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On the Design of a Galculator

The increasing complexity of software systems together with the lack of tools and
techniques to support their development has led to the so-called “software crisis”. Dif-
ferent views about the problem originated diverse approaches to a possible solution,
although it is now generally accepted that a “silver bullet” does not exist.

The formal methods view considers mathematical reasoning as fundamental to ful-
fill the most important property of software systems: correctness. However, since
correctness proofs are generally difficult and expensive, only critical applications are
regarded as potential targets for their use. Developments in tool support such as proof
assistants, model checkers and abstract interpreters allow for reducing this cost and
making proofs affordable to a wider range of applications. Nevertheless, the effective-
ness of a tool is highly dependent of the underlying theory.

This dissertation follows a calculational proof style in which equality plays the fun-
damental role. Instead of the traditional logical approach, fork algebras, an extension
of relation algebras, are used. In this setting, Galois connections are important because
they reinforce the calculational nature of the algebraic approach, bringing additional
structure to the calculus. Moreover, Galois connections enjoy several valuable proper-
ties and allow for transformations in the domain of problems. In this dissertation, it is
shown how fork algebras and Galois connections can be integrated together with the
indirect equality principle. This combination offers a very powerful, generic device to
tackle the complexity of proofs in program verification. This power is enhanced with
the design of an innovative proof assistant prototype, the Galculator.
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Concepção e Implementação de um
Galculator

O aumento da complexidade dos sistemas de software, juntamente com a falta de
ferramentas e técnicas de suporte ao seu desenvolvimento, originaram a chamada
“crise do software”. Diferentes visões sobre o problema resultaram em várias abor-
dagens a uma possı́vel solução, embora, actualmente, se considere que não existe uma
“solução milagrosa”. A visão dos métodos formais encara o raciocı́nio matemático
como fundamental para satisfazer a propriedade mais importante de um sistema de
software: a correcção. Todavia, sendo as provas de correcção, geralmente, difı́ceis e
dispendiosas, apenas as aplicações crı́ticas são encaradas como alvos potenciais para
a sua utilização. Desenvolvimentos em ferramentas de suporte, como assistentes de
prova, model checkers e interpretadores abstractos, permitem reduzir esse custo, tor-
nando as provas acessı́veis a um leque mais alargado de aplicações. Apesar disso, a
aplicabilidade destas ferramentas é muito dependente da teoria subjacente.

Esta dissertação segue um estilo de prova baseado em cálculo, em que a igualdade
assume o papel fundamental. Em vez da tradicional abordagem lógica, são utilizadas
fork algebras, uma extensão das algebras de relações. Neste contexto, as conexões
de Galois são importantes pois reforçam a natureza baseada no cálculo conferida pela
abordagem algébrica, assim como a sua estrutura. Para mais, as conexões de Ga-
lois gozam de várias propriedades interessantes, além de permitirem transformações
no domı́nio dos problemas. Nesta dissertação mostra-se como as fork algebras e as
conexões de Galois podem ser integradas com o princı́pio da igualdade indirecta.
Esta combinação oferece um dispositivo poderoso e genérico na abordagem às com-
plexas provas da verificação de programas. Este poder é reforçado com a concepção e
implementação de um protótipo de um assistente de prova, o Galculator.
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Chapter 1

Introduction

The introduction of the general-purpose electronic computer is currently seen as a
milestone in history, paving the way for the so-called “Information Era”. Comput-
ers brought not only unprecedented computation power but also new approaches to
information processing and dissemination, dramatically changing processes and orga-
nizations. After less more than half a century, computer systems became ubiquitous in
our world, ranging from large scale supercomputers to smart cards embedded systems.

The hardware industry success is unparalleled by any other technology in civi-
lization history, attaining steady gains in both price and performance [Brooks, 1987].
However, software was never able to mimic the increasing power of machines. In the
first times, many thought that the problem of programming being so difficult was due
to the limitations of the early computers [Dijkstra, 1972]. This believe was dismissed
as machines evolved, mostly because the perceived power of computers always de-
mands for applications capable of using it. People started to realize that software is
not able to follow the rate of improvements of hardware in speed, cost and reliability
[Dijkstra, 1972].

Software crisis. The demand for more complex applications led to system failures,
lack of performance, increased costs of development or missed deadlines. In 1968, a
group of eminent computer scientists joined to discuss the situation in the First NATO
Software Engineering Conference coined the term “software crisis” to describe this
[Naur and Randell, 1969].

Over the years, several solutions to the problem were appointed: better program-
ming languages, improved tools and methodologies, machine support, among other.

1



2 1 Introduction

However, the expectations about what software systems can do continues to increase
and consequently also their complexity. Currently, most accept that a “silver bullet”

does not exist, i.e., a “. . . single development, in either technology or in management

technique, that by itself promises even one order-of-magnitude improvement in pro-

ductivity, in reliability, in simplicity.” [Brooks, 1987]. Brooks [1987] justifies this
impossibility by arguing that difficulties in software development are essential and
not only accidental, i.e., they come directly from the complexity of the problems at
hands. Even after eliminating all the accidental factors — inadequate languages, lack
of tool support, management difficulties, etc. — the problem remains complex mostly
because “the elements interact with each other in some nonlinear fashion, and the

complexity of the whole increases much more than linearly.” [Brooks, 1987].

Formal methods. Although a miraculous solution does not seem to exist, several ef-
forts have been made to improve the situation. The formal methods community argues
that Mathematics and its associated techniques and reasoning are essential to ensure
correctness, just like in any other mature engineering field. Several different theories,
techniques and tools were developed with varying level of success. Some methods are
still just too difficult and complex to use in an effective way. The ultimate objective
would be to label software with the stamp “correct inside” to attest its quality.

Software correctness. Despite significant advances in the field, software correctness
is still an ambitious challenge. Over the years, many techniques have been developed
and applied in order to augment our confidence on programs we write, ranging from
informal techniques and guidance principles to formal methods. The success of each of
these methods varies greatly but there seems to be evidence that success is proportional
to tool support [Jackson, 2006].

Logic based approaches benefit from the help of theorem provers in the conduc-
tion of proofs. Using annotations and tools such as Why and Caduceus [Filliâtre and
Marché, 2007], programs can be verified and formal proof obligations be discharged.
Ideally, all proofs should be fully automated but there are theoretical limits imposed
by the undecidability of general predicate calculus.

Informal and formal proofs. Informal proofs abound in textbooks about mathemat-
ics and software engineering. They are simpler to write than their formal counterparts,
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still evidencing the basic principles which underly the reasoning. In fact, an infor-
mal proof is just a convincing argument for the existence of the corresponding formal
proof. However, when proving software correctness, informal proofs are only useful
when dealing with small algorithms or simple examples. In real software systems, one
can easily overlook important details and non-trivial interactions since their complex-
ity is high. Moreover, the verification of informal proofs is error prone and tedious; for
very large systems it is just unfeasible.

Although difficult to build in general, formal proofs can be automatically verified
using software programs known as theorem provers [McCarthy, 1962]. A formal proof
follows from a set of axioms and previously proved theorems using inference rules; the
proved statement becomes a theorem. Usually, natural deduction or Hilbert-style of
deduction are used to build the proof. However, as discussed by Gries and Schneider
[1995] and Lifschitz [2001], deriving proofs in these formal systems is not always an
intuitive and easy task.

Equational reasoning. An alternative is to use equational reasoning instead. Ax-
ioms and theorems are expressed as equalities; inference rules are just substitutions of
equals by equals. The goal must be proven from axioms or known theorems by us-
ing them as substitution rules. For instance, Gries and Schneider [1995] and Lifschitz
[2001] prove how an equational calculus based on the ideas of Dijkstra and Scholten
[1990] can be seen as a full-fledged deductive system.

Relation algebras. The simplicity of equational reasoning was one of factors that
inspired Tarski to develop his calculus for the formalization of set theory [Tarski and
Givant, 1987]. This is based on the De Morgan-Peirce-Schröder relation algebra and
besides being equational, has no variables nor quantifiers and is thus “point-free” in
style. Throughout logical proofs, nested quantifiers are messy and variables lead to
side conditions in inference rules and substitutions in order to avoid the capture of free
variables. As proved by Tarski and Givant [1987], relation algebra is equivalent in
expressive and deductive power to a three variable fragment of first-order logic.

Fork algebras. As pointed out by Tarski and Givant [1987] and van den Bussche
[2001] the absence of some kind of pairing operation causes the lack of expressive-
ness of relation algebra. Fork algebras extend relation algebras with a kind of pairing
function, becoming equivalent to first-order logic in expressive and deductive power.



4 1 Introduction

Furthermore, the approach is abstract and completely symbolic; however, a natural
interpretation in terms of concrete binary relations exists.

Galois connections. Although an equational proof using relations (both fork and re-
lation algebra) is easy to follow and mostly driven by the available equalities, it can
benefit from the introduction of a general concept widely spread across several mathe-
matical fields: Galois connections [Ore, 1944]. The best known application of Galois
connections in computer science is perhaps that of abstract interpretation [Cousot and
Cousot, 1977; Cousot, 2001]. References [Aarts et al., 1992; Backhouse and Back-
house, 2004; Backhouse, 2004; Erné et al., 1993; Denecke et al., 2004] provide a
far more expressive account of such applications, ranging over the predicate calculus,
parametric polymorphism, number theory, abstract algebra, topology, etc.

Basically, a Galois connection relates two functions (adjoints) between pre-ordered
domains providing “shunting” laws between them thanks to their “good” preservation
properties. Functions which are inverses of each other form a special case of a Galois
connection where both orders are the equality relation. Often, problems in one of
the domains are easier to solve than problems in the other domain. Using a Galois
connection it is possible to map a “hard” problem to an equivalent but easier one in
the other domain, to find its solution, and then map it back to the result in the original
domain.

Galois connections form their own algebra, thus we can combine them in order
to build arbitrarily complex connections. This ability makes the structure of a proof
clearer while making it easier to scale up to more complex problems. Additionally,
Galois connections have interesting properties that can also be exploited in proofs; if
a function participates in a Galois connection it enjoys such general properties. Galois
connection theory thus caters for genericity in proofs.

Why a Galculator. The rich algebra, genericity and scalability of the concept of a
Galois connection lead to the idea of building a tool able to take advantage of such
expressive power, termed Galculator (= Galois connections + calculator), tuned to
reasoning and calculating about software problems which can be modelled in terms of
adjoints of Galois connections.
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1.1 Motivating examples

It is often the case that practical application of a tool is hindered by the underlying
theory itself, whenever this is too “heavy” for the problem in hands. In this section,
we present two small examples about whole division to clarify the objectives of Gal-

culator. The explanation is introductory and very lightweight; the later chapters will
provide for deeper understanding of the involved concepts.

1.1.1 Correction of a whole division implementation

Let us consider a simple example: we want to prove the correctness of the following
Haskell function1

x ‘div ‘ y | x < y = 0

| x > y = (x − y) ‘div ‘ y + 1

which computes whole division, for non-negative x and positive y . A standard proof
would involve some kind of induction [Manna et al., 1973], e.g., structural induc-
tion [Burstall, 1969] or fixed point induction [Park, 1969]. However, what we have
above is code — where is the corresponding specification?

Let us denote such a specification by x ÷ y (over the natural numbers), for which
at least two definitions can be found in maths books, for y > 0: one implicit2

c = x÷ y
def
= 〈∃ r : 0 6 r < y : x = c× y + r〉 (1.1)

and the other explicit

x÷ y
def
= 〈

⊔
z :: z × y 6 x〉 (1.2)

where notation 〈
⊔

z :: p(z)〉 means the largest z such that p(z) holds, for a predicate
p.

Checking the correctness of the given Haskell code against implicit definition (1.1)
in the Coq proof assistant [Coquand and Huet, 1988] entails a number of steps which
are described by Bertot and Castéran [2004] and Almeida [2008]. Still for the same

1Throughout this text, we resort to package lhs2TeX [Hinze and Löh, 2008] for type-setting sym-
bols and code in Haskell.

2The notation for quantifiers is described in Chapter 2. By now, consider that 〈∃ x : R : T 〉 means
there exists some x in the range R such that T holds.
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purpose, one might dive into real number arithmetics by defining x ÷ y to be (x −
(x mod y))/y, and exploiting the properties of the modulo operator.

Correctness verification assumes that both specification and implementation are
available before proofs take place. A different, more constructive alternative would be
to calculate the implementation from the specification itself. In the current example, it
can be observed that the following Galois connection [Ore, 1944] arises from (1.2),

z × y 6 x ⇔ z 6 x÷ y (y > 0) (1.3)

assuming x, y, z universally quantified over the natural numbers. Note how this prop-
erty matches with (1.2): fixing x and y and reading (1.3) as an implication from left to
right, this already tells us that x÷ y is the largest z such that z × y 6 x holds.

A simple calculation of the given Haskell code can be performed based on two
Galois connections: the one just given explaining whole division and the following,

a− b 6 c ⇔ a 6 c + b (1.4)

which explains subtraction over the integers, another operator used in the algorithm.
We can put these two connections together by restricting (1.3) to non-negative integers,
and keeping y 6= 0. We reason:

z 6 x÷ y

⇔ { Galois connection (1.3) assuming x > 0, y > 0. }

z × y 6 x

⇔ { Cancellation, thanks to (1.4). }

z × y − y 6 x− y

⇔ { Distribution law. }

(z − 1)× y 6 x− y

⇔ { (1.3) again, assuming x− y > 0, that is, x > y. }

z − 1 6 (x− y)÷ y

⇔ { (1.4) again. }

z 6 (x− y)÷ y + 1

That is, every natural number z which is at most x ÷ y (for x > y) is also at most
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(x− y)÷ y + 1 and vice versa. The principle whereby we may conclude that the two
expressions are the same

x÷ y = (x− y)÷ y + 1 (1.5)

thus calculating the second clause of the div function is known as indirect equality (see
below). Concerning the first clause of the algorithm, we assume x < y and reason in
the same style:

z 6 x÷ y

⇔ { (1.3). }

z × y 6 x

⇔ { Transitivity, since x < y. }

z × y 6 x ∧ z × y < y

⇔ { Since y 6= 0. }

z × y 6 x ∧ z 6 0

⇔ { z 6 0 entails z × y 6 x, since 0 6 x. }

z 6 0

This time we get x ÷ y = 0 under the same principle which supported clause (1.5),
known as the principle of indirect equality [Aarts et al., 1992]:

a = b ⇔ 〈∀ x :: x 6 a⇔ x 6 b〉 (1.6)

The reader unaware of this way of indirectly establishing algebraic equalities will rec-
ognize that the same pattern of indirection is used when establishing set equality via
the membership relation, cf. A = B ⇔ 〈∀ x :: x ∈ A⇔ x ∈ B〉 as opposed to, e.g.,
circular inclusion: A = B⇔ A ⊆ B ∧B ⊆ A.

The simple (non inductive) proof above illustrates the calculational power of Galois
connections operated via indirect equality, a device which is applicable to arbitrarily
complex problem domains. Prior to studying such generalization let us consider yet
another calculational proof concerning whole division.
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1.1.2 Simple property about whole division

Proving algebraic equalities can be a hard task even in presence of intuitively simple
mathematical operators. Take equality (a/b)/c = a/(c×b), for b, c 6= 0, for instance. If
a/b denotes division of two real numbers (in a field, in general), that is, a/b = a× b−1,
the task is not difficult at all: (a/b)/c = (a× b−1)× c−1 yielding a× (c× b)−1 almost
at once.

Let, however, a ÷ b denote the whole division of two natural numbers a and b

(b 6= 0) as earlier on. Does (a÷ b)÷ c = a÷ (c× b) still hold? It does but the proof
is not so immediate because, although intuitive, the definition of division on natural
numbers is not easy to manipulate, be it an implicit definition (Equation (1.1)), be it
an explicit definition (Equation (1.2)) or be it defined by recursion like in the previous
section leading to an inductive proof.

Altogether, difficulties clearly arise from the simple fact that the existence of mul-
tiplicative inverses, captured by equivalence

c× b = a ⇔ c = a× b−1 (b 6= 0) (1.7)

is not ensured once we move from real to natural numbers. However, looking closer
at the properties of whole division we can see that the two equalities in (1.7) can be
weakened to inequalities leading us back to Galois connection (1.3), involving adjoint
functions (×b) and (÷b), for b 6= 0, valid in the natural numbers. Adopting the same
strategy as before, a simple proof follows, where n is a universally quantified variable
over natural numbers:

n 6 (a÷ b)÷ c

⇔ { By (1.3). }

n× c 6 a÷ b

⇔ { (1.3) again. }

(n× c)× b 6 a

⇔ { Multiplication is associative. }

n× (c× b) 6 a

⇔ { (1.3) again. }

n 6 a÷ (c× b) .
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As before, we calculate that every natural number n at most (a÷ b)÷ c is also at most
a÷ (c× b), and vice versa. By indirect equality, the two expressions are equal.

In retrospect, a fundamental ingredient in this surprisingly simple proof is the abil-
ity to transform an expression involving a “hard” operator (whole division) into an
expression involving an “easy” one (multiplication). Also essential is the step of the
proof in which associativity of multiplication is assumed; all other steps are a kind of
“shunting” of operators between the two sides of each inequality. After these steps, all
that is needed is to bring whole division back into the expression by “shunting” in the
opposite direction. But, above all, it is the rule of indirect equality which implicitly
shapes the whole strategy of the proof.

