measures,
like Spearman’s rank correlation coefficient [15], can be used
equally well, were one so inclined.

Given the similarities between LR and classification, one
could consider workarounds that treat the label ranking prob-
lem essentially as a classification problem.

Let us define a basic preprocessing method, which replaces
the rankings with classes, as Ranking As Class (RAC).

∀πi ∈ Ω, π → λi

This method has a number of disadvantages, as discussed in
the next section, but it allows the use of all preprocessing
and prediction methods for classification in LR problems.
However, as we show in this work, this approach is neither
the most effective nor the most accurate.

2.1 Association Rules for Label Ranking
Label Ranking Association Rules (LRAR) [7] are a straight-

forward adaptation of class Association Rules (CAR):

A→ π

where A ⊆ desc (X) and π ∈ Ω. Similar to how predictions
are made in CBA, when an example matches the rule A→ π,
the predicted ranking is π.

If the RAC method is used, the number of classes can be
extremely large, up to a maximum of k!, where k is the size
of the set of labels, L. This means that the amount of data
required to learn a reasonable mapping X→ Ω is too big.

Secondly, this approach does not take into account the
differences in nature between label rankings and classes. In
classification, two examples either have the same class or
not, whereas is LR some rankings are more similar than
others, as they only differ in one or two swaps or labels.
In this regard, LR is more similar to regression than to
classification. This property can be used in the induction
of prediction models. In regression, a large number of ob-
servations with a given target value, say 5.3, increases the
probability of observing similar values, say 5.4 or 5.2, but
not so much for very different values, say -3.1 or 100.2. A
similar reasoning was done for LR in [7]. Let us consider
the case of a data set in which ranking πa = {A,B,C,D,E}
occurs in 1% of the examples. Treating rankings as classes
would mean that P (πa) = 0.01. Let us further consider that
the rankings πb = {A,B,C,E,D}, πc = {B,A,C,D,E} and
πd = {A,C,B,D,E} occur in 50% of the examples. Tak-
ing into account the stochastic nature of these rankings [4],
P (πa) = 0.01 seems to underestimate the probability of ob-
serving πa. In other words it is expected that the observa-

Table 1: An example of a label ranking dataset to
be processed by the APRIORI-LR algorithm.

π1 π2 π3
TID A1 A2 A3 (1, 3, 2) (2, 1, 3) (2, 3, 1)
1 L XL S 0.33 0.00 1.00
2 XXL XS S 0.00 1.00 0.00
3 L XL XS 1.00 0.00 0.33

tion of πb, πc and πd increases the probability of observing
πa and vice-versa, because they are similar to each other.

This affects even rankings which are not observed in the
available data. For example, even though πe = {A,B,D,C,E}
is not present in the data set it would not be entirely unex-
pected to see it in future data.

2.1.1 Similarity-based Support and Confidence
Given a measure of similarity between rankings s(πa, πb),

the support of the rule A→ π is defined as follows:

suplr(A→ π) =

∑
i:A⊆desc(xi)

s(πi, π)

n

This is, essentially, assigning a weight to each target rank-
ing in the training, πi, data that represents its contribution
to the probability that π may be observed. Some instances
xi ∈ X give full contribution to the support count (i.e., 1),
while others may give partial or even a null contribution.

Any function that measures the similarity between two
rankings or permutations can be used, such as Kendall’s τ
or Spearman’s ρ. The function used here is of the form:

s(πa, πb) =

{
s′(πa, πb) if s′(πa, πb) ≥ θsup

0 otherwise
(1)

where s′ is a similarity function. This general form assumes
that below a given threshold, θsup, is not useful to discrim-
inate between different similarity values, as they are so dif-
ferent from πa. This means that, the support sup of 〈A, πa〉
will have contributions from all the ruleitems of the form
〈A, πb〉, for all πb where s′(πa, πb) > θsup.

The confidence of a rule A → π is obtained simply by
replacing the measure of support with the new one.

conflr (A→ π) =
suplr (A→ π)

sup (A)

Given that the loss function that we aim to minimize is
known beforehand, it makes sense to use it to measure the
similarity between rankings. Therefore, we use Kendall’s τ .
In this case, we think that θsup = 0 would be a reasonable
value, given that it separates the negative from the positive
contributions. Table 1 shows an example of a label ranking
dataset represented following this approach.

To present a more clear interpretation, the example given
in Table 1, the instance

({A1 = L,A2 = XL,A3 = S}) (TID = 1)

contributes to the support count of the ruleitem

〈{A1 = L,A2 = XL,A3 = S}, π3〉

with 1. The same instance will also give a small contribution
of 0.33 to the support count of the ruleitem

〈{A1 = L,A2 = XL,A3 = S}, π1〉



given their similarity. On the other hand, no contribution is
given to the count used for the support of ruleitem

〈{A1 = L,A2 = XL,A3 = S}, π2〉

which makes sense as they are clearly different.

3. DISCRETIZATION
Several data mining (DM) algorithms can improve their

performance by using discretized versions of continuous-valued
attributes [9]. Given that a large number of algorithms, like
the Naive Bayes classifier, cannot work without discretized
data [13] and the majority of real datasets have continuous
variables, a good discretization method can be very relevant
for the accuracy of the models. Discretization methods deal
with continuous variables by partitioning them into intervals
or ranges. Then, each of these intervals can be interpreted
as a nominal value by DM algorithms.

The main issue in discretization is the choice of the in-
tervals because a continuous variable can be discretized in
an infinite number of ways. An ideal discretization method
finds a reasonable number2 of cut points that split the data
into meaningful intervals. For classification datasets, a mean-
ingful interval should be coherent with the class distribution
along the variable.

Discretization approaches can be divided into two groups:

Supervised vs Unsupervised.
When dealing with classification datasets the discretiza-

tion methods can use the values of the target variable or not.
These are referred as unsupervised and unsupervised respec-
tively. The unsupervised methods ignore the classes of the
objects and divide the interval into a user-defined number of
bins. Supervised methods take into account the distribution
of the class labels in the discretization process. Previous re-
search states that the supervised methods tend to produce
better discretizations than unsupervised methods [8].

Top-down vs Bottom-up.
Discretization methods with a Top-down or Bottom-up

approach start by sorting the dataset with respect to the
variable which will be discretized. In the Top-down ap-
proach, the method starts with an interval containing all
points. Then, it recursively splits the intervals into sub-
intervals, until a stopping criteria is verified.

In the Bottom-up approach, the method starts with the
maximum number of intervals (i.e., one for each value) and
then iteratively merges them recursively until a stopping
criteria is satisfied.

3.1 Entropy based methods
Several methods, such as ADD NAMES [6, 10], perform

discretization by optimizing entropy. In classification, class
entropy is a measure of uncertainty in a finite interval of
classes and it can be used in the search of candidate parti-
tions. A good partition is such that it minimizes the overall
entropy in its subsets. Likewise, in discretization, a good
partition of the continuous variable minimizes the class en-
tropy in the subsets of examples it creates. In [10] it was
shown that optimal cut points must be between instances

2An extreme discretization approach would create one nom-
inal value for each continuous value but this is naturally not
a reasonable approach.

Table 2: Example dataset Dex: Small artificial
dataset with some noise in the rankings

TID Att π λ
1 0.1 (1,2,4,3,5) a
2 0.2 (1,2,3,4,5) b
3 0.3 (2,1,3,4,5) c
4 0.4 (1,3,2,4,5) d
5 0.5 (1,2,3,5,4) e
6 0.6 (5,4,3,1,2) f
7 0.7 (4,5,3,2,1) g
8 0.8 (5,3,4,2,1) h

of distinct classes. In practical terms, for all possible par-
titions the class information entropy is calculated and com-
pared with the entropy without partitions. This can be done
recursively until some stopping criterion is satisfied. The
stopping criteria can be defined by a user or by a heuristic
method like MDLP.

4. DISCRETIZATION FOR LABEL RANK-
ING

A supervised discretization method for LR should take
into account the properties of rankings as target variables.
In this work, we propose an adaptation of the Shannon en-
tropy for rankings. This entropy will be used in conjuction
with MDLP as stopping criterion, the same way it is used
for classification. First we describe our adaptation of the
entropy for rankings and then we show how to integrate it
with MDLP.

The entropy of classes presented in [10], which derives
from the Shannon entropy, is defined as:

Ent (S) = −
k∑
i=1

P (Ci, S) log (P (Ci, S)) (2)

where P (Ci, S) stands for the proportion of examples with
class Ci in a subset S and k is the total number of classes
in S.

P (Ci, S) =
#Ci
k

As shown in equation 2 the Shannon entropy of a set of
classes depends on the relative proportion of each class.

4.1 Entropy of rankings
In this section, we explain how to adapt the entropy of

classes used in [10] for LR. We start by motivating our
approach with a discussion of the use in LR of the concept
of entropy from classification. We then show in detail our
heuristic adaptation of entropy for rankings.