Generalization. Clearly, these ingredients can be put together in order to solve more
complex problems. Let, for instance, multiplication and whole division in (1.3) be
replaced by other operators which exhibit the same algebraic properties in a different
domain: that of binary relations ordered by inclusion. In fact, Galois connection

X ◦ R⊆ Y ⇔ X ⊆ Y / R (1.8)

holds for arbitrary relations X , R and Y operated by relational composition

b(R ◦ S)c ⇔ 〈∃ a :: b R a ∧ a S c〉

and division:

c(S / R)a ⇔ 〈∀ b : a R b : c S b〉

(References [Aarts et al., 1992; Backhouse, 2004] give a comprehensive account of
how to structure the calculus of binary relations around Galois connections such as the
one just above.) Since relational composition is associative, it should be clear that the
calculation of relational equality

(S / R) / U = S / (U ◦ R) (1.9)

would be made along the very same steps as in inferring (a÷b)÷c = a÷(c×b) above
— despite the fact that the calculated equality is far less immediate once its meaning
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is spelt out: it actually means, for all a, b, the equivalence

〈∀ j : aUj : 〈∀ k : jRk : bSk〉〉 ⇔ 〈∀ k : 〈∃ j : aUj : jRk〉 : bSk〉

known as the ∀,∃-“splitting rule” [Backhouse, 2004]3.
This capability of dealing with identical structures despite their complexity makes

Galois connections a very powerful and scalable tool. Transposition of results such
as seen above shows the magic of the concept, which turns reasoning about complex
mathematical objects such as those found in theoretical computer science quite simple.

1.2 Objectives

The appreciation of such wide applicability and potential for program reasoning has
led the author to embark on a project whose main aim is the design and implementation
of a proof assistant — the Galculator— solely based on Galois connections, their
algebra and associated tactics such as (1.6) above.

The main objectives are:

• Integrate Galois connections with fork algebras and effectively use them in equa-
tional formal proofs by adding indirect equality as inference rule.

• Define a domain-specific language (to be named Galois) for expressing formal
proofs based on Galois connections and fork algebras. The formal syntax and
semantics of the language should be a direct consequence of the theoretical al-
gebraic concepts.

• Develop a front-end for Galois and implement a prototype of a proof assistant
(the actual Galculator) based on the equational use of Galois connections and
fork algebras. The prototype should be publicly available from the project’s
home page4.

• Exploit the state-of-the-art technology of the Haskell [Peyton Jones, 2003] pro-
gramming language such as generalized algebraic data types, existential data
types, parsing combinators, strategic term rewriting combinators and polymor-
phic type representation,. . . , in the development of the proof assistant prototype.

3Section 2.2 and Appendix B provide more details about quantification and its rules.
4http://www.di.uminho.pt/research/galculator
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As a foretaste of what is going to be presented in this dissertation, let us go back
to the example of Section 1.1.2 and see how our prospective Galculator and Galois

DSL can be used to conduct this proof using fork algebraic terms instead of point-wise
operations. We can define a module with the operations and the axioms (and possibly
additional theorems) of natural numbers arithmetics. However, here we just present
the fragment useful for this proof.

We start by declaring (using Galois syntax) multiplication Mul and division Div

as binary functions on natural numbers and Leq as a partial order on natural numbers.

Mul : Nat <- Nat >< Nat;

Div : Nat <- Nat >< Nat;

Leq : Ord Nat;

In this proof, the only axiom we need about the declared operators is the associa-
tivity of multiplication:

Axiom Mul_assoc := Fun [Mul<a> . Mul<b>] = Fun [Mul<Mul<a,b>>];

By now, this definition may seem awkward but it will be explained latter on. Notation
Mul<a> means that the right argument of the multiplication is fixed with value a (this
is called the right section). In the case Mul<a,b> both arguments of multiplication are
fixed. The Fun [...] notation is used to embedded functions on relations as required
by the type system.

The point-free proof further requires two additional axioms of fork algebras: the
associativity of composition and the contravariance of converse and composition:

Axiom Comp_assoc := (r . s) . t = r . (s . t);

Axiom Contravariance := (r . s)* = s* . r*;

Finally, the Galois connection given by Equation (1.3) is declared by stating the
two adjoint functions and the two associated partial orders:

Galois Whole_division := (Mul<b>) (Div<b>) Leq Leq;

where Mul<b> represents the (×b) adjoint, Div<b> represents the (÷b) adjoint and
Leq represents the 6 order.

After declaring the theory, we can use the interactive proof assistant to build the
proof. Another alternative is to declare the statement to prove as a theorem so that it
can be used later on. For this purpose, a sequence of proof steps must be provided so
that Galculator can verify its validity:
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Theorem Div_mult := Fun [Div<c> . Div<b>] = Fun [Div<Mul<c,b>>]

{ indirect_left Leq > left >

inv Comp_assoc > once inv shunt Whole_division >

Comp_assoc > once inv shunt Whole_division >

inv Comp_assoc > once inv Contravariance >

once Mul_assoc > once shunt Whole_division >

indirect_end > qed }

Details about the meaning of scripts of this kind will be given in due time. For the
moment, it suffices to tally the script’s step with the calculation provided earlier on.
Some individual steps (indirect_left, indirect_end, left) are related to the
use of indirect equality; qed completes the proof script. The other steps are either the
application of the axioms, or the properties of the Galois connection (1.3) using a proof
strategy labeled by keyword once. Individual steps are combined with sequential
composition and follow the same structure as the calculational version.

1.3 Structure of the dissertation

Part I. The first part concerns the basic theoretical concepts necessary to understand-
ing the design of the Galculator prototype.

Chapter 2. We discuss related work and introduce the notation standards adopted in
the rest of the document. We also discuss the proof format and some proof tech-
niques. Finally, we give a short overview of the Haskell programming language.

Chapter 3. We explain the basic concepts of term rewriting systems upon which
strategic rewriting systems are introduced.

Chapter 4. The concept of a fork algebra is presented as extension of that of a relation
algebra, itself an extension of Boolean algebras. The use of these algebras leads
to a point-free calculus of relations and the introduction of a point-free transform
between the logical level and the relational level.

Chapter 5. Galois connections, their algebra and properties are described.

Chapter 6. Some examples and applications of Galois connections are described.
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Part II. The second part of this dissertation describes the design of the Galculator

prototype.

Chapter 7. The design of the Galois language is discussed together with the definition
of its syntax and semantics.

Chapter 8. We theoretically justify the design of the Galculator resorting to the con-
cepts introduced in the previous chapters.

Chapter 9. We present a description of the Galculator prototype using the Haskell

programming language.

Chapter 10. We draw conclusions and evaluate our work. Furthermore, we discuss
some open questions and possible future work.

Appendix A. This provides additional proofs of some results mentioned in the text.
These have been separated from the main text wherever not essential to under-
standing the main results. Another reason to move these proof into an appendix
is that, in the first chapters we provide proofs using proof techniques, namely
point-free style, not yet introduced in the main discussion at that point.

Appendix B. The summary of rules associated with the manipulation of quantifiers is
provided.

Index of concepts. For quick reference, we provide an index with references to the
places where the main concepts are introduced.
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Chapter 2

Preliminaries

This chapter is intended as a kind of “warming up” for the rest of the dissertation.
Starting from a summary of related work, it discusses notation and proof conventions
to be adopted in chapters to follow. Finally, a short introduction to Haskell is provided
which should help “non-Haskellers” in understanding the code examples.

2.1 Related work

In this section, several systems or works related with Galculator are described. Their
comparison with Galculator will be postponed to Section 10.3, after the complete
design of the prototype has been discussed.

aRa. aRa [Sinz, 2000] is an automatic theorem prover for relation algebras. It has
a front-end to translate relation algebraic formulas to Gordeev’s Reduction Predicate
Calculi logic. Thus, relation algebraic formulas are translated to logical sentences
and proved using logic. aRa implements a set of simplification rules and reduction
strategies for these calculi in order to automatically derive proofs.

RALL. RALL [von Oheimb and Gritzner, 1997] takes a similar approach to aRa al-
though no translation is actually performed. Relation operators are formalized di-
rectly in Isabelle/HOL offering interactive and automatic proving facilities. Unlike
aRa, RALL checks for type-correctness of all formulas.

17
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RELVIEW. RELVIEW [Behnke et al., 1998] is a system for manipulation of relation
algebras. All data are represented as binary relations using an efficient internal rep-
resentation and optimized algorithms perform relational operations. Relations have to
be explicitly defined and therefore, RELVIEW only works with concrete finite cases.

[Höfner and Struth, 2008]. Höfner and Struth [2008] propose the use of “off-the-
shelf” automated theorem provers in order to prove theorems of relation algebras in-
stead of special purpose approaches. According with the authors, more than one hun-
dred theorems, many of them non-trivial, have been proved from an axiomatization
of relation algebra using Prover9. Prover9 is the successor of the Otter Prover and is
described as “a resolution/paramodulation automated theorem prover for first-order

and equational logic” [McCune, 2009]. The approach includes also the use of Mace4

[McCune, 2009] to find counterexamples and avoid unnecessary search of proofs of
invalid propositions.

2LT. 2LT [Cunha et al., 2006b] is aimed at schema transformation of both data and
migration functions in a type safe manner. Further developments deal with calculat-
ing data retrieving functions in the context of data schema evolution [Cunha et al.,
2006a] and invariant preservation through data refinement [Alves et al., 2008]. 2LT

is not a prover: it calculates data and functional transformations using a correct-by-
construction philosophy.

PF-ESC. This tool performs point-free extended static checking [Necco et al., 2007]
using the relation calculus to simplify PF-transformed proof obligations. Galois con-
nections are used implicitly in the underlying calculus as rewriting rules. Representa-
tions of relations in PF-ESC are strongly typed. Its design is inspired on 2LT.

Proof processor system. Bohórquez and Rocha [2005] advocate the use of the cal-
culational approach proposed by Dijkstra and Scholten in teaching discrete maths.
Based on the E logical calculus, a tool was developed in Haskell to exploit equational
proofs written in the Z notation [Spivey, 1989]. The system helps the user in detecting
errors in proofs and suggesting valid deductive steps.

Galois connections in Coq. Pichardie [2005] presents a representation of Galois
connections in Coq [Coquand and Huet, 1988] developed in the context of work on
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abstract interpretation. Adjoints are defined over complete lattices (a stricter require-
ment than in the general theory). Proofs of the general properties that Galois connec-
tions enjoy are defined in order to be executed in Coq.

2.2 Notation

In this section, we provide an overview of the notation used throughout this document.
We also briefly discuss the importance of adopting good notation standards. Readers
can skip this section in a first reading and return whenever missing some notational
detail.

2.2.1 Notation — Is it really important?

Stewart [1992] tells the story about someone who said that a certain theorem about
prime numbers could never be proved because there was no good notation for prime
numbers. Carl Friedrich Gauss took the problem and proved it in five minutes, adding
that what the other man needed were notions and not notations. This little story re-
mind us of an essential point: ideas are the essence of mathematical reasoning and
notations do not prove theorems. However, a good notation to represent and reason
about problems is, without any doubt, important: it is hard to imagine someone per-
forming complex calculus with Roman numerals although they are equivalent to the
Arabic ones.

Leibniz and Euler established part of the modern standard mathematical notation
as a simplification of previous notations, making it much more symbolic and compact.
However, further developments in Mathematics posed new challenges which led to the
introduction of new notations or adaptations of the classical one. The consequence is
the existence of several variations (more or less distant) of the same notation. This
poses additional difficulties to the readers, specially because notations are rarely ex-
plained.

Another problem occurs when notations evolve without careful thinking and their
connection to the application subject is lost. This way, notation can become an obstacle
to the understanding of the underlying ideas. This is often the case when notation
become extremely “overloaded”, denoting a possible lack of abstraction.

However, we must bear in mind is that a perfect notation does not exist. Depending
upon its context of use, a notation may be adequate or not: it is always a trade-off
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between different factors.

Computer science, in general, and the construction of programs by calculus, in
particular, impose some challenges to the design of a notation to handle them. Roland
Backhouse is one of today’s most active computer scientists concerned with designing
a notation suitable for program construction. Backhouse [1989], which was inspired
by Bird [1988] and Meertens [1986], provides an excellent discussion about the im-
portance of notation in proofs. Backhouse [1988, 2004] provide extra details about the
subject.

2.2.2 General principles

In this document, we follow the principles advocated by Backhouse [2004] namely:

• Notation should be uniform and consistent.

• Operator symbols should try to capture the meaning of the represented opera-
tions in an intuitive way. Dual concepts should be represented by symbols that
resemble the duality, just like inverse concepts can be expressed using mirror
symbols.

• Infix notation should be reserved to associative operators. Thus, we can drop
parentheses without ambiguity and exploit the associativity property.

• Symmetric symbols should be chosen to denote symmetric operations and asym-
metric symbols to denote asymmetric operations. However, sometimes the stan-
dard notation may force us to deviate from this guideline.

• Different concepts which share common properties can be overloaded, i.e., they
can share the same symbol provided that it is clear from the context which one
is being used and ambiguities are not possible.

Layout and precedence are also important to help the understanding of the reader:

• Precedences of the operators should be natural: the reader should not have to
always check a precedence table to understand the meaning of an expression.
For instance, one expects infix operators to have lower precedence than prefix
ones.
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Moreover, dual or inverse operators should have the same precedence because
they denote equivalent concepts. Parentheses should be explicitly used to dis-
ambiguate expressions.

• Expression layout and spacing have no formal meaning. However, they are im-
portant to help the understanding of the expressions and should be consistent
with the precedence of the operators.

• In an expression, it should always be clear the scope in which a certain definition
is valid.

2.2.3 Notation used in this dissertation

In the following chapters, concepts will be introduced along with their notation speci-
fying. In this section, we discuss the notation that is general and common throughout
the whole document.

Quantification. Our notation deviates from the standard when dealing with quantifi-
cation. We follow the uniform treatment presented in Backhouse [2004] by adopting
pattern

〈
⊕

v ∈ type : range : term〉

where

•
⊕

is the quantifier symbol associated with some binary associative and com-
mutative operator ⊕.

• v is the bound variable (or dummy variable) associated to the quantifier. The
scope of the binding is delimited by the angle braces 〈. . .〉. Lists of bound vari-
ables are also allowed.

• The type indication is optional and provides set information about the bound
variable(s).

• The range is a predicate on the bound variable which determines the set of values
for which it is true. When the predicate is not specified, the true predicate is
implicitly assumed.
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Notation

Operator Unit Traditional Uniform

∧ true ∀i.0 6 i 6 n.xi 6 k 〈∀ i : 0 6 i 6 n : xi 6 k〉
∨ false ∃i.0 6 i 6 n.xi 6 k 〈∃ i : 0 6 i 6 n : xi 6 k〉
+ 0

∑n
i=0(k + i2) 〈Σ i : 0 6 i 6 n : k + i2〉

× 1
∏n

i=1(i− 1) 〈Π i : 1 6 i 6 n : i− 1〉
∪ ∅

⋃n
i=1 Si 〈

⋃
i : 1 6 i 6 n : Si〉

Table 2.1: Illustration of the correspondence between traditional notations and the
uniform notation for quantification.

When the range is empty (the predicate always evaluates to false), the quantifi-
cation is well-defined only if ⊕ has identity.

• The term is the expression being evaluated. It is a function from the range of the
bound variable (although the bound variable may not occur in the term).

Backhouse [2004] summarizes the semantics of the quantification as follows: “The

value of the quantification is the result of applying the operator ⊕ to all the values

generated by evaluation the term at all instances of the dummy in the range.”

This notation allows us to unify several different traditional notations in just one
representation, as illustrated in Table 2.1. One of the advantages over traditional no-
tations is the explicit indication of the scope of the bound variable, which eliminates
ambiguities. Another positive point is the ease way quantifications are nested. But
perhaps the most important aspect of this notation is the existence of an uniform set of
calculation rules which allow for the manipulation of expressions [Backhouse, 2004].
Appendix B presents an overview of those rules.

Generalized quantification. The same notation can be uniformly extended to se-
quences and sets, by changing the properties imposed to the operator ⊕ [Backhouse,
1988]. In fact, our previous definition of quantification is equivalent to the case where
it is defined over a bag of values. Table 2.2 provides the generalization of quantifica-
tion to sequences, bags and sets as a consequence of the properties of the associated
operator.
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Generalization Notation Properties of ⊕

Sequence [
⊕

v ∈ type : range : term] Associative
Bag 〈

⊕
v ∈ type : range : term〉 Associative and commutative

Set {
⊕

v ∈ type : range : term} Associative, commutative
and idempotent

Table 2.2: Generalization of the quantification.

Sets and sequences. Omission of the quantifier symbol in the unified notation pre-
sented leads to a definition by comprehension of a set or sequence. For instance, the
following set comprehension in the traditional notation

A = { n2 | n ∈ N ∧ 5 6 n 6 13}

is defined, in the unified notation, as

A = { n ∈ N : 5 6 n 6 13 : n2}

The definition of sequences by comprehension requires additional conditions since
the order in which the bound variable is evaluated matters. Thus, the range must
implicitly define a linear order1, i.e., the values that the bound variable can take form
an ascending (or descending) chain. The order of the output list values follows from
the evaluation of the bound variable in the term according with the order implicit in
the range.