To better motivate and explain our approach, we intro-
duce a very simple synthetic dataset, Dex, presented in Ta-
ble 2. In this test dataset we have eight distinct rankings
in the target column π. Even though they are all distinct,
the first five are very similar (the label ranks are mostly
ascending), but very different from the last three (mostly
descending ranks). Without any further considerations, it is
natural to assume that an optimal split point for Dex should
lie between values 0.5 and 0.6 (instances 5 and 6).

In the RAC approach, the rankings are transformed into
eight distinct classes as shown in column λ. As the table
shows, the natural split point identified earlier is completely
undetectable in column λ.



As shown in equation 2, the entropy of a set of classes
depends on the relative proportion of a class. If we measure
the ranking proportion the same way, we get:

P (πi, S) = 1/8, ∀πi ∈ Dex
We adapt this concept using the same ranking distance-

based approach used to adapt the support for LRAR in
APRIORI-LR [7] (equation 3). In fact, a similar line of
reasoning as the one in Section can be followed here. The
uncertainty associated with a certain ranking decreases in
the presence of similar – although not equal – rankings. Fur-
thermore, this decrease is proportional to that distance.

Pπ (πi, S) =

∑k
j=1 s (πi, πj)

k
(3)

As in [7], we use Kendall τ and the negative correlations
are ignored (section 4.1). Note that a parallel can also be
established with the frequentist view used in entropy. Since
Kendall τ is computed from the proportion of concordant
pairs of labels, this can be seen as the proportion of concor-
dant pairwise comparisons.

However, this approach alone is not enough to give a fair
measures for the entropy of rankings. The entropy of the
set of classes {λ1, λ2} is the same as in {λ1, λ3} or {λ2, λ3}.
This happens because, λ1 is as different from λ2 as λ2 is
from λ3. However, in LR, distinct rankings can range from
completely different to very similar. Considering these two
sets:

1) {(1, 2, 3, 4, 5) , (1, 2, 3, 5, 4)}

2) {(1, 2, 3, 4, 5) , (5, 4, 3, 2, 1)}
and since the ranking proportions will be the same in 1)
and 2), the entropy will be the same. Also, from a pairwise-
comparison point of view, the two similar rankings in set 1)
match 14 pairs from a total of 15, while the rankings in 2)
do not match any.

Considering that entropy is a measure of disorder, we be-
lieve that it makes sense to expect lower entropy for sets with
similar rankings and bigger entropy for sets with completely
different rankings.

For this reason we propose to add an extra parameter
in the formula of entropy for rankings (equation 4) to force
lower values on sets of similar rankings. This means we have
to adapt Shannon entropy for a set of rankings to be more
sensitive to the similarity of the rankings present in the set.

EntLR (S) =

k∑
i=1

P (πi, S) log (P (πi, S) log (Q (πi, S))) (4)

where Q (πi, S) is the average similarity of the ranking πi
with the rankings in the subset S defined as:

Q (πi, S) =

∑k
j=1 s (πi, πj)

k
(5)

For the same reason we find noise in independent vari-
ables, it is expected to observe the same phenomenon in
ranking data. As the number of the labels increases, we ex-
pect to observe it with more frequency, since the number
of possible combinations for n labels grows to n!. As an
example, instances 6, 7 and 8 in Dex can correspond to ob-
servations of the same ”real” ranking, say (5, 4, 3, 2, 1), but
with some noise.

Table 3: Discretization results using the MDLP and
MDLP-R methods

Partitions
TID Att π λ MDLP-R MDLP
1 0.1 (1,2,4,3,5) a 1 1
2 0.2 (1,2,3,4,5) b 1 2
3 0.3 (2,1,3,4,5) c 1 3
4 0.4 (1,3,2,4,5) d 1 4
5 0.5 (1,2,3,5,4) e 1 5
6 0.6 (5,4,3,1,2) f 2 6
7 0.7 (4,5,3,2,1) g 2 7
8 0.8 (5,3,4,2,1) h 2 8

This measure of entropy for rankings we propose here will
make the discretization method more robust to noise present
in the rankings. In order to support this statement we pro-
vide an analysis of the behavior of the method with induced
and controlled noise.

4.2 MDLP for LR
MDLP [10] is a well known method used to discretize con-

tinuous attributes for classification learning. The method
tries to maximize the information gain and considers all the
classes of the data as completely distinct classes. For this
reason, we believe that the latter, as is, is not suitable for
datasets which have rankings instead of classes in the target.

MDLP measures the information gain of a given split
point by comparing the values of entropy. For each split
point considered, the entropy of the initial interval is com-
pared with the weighted sum of the entropy of the two re-
sulting intervals.

After the adaptation of entropy for sets of rankings pro-
posed in Section 4.1, MDLP for ranking (MDLP-Ranking or
MDLP-R) comes in a natural way. We only need to replace
the entropy for rankings in the MDLP definition presented
in [10].