Functions. Traditional lambda notation for functions [Church, 1936] suffers from
some of the same drawbacks as traditional quantifier notation. Thus, we use a similar
notation for functions:

〈 v ∈ type : range : term〉

which is equivalent to the traditional λv : type.term. The range information is not
used in the lambda notation, but its interpretation is similar to the one provided for
quantifications: it specifies the domain of the (thus partial) function.

In the case of function operations like, e.g., fixed point operators, we will write

1Different kinds of orders are discussed in Section 4.1.
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〈µ v : range : term〉 instead of µ〈 v : range : term〉. This is consistent with our
quantifier notation because v is the variable associated with the recursion and thus it is
bounded to the fixed point operator.

2.3 Proofs

When talking about proofs, we should usually distinguish between informal and formal
proofs as anticipated in the previous chapter. Due to their complexity, formal proofs
are usually built using software programs like theorem provers and proof assistants.
Their verification is also automatically performed by software proof checkers.

However, most proofs are informal. Mathematics has a long tradition of informal
proofs and to most people this is their only concept of proof. Lamport [1995] argues
that in the last 300 years the proof structure has not evolved and that proofs in text-
books are usually hard to read. This difficulty often causes errors to go unnoticed even
after careful reviewing. The same author willingly declares: “Anecdotal evidence sug-

gests that as many as a third of all papers published in mathematical journals contain

mistakes — not just minor errors, but incorrect theorems and proofs.”

In this section, we address this problem and describe our proof presentation format
which can be used both in formal and informal proofs. We also discuss the use of some
proof techniques.

2.3.1 Proof presentation format

Hierarchical proof format. Lamport [1995] proposes a hierarchical proof format
inspired by natural deduction in order to prove the correctness of algorithms. He argues
that structure is crucial to these understanding, and although it does not eliminate all
the errors, they are greatly reduced.

Equational proofs. The proof presentation format we chose is substantially differ-
ent from the one proposed by Lamport [1995], however sharing some of its principles.
Such a proof format is extensively used in [Backhouse, 1988; Aarts et al., 1992; Back-
house, 2004] which is based on the so-called “calculational style” proposed by Feijen
[Dijkstra and Feijen, 1988] and further developed by Dijkstra and Scholten [1990].
One can use this proof format either in informal proofs or in formal proofs. Gries and
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Schneider [1995] define a deductive system for the propositional logic using the cal-
culational style and show its equivalence to the Hilbert proof style. Lifschitz [2001]
establishes a deductive system for predicate logic.

Leibniz principle. Equational proofs are based on a very simple, yet powerful, prin-
ciple due to Leibniz. Basically, if we have two equal terms and we replace the occur-
rences of one for the other in some expression, the truth of the expression does not
change.

Proof steps. Each proof step establishes an equality between two expressions and it
is justified by a hint:

expr1
= { Hint }

expr2

Hints. Hints can be formal or semi-formal. Formal hints refer to an equality like
A = B which justifies the equality in the split according to the Leibniz principle, i.e.,
expr1[A] = expr2[B]. We may give the explicit equality or refer to the number of an
already presented one. In either case, we try to provide textual in-place information to
help the reader in following the reasoning.

Sometimes, we want to omit some details because they are uninteresting, or be-
cause they are commonplace, such as the use of associativity. In other occasions, we
just want to use standard properties of operators without defining these explicitly. In
this case, we use semi-formal hints instead. However, we should be careful about
semi-formal hints because we may be introducing errors.

Proof format. A proof with two steps will look like
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Proof

E[A][B]

= { A = C }

E[C][B]

= { B = D }

E[C][D]

�

The complete proof is based on the transitivity of equality. Thus, the first and the last
expressions are equal, i.e., E[A][B] = E[C][D].

Equivalence instead of equality. When dealing with logical expressions we should
use logical equivalence instead of equality. Backhouse [2004] eliminates the use of
logical equivalence in proofs and uses equality everywhere. The author considers log-
ical expressions as Boolean values, and thus equality is well-defined. However, we
will not deviate thus far from the traditional notation and we will still use the logical
equivalence operator.

Other relations. Sometimes, we need to establish inequalities rather than equalities.
For instance, we want to use the at most (6) order of integers in a proof:

Proof

a

6 { Hint }

b

6 { Hint }

c

�

Then again, we should read the proof conjunctively, i.e., a 6 b and b 6 c. Since at

most is transitive, we can again conclude that a 6 c. We can even mix steps involving
the at most order with steps using equality because the transitivity is still preserved.
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However, it is not possible to mix steps involving the at most order with steps using
the at least order.

The same general principles apply to the use of logical implication and its connec-
tion with the use of logical equivalence.

Adoption of the format. This proof format corresponds to the natural notion of
replacing equals by equals and to one of the simpler kind of mathematical proof: the
direct proof. Despite its simplicity, this format has not achieved general acceptance,
although some positive experiences exist. Bohórquez and Rocha [2005] report how
this proof style has been successfully used to teach discrete mathematics to higher
education students.

Lamport [1995] concludes that mathematicians are conservative in the way they
write proofs and that they are not prepared to consider better ways of doing it. He
also thinks that computer scientists can be more open to new proof formats but, since
incorrect results are not considered “embarrassing”, there is not a real will to change.

2.3.2 Proof techniques

In order to derive proofs, mathematicians have invented a wide range of techniques. It
turns out that while some of them are very useful, others should be avoided. Angluin
[1983] provides a humorous account of non-recommended proof techniques that, when
carefully analyzed, can be insightful.

In this section, we will discuss some proof techniques which are related with our
work, either because we want to use them or to avoid them.

Mutual inclusion (vulg. “ping-pong”). In proofs by mutual inclusion, also known
as “ping-pong” proofs, one tries to establish an equivalence between two expressions
by splitting it in two implications. That is, a⇔ b is proved if and only if a⇒ b and
a⇐b are so. Equivalently, an equality can be split in two relations of an anti-symmetric
order. For instance, to establish a = b it is sufficient to prove a v b and b v a, where
v is an anti-symmetric order.

This kind of proof is frequently abused when establishing equivalences, often over-
shadowing the equation nature of the reasoning. In this document, we avoid proofs by
mutual inclusion whenever they are not strictly necessary.
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Proofs by mathematical induction. Proofs by mathematical induction, also known
just as proofs by induction, are used to establish results in denumerable infinite well-
founded structures. Well-founded structures arise from the existence of binary well-
founded relations (we will discuss this subject with more detail in Chapter 3). In-
tuitively, a relation is well-founded if it does not allow infinite descending chains of
elements.

Proving a property by induction involves two steps:

1. The base case — We must show that the property holds in the basic cases, i.e.,
in the minimum values of the chains.

2. The inductive step — We assume that the property holds for an arbitrary value.
Then, taking this assumption as (induction) hypothesis we must prove that the
property also holds for its successors with respect to the well-founded relation.

The ability to cope with denumerable infinite structures makes induction a very
powerful and popular mathematical device, in particular those over the natural number
(N). However, proofs by induction may become very complex and hard to handle.

Strengthening. A strengthening step occurs when the statement to prove is
“stronger” than the original one, thus implying it. In our proof convention, we in-
troduce strengthening steps by using the implication sign in the form ⇐, be read as
“if”:

Proof

a

⇔ { Hint }

b

⇐ { Hint }

c

�

Strengthening steps are sometimes necessary but should be avoided because impli-
cation has not the same “nice” properties of equivalence. In fact, strengthening steps
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lose information and can lead us to too strong conditions which are eventually impos-
sible to prove. The extreme case happens where c = false, the proof being still valid
but meaningless [Backhouse, 2004].

Weakening. A weakening step occurs when the statement to prove is “weaker” than
the original one, thus being implied by it. In our proof convention, we introduce
weakening steps by using the implication sign in form⇒ be read as “only if”,

Proof

a

⇔ { Hint }

b

⇒ { Hint }

c

�

Proving the validity of the weaker statement does not give us any useful informa-
tion about the validity of the original statement. However, weakening steps are useful
to prove the falsity of a statement. When c = false, it implies that a = false also.
Hoogerwoord [2001] uses weakening to derive an elegant equational proof that

√
p is

not rational, for a prime number p (Backhouse [2003] presents a contrapositive ver-
sion of this proof where equality is replaced by disequality and weakening steps are
replaced by a strengthening ones).

2.4 Brief overview of Haskell

This section provides a brief introduction to the functional programming Haskell [Pey-
ton Jones, 2003] language, ranging from simple notation conventions to the advanced
features of its type system that will play a major role later in this dissertation. This
includes a brief explanation of the potential of using functional programming in the
implementation of domain specific languages.

For readers interested in learning more about Haskell, references [Thompson,
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1996; Bird, 1998] are classical starting points; the official web page2 is also a valu-
able source of information providing pointers to many books, articles and tutorials.

2.4.1 Haskell

Haskell is a purely lazy functional language [Peyton Jones, 2003]. It is strongly-typed

meaning that programs cannot fail due to run-time type errors. Type checking is per-
formed statically even if type declarations are not provided, thanks to type-inference.

Data types. In Haskell, every object has an associated type. Primitive data types in-
clude integers (Int for machine word-sized integers and Integer for arbitrary precision
integers), floating point numbers (Float and Double with different precisions), char-
acters (Char ) and Boolean values (Bool ). Data type constructors are used to build-up
more complex types from the primitive ones. For instance, the Cartesian product of
arbitrary types of objects a :: A (read “object a has associated type A”) and b :: B is
given by the rule

a :: A b :: B (×)
(a, b) :: (A,B)

The type of ((1,’a’),True) can be inferred during the compilation phase as follows:

1 :: Integer ’a’ :: Char
(×)

(1,’a’) :: (Integer ,Char) True :: Bool
(×)

((1,’a’),True) :: ((Integer ,Char),Bool)

The type of an object may not be unique as we shall see next when polymorphism
is discussed.

Functions. In functional programming, functions resemble mathematical functions
where argument values are transformed in results without any side-effects. This means
that when applied to the same value, the function always returns the same result.

The typing rule for functions is the following, for arbitrary types A and B :

f :: A→ B a :: A
(→)

f a :: B

2http://www.haskell.org
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This means that a function cannot be applied to an argument with the wrong type.

For instance, the squaring function on integers f(x) = x× x can be declared as

square :: Integer → Integer

square n = n ∗ n

Since this should be regarded like a mathematical function, instances of the left-hand
side of the equation can be replaced by corresponding instances of the right-hand side,
i.e., whenever we have square 3 we can replace it by 3 ∗ 3.

Functions are first-order citizens meaning that they are treated like other ordinary
data.

Recursive functions. Functional programming treats iteration as recursion. A re-
cursive function uses itself in its own definition. A well-known recursive function is
factorial which can be defined as the following:

factorial :: Integer → Integer

factorial 0 = 1

factorial n = n ∗ factorial (n − 1)

Since we can replace left-hand sides of equations by the right-hand sides, the factorial
of 3 can be computed as:

factorial 3

= 3 ∗ factorial (3− 1) = 3 ∗ factorial 2

= 3 ∗ (2 ∗ factorial (2− 1)) = 3 ∗ (2 ∗ factorial 1)

= 3 ∗ (2 ∗ (1 ∗ factorial (1− 1))) = 3 ∗ (2 ∗ (1 ∗ factorial 0))

= 3 ∗ (2 ∗ (1 ∗ 1))

= 3 ∗ (2 ∗ 1)

= 3 ∗ 2

= 6

This example also illustrates the use of pattern-matching, i.e., the possibility of
matching values or patterns of values in the left-hand side of the equations. In this
case, factorial 0 is used when the argument is 0 while factorial n matches all the
remaining cases.
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Parametric polymorphism. The language supports parametric as well as ad-hoc

polymorphism. In parametric polymorphism type variables can range over the universe
of types. For instance, the identity function is defined in Haskell as

id :: a → a

id x = x

meaning that it “ignores” the type of its argument. It is parametric because a will be
instantiated with the actual type of the argument when this is provided. For instance,
expression id True will instantiate a to Bool and return a value of type Bool according
with the inference

id :: a → a True :: Bool (→)
id True :: Bool

where the typing rule for functions is relaxed to accept type variables instead of just
(arbitrary) fixed types.

Ad-hoc polymorphism. Ad-hoc polymorphism, also known as function overload-

ing, allows for functions to be applied to arguments of different types which this time
behave differently according of the type of their arguments. In Haskell, ad-hoc poly-
morphism is implemented using type classes. For instance, the equality class

class Eq a where

(≡), (6≡) :: a → a → Bool

defines two class functions: ≡ for equality and 6≡ for inequality. Every instance of
the Eq class must provide an implementation of the two functions (in fact, only one
of them is needed because the other is, by default, its negation). For instance, we can
declare Boolean values as instances of the equality class as

instance Eq Bool where

True ≡ True = True

False ≡ False = True

≡ = False

where the notation matches all the remaining cases.
Type classes allow for generic code. For instance, we can define a generic function

which removes duplicates from a list, providing that the type of its elements is an
instance of the equality class:
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nub :: Eq a ⇒ [a ]→ [a ]

where Eq a ⇒ . . . indicates that nub uses the equality function and thus requires
instances of Eq .

Higher-order functions. Since functions are treated as first-order objects in Haskell,
they can be used whenever a value can, including as arguments of other functions.
Functions which take a function as argument and/or return a function has result are
known as higher-order functions. These allows for building common patterns such as,
for instance, the map higher-order function

map :: (a → b)→ [a ]→ [b ]

which takes a function from values of type a to values of type b, and applies it to every
elements of a list of type [a ] obtaining a list of type [b ].

Given a list of integers, suppose we want to increase all its elements by one unit.
This can be done by the following function which resorts to the above map function:

increase :: [Integer ]→ [Integer ]

increase = map (λx → x + 1)

Expression λx → x + 1 uses the so-called lambda notation which allows for intro-
ducing an unnamed function where the left-hand side of the expression declares the
argument variables and the right-hand side specifies the function. This notation is in-
spired on the lambda calculus [Church, 1936] where this function would be written as
λx.x + 1 (or, using our uniform notation introduced in Section 2.2, as 〈 x :: x + 1〉).
For instance, given the list [1, 2, 3] we have that increase [1, 2, 3] = [2, 3, 4].

Recursion patterns can be defined as higher-order functions, allowing for reusable
code and modularity. Moreover, patterns help keeping the concepts clear and orga-
nized.

Currying and uncurrying. Haskell functions take just a single argument. In fact, a
function with several arguments, such as f :: a → b → c, is a function from values
of type a into functions of type b → c. More precisely, its type is f :: a → (b → c).
This subtle difference allows for a mechanism of partial application: given a value
a ′ :: a, f a ′ is function “waiting” for values of type b to produce results of type c, i.e.,
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f a ′ :: b → c. Thus, given a value b ′ :: b, expression (f a ′) b ′ denotes a value of type c

(the parenthesis around (f a ′) can be omitted).
The situation is different when the argument of a function is a pair. For instance, let

us suppose a new function f ′ identical to function f above, the only difference being
that its arguments are paired, i.e., f ′ :: (a, b)→ c. Function f ′ has only one argument,
requiring that both values are provided simultaneously in order to compute the result
of type c.

Currying is a technique which allows for partial application of functions whose
arguments are pairs. The inverse of currying is known as uncurrying. Haskell offers
two high-order functions to this purpose:

curry :: ((a, b) → c)→ (a → b → c)

uncurry :: (a → b → c)→ ((a, b) → c)

Using functions f and f ′ introduced above, we have that curry f ′ = f and
uncurry f = f ′.

Sections. The situation when a function with more than one argument is partially
applied, i.e., one of its arguments is specified, is known as sectioning. A useful func-
tion when sectioning is flip, which allows for reversing the order of the arguments of
a curried function:

flip :: (a → b → c)→ (b → a → c)

Thus, given a curried function f :: a → b → c and values a ′ :: a and b ′ :: b, the
left section of f is defined as f a ′ :: b → c and the right section of f is defined as
flip f b ′ :: a → c.

Uncurried functions can be sectioned resorting to the curry function. Thus, for an
uncurried function f ′ :: (a, b) → c, the left section is defined as curry f ′ a ′ :: b → c

and the right section is defined as flip (curry f ′) b ′ :: a → c.
For a more concrete example, let us consider the uncurried version of the subtrac-

tion function on integers:

subtract :: (Int , Int)→ Int

subtract (a, b) = a − b

For the value 5, the left section of this function is curry subtract 5 which is equiv-
alent to function λx → 5 − x . For the same value, the right section of subtract is
flip (curry subtract) 5 which is equivalent to function λx → x − 5.
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Algebraic data types. Algebraic data types (ADTs) are the mechanism used in Ha-

skell in order to declare new data types. An ADT declaration specifies how inhabitants
of the type can be built, i.e., its constructors, like in an algebraic definition. ADT no-
tation in Haskell is particularly effective in the sense that it subsumes parameterized,
union, enumeration and recursive types in just one device. For instance,

data List a = Nil | Cons a (List a)

declares the recursive parametric type of finite lists, where Nil is the empty list and
Cons the list append constructor function. A list of integers List Int takes the form
Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))) which is written in Haskell’s built-in
notation as 1:(2:(3:(4:[ ]))), or simply as [1, 2, 3, 4]. The type variable a is determined
by the type of the elements of the list, implying that all of them share the same type.
Thus, the list [1,True ] is not valid because of the conflicting types [Int ] and [Bool ].

Haskell allows for pattern-matching on constructors of ADTs. For instance, we can
define the function that returns the number of elements of a list resorting to pattern-
matching on ADTs:

length :: List a → Integer

length Nil = 0

lenght (Cons xs) = 1 + length xs

or using the Haskell built-in syntax

length :: [a ]→ Integer

length [ ] = 0

length ( : xs) = 1 + length xs

Generalized algebraic data types. Generalized algebraic data types (GADTs) pro-
vide an extension to this device. They extend the capabilities of ADTs by introducing
a new syntax for declarations where constructor types are explicitly spelt out. For
instance, List a will be written in the GADT format as follows,

data List a where

Nil :: List a

Cons :: a → List a → List a
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using GADTs notation. What is this useful for?

Unlike ADTs, GADTs allow for restricting the result type parameter of each con-
structor. A “classical” example of the use of GADTs is the construction of a type
representation mechanism [Baars and Swierstra, 2002; Cheney and Hinze, 2002]:

data Type a where

Int :: Type Int

Bool :: Type Bool

List :: Type a → Type [a ]

· × · :: Type a → Type b → Type (a, b)

. . .

If ADTs were used, the return type of all the constructors above would be bound to
Type a; with GADTs each such type is restricted to a more precise type. The value
List Int has type Type Int while the value List Bool has type Type Bool . This means
that a is no longer a parameter; it has become an index type which reflects the type of
the term built. Thus, for the value List Int the index type a takes the type [Int ] while
in for List Bool it takes the type [Bool ].

Like in ADTs, pattern-matching can be used with constructors of GADTs.

Singleton types. The above example introduces another feature of GADTs: the pos-
sibility of use of singleton (or representation) types. As Sheard et al. [2005] put it,
“every singleton type completely characterizes the structure of its single inhabitant,

and the structure of a value in a singleton type completely characterizes its type”.
More precisely, a singleton type establishes a bijection between its inhabitants and
their respective type. We should notice that not every GADT definition is a singleton
type but only those for which this property holds. In the above examples, Type is a
singleton type while List is not.

For instance, constructors List Int and List Bool are the only possible ways of
building values of type Type [Int ] and Type [Bool ], respectively. Conversely, given
a value type Type [Int ] (resp. Type [Bool ]) we know that this value must necessarily

be List Int (resp. List Bool ).

As we will see in the sequel, singleton types allows for a reflection mechanism on
the Haskell type system, and for introducing dynamic typing in a static context.



2.4 Brief overview of Haskell 37

Existential types. Another important feature of the Haskell type system are existen-

tial types. These allow for the introduction of arbitrary types into type definitions,
hiding them from the outer context. A traditional example of this device is the defini-
tion of a list with elements of different types. We can define an existentially quantified
type as follows:

data T = ∀a. MkT a

It should be noticed that the quantified variable a only exists in the context of the
quantification, it is not a parameter of the type T . The Haskell syntax is somewhat
misleading since an universal quantifier is used. However, this definition is isomorphic
to

data T = MkT (∃a. a)

written in Haskell pseudo-code [Wikibooks, 2009].
The intuition is of quantification over types is similar to quantification in logic.

The universal quantification corresponds to the intersection (meet, and) of types while
existential quantification corresponds to union (joint, or) of types. Thus, universal
quantification on types intersects them, i.e., it only allows objects which are common
to all types. In Haskell types are lifted meaning that there is a bottom element, denoted
as ⊥, which belongs to every type. This is the only object which belongs to the inter-
section of all types. The existential quantification, by the other hand, join all the types,
meaning that it allows objects of any type.

Using the type T , a heterogeneous list can be built, e.g.,

[MkT 1,MkT [True,False ],MkT ’a’ ] :: [T ]

However, values cannot be taken outside the constructor because they are existentially
quantified. Since they can have any type that would break static type safety. Moreover,
no operation can be performed because the type is too general. Nevertheless, using
type classes the existentially quantified variable can be constrained. For instance, if
we restrict the quantified types to instances of the Show class (this provides a method
show :: Show a ⇒ a → String for building string representations) we can define

data T ′ = ∀a. Show a ⇒ MkT ′ a

This is equivalent to the pseudo-code [Wikibooks, 2009]
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data T ′ = MkT ′ ∃a. Show a ⇒ a

This means that we are constraining the union of types to only those which are in-
stances of the Show class. Thus, they now have some kind of common behavior which
can be exploited. A heterogeneous list of this type can be traversed in order to obtain
string representations of its elements, i.e., it is possible to define a function showT ′ of
type [T ′ ] → String by applying the method show to each element of a list of type
[T ′ ].

GADTs and existential types. GADTs also subsume the use of existential quanti-
fied types. Variables which appear in the type constructors but do not appear in their
return type are existentially quantified. Thus, type T above can be defined as follows,
giving an explicit signature to its constructor:

data T where

MkT :: a → T

while type T ′ can be defined as

data T ′ where

MkT ′ :: Show a ⇒ a → T ′

Although this is a different way of defining an existential data type, the constructors
(MkT and MkT ′) can be used exactly as before.

2.4.2 Monads

Pure functional languages have referential transparency and are side-effect free. How
can programming ingredients such as input-output, state updates, etc., that usually
do not accommodate very well in the functional paradigm, be treated in such a side-
effect-free way? The concept of monad arising from category theory and programming
language semantics [Wadler, 1990] has been implemented in Haskell as a mechanism
to deal with such computations.

Definition. Monads are available in Haskell via standard type class

class Monad m where

return :: a → m a

(>>=) :: m a → (a → m b)→ m b
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where >>= is referred to as bind. Every instance of this class should obey the monadic
laws [Wadler, 1990]:

return a >>= f = f a

m >>= return = m

(m >>= f ) >>= g = m >>= (λx → f x >>= g)

Although all instances of Monad must instantiate both functions, very different effects
can be achieved by changing the definitions. Thus, the semantics of programs depend
of the underlying monads.

Syntactic sugar. Haskell provides a do notation similar to an imperative program-
ming style as syntactical sugar for successive binds. Thus, the following expression

m1 >>= (λx1 → m2 >>= (λx2 → . . . >>= (λxn → return (f x1 x2 . . . xn)) . . .))

can be replaced by the equivalent

do x1 ← m1

x2 ← m2

. . .

xn ← mn

return (f x1 x2 . . . xn)

Example (Maybe). The Maybe data type is one of the simpler instances of the con-
cept of monad. Maybe is used to model possibly failing computation and is defined in
Haskell as

data Maybe a = Nothing | Just a

where Nothing represents the failure of a computation while Just indicates success
together with the return value.

The declaration of Maybe as a monad is

instance Monad Maybe where

return x = Just x

Just x >>= f = f x

Nothing >>= = Nothing
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The return method always succeeds returning the input value and is used to inject
values inside the monad. The bind operator keeps the flow of values through success-
ful computations. However, when a failure is found this is propagated through the
remaining computations.

For instance, suppose we want to define a function which returns the head element
of a list. This function is clearly not defined when the input list is empty. The Haskell

implementation of the head function throws a run-time error when it is applied to a
empty list aborting the execution of the program. An alternative would be to test the
input value and return a failure value when a empty list is found:

head ′ :: [a ]→ Maybe a

head ′ [ ] = Nothing

head ′ (x : ) = x

Another well-known partial function example comes from mathematics where dividing
by 0 is not defined. Using Maybe the function which return the multiplicative inverse
of a number can be defined as

inv :: Float → Maybe Float

inv 0 = Nothing

inv x = 1 / x

Thus, we can use monadic code to combine the two functions so we get the multiplica-
tive inverse of the head of a list:

invHead lst = do

h ← head ′ lst

i ← inv h

return i

As expected, the function returns a failure value when applied to an empty list, i.e.,
invHead [ ] = Nothing , or when the head of the list is 0, invHead [0, 2] = Nothing .
Otherwise, it signals the success together with the result: invHead [2, 0] = Just 0.5.
The solution without the monadic code would be less clearer because explicit case
analysis is necessary.

Example (Lists). Lists are another basic and important instance of a monad:
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instance Monad [ ] where

return x = [x ]

xs >>= f = concat (map f xs)

The return method returns a list just containing the input value. The definition of
the bind operator is more complex, requiring the use of the map function introduced
before,

map :: (a → b)→ [a ]→ [b ]

which takes a function from values of type a to values of type b, and applies it to every
elements of a list of type [a ] obtaining a list of type [b ]. Since, by the definition of a
monad, f must have type a → [b ], then map f xs must have type [ [b ] ]. This result is
“flattened” using the function

concat :: [ [a ] ]→ [a ]

which takes a list of lists of the same type and returns a single list. For instance,
suppose we have the following function

idSquare :: Int → [Int ]

idSquare a = [a, a ∗ a ]

which returns a list with the input value and the corresponding square. We can apply
idSquare to all elements of the list [1, 2, 3] and then concat the result3

concat (map idSquare [1, 2, 3])

= concat [ [1, 1], [2, 4], [3, 9]]

= [1, 1, 2, 4, 3, 9]

or simply

[1, 2, 3] >>= idSquare = [1, 1, 2, 4, 3, 9]

Monad transformers. Another advantage of using monads is that computations can
be composed using monad transformers [Jones, 1995]. For instance, adding error
support to a program that already uses the input-output monad amounts to combining
the two monads with a transformer and changing the parts of the program where errors
are generated or caught; everything else remains unchanged.

3Haskell library includes a function which combines concat and map named concatMap.
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Failure monads. Of special importance in this work is the use of MonadPlus and
MonadOr . Although providing different behaviors MonadPlus and MonadOr are
many times confused. Currently, only MonadPlus is part of the Haskell standard
libraries but there is a discussion for reformulating the structure in order to introduce
MonadOr and to group the common failure behavior in MonadZero. (More details
are available from the Haskell wiki4.)

MonadZero. The MonadZero monad is basically used to model failure which is
represented by the method mzero:

class Monad m ⇒ MonadZero m where

mzero :: m a

The definition of MonadZero requires that mzero must be a left zero of the binding
operator:

mzero >>= r = mzero

Both lists and the Maybe data type are instances of MonadZero, being the failure
values the empty list and Nothing , respectively,

instance MonadZero Maybe where

mzero = Nothing

instance MonadZero [ ] where

mzero = [ ]

MonadPlus. MonadPlus extends the behavior of MonadZero with an additive op-
eration named mplus:

class MonadZero m ⇒ MonadPlus m where

mplus :: m a → m a → m a

The definition of MonadPlus requires that mplus must form a monoid structure with
mzero, i.e., mplus must be associative and take mzero as unit:

4http://www.haskell.org/haskellwiki/MonadPlus reform proposal
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a ‘mplus ‘ mzero = a

mzero ‘mplus ‘ b = b

(a ‘mplus ‘ b) ‘mplus ‘ c = a ‘mplus ‘ (b ‘mplus ‘ c)

Moreover, mplus must obey the left-distribution law:

(s ‘mplus ‘ r) >>= t = (s >>= t) ‘mplus ‘ (r >>= t)

This specifies a backtracking behavior, where all the possible combinations are tried.
Haskell’s infix notation a ‘op‘ b is equivalent to op a b, for a binary function op.

Lists are instances of MonadPlus:

instance MonadPlus [ ] where

mplus = (++)

where mplus is just the concatenation operation on lists (++) (e.g., [1, 2, 3] ++ [4, 5] =

[1, 2, 3, 4, 5]). However, Maybe is not an instance of MonadPlus because it fails to
accomplish the left-distribution law.

The Parsec library of parsing combinators [Leijen and Meijer, 2001] to which we
shall resort in Section 9.5 uses MonadPlus .

MonadOr. MonadOr extends the behavior of MonadZero with a left-choice opera-
tor named morelse:

class MonadZero m ⇒ MonadOr m where

morelse :: m a → m a → m a

Like in MonadPlus , the method of MonadOr must also form a monoid structure with
mzero:

a ‘morelse‘ mzero = a

mzero ‘morelse‘ b = b

(a ‘morelse‘ b) ‘morelse‘ c = a ‘morelse‘ (b ‘morelse‘ c)

However, morelse must obey the left-catch law instead:

return a ‘morelse‘ r = return a

This specifies a left biased behavior: the second argument is only tried if the first one
fails.
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Maybe is an instance of MonadOr :

instance MonadOr Maybe where

Nothing ‘morelse‘ ys = ys

xs ‘morelse‘ = xs

Method morelse only returns its right argument if the left one is Nothing . For instance,
Just 1 ‘morelse‘ Just 2 = Just 1 and Just 1 ‘morelse‘ Nothing = Just 1; however,
Nothing ‘morelse‘ Just 2 = Just 2 and Nothing ‘morelse‘ Nothing = Nothing .

Lists are also instances of MonadOr :

instance MonadOr [ ] where

[ ] ‘morelse‘ b = b

a ‘morelse‘ = a

When dealing with the empty list, the behavior is similar to mplus , e.g., [ ] ‘mplus ‘

[1, 2] = [1, 2] and [ ] ‘morelse‘ [1, 2] = [1, 2]. However, when the left list is not empty,
the right list is ignored, e.g., [1, 2] ‘mplus ‘ [3, 4] = [1, 2, 3, 4] and [1, 2] ‘morelse‘

[3, 4] = [1, 2]. This exemplifies how changing the underlying monad can change the
semantics of the program.

2.4.3 GADTs and domain-specific languages

Grammars and parsers are central to computer science. Besides checking for input
correctness, a parser for a given grammar returns a representation where all the syn-
tactical details are omitted, known as abstract syntax tree (AST) (or just syntax tree)
[Aho et al., 1986].

Functional languages resort to ADTs in order to define ASTs: from a grammar
specification it is straightforward to extract an ADT which represents the type of the
corresponding AST. Conversely, every ADT may be seen as a specification of an ab-
stract language. Polymorphic ADTs define families of abstract languages.

Languages can be catalogued as general-purpose or domain-specific. The former
are suited to solve problems in general while the latter are tailored to particular, well-
defined problem domains. They tend to be relatively small (although this is not always
the case) and specialized.

The extra cost of developing a domain-specific language (DSL), due to the need
for infrastructures such as compilers, parsers, etc. are trimmed down by embedding
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the new language into a host language. Such embedded DSLs (EDSLs) are usually
provided in the form of libraries sharing the host language’s infrastructure.

Functional languages are particularly apt to EDSL development thanks to their
natural support for ADTs and the availability of generalized algebraic data types
(GADTs), which offer new possibilities for EDSL implementation. While ADT data
constructors only keep term information, GADT’s constructors add types to terms.
Moreover, as described in Section 2.4.1, the type index of a GADT reflects the type
of the term built. Using this index with a type representation such as the one above it
is possible to have a reflection mechanism and to know terms’ types at run-time. This
allows for type-dependent behavior and dynamic typing. In summary, with GADTs
ill-typed terms are simply not possible to build.

2.5 Summary

This chapter provided an overview of some non-essential although useful subjects to
the rest of this dissertation. Some related systems which inspired the development
of this work were analysed. Later on, after introducing the complete design of the
Galculator, we will compare our approach with this related work.

The description and justification of the used notation and proof techniques are usu-
ally overlooked by most authors. However, in our case, we think it is important to give
it an insight in order to help the reader understand the rest of the text. Moreover, both
play a relevant role in the design of the Galculator, as we shall see in the following
chapters.

Since some parts of this dissertation require the understanding of some Haskell

code, a brief introduction was provided to those readers with no prior knowledge of
the language. This introduction is not intended to be a course on Haskell. Some of the
described concepts like existential data types, GADTs and monads are quite complex,
and usually require some familiarity with functional programming before they can be
fully understood. Thus, even if the reader is not able grasp all the details of these
concepts, he or she should gain some intuition about the way they work.
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Chapter 3

Term rewriting systems and strategic
programming

Term rewriting [Baader and Nipkow, 1998] is a mature field of computer science
spreading through areas such as the implementation of functional and logical pro-
gramming languages, automated deduction, theorem proving, algebraic computation
or decision procedures [Dershowitz, 1993; Baader and Nipkow, 1998]. Simple syn-
tax and semantics, together with nice mathematical properties, makes term rewriting
systems (TRS) attractive for describing and automating computations.

In this chapter, we will cover the basic concepts of TRSs needed in the sequel.
We begin by introducting abstract reduction systems, the more general concept which
TRS systems are particular instances of. Other examples include string rewriting, tree
rewriting, ground rewriting, higher-order rewriting or infinite rewriting.

Last but not least, a particular kind of term rewriting, that of strategic term rewrit-

ing [Visser and Benaissa, 1998], will be introduced.

3.1 Abstract reduction systems

Definition. An abstract reduction system (ARS) is a pair (A,→) where A is a set
and→ is a binary relation on A, usually called reduction relation. Instead of writing
(a, b) ∈ → for elements a and b of A which belong to relation→, it is usual to write
a→ b.