...EntLR (S) adaptedformulaTODO! (6)

5. EXPERIMENTAL RESULTS
Since we are proposing is essentially a pre-processing method,

the quality of its discretization is hard to measure in a direct
way. For this reason, the experimental setup is divided in
two parts. In the first part we present the results obtained
from controlled artificial datasets that should give an indi-
cation whether the method is performing as expected. The
second part shows results of the APRIORI-LR algorithm [7]
run on datasets from the KEBI Data Repository at Philipps
University of Marburg [4].

Table 3 compares the intervals discretized by the MDLP-
R and MDLP in dataset Dex. As expected, since there are
eight distinct rankings, the RAC approach with MDLP for
classification will see eight distinct classes and break the
dataset into eight intervals. MDLP-R, however, can identify
the similarities of rankings, and only breaks the dataset into
two intervals.

5.1 Empirical evaluation
Results obtained with artificial datasets can give more in-

sight about how the discretization method performs. The
synthetic datasets presented in this section are variations
of a simple one which has only two initial rankings π1 =



(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and π2 = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1).
To make it as simple as possible, it has only one independent
variable which varies from 1 to 100. The first 60 instances
are variations of π1 and the remaining are variations of π2.

In order to test the advantages of our method in compar-
ison with the RAC approach, we intentionally introduced
noise in the target rankings, by performing several swaps.
Each swap is an inversion of two consecutive pairs in ev-
ery ranking of the data. For each ranking the choice of the
pairs to invert is random. Swaps will be done repeatedly, to
obtain different levels of noise.

We performed an experiment which varies the number of
swaps from 0 to 100. The greater the number of consecutive
swaps, the more chaotic the dataset will be, and hence more
difficult to discretize.
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Figure 1: Accuracy of the APRIORI-LR (expressed
in terms of Kendall τ) as a function of the number
of swaps, for MDLP (black) and MDLP-LR (blue).

Figure 1 compares the accuracy of APRIORI-LR with two
different discretization methods, MDLP and MDLP-R. The
graph, clearly indicates that the discretization with MDLP-
R (blue line) originates better results for APRIORI-LR, than
with MDLP after a RAC transformation . While for the first
cases the difference is not so evident, as the noise increases,
MDLP-R gives a greater contribution.

However, if we analyze Figure 2 there is an extra informa-
tion in favor of MDLP-R. The standard deviation of the 10
runs of the 10-fold cross-validation is zero in the presence of
small amounts of noise (until approximately 10 swaps). This
means that, in a scenario with a reasonable noise in rank-
ings, if one decides to use MDLP-R there are more chances
to get the best result than with MDLP.

One great advantage of our method in this experiment can
be seen in Figure 3. In particular, for a number of swaps
until 20, our method only makes one partition which means
that the split point choice is also invariant to a reasonable
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Figure 2: Standard deviation of the accuracy of
APRIORI-LR (in terms of Kendall τ).
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Figure 3: Comparison of the average number of par-
titions generated.

amount of noise. This will result in a small number of rules
generated by APRIORI-LR as supported by the graph in
Figure 4. In other words, MDLP-R makes APRIORI-LR
much more efficient because it only needs to create approx-
imately 1/10 of the rules to obtain the same accuracy.

Continuous variables were discretized with two methods:



0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00

#Swaps

#R
ul

es

Figure 4: Comparison of the number of rules gener-
ated by APRIORI-LR.

MDLP and MDLP-R.
The evaluation measure is Kendall’s τ and the perfor-

mance of the method was estimated using ten-fold cross-
validation. For the generation of Label Ranking Association
Rules (LR-AR) we used CAREN [2].

The parameters used for the experiments are the same as
used in [7] This option may not be as intuitive as it is in
θsup. However, since the focus of this work is the reduction
of the number of generated rules, this value is suitable.

5.2 Results on benchmark datasets
Table 5 shows that both methods, obtain similar results

in benchmark datasets.
When the algorithm cannot find at least one LRAR to

rank a new instance, a default ranking is used.

Table 4: Summary of the datasets
Datasets type #examples #labels #attributes
autorship A 841 4 70
bodyfat B 252 7 7
calhousing B 20640 4 4
cpu-small B 8192 5 6
elevators B 16599 9 9
fried B 40769 5 9
glass A 214 6 9
housing B 506 6 6
iris A 150 3 4
pendigits A 10992 10 16
segment A 2310 7 18
stock B 950 5 5
vehicle A 846 4 18
vowel A 528 11 10
wine A 178 3 13
wisconsin B 194 16 16

Table 6: Comparison of the accuracy of APRIORI-
LR with the different discretization approaches.