This is a very broad definition since it allows any binary endo-relation to be con-
sidered as a reduction. However, we are usually interested in those relations which

47
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reduce or decrease (in some sense) something in each step. Thus, more important
than the definition itself are the properties that reduction relations should enjoy. Two
properties essential to the study of reduction systems are termination and confluence.

Termination. An ARS is terminating if and only if there is no infinite chain of re-
ductions, i.e., one always reaches, in a finite number of reduction steps, an element
a ∈ A which cannot be further reduced (i.e., such that there is no b ∈ A such that
a→ b). Such irreducible elements are referred to as normal forms.

Termination is, in general, an undecidable property since it is equivalent to the
halting problem [Turing, 1936]. However, it is possible to prove termination for nu-
merous ARSs. Some of them are naturally terminating because the reduction relation
is well-founded. A relation R on set A is said to be well-founded if and only if every
non-empty subset of A has a minimal element with respect to R [Baader and Nipkow,
1998]. For instance, the natural numbers are a well-founded ARS with reduction order
>.

A common technique for proving termination of a given ARS (A,→) consists in
finding a monotone mapping into another ARS (B, >) which is known to terminate.
A discussion of several methods for proving termination can be found in [Baader and
Nipkow, 1998].

Confluence. Sometimes, it is possible to reduce an element in several different ways,
i.e., for some a ∈ A there may exist b, c ∈ A such that a→ b and a→ c. This is
equivalent to stating that the reduction relation is not functional. An important question
is: will further reductions eventually reach a common element? If this is always true
then the order in which reductions are applied does not matter; in the end the result
will always be the same.

In order to define confluence formally it is necessary to introduce some notions
first. Let→ be a reduction relation. Then the following relations are defined:

← Converse of→ ;
∗→ Reflexive transitive closure of→ ;

↔ Symmetric closure of→ ;
∗↔ Reflexive transitive symmetric closure of → .
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We say that a, b ∈ A are joinable, denoted by a ↓ b, if and only if there is some x ∈ A
such that a

∗→ x
∗← b.

An ARS is confluent if and only if for all a, b, c ∈ A, a
∗← c

∗→ b⇒ a ↓ b.

Interpretation. Abstract reduction systems (and their concrete instances) can be in-
terpreted in two different ways [Baader and Nipkow, 1998]:

Computations. Reductions can be seen as computation steps tranforming some input
to the result. Should the termination property hold in the system, a normal form
is always achieved. Thus, normalization is equivalent to program evaluation in
this case. In this way, the study of ARSs is connected to operational semantics
and the implementation of programming languages.

Deductions. ARSs can be used as decision procedures in order to decide equivalence
between elements. If we consider the reflexive transitive symmetric closure of
the reduction relation, it can be seen as an identity between elements since there
is a path between them in both directions. The use of such kind of decision
procedures for identities is very important in systems for symbolic and algebraic
computation and theorem proving.

3.2 Equational logic

Because there is a close connection between term rewriting and equational logic, it is
important to understand some basic concepts of the latter. In this section, a more formal
presentation could be made resorting to universal and term algebras, like in [Baader
and Nipkow, 1998]. However, we will avoid the extra complexity and try to keep the
presentation simple, yet rigorous like in [Plaisted, 1993].

Identities. Terms in equational logic are inductively defined as:

• Variables;

• Constants;

• Function symbols (also called operations).
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Function symbols are used to built up new from existing terms. The arity of a
function symbol is the number of terms it takes as arguments. Constants can be seen
as function symbols with arity 0. The set of variables is countably infinite and disjoint
from function symbols and constant names.

Expressions in equation logic are called equalities or identities; they are built up
from two terms together with the equality symbol1:

s≈ t

where s and t are terms, s being referred to as the left-hand side (lhs) and t as the
right-hand side (rhs) of the identity.

Substitutions. A substitution is a mapping σ from terms to terms which satis-
fies σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)), for every n-ary function symbol f and
σ(x) 6= x for only finitely many x’s [Baader and Nipkow, 1998]. Thus, substitutions
are defined by replacing terms for variables. The composition of two substitutions is
again a substitution and is denoted by juxtaposition: given two substitutions σ and δ

their composition is σδ.
If, given terms t and t′ there is a substitution σ such that σ(t) = t′ we say that t′ is

an instance of t.

Equational systems. An equational system E is a set of identities. We write

E ` s≈ t

meaning that s≈t is valid in E (or that it is a syntactic consequence of E). s≈t is valid
in E if and only if s ≈ t is derivable from the set of equations E using the following
inference rules, where f is a function symbol with arity n > 0, and σ is a substitution:

ReflexivityE ` t≈ t

E ` s≈ t SymmetryE ` t≈ s

E ` s≈ t E ` t≈ u TransitivityE ` s≈ u

1We will use symbol ≈ for identities in order to avoid confusions with equality at the meta-level.
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E ` s≈ t SubstitutionE ` σ(s)≈ σ(t)

E ` s1 ≈ t1 . . . E ` sn ≈ tn Congruence
E ` f(s1, . . . , sn)≈ f(t1, . . . , tn)

Note that congruence defines a closure under function symbols. An assumption rule is
also needed, asserting that any element of E is valid in E :

s≈ t ∈ E AssumptionE ` s≈ t

Context of a term. Let l and u be terms and l is a sub-term of u. We denote the
context of l on u by u[l] [Dershowitz, 1993]. u[.] represents the term u except the sub-
term l. This can be seen as a term with a “hole” which can be fulfilled with another
term. For instance, if we replace l by l′ in the context we get u[l′].

Reduction relation. From an equational system E , a reduction relation can be in-
ferred. The reduction relation→E on terms is defined as s→E t if and only if exists an
identity (l ≈ r) ∈ E such that s[l′] = σ(l) and t = s[σ(r)], for some substitution σ.

Symbolisms ∗→E and ∗↔E denote the reflexive transitive closure and the reflexive
transitive symmetric closure, respectively, of→E . Relation ∗↔E is important in equa-
tional reasoning because of its equivalence with derivation, i.e., s

∗↔E t holds if and
only if E ` s≈ t.

Semantics of equational systems. In order to provide the semantics of equational
systems, an algebraic approach is convenient. However, as already mentioned, this
would mean the introduction of too much mathematical background, only to justify
a few important results. Thus, we prefer the style of first-order logic to explain the
semantics of equational systems, such as done by Plaisted [1993].

First, we need the notion of structure which will avoid the use of a term algebra. A
structure Σ is a pair consisting of a non-empty domain setA and a mapping from each
function symbol f in the equational system E to an endo-function fΣ in A.

A interpretation mapping φΣ from terms of an equational system E to the structure
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Σ is defined as:

φΣ(t)
def
=



a ∈ A if t is a variable

c ∈ A if t is a constant

fΣ(φΣ(t1), . . . , φ
Σ(tn)) if t is a function symbol f(t1, . . . , tn)

of E , with arity n > 0

We say that Σ satisfies the identity s ≈ t (or that s ≈ t holds in Σ) if and only if
φΣ(s) = φΣ(t), i.e., they have the same interpretation in Σ. We also say that Σ is
a model of an equational system E (or Σ satisfies E) if and only if Σ satisfies every
identity of E . We write Σ |= E to denote this.

An identity s ≈ t is a semantic consequence (or logical consequence) of E (E |=
s ≈ t) if and only if all models of E satisfy it. An equational system E2 is a logical
consequence of E1 (E1 |= E2) if and only if all models of E1 are also models of E2.

Finally, an equational system E induces an equational theory defined by the rela-
tion:

≈E
def
= { s, t ∈ Terms : E |= s≈ t : (s, t)}

Birkhoff’s theorem. An important result due to [Birkhoff, 1935] relates syntax and
semantics of equational systems. If E is an equational system then E |= s ≈ t if and
only if E ` s≈ t, i.e., ∗↔E and ≈E coincide.

Word problem. Given an equational theory E , a fundamental problem is that of
deciding if two arbitrary terms are equal, i.e., if s ≈E t holds. By Birkhoff’s theorem
[Birkhoff, 1935], an equivalent problem is to decide if it is possible to transform a
term s into a term t using the reduction relation induced by the identities in E . This is
known as the word problem which, in general, is undecidable.

Unification. Another relevant problem concerning any equational theory E , is that
of finding a substitution σ for terms s and t such that, σ(s)≈E σ(t). This is called the
satisfiability problem which is again undecidable, in general. The process of solving
this problem is known as unification.

Syntactic unification. A special case of the satisfiability problem arises when the
equational theory E is empty. In this setting, it boils down to finding a substitution σ
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End η(∅) = ∅
Delete η({t≈? t} ] S) = η(S)

Decompose η({f(~tn)≈? f(~un)} ] S) = η({t1 ≈? u1, . . . , tn ≈? un} ∪ S)

Clash η({f(~tn)≈? g(~un)} ] S) = ⊥
if f 6= g

Orient η({t≈? x} ] S) = η({x≈? t} ∪ S)
if t is not a variable

Eliminate η({x≈? t} ] S) = η({x→ t}(S)){x→ t}
if x is a variable and x does not occurs in t

Occurs-Check η({x≈? t} ] S) = ⊥
if x 6= t and x occurs as a variable in t

Table 3.1: Unification by transformation algorithm. ] denotes disjoint union; ⊥ de-
notes failure; and {x→ t}(S) denotes the application of substitution x→ t to S.

such that σ(s) = σ(t), i.e., proving the syntactic equality between terms σ(s) and σ(t).
The process of solving this simplified problem is known as syntactic unification.

In general, the unification problem deals with finite sets of equations S
def
= {s1 ≈?

t1, . . . , sn ≈? tn}. In this text we distinguish identities (≈) from equations (≈?): the
former state equalities between elements while the latter represent hypothetic equal-
ities still to be established (possibly false). The solution of a set of equations is a
substitution σ (referred to as unifier) such that σ(si) = σ(ti) for i = 1, . . . , n. A set
of equations can have none, one or many unifiers. However, an important theorem
establishes that if the problem has a solution then it has an idempotent most general
unifier, a special case of a well-behaved unifier [Baader and Nipkow, 1998]. Being
a most general unifier means that it is minimum, i.e., the smallest substitution that
solves problem S. Formally, a substitution σ is more general than σ′ if there is another
substitution δ such that σ′ = δσ. A substitution σ is idempotent if and only if σ = σσ.

Unification by transformation. A possible approach to syntactic unification of a set
of equations S is that of finding equations of the form x ≈? t and replacing all occur-
rences of x in S by t, i.e., {x→ t}(S), until reaching the solution. This is known as
unification by transformation and it works much like the Gaussian elimination algo-
rithm for systems of linear equations.

Table 3.1 presents the complete unification by transformation algorithm adapted
from [Baader and Nipkow, 1998] re-written in a more functional flavor. The η function
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takes a set of equations S and returns a substitution η(S). Disjoint union ] is used in
the left-hand side of definitions, meaning that each equation is unique and each step
removes it from the set of remaining equations. The Clash and Occurs-Check rules
recognize impossible unifications returning a failure value, denoted by ⊥.

As proved by Baader and Nipkow [1998], η terminates for all inputs, and if S is
solvable then η(S) does not fail and returns an idempotent most general unifier of S.
It should be noted that the order in which the rules are applied does not matter.

Matching Another problem related with unification is matching. In matching we are
only interested in finding a substitution σ that transforms a term t in an instance of a
term s, that is, finding σ such that σ(s) = t. Matching reduces to unification wherever
variables in t are seen as constants.

3.3 Term rewriting systems

Term rewriting systems (TRSs) are instances of abstract reduction systems in which
the reduction relation is defined by rewriting rules over terms. TRSs are closely related
with equational systems and equational logic. The difference is that in TRS, rewriting
rules are oriented, i.e., only left-hand sides can be replaced by right-hand sides. Ensur-
ing that a TRS has the same computational meaning as the corresponding equational
system constitutes most of the study of TRSs [Plaisted, 1993].

Definition. A term rewriting system (TRS) is a set of rewriting rules. A rewriting

rule is an identity denoted by l→ r, where l and r are terms, l is not a variable and
every variable in r occurs in l. Term l is referred to as the left-hand side and r as
the right-hand side of the rewriting rule. Let σ be a unifier for l and another term t.
Then, σ(t) is a redex (reducible expression) that can be reduced (or contracted) to the
corresponding instance of the rhs of the rewriting rule σ(r).

Rewriting strategies. TRSs are, in general, non-deterministic. Which rule is to be
applied to which term is not usually known. However, sometimes it is useful to choose
one redexes from the other, leading to the definition of rewriting strategies. Table 3.2
summarizes some of the most common rewriting strategies [Plaisted, 1993].
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Reduction strategy Meaning

Leftmost innermost The leftmost among all the innermost redexes is rewritten.
Parallel innermost All innermost redexes are simultaneously rewritten.
Leftmost outermost The leftmost among all the outermost redexes is rewritten.
Parallel outermost All outermost redexes are simultaneously rewritten.
Full substitution All redexes are simultaneously rewritten.

Table 3.2: Most common rewriting strategies.

An innermost redex is a subterm which has no subterms which are themselves
redexes; an outermost redex is a subterm that is not contained in any other redexes.

Some of the these strategies are important because of their connection to other
fields: innermost rewriting is related with denotational semantics [Plaisted, 1993]; out-
ermost rewriting corresponds to lazy evaluation [Plaisted, 1993].

3.4 Strategic term rewriting systems

“Traditional” term rewriting systems. “Traditional” term rewriting environments
clearly distinguish the set of rewriting rules of a particular TRS from the strategy used
to apply these rules to terms [Alves et al., 2005]. However, unlike the set of rules
that can be changed, strategies are usually hard-wired into the environment. Leftmost
innermost or outermost are examples of strategies commonly used by rewriting envi-
ronments.

However, a fixed strategy provides very little control over the rewriting process and
the order in which rules are tried. Even in confluent systems, the order in which rules
are applied can have a significant impact on performance. In other cases, termination
is easier, or even only possible if a certain strategy is adopted. Furthermore, many
interesting systems are not confluent and/or terminating, and yet are usable in practice
thanks to the application of rules in some restricted sense.

If more control over the rewriting process is needed the solution is to introduce
function symbols in rules. In this way, the rewriting strategy becomes explicit in the
function symbols. However, the meaning of the rules is obfuscated since the strategy
and equations become entangled into each other. Moreover, the use of the rules in a
different context is hard, if not at all possible.
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Strategic term rewriting systems. To the best of our knowledge, Paulson [1983]
was first in proposing the use of modular rewriting strategies in the context of the
implementation of tactics for the LCF theorem prover. Strategic term rewriting uses
simple basic strategies and combinators in order to build arbitrarily complex strategies
in a declarative style. Strategies can be reused and combined in different ways to obtain
different TRSs. In this way, strategies become programmable, just as the equations are.

Strategies resemble other combinatorial approaches, for instance, parsing combi-
nators [Wadler, 1985; Hutton, 1992; Leijen and Meijer, 2001], or pretty-printing com-
binators [Hughes, 1995]. Combinator techniques, besides modularity and reusability,
also offer a declarative style, usually with nice algebraic properties. In a sense, they
define a domain specific language whose programs or scripts can be regarded as exe-
cutable specifications.

Two of the first notable TRSs to use strategic rewriting were Stratego [Visser and
Benaissa, 1998] and the Rewriting Calculus [Cirstea et al., 2001, 2003] associated with
the ELAN specification language.

Typed strategic term rewriting systems. In the literature, the discussion about the
merits and disadvantages of compile-time typing and run-time typing is rather long;
it has already been called a “cold war” among programming languages [Meijer and
Drayton, 2005]. The same arguments apply to TRSs in general.

Typed term rewriting is used in order to ensure that rules are only applied to terms
of the appropriate type. When working with untyped strategies, unexpected fails can
occur if there is any fault in the design of the strategy. Beside type safeness, typed
strategies also allow for type dependent behavior in which rules are only applied to
terms of a specific type.

The combination of strategic term rewriting with strong typing was introduced in
Haskell by the Strafunski bundle [Lämmel and Visser, 2003] and in Java by the JJTrav-

eler framework [Visser, 2001b; Kuipers and Visser, 2001]. Further generalizations are
provided in the Haskell context by Lämmel and Peyton Jones [2003] and Lämmel and
Visser [2002]. An account of a formal semantics of typed strategic programming is
given by Lämmel [2003].

Strategy combinators. Strategic term rewriting provides a small set of strategy com-
binators which are useful in building up compound strategies of arbitrary complexity.
In this setting, a strategy has a slightly different meaning than in traditional TRSs. Let
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Strategy combinator Symbol

Identity strategy nop
Always failing strategy ⊥
Sequential composition .

Choice (non-deterministic) ⊕
Choice (left-bias) �
Map on all children all
Map on one child one
Map on first child first
Fixed point recursion µ

Table 3.3: Primitive strategy combinators according to Luttik and Visser [1997]
(adapted).

s@t denote the application of a strategy s to a term t; the result of this application is
called a reduct. A reduct can be another term, meaning that the strategy application
was successful, or it can be an error value ⊥ denoting failure.

The list of primitive strategy combinators as described in Luttik and Visser [1997]
is presented in Table 3.3. The identity strategy, written nop, always succeeds return-
ing its argument, nop@t→ t. The always failing strategy, written ⊥, fails for all input
terms,⊥@t→⊥. The sequential composition strategy, written s . r, succeeds if s suc-
ceeds returning a term t′ and the application of r to t′ succeeds. The non-deterministic

choice strategy, written s⊕ r, succeeds if s or r succeed. The left-biased choice strat-

egy, written s� r, succeeds if s or r succeed, but r will be only tried if s fails.