MDLP MDLP-R
authorship 0.608 0.
bodyfat 0.063 0.066
calhousing 0.329 0.304
cpu-small 0.418 0.458
elevators 0.648 0.670
fried 0. 0.
glass 0.817 0.860
housing 0.779 0.809
iris 0.962 0.934
pendigits NA 0.
segment 0.829 0.
stock 0.829 0.890
vehicle 0.774 0.
vowel 0.680 0.
wine 0.937 0.877
wisconsin 0.031 0.

This default ranking is used also as a baseline as show in
Table 5 As in [7] the parameters of APRIORI-LR, namely
minimum support and minimum confidence, were automat-
ically picked by an algorithm that minimizes the usage of
the default rule.

Finally, Table 6 compares the accuracy of APRIORI-LR
with state of the art methods based on published results [4].
Given that the methods were not compared under the same
conditions, this simply gives us a rough idea of the quality
of the method proposed here. It indicates that, despite the
simplicity of the adaptation, APRIORI-LR is a competitive
method. We expect that the results can be significantly im-
proved, for instance, by implementing more complex pruning
methods.

6. CONCLUSIONS
In his paper we present a simple adaptation of the super-

vised discretization method, MDLP, for LR. This work was
motivated by the lack of a supervised discretization algo-
rithm to deal with rankings in the target variable.

The results clearly show that this is a viable LR method.
It outperforms a simple baseline and competes well with
RPC, which means that, despite its simplicity, it is inducing
useful patterns.

Additionally, the results obtained indicate that the choice
of the discretization method and the number of bins per at-
tribute play an important role in the accuracy of the models.
The tests indicate that the supervised discretization method
(minimum entropy), gives better results than equal width
partitioning. This is, however, not the main focus of this
work.

Improvement-based pruning was successfully implemented
and reduced the number of rules in a substantial number.
This plays an important role in generating models with higher
interpretability.

The new framework proposed in this work, based on dis-
tance functions, is consistent with the classical concepts un-
derlying association rules. Furthermore, although it was de-
veloped in the context of the LR task, it can also be adapted
for other tasks such as regression and classification. In fact,
Classification Association Rules can be regarded as a spe-
cial case of distance-based AR, where the distance function



Table 5: Results obtained with MDLP discretization and with MDLP-R discretization on bechmark datasets

MDLP MDLP-Ranking
τ τbaseline minsup minconf #rules M τ τbaseline minsup minconf #rules M

authorship .608 .568 20 60 3717 100% NA - - - - -
bodyfat* .063 -.063 0.1 70 17135 100% .066 -.063 0.1 65 23415 100%
calhousing* .329 .048 0.1 35 488 100% .304 .048 0.1 30 1315 100%
cpu-small* .418 .234 0.1 35 326 100% .458 .234 0.1 40 3888 100%
elevators** .648 .288 0.1 60 291 98% .670 .288 0.1 60 5681 98%
fried .752 -.005 1 35 1959 97% .676 -.005 1 35 14493 100%
glass* .817 .684 0.1 80 168 100% .860 .684 0.1 100 1686 100%
housing* .779 .053 0.1 65 420 100% .809 .072 0.1 70 1284 100%
iris* .962 .089 0.1 85 36 100% .934 .089 0.1 80 41 100%
pendigits- NA - - - - - .684 .451 10 75 18590 90%
segment- .829 .372 4 85 4949 96% .496 .372 35 75 4688 49%
stock* .894 .072 0.1 80 100% .890 .072 0.1 80 2980 100%
vehicle- .774 .179 7 80 10480 99% .675 .179 15 80 6662 83%
vowel .674 .195 1 70 21419 99% .709 .195 1 70 143882 100%
wine* .937 .329 0.1 100 1192 100% .877 .329 0.1 100 3666 100%
wisconsin .269 -.031 1 0 1224 92% .280 -.031 5 20 404773 100%

is 0-1 loss.
This work uncovered several possibilities that could be

better studied in order to improve the discretization in the
LR field. They include: - the choice of parameters; - the
usage of other entropy measures for rankings

We believe that it is essential to test the methods on real
LR problems like metalearnig or predicting the rankings of
financial analysts [1] The KEBI datasets are adapted from
UCI classification problems. In terms of real world applica-
tions, these can be adapted to rank analysts, based on their
past performance and also radios, based on user’s prefer-
ences.

7. ACRONYMS

LR Label Ranking

MDLP Minimum Description Length Principle

RAC Ranking As Class
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