All these strategies are only applicable at root terms. In order to build overall
traversals, traversal over children (subterms) of a term is needed as introduced by all,
one and first. The mapping on all children strategy, written all(s), succeeds if the
application of s to all the children of the input term succeed. This strategy evaluates
children terms from the left-most to the right-most. The mapping on one children

strategy, written one(s), succeeds if the application of s succeeds for, at least, one
child of the input term. The choice of such a child is non-deterministic. The mapping

on first child strategy, written first(s), succeeds if the application of s succeeds for, at
least, one child of the input term. The chosen child is the first one for which the strategy
s succeeds when traversing children terms from the left-most to the right-most.

Finally, a fixed point recursion operator, written µ(s), is defined. The strategy s can
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be rewritten in the form 〈 v :: s〉where v is a free-variable of s. The fixed point operator
replaces the strategy s for the free occurrences of the variable v in s. Thus, we have
〈µ v :: s〉@t = s[v := 〈µ v :: s〉]@t. The fixed point operator should be interpreted
lazily; otherwise it would lead to a non-terminating rewrite system [Luttik and Visser,
1997].

Rewriting rules. Besides strategy combinators, basic strategies in the form of rewrit-
ing rules are needed. Rewriting rules can be applied to terms through the use of more
complex strategies built with other combinators.

Basically, a rewriting rule of the form tl → tr can be applied to a term t if t is an
instance of the left-hand side of the rule, i.e., one must find a substitution σ such that
σ(tl) = t. The returned term is an instance of the right-hand side of the rule, σ(tr). If
the matching of the left-hand with the term is not possible the application fails.

3.4.1 Reduction semantics

After presenting the informal meaning of the strategies, we provide the complete re-
duction semantics adapted from [Luttik and Visser, 1997; Lämmel, 2003; Alves et al.,
2005]. Each rule has a name together with a plus or a minus: name+ identifies a rule
which always succeeds, while name− identifies a rule which always fails. For a func-
tion symbol f , f() represents a term without any sub-terms (i.e., a constant), while
f(d1, . . . , dn) represents an n-ary constructor in which d1, . . . , dn are its sub-terms.

Identity strategy

id+

nop @t→ t

Failure strategy

fail−⊥@t→⊥

Sequential composition strategy

s1@t→ t′ s2@t′→ t′′
seq+

(s1 . s2)@t→ t′′
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s1@t→⊥
seq1−

(s1 . s2)@t→⊥
s1@t→ t′ s2@t′→⊥

seq2−
s1 . s2@t→⊥

Non-deterministic choice strategy

s1@t→ t′
nd1+

s1 ⊕ s2@t→ t′
s2@t→ t′

nd2+

s1 ⊕ s2@t→ t′

s1@t→⊥ s2@t→⊥
nd−s1 ⊕ s2@t→⊥

Left choice strategy

s1@t→ t′
left1+

s1 � s2@t→ t′
s1@t→⊥ s2@t→ t′

left2+

s1 � s2@t→ t′

s1@t→⊥ s2@t→⊥
left−s1 � s2@t→⊥

Map on all children strategy

all1+

all(s)@f()→ f()

s@d1→ d′1 . . . s@dn→ d′n all2+

all(s)@f(d1, . . . , dn)→ f(d′1, . . . , d
′
n)

〈∃ i : 1 6 i 6 n : s@di→⊥〉
all−

all(s)@f(d1, . . . , dn)→⊥

Map on one child strategy

〈∃ i : 1 6 i 6 n : s@di→ d′i〉 one+

one(s)@f(d1, . . . , di, . . . , dn)→ f(d1, . . . , d
′
i, . . . , dn)

one1−
one(s)@f()→⊥

s@d1→⊥ . . . s@dn→⊥ one2−
one(s)@f(d1, . . . , dn)→⊥
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Map on first child strategy.

s@d1→⊥ . . . s@di−1→⊥ s@di→ d′i first+
first(s)@f(d1, . . . , di−1, di, . . . , dn)→ f(d1, . . . , di−1, d

′
i, . . . , dn)

first1−
first(s)@f()→⊥

s@d1→⊥ . . . s@dn→⊥ first2−
first(s)@f(d1, . . . , dn)→⊥

Rewriting rules strategy

〈∃ σ :: σ(tl) = t ∧ σ(tr) = t′〉
rule+

tl→ tr@t→ t′

〈6 ∃ σ :: σ(tl) = t〉
rule−tl→ tr@t→⊥

3.4.2 Building compound strategies

Using the primitive strategy combinators presented in Table 3.3, more complex com-
pound strategies can be defined. The following examples correspond to some useful
strategies which are directly adopted in the design of Galculator.

Failure recovery. The following strategy always succeeds, even when its argument
strategy fails. In this case, the identity strategy is used and the term is left unchanged:

try s
def
= s� nop

Repetition. The repetition strategies are useful when an argument strategy must be
repeatedly applied until it fails:

many s
def
= 〈µ f :: (s . f)� nop〉

many 1 s
def
= s . many s

Strategy many always succeeds since failures are always recovered (it could be de-
fined as 〈µ f :: try (s . f)〉 instead). Strategy many 1 to succeed requires that the
application of the argument strategy must succeed at least once.
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Partial traversal. Partial traversal strategies are useful to apply an argument strategy
to just one sub-term of a tree:

once s
def
= 〈µ f :: s⊕ one f〉

once first s
def
= 〈µ f :: s� first f〉 once first bu s

def
= 〈µ f :: first f � s〉

Strategy once non-deterministically chooses a sub-term from the tree for which the
application of its argument strategy succeeds. Strategy once first chooses the first
sub-term of the tree for which the application of its argument strategy succeeds in top-
down order. Strategy once first bu chooses the first sub-term of the tree for which the
application of its argument strategy succeeds in bottom-up order.

Complete traversal. The complete structure top-down and bottom-up traversals of
trees are defined as:

topdown s
def
= 〈µ f :: s . all f〉

bottomup s
def
= 〈µ f :: all f . s〉

Fixed-point reduction. The two common fixed-point reduction strategies, the left-
most innermost and the leftmost outermost, are easily defined using the other strategies
as:

outermost s
def
= many(once first s)

innermost s
def
= many(once first bu s)

innermost s
def
= 〈µ f :: all f . try(s . f)〉

The two definitions of innermost are equivalent, but the second version is more effi-
cient than the first one.

3.4.3 Algebraic properties

The strategy combinators enjoy several interesting algebraic properties [Alves et al.,
2005], some of which are presented below. It can be verified that these are consistent
with the reduction semantics presented before.



62 3 Term rewriting systems and strategic programming

Sequential composition. Sequential composition is associative, nop is its unit and
⊥ is its zero:

(r . s) . t = r . (s . t)

nop .s = s

s . nop = s

⊥ . s = ⊥

s .⊥ = ⊥

Thus, (., nop) forms a monoid.

Non-deterministic choice. Non-deterministic choice is associative and ⊥ is its unit,
forming a monoid. Futhermore, sequential composition right distributes over non-
deterministic choice:

(r ⊕ s)⊕ t = r ⊕ (s⊕ t)

⊥⊕ s = s

s⊕⊥ = s

(r ⊕ s) . t = (r . t)⊕ (s . t)

Left choice. Like non-deterministic choice, left-choice is also associative and ⊥ is
its unit. However, the right distributivity of sequential composition does not hold for
left-choice. Instead, the left preservation of the identity strategy holds:

(r � s)� t = r � (s� t)

⊥� s = s

s�⊥ = s

nop�s = nop
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Maps on children. The maps on children (all, one and first) all preserve the identity
and the failure strategies:

all nop = nop

all⊥ = ⊥

one nop = nop

one⊥ = ⊥

first nop = nop

first⊥ = ⊥

3.5 Summary

Term rewriting is an important field related with many areas, and, in particular, with
theorem proving and automated deduction. The close connection between TRSs and
equational logic will be used in Chapter 8 to justify the approach taken in the Galcu-

lator.
The description given in this chapter deviates from the traditional ones, since it

focused in strategic term rewriting systems. Strategic TRSs a have nice algebraic flavor
and are related to what is sometimes called “tactics” in theorem proving. In strategic
TRSs, strategies are no longer entangled with the environment and can be programmed
just like rewriting rules can. Complex strategies can be build using combinators from
a few basic strategies. The semantics of these strategies is provided since they will be
important in the design of the Galculator.

Although the approach is not completely traditional, the classical subjects such as
abstract reductions systems with the associated notions of termination and confluence,
as well as equational logic and rewriting strategies, were also covered.
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Chapter 4

Relation calculus

Relations are ubiquitous in Mathematics, Philosophy and even natural language, be-
cause of their intuitive nature. They describe connections between objects and their
properties or among objects themselves. Augustus De Morgan, one of the founders of
the relation algebra, describes relations [De Morgan, 1860, 1966] as:

When two objects, qualities, classes, or attributes, viewed together by the

mind, are seen under some connexion, that connexion is called a relation.

The idea of encoding predicates in terms of relations was initiated by De Morgan in
the 1860s and followed by Peirce who, in the 1870s, found interesting equational laws
of the calculus of binary relations. Other important contributions are due to Schröder,
as explained by Pratt [1992]. The point-free nature of the notation which emerged from
this embryonic work was later further exploited by Tarski and his students [Tarski,
1941; Tarski and Givant, 1987]. In the 1980’s, Freyd and Ščedrov [1990] developed
the notion of an allegory (a category whose morphisms are partially ordered) which
finally accommodates the binary relation calculus as special case.

Looking closer to the subject, two major kinds of algebra based on relations exist:
relation algebra and relational algebra. Although the names are very similar and can
be easily confused, they are quite different. Relational algebra is due to Codd [1970]
and is the base to the relational database model. The widely used database query
language SQL [ISO, Nov. 1992] follows the operations defined in relational algebra.
The expressive power of this algebra is equivalent to first-order logic.

Relation algebra is based on the De Morgan-Peirce-Schröder relation calculus,
formalized by Tarski and his students. This algebra is weaker than relational algebra

65
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in terms of expressive power: it is only equivalent to a three variable fragment of
first-order logic.

Although being different they share a common point: they use relations and their
operations in order to abstract logical quantifiers and data elements.

In this chapter, we will start by introducing relations from a set-theoretical view
point. Then, we will elaborate this view towards an algebraic approach, mostly based
on the Tarski’s view. The following step is to present fork algebras, an extension of
relation algebra devised in order to surpass the limitations of expressiveness of relation
algebra. We conclude by discussing the so-called point-free-transform [Tarski and
Givant, 1987; Bird and de Moor, 1997]: a mapping from first-order logic into a fork
algebra.

4.1 Relations

In this section, we introduce binary relations from a set-theoretical perspective. We
restrict ourselves to binary relations, because of their simple yet powerful theory. Re-
lations defined over an arbitrary number of objects can be reduced to the binary case
by introducing a pairing operator. The study of binary relations is useful for giving a
natural interpretation of fork algebras in terms of concrete relations.

The concepts introduced in this section are quite standard and can be found, e.g.,
in [Backhouse and Backhouse, 2004; Oliveira and Rodrigues, 2004].

Basic definitions. Given two sets, A and B, a binary relation R can be defined as a
subset of their Cartesian product B×A def

= {∀ b, a : b ∈ B ∧ a ∈ A : (b, a)}. We will
write R ∈ B ∼ A or B ARoo to denote such relation. When A and B coincide, the
relation is said to be an endo-relation.

We shall distinguish three special relations: the empty relation ⊥ which does not
relate any elements all (corresponds to the empty subset of a Cartesian product); the
universal relation> which relates every pair of elements (coincides with the Cartesian
product of sets, B × A); and the identity relation id which relates equal to equal
elements (consequently, an endo-relation).

The operations on relations are standard extensions of the respective operations
in the underlying set of pairs. Thus, the converse on a relation B ARoo , denoted

by A BR∪
oo , is defined as (a, b) ∈ R∪

def⇔ (b, a) ∈ R. The meet (intersection) and



4.1 Relations 67

Definition

Property Point-wise Point-free

Reflexive aRa id ⊆R

Coreflexive a′Ra⇒ a′ = a R⊆ id
Symmetric a′Ra⇒ aRa′ R⊆R∪

Anti-symmetric a′Ra ∧ aRa′⇒ a = a′ R ∩R∪ ⊆ id
Transitive a′Ra′′ ∧ a′′Ra⇒ a′Ra R ◦ R⊆R

Total a′Ra ∨ aRa′ R ∪R∪ = >

Table 4.1: Properties of endo-relations, both in point-wise and point-free style, for
any endo-relation R on A. In the point-wise definition, variables a, a′ and a′′ are
universally quantified over A.

join (union) of two relations B ARoo and B ASoo , are defined, respectively, as

(b, a) ∈ R∩S
def⇔ (b, a) ∈ R∧(b, a) ∈ S , and (b, a) ∈ R∪S

def⇔ (b, a) ∈ R∨(b, a) ∈ S .
When intermediate elements exist, relations can be composed. Thus, the composition
of relations C BSoo and B ARoo , denoted by C AS◦Roo , is defined as (c, a) ∈

S ◦ R
def⇔ 〈∃ b ∈ B :: cSb ∧ bRa〉.

An ordering can be defined on relations, reflecting the subset ordering on sets of
pairs. Thus, relation R is a sub-relation of S , denoted as R ⊆ S , if and only if all
elements related by R and also related by S , i.e., R ⊆ S

def⇔ 〈∀ b, a :: bRa⇒ bSa〉.
Following the convention, we will often write bRa to denote that the pair (b, a)

belongs to the relation R, i.e., (b, a) ∈ R.

Properties. Relations can be divided and classified according to their properties.
Each additional property allows us to elaborate the concepts while preserving the un-
derlying theory. This is a kind of common sense about the way things are developed
in mathematics: what makes relations special is their wide scope of application solely
based on a few basic properties.

Table 4.1 shows some important properties of endo-relations, both using the “tra-
ditional” point-wise definition and the equivalent point-free formulation. The justifica-
tion for the point-free definition should become clear towards the end of this chapter.
Based on these properties, important classes of relation can be distinguished, as graph-
ically shown in Figure 4.1.

For the general case, Table 4.2 shows the definition of four of the most important
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Endo-relation

Partial 
equivalence

Symmetric Transitive Reflexive Anti-
Symmetric Total

Preorder

Co-reflexive Equivalence Partial Order

Identity Linear Order

Figure 4.1: Endo-relation taxonomy.

Definition

Property Point-wise Point-free

Simple (functional) bRa ∧ b′Ra⇒ b = b′ R ◦ R∪ ⊆ id
Entire (total) 〈∃ b′′ ∈ B :: b′′Ra〉 id ⊆R∪ ◦ R

Injective bRa ∧ bRa′⇒ a = a′ R∪ ◦ R⊆ id
Surjective 〈∃ a′′ ∈ A :: bRa′′〉 id ⊆R ◦ R∪

Table 4.2: Properties of relations, both in point-wise and point-free style, for any rela-
tion B ARoo . In the point-wise definition, variables a and a′ are universally quanti-
fied over A and variables b and b′ are universally quantified over B.

properties, which lead to the classification presented in Figure 4.2

Orders. Orders are special cases of endo-relation in which some properties hold, as
the graphical representation of Figure 4.1 shows. In this text, two kinds of order play
a special role: preorders and partial orders. A preorder v is a reflexive and transitive
relation. A partial order is a anti-symmetric preorder. Due to their anti-symmetric
behavior, the standard notation for ordering includes symbols such as v, � and 6.

Functions. Functions are another important special case of relations. This fact in
emphasised by using the same notation for both cases. Thus, a function f is denoted
as B A

foo , where set A is the domain and set B is the co-domain of the function.
Figure 4.2 graphically shows that functions are simple and total relations, two no-
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Figure 4.2: Relation taxonomy.

tions explained in Table 4.2. A function may also enjoy additional properties like
injectivity and surjectivity. For instance, if these two properties both hold, the function
is called a bijection or isomorphism. We use uppercase identifiers for general relations
and lower case identifiers for the specific case of functions.

In the case of functions that share the same domain, the inclusion order on relations
coincides with equality [Bird and de Moor, 1997]:

f ⊆ g ⇔ f = g ⇔ f ⊇ g (4.1)

Lifted order relation. A lifted order relation inherits the underlying order of the
co-domain of functions. Let B A

foo and B A
goo be two functions and (B,�)

be an ordered set. We define the lifted order
.

� on functions as,

f
.

� g
def⇔ 〈∀ a ∈ A :: f a � g a〉 (4.2)

Remark about notation. Our notation for function types deviates from the standard
mathematical practice, in the sense that the type of arguments (domain) appears on
the right-hand side of the arrow, while the type of the results (co-domain) appears on
the left-hand side of the arrow. This allows for a more natural and consistent use of
function application and composition. Given functions C B

foo and B A
goo ,

the their composition type is straightforward, i.e., C A
f ◦goo and clearly mirrors the
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definition

(f ◦ g) a
def
= f (g a)

for all a ∈ A. Using the standard notation, the composition of functions B
f // C

and A
g // B yields A

f ◦g // C . Note that the argument, intermediate and result
types appear in the opposite side with respect to the above definition.

Unlike the particular case of functions, general binary relations do not specify any
direction of application because one of the arguments does not determine the other.
All relation operations previously described handle pairs of values, being independent
of any direction of application.

However, some direction is often implicitly assumed. Relations can be interpreted
as non-deterministic, possibly partial, functions which given an argument return none
or several related results [Oliveira and Rodrigues, 2004]. Thus, in order to maintain
consistency, the same notation is used both for relation and function types. Using a
conventional direction for relation application and composition does not impose any
limitations because the converse operation can be used to switch the arguments of any
relation. Moreover, such a practice also enforces the connection between relations
and category theory, which will be exploited in Section 4.6. This convention is also
adopted by Bird and de Moor [1997].

4.2 Boolean algebras

Boolean algebra was developed by George Boole as the algebraic counterpart of propo-
sitional logic.

Definition. A Boolean algebra is a tuple (A,∨,∧,¬, false, true) such that, for all
a, b, c ∈ A the following axioms are satisfied:

a ∧ b = b ∧ a (4.3)

a ∨ b = b ∨ a (4.4)

a ∧ (b ∧ c) = (a ∧ b) ∧ c (4.5)

a ∨ (b ∨ c) = (a ∨ b) ∨ c (4.6)

a ∧ (a ∨ b) = a (4.7)
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a ∨ (a ∧ b) = a (4.8)

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (4.9)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (4.10)

a ∧ ¬a = false (4.11)

a ∨ ¬a = true (4.12)

Constants true and false are two distinguished elements of A; ¬ is an unary operation
on A called not (or complement). The two binary operations on A, ∧ and ∨, are
respectively called and (or meet) and or (or join). The set A is the carrier of the
algebra.

Alternative definition (Huntington). The signature and set of axioms given above
is somewhat redundant. It is possible to give an equivalent definition using an elegant
axiomatization with just two operations and three axioms due to Huntington [1932]1.
The signature of the algebra is reduced to (A,∨,¬) and the only axioms are:

a ∨ b = b ∨ a (4.13)

a ∨ (b ∨ c) = (a ∨ b) ∨ c (4.14)

¬(¬a ∨ b) ∨ ¬(¬a ∨ ¬b) = a (4.15)

All the operators and identities of the first axiomatization can be derived from the
second one [Maddux, 1996].

In the presentation of relation algebra, it is usual to use the Huntington’s axiomati-
zation, like established by Tarski and Givant [1987]. However, the first axiomatization
is better suited to proof assistants. All the usual operations are primitive and the ax-
ioms state important properties which they enjoy like commutativity, associativity or
distributivity. This can make things simpler, avoiding the proof of additional theorems
and the addition of more definitions. Nevertheless, for the sake of completeness the
two versions are presented above.

Relation with lattice theory. Some of the names given to operations (complement,
join, meet) resemble well-known concepts from lattice theory [Davey and Priestley,

1Many other axiomatizations exist, some of them using less axioms.
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1990]. This is not a coincidence: from a Boolean algebra we can infer a partial order
6, for all a, b ∈ A, defined as a 6 b

def⇔ a = a∧ b (or equivalently, a 6 b
def⇔ a∨ b = b).

The least element of the order is false and true is the greatest element. Operations
∧ and ∨ coincide, respectively, with the infimum and the supremum, with respect to 6

ordering.

4.3 Relation algebras

The calculus of binary relations was started by De Morgan in a paper entitled: On

the Syllogism: IV; and on the Logic of Relations [De Morgan, 1860]. But it was
Peirce who greatly developed the subject. Peirce’s insight was that the calculus of
relations could be separated into two components, one logical and one relative (also
called static and dynamic, respectively) [Pratt, 1992]. Each component consists of
two binary operations called disjunction and conjunction, one unary operation called
negation and two distinguished constants: true and false. Thus, for each operation in
one component there is a corresponding one in the other component. Moreover, Peirce
realized that the two components form a logic on their own [Pratt, 1992].

Definition. The notation and formalization of relation algebras presented below fol-
lows Tarski and Givant [1987]. The difference is that Tarski and Givant [1987] omit
some operators from the algebraic signature and provide their definition using the other
operators. We have decided to include all the operators in the signature like in [Priss,
2006a].

A relation algebra is a tuple (R, +, ·,− , 0, 1,�,` ,
◦
1) such that, for any r, s, t ∈ R,

the following axioms hold:

(R, +, ·,− , 0, 1) is a Boolean algebra (4.16)

r � (s� t) = (r � s)� t (4.17)

r�
◦
1 = r (4.18)

(r`)` = r (4.19)

(r + s)� t = r � t + s� t (4.20)

(r + s)` = r` + s` (4.21)

(r � s)` = s` � r` (4.22)
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Symbol Name Arity Static Definition
counterpart

◦
1 Identity Constant 1 Primitive
◦
0 Diversity Constant 0

◦
0=
◦
1
−

` Converse Unary − Primitive
� Composition Binary · Primitive
⊕ Relative sum Binary + r ⊕ s = (r− � s−)−

Table 4.3: Operations of the relative component of relation algebra.

r` � (r � s)− 6 s− (4.23)

where r 6 s is defined as r · s = r (or, equivalently, r + s = s). We should notice that
although points are omitted from definitions, relation variables (like r, s and t above)
are used in definitions as placeholders for particular relations.

In this definition, we do not provide a relative counterpart for each static operator;
the missing ones can be derived from the other. Table 4.3 gives a description of each
operator of the relative component, the respective static operator.

In synthesis, a relation algebra is obtained by expanding the Boolean algebra
(R, +, ·,− , 0, 1) with a monoid structure (R,�,

◦
1) and a converse operation. As ob-

served by Pratt [1993], it is interesting to note that the inner structure of the elements
of relations is only used by the relative operations. For the static (Boolean) operations,
relations are treated just like sets.

Proper relation algebra. In order to provide an interpretation for relation algebras,
the concept of proper relation algebras is introduced, that is, algebras of binary re-
lations over a set. A proper relation algebra (or relation set algebra) is an algebra
(R, +, ·,− , 0, 1,�,` ,

◦
1) where 1 is an equivalence relation on the Cartesian product of

the set A by itself, i.e., 1 ⊆ A × A,
◦
1 is defined as the set { x : (x, x) ∈ 1 : (x, x)},

R is a set of binary relations equal to the powerset of 1, and the operations coincide
with their set-theoretical counterparts (as defined in Section 4.1). Table 4.4 provides a
summary of this correspondence.

Interpretation. Algebras with elements defined in set-theoretical terms (concrete
algebras) can be used to interpret abstract equational classes (abstract algebras). We
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Name Operator Binary relation

Union (join) + ∪
Intersection (meet) · ∩
Negation (complement) − ¬
Empty relation 0 ⊥
Universal relation 1 >
Composition � ◦

Converse ` ∪

Diagonal (identity)
◦
1 id

Equality = =
Inclusion 6 ⊆

Table 4.4: Correspondence between proper relation algebra operators and binary rela-
tion operations.

informally define an interpretation as a mapping from abstract to concrete algebras.
This mapping is used to ascribe a meaning to the abstract symbols and expressions.

A relation algebra is representable if it is isomorphic to a proper relation alge-
bra [Tarski and Givant, 1987], i.e, its interpretation is an isomorphism.

It is interesting to note that not every interpretation of relation algebras is isomor-
phic to a proper relation algebra, as shown by Lyndon [1950]. Moreover, relation
algebras admit other interpretation besides binary relations; for instance, they can be
interpreted with respect to FCA (formal concept analysis) concepts [Priss, 2006a].

Important remark. In this document we will only consider representable relation
algebras. Thus, we will drop the relation algebra notation and use the equivalent binary
relation notation, whenever no ambiguity arises.

Expressiveness. The development of relation algebra aiming at providing an alge-
braic counterpart of first-order logic, just like the Boolean algebra is equivalent to
propositional logic. The question is: are first-order logic and relation algebra equiva-
lent in the means of expression and derivability?

To answer this important question, Tarski and Givant [1987] provide us with a
simple formalism without variables, quantifiers or sentential connectives in which set
theory and number theory can be developed. Statements become point-free equalities
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and the deductive system is very simple: the only inference rule is that of replacing
equals by equals. They called this formalism L×.

L× is a meta-system used to explore the properties of relation algebras. Tarski also
defines two more formalisms: L of predicate logic and L+, an extension of L with the
introduction of relational operators (at the meta-level)2. He then establishes a one-to-
one correspondence3 between L and L+. Using a fragment with only three-variables
of L+

3 , he establishes the most important result: there is a one-to-one correspondence
between L× and a fragment with three-variables L3 of L.

The conclusion is that the answer to our original question is negative. L× (and
consequently relation algebra) can only be used to formalize first-order predicates with
at most three variables. In spite of its weak expressive and proof power, Tarski shows
that it can be used to formalize almost all known systems of set theory [Tarski and
Givant, 1987].

Residuated structure. Backhouse [2004] proposes a different, although not com-
plete, axiomatization of relation algebra, where left and right residuals are used. Resid-
uation is a kind of division where not all the multiplicative inverses exist. The operation
of whole division presented in Section 1.1.2 is an example of residuation.

The set theoretic definition of left residual or left division is, for all x, y of the
correct type,

x(A / B)y
def
= 〈∀ u :: xAu⇐ yBu〉 (4.24)

and for the right residual or right division is, for all x, y of the correct type,

x(A \B)y
def
= 〈∀ u :: uAx⇒ uBy〉 (4.25)

Left division, T / S, of relations T and S is the the greatest relation R such that
R ◦ S ⊆ T . Right division R \ T , of relations T and S is the greatest relation S such
that R ◦ S ⊆ T . This can be summarized by the two equations which follow

R ◦ S ⊆ T ⇔ R⊆ T / S (4.26)

2The axioms of L+ can be seen as definitions of the relational operators in terms of predicate logic.
This is one of the key ideas to the introduction of the point-free-transform as described in Section 4.5

3Tarski uses the concept of equipollence between theories in order to show the correspondence in
means of expression and proof between them.
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R ◦ S ⊆ T ⇔ S ⊆R \ T (4.27)

Equations (4.26) and (4.27) closely resemble Equation (1.3) about whole division. The
difference is that, since multiplication over natural numbers is commutative, right and
left division coincide and we just need one equation to define whole division. Not
surprisingly, both Equation (4.27) and Equation (4.26) establish a Galois connection.

The axiomatization provided by Tarski and Givant [1987] does not include left and
right division as primitive operations because they can be easily defined in terms of the
other. Thus, we have the definitions [Pratt, 1992]

R / S
def
= ¬(¬R ◦ S∪) (4.28)

R \ S
def
= ¬(R∪ ◦ ¬S) (4.29)

that can be derived from definitions (4.24) and (4.25).

4.4 Fork algebras

As pointed out by Tarski [1941] an expression like

〈∀ x, y, z :: 〈∃ z :: xRu ∧ yRu ∧ zRu〉〉

is not expressible in his formalism because of the use of four variables. As explained
by Veloso and Haeberer [1991], the main idea of Tarski’s relation calculus is to use
composition to simulate existential quantification. Therefore, the above expression
can be transformed in order to enable composition to replace existential quantification

〈∀ x, y, z :: 〈∃ z :: xRu ∧ uR∪y ∧ uR∪z〉〉

However, because variable u can only be used to compose two terms of the con-
junction, the elimination of the existential quantifier is not possible.

Tarski noted that a pairing operation was missing in relation algebra [Tarski and Gi-
vant, 1987; van den Bussche, 2001] to allow treating pairs as primitive elements. This
would give relation algebra an expressive power equivalent to first-order logic. Sev-
eral methods were proposed (e.g, [van den Bussche, 2001]); one of the most promising
and widely used is fork algebra [Veloso and Haeberer, 1991; Frias et al., 1995, 1997,
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2004a]. Fork algebra is an extension of relation algebra which provides a kind of
pairing operation, a fork, overcoming the problem of lack of expressiveness.

Definition. A fork algebra is a tuple (R,∪,∩,¬,⊥,>, ◦,∪ , id ,∇) such that, for any
r, s, t, u ∈ R, the following axioms hold:

(R,∪,∩,¬,⊥,>, ◦,∪ , id) is a relation algebra (4.30)

r∇ s = ((id ∇>) ◦ r) ∩ ((>∇ id) ◦ s) (4.31)

(r∇ s)∪ ◦ (t∇ u) = (r∪ ◦ t) ∩ (s∪ ◦ u) (4.32)

(id ∇>)∪ ∇ (>∇ id)∪ ⊆ id (4.33)

The binary operator∇ is called fork; the other operators are defined in the same way as
in relation algebra. Expressions (id∇>)` and (>∇id )` are quasi-projections and we
will represent them by π1 and π2, respectively. Using this notation, equations (4.31)
and (4.33) can be rewritten as:

r∇ s = (π∪1 ◦ r) ∩ (π∪2 ◦ s) (4.34)

π1 ∇ π2 ⊆ id (4.35)

Using the fork operator, it is possible to define a binary product operator4 in relations
× as

r × s
def
= (r ◦ π1)∇ (s ◦ π2) (4.36)

The axiomatization presented above is adapted from Frias et al. [2004a]. The ax-
ioms have been proved to be independent [Frias, 1998; Veloso, 1997].

Proper fork algebras. Like relation algebras can be interpreted in terms of proper
relation algebras of binary relations, fork algebras can also be interpreted in terms of
proper fork algebras. However, the approach is more contrived, thus we will only
provide the idea and the main results. For a more detailed account see [Frias et al.,
2004a].

The approach is based on a binary pairing function ?. The pairs do not have to
coincide with the set-theoretical definition; the only requirement is that ? must be

4Frias et al. [2004a] refer to this as the cross operator.
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injective. A pre proper fork algebra is defined by extending a proper relation algebra
with the pairing function ? over a domain U and the fork operator ∇, where ∇ is
induced by ?. A proper fork algebra is then defined as a reduct of the corresponding pre
proper fork algebra, where the domain U and the function ? are forgotten. Therefore,
proper fork algebras hide the pairing operation, only exposing the fork operator.

Interpretation. Two important results arise from the representability of fork alge-
bras by proper fork algebras. First, every abstract fork algebra is isomorphic to a
proper fork algebra [Frias et al., 2004a, Theorem 1]. The consequence of this theorem
is that a natural semantics in terms of binary relations can be given to the abstract fork
algebra operators. In this interpretation, quasi-projections behave like projections of a
pairing relation, by retrieving the individual components of pairs. The other operators
have the standard interpretation used with relation algebras.

Second, let us denote a proper fork algebra by PFA and the set of fork algebra
equational axioms by FAE. If E ∪ {e} is a set of fork algebra equations, then,

E |=PFA e ⇔ E `FAE e

This completeness result [Frias et al., 2004a, Theorem 2] yields that any property that
holds for binary relations can be derived syntactically using the abstract operations
and respective axioms of fork algebra. The converse is also true: syntactically valid
derivations correspond to valid properties of binary relations.

Expressiveness. Unlike relation algebras, fork algebras have the same expressive
power as first-order logic. Therefore, every first-order formula can be expressed as
a point-free fork algebra term and every first-order sentence can be translated to an
equation on point-free fork algebra terms. Moreover, for each derivation in first-order
logic, there is a corresponding derivation from axioms of fork algebra using equational
reasoning. The complete results and proofs can be found in [Frias et al., 2004a].

Other logical systems. Fork algebra encompasses the expressive power of the first-
order logic; Frias et al. [2004a] show that this result can be extended to other logics,
as well, by using some extensions of the basic fork algebra. This gives us a relational
framework, where concepts of several different logics have a uniform representation
in an equational theory, allowing for equational reasoning.
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Frias et al. [2004a] describe some interpretations of non-classical logics in fork al-
gebra. The general interpretation of propositional modal logics is established. More-
over, fork algebras are extended with a closure operator forming closure fork alge-

bras; these are used to interpret propositional dynamic logic. A choice operator and
an infinitary equational inference rules are added to closure fork algebras, forming the
so-called ω-closure fork algebras. First-order dynamic logic has an interpretation in
terms of these algebras.

4.5 Point-free transform

As is well-known in term rewriting, one must be very careful about variables: free
and bound variables make substitutions tricky. This complexity can be overcome by
transforming variable-level first-order logic formulæ into point-free formulæ involving
binary relations only. As we have seen, Frias et al. [2004a] have shown this to be
always possible thanks to completeness. In such a point-free transform (PF-transform
for short) [Tarski and Givant, 1987; Bird and de Moor, 1997; Oliveira and Rodrigues,
2004; Oliveira, 2009] variables are abstracted from formulæ in the same way Backus
[1978] develops his algebra of programs. The main difference stays in the fact that we
are transforming first-order logic formulæ while Backus was doing so for functional
terms only.

Once PF-transformed, formulæ involve binary relations only (R, S , etc.) and rela-
tional composition (R ◦ S ) becomes the main “glue” among terms:

b(R ◦ S )c
def
= 〈∃ a :: b R a ∧ a S c〉

Foundation. The idea of abstracting variables from terms is quite old so it is difficult
to give the credits to someone in particular. However, a systematic approach is given by
Tarski and Givant [1987] where formalism L+ is presented as a definitional extension
of the L formalism of first-order logic. Definitional extension means that the extended
formalism does not enrich the power of expression and proof of the original one. Thus,
the axioms concerning the new operations (the relational operators of L×) can be seen
as definitions:

〈∀ x, y :: x(A ∪ B)y ⇔ xAy ∨ xBy〉 (4.37)
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〈∀ x, y :: x(¬A)y ⇔ ¬(xAy)〉 (4.38)

〈∀ x, y :: x(A ◦ B)y ⇔ 〈∃ z :: xAz ∧ zBy〉〉 (4.39)

〈∀ x, y :: x(A∪)y ⇔ yAx〉 (4.40)

A = B ⇔ 〈∀ x, y :: xAy ⇔ xBy〉 (4.41)

Equation (4.41) does not define any operator; it introduces extensional equality be-
tween relations. Basically, each definition is the set-theoretical interpretation of the
corresponding relation operator.

Using the same method, we can introduce definitions for the other relational oper-
ators:

〈∀ x, y :: x(A ∩ B)y ⇔ xAy ∧ xBy〉 (4.42)

〈∀ x, y :: x(A⊕ B)y ⇔ 〈∀ z :: xAz ∨ zBy〉〉 (4.43)

〈∀ x, y :: xidy ⇔ x = y〉 (4.44)

〈∀ x, y :: x>y ⇔ true〉 (4.45)

〈∀ x, y :: x⊥y ⇔ false〉 (4.46)

〈∀ x, y :: x(A \B)y ⇔ 〈∀ z :: zAx⇒ zBy〉〉 (4.47)

〈∀ x, y :: x(A / B)y ⇔ 〈∀ z :: xAz⇐ yBz〉〉 (4.48)

A⊆ B ⇔ 〈∀ x, y :: xAy⇒ xBy〉 (4.49)

The fork ∇ and product × operators of fork algebras are defined as:

〈∀ x, y, z :: ?(x, y)(A∇ B)z ⇔ xAz ∧ yBz〉 (4.50)

〈∀ x, y, z, w :: ?(x, y)(A× B) ? (w, z) ⇔ xAw ∧ yBz〉 (4.51)

Frias et al. [2004a] present two solutions to obtain a point-free relational term
from a given first-order formula. In the first one, a mapping is used to perform an
algorithmic translation. However, the result term may not be the most adequate to
use in further derivations. The second one is similar to the Tarski’s idea we presented
above: manipulating an first-order formulæ until reaching the definitional form and
then replacing it by the corresponding relation operator.



4.5 Point-free transform 81

Related functional results. Using the definitions, more complex translation rules
that encompass recurring patterns can be derived. One particular rule of the PF-
transform which is specially helpful in removing variables from expressions is

〈∀ b, a :: b(f∪ ◦ R ◦ g)a ⇔ (f b) R (g a)〉 (4.52)

where f and g are functions. In fact, 〈∀ b, a :: (f b) R (g a)〉 is just a shorthand for
〈∀ b, a :: 〈∃ b′, a′ :: b′fa ∧ b′Ra′ ∧ a′ga〉〉 from which the above definition arises im-
mediately by the application of the converse to f and the definition of composition
twice.

Example (injectivity). As an example of the application of the PF-transform, let us
verify the equivalence between the point-free and point-wise definitions of injectivity
given in Table 4.2 of Section 4.1 (this calculus is adapted from [Oliveira, 2008]):

〈∀ b, a, a′ :: bRa ∧ bRa′⇒ a = a′〉

⇔ { Rules of quantification and converse (4.40) . }

〈∀ a, a′ : 〈∃ b :: aR∪b ∧ bRa′〉 : a = a′〉

⇔ { Composition (4.39). }

〈∀ a, a′ : a(R∪ ◦ R)a′ : a = a′〉

⇔ { Rules of quantification. }

〈∀ a, a′ :: a(R∪ ◦ R)a′⇒ a = a′〉

⇔ { Identity (4.44). }

〈∀ a, a′ :: a(R∪ ◦ R)a′⇒ aida′〉

⇔ { Inclusion (4.49). }

R∪ ◦ R⊆ id

The rules of quantification are summarized in Appendix B.

Example (reflexivity). Following the same approach as in the previous example,
let us also verify the equivalence between the point-wise and point-free definitions of
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reflexivity given in Table 4.1 of Section 4.1:

〈∀ a :: aRa〉

⇔ { Assuming a variable a′ equal to a. }

〈∀ a, a′ :: a = a′⇒ aRa′〉

⇔ { Identity (4.44). }

〈∀ a, a′ :: aida′⇒ aRa′〉

⇔ { Inclusion (4.49). }

id ⊆R

Therefore, we can add the following equivalence to our collection of point-free trans-
form rules:

id ⊆R ⇔ 〈∀ a :: aRa〉 (4.53)

Example (lifted order relation). Recall the lifted order relation on functions defined
in Section 4.1. Given two functions B A

foo and B A
goo , where (B,�) is an

ordered set, the lifted order
.

� on function is defined as

f
.

� g
def⇔ 〈∀ a ∈ A :: f a � g a〉 (4.54)

In order to calculate the equivalent point-free definition, the introduction of a shunting
rule for functions is needed. Given a function f and two arbitrary relations R and S ,
the following holds:

R⊆ f∪ ◦ S ⇔ f ◦ R⊆ S (4.55)

More details about this equivalence will be provided in Section 6.3.

Let us calculate the point-free definition of the lifted order
.

�:

f
.

� g

⇔ { Definition (4.54). }

〈∀ a ∈ A :: f a � g a〉

⇔ { Related function results (4.52). }
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〈∀ a ∈ A :: a(f∪ ◦� ◦ g)a〉

⇔ { Reflexive relations (4.53). }

id ⊆ f∪ ◦� ◦ g

⇔ { Shunting of functions (4.55). }

f ◦ id ⊆� ◦ g

⇔ { Unit of composition (4.18). }

f ⊆� ◦ g

Thus, we conclude that the lifted order
.

� can be alternatively defined as

f
.

� g
def⇔ f ⊆� ◦ g (4.56)

4.6 Categories and allegories

To complete the discussion about relation calculus, we should give a look to its connec-
tion with category theory and allegory theory. Allegory theory arises as a generaliza-
tion of categories when dealing with relations instead of functions. This introduction
to categories and allegories is very basic: it only covers the definitions and concepts
necessary for the understanding of the rest of the text. The interested reader can con-
sult references [Mac Lane, 1971; Freyd and Ščedrov, 1990; Bird and de Moor, 1997;
Rydeheard and Burstall, 1988] for complete details.

4.6.1 Categories

Category theory [Mac Lane, 1971] was developed to deal with mathematical structures
in an abstract way. Instead of dealing with the structures directly, category theory stud-
ies the structure preserving functions (morphisms) between them. This parallels the
point-free calculus presented before where variables are not relevant, only the relation
between them. Thus, it is not surprising that the concepts studied before are instances
of categories.

Definition. A category is a collection of objects and a collection of arrows (or mor-

phisms) satisfying the following conditions:
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1. Each arrow f has a source and a target object, denoted as B A
foo , where A

is its source and B is its target;

2. For each object A, there exists an identity arrow A A
idAoo ;

3. Every pair of arrows of the form A B
foo and B C

goo can be composed

forming another arrow A C
f ◦goo . The following must hold:

(a) Composition is associative, i.e., for all A B
foo , B C

goo and

C D
hoo ,

f ◦ (g ◦ h) = (f ◦ g) ◦ h ;

(b) The identity arrow is the unit of composition, i.e., for all B A
foo ,

idB ◦ f = f = f ◦ idA .

Examples of categories. The concepts of preorder, function and relation introduced
before form categories. Table 4.6.1 summarizes how objects and arrows are instanti-
ated together with the definition of the respective identity and composition.

Functors. A functor F is a mapping between categories, taking objects to objects
and arrows to arrows, i.e., a functor is required to satisfy:

F A F B
F foo ⇐ A B

foo (4.57)

Additionally, functors must preserve identities and composition:

F idA = idF A (4.58)

F (f ◦ g) = F f ◦ F g (4.59)

Functors can be seen as arrows in a category where objects are themselves cate-
gories. When the source and target categories of a functor coincide, it is called endo-

functor.
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Category of ordered sets (Ord)

Objects Elements of a set P .
Arrows For objects p, q ∈ P the unique arrow from p to q exists if and only if p v q.
Identity Reflexivity of the v preorder.
Composition Transitivity of the v preorder.

Category of total functions (Fun)

Objects Sets.
Arrows Total (set-theoretical) functions.
Identity Identity function on a set.
Composition Set-theoretical composition of functions with coinciding intermediate objects.

Category of relations (Rel)

Objects Sets.
Arrows Relations—a relation A BRoo is a subset of the Cartesian product A× B.

Identity Identity relation on a set.
Composition Relation composition with coinciding intermediate objects.

Table 4.5: Examples of categories.
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4.6.2 Allegories

As Bird and de Moor [1997] put it, “Allegories are to the algebra of relations as

categories are to the algebra of functions.”. Allegories [Freyd and Ščedrov, 1990]
are an extension of categories inspired by the Rel category. This section will mostly
follow [Bird and de Moor, 1997].

Definition. An allegory [Freyd and Ščedrov, 1990; Bird and de Moor, 1997] extends
a category with:

1. A partial inclusion order ⊆ which allows for comparing arrows with the same
source and target. Composition must be monotonic concerning this order.

2. A meet arrow ∩ for which the universal property of meet holds, i.e., given arrows

B ARoo and B ASoo , then, for all arrows B AXoo ,

X ⊆ (R ∩ S) ⇔ X ⊆R ∧X ⊆ S (4.60)

3. A converse arrow ∪ which, for any arrow B ARoo , is monotonic, contravari-
ant and an involution, i.e.,

R⊆ S ⇔ R∪ ⊆ S∪ (4.61)

(R ◦ S)∪ ⇔ S∪ ◦ R∪ (4.62)

(R∪)∪ ⇔ R (4.63)

4. An additional axiom is needed to connect all the additional operations. This is
known as the modular law:

(R ◦ S) ∩ T ⊆ R ◦ (S ∩ (R∪ ◦ T )) (4.64)

Tabular allegories. Given a relation A BRoo , a pair of functions A C
foo and

B C
foo is called a tabulation of R if

R = f ◦ g∪ and (f∪ ◦ f) ∩ (g∪ ◦ g) = id

If every arrow of a category has a tabulation, this is said to be tabular.



4.7 Summary 87

Tabulations were introduced because allegories admit models which are not set-
theoretical relations [Bird and de Moor, 1997], making allegories closer to relations in
terms of proof. Some proof about relations are not possible in allegories without this
requirement. Thus, tabulations allow for proofs in allegories resembling point-wise
derivations.

Relators. Relators are the relational counterpart of functors. Let A B
Foo be a

functor, where A and B are tabular allegories. Then F is said to be a relator if F is
monotonic, i.e., for all R and S ,

F R⊆F S ⇐ R⊆ S (4.65)

An alternative formulation comes from a theorem [Bird and de Moor, 1997, Theo-
rem 5.1] which states that a functor is a relator if and only if it preserves converse, i.e.,
for all R

(F R)∪ = F R∪

Another lemma [Bird and de Moor, 1997, Lemma 5.1] states that relators preserve
functions, i.e., given a relator F and a function f , F f is still a function.

4.7 Summary

The relation calculus took the first steps at the same time as formal logic and their
development was mutual influenced. However, the success of logics overshadowed
relations in such a way that only many year later people started to look at the potential
of relation calculus again. In this chapter, the link between abstract relation algebras,
concrete binary relations and logics was exploited. As it was explained, relations alge-
bras are only equivalent to a three-variable fragment of first-order logic. Fork algebras
solved this problem with the introduction of a pairing mechanism (the “fork”), making
them equivalent in terms of expressive and deductive power to first-order logic. What
makes relation and fork algebras so attractive is that the only needed inference rule
is substitution of equals by equals. Thus, proofs can be conducted in an equational
theory using a relatively small set of simple equational axioms.

Moreover, since the algebraic approach abstracts variables from expressions, it
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does not suffer of the problem of variable capture. This is known as the “point-free”
style. The process of translating logical expression to point-free relational expression
is known as “point-free transform” and it was also discussed in this chapter.



Chapter 5

Galois connections

Chapter 1 has already introduced the concept of a Galois connection and some of its
nice properties. In this chapter, we will provide a deeper overview of the theory of
Galois connections.

We start with a short historical perspective of the concept of Galois connection,
derived from the original work of Évariste Galois (1811 – 1832). Then, several equiv-
alent definitions of Galois connections are presented and some related concepts (such
as pair algebras) are introduced. In Section 5.3 we provide necessary and sufficient
conditions for the existence of adjoint functions. Section 5.4 will present the most im-
portant properties of Galois connections. Sections 5.5 and 5.6 will discuss an important
feature of Galois connections: the ability to build new connections either from binary
relations or from other existing Galois connections, leading to an algebraic approach.
Finally, we will show the link between Galois connections and category theory.

5.1 Historical perspective

Évariste Galois (1811 – 1832) was a French mathematician born near Paris. Although
the importance of his work lies in the theory of polynomial equations, he is mostly
known for his almost legendary life. He performed badly at school and during his life
no sign of genius was found in his work. He failed admission to the École Polytechique
twice; the memoirs he submitted to the Academy of Sciences were lost or judged as
’incomprehensible’. Because of his republican ideas together with several misunder-
standings he was arrested and acquitted several times until he got actually condemned.
The tragic hero role is completed with his death, consequence of a duel due to an affair

89
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with a woman [Stewart, 1989, 1992].

Although his work was never recognized during his short life, he is considered
one of the founders of modern abstract algebra. The problem he took at hands was to
determine which polynomial equations could be solved using radical expressions and
those which cannot. A polynomial equation is an equation of the form

f(x) = xn + an−1x
n−1 + . . . + a0 = 0

and a radical expression is built up using the operations of addition, subtraction, mul-
tiplication, division, and the nth roots (for n = 2, 3, 4, . . .) on the coefficients ai. For
quadratic, cubic and quartic equations it was known that solutions using radicals are
possible. However, the quintic (degree 5) equation was problematic; it took some time
until Abel proved that the solution using radicals is not possible in general [Tignol,
2001].

The approach of Galois was more general: instead of having a prove for each de-
gree he wanted to discover necessary and sufficient conditions under which the solution
using radicals is possible. His idea was to exploit the symmetries of the solutions (also
called zeros) of a polynomial equation. He observed that some solutions are naturally
related, i.e., if we take any polynomial equation with rational coefficients valid for
some of the zeros, the permutation of related zeros does not change the validity of the
equation. Permutations have an identity; and the compositions of two valid permuta-
tions is still a valid permutation. Galois recognized permutations as a group, a concept
that he invented [Stewart, 1989]. Besides relating the solution of an equation to a group
(called the Galois group), he realized that the structure of this group determines if the
equation is solvable by radicals or not [Galois, 1846, 1897].

Today’s approach is more abstract but follows on the sames ideas. It involves
field extensions instead of polynomials and automorphism groups instead of symmetry
groups. It describes a relation between subfields of an extended field and subgroups of
a group of automorphisms.

What today is known as classical Galois theory includes contributions, not only
of Galois, but also by some other important mathematicians like Lagrange, Abel and
Dedekind. The so-called “modern” Galois theory settled down in the 20th century
thanks to the work of Birkhoff [1940] about polarities, Ore [1944] about Galois con-

nexions and Schmidt [1953] about Galois correspondences of mixed type, better known
as adjunctions. These works extended the Galois theory to order and lattice theory.
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The original formulation was thus subsumed by these. Denecke et al. [2004] give a
complete account of the history of Galois connections from its roots until the modern
approaches.

5.2 Definitions

Galois connections are an important concept that naturally arises in many different
fields. As often happens with notions central to mathematics, several different, but
equivalent, definitions exist. In this section, we recall the concept of a preorder from
Section 4.1 to introduce these definitions. Furthermore, we will try to provide some
intuition about the concept.

Definition. Given two preordered sets (A,vA) and (B,vB) and two functions

B A
foo and A B

goo , the pair (f, g) is a Galois connection if and only if, for
all a ∈ A and b ∈ B:

f a vB b ⇔ a vA g b (5.1)

Function f (resp. g) is referred to as the lower adjoint (resp. upper adjoint) of the
connection1.

Two kinds of definitions of Galois connections exist [Priestley, 2000]: an order-
preserving and an order-inversing version. As we shall see, version (5.1) is the order-
preserving one, where adjoint functions have asymmetric definitions. Later on, when
polarities are introduced, we will present the order-inversing version in which there is
no distinction between functions [Melton et al., 1986], thus being symmetric. How-
ever, both forms lead to the same results.

Partial orders. The above definition uses the weakest assumption to establishing a
Galois connections: only preordered sets are required. However, this is not enough for
several applications like, for instance, proofs based on the indirect equality principle.
In these cases, anti-symmetry is fundamental to establish equalities, thus implying the

1Some authors use a different nomenclature. Lower and upper adjoint are sometimes called, respec-
tively, left and right adjoint [Priestley, 2000], coadjoint and adjoint [Erné et al., 1993] or residuated and
residual map [Melton et al., 1986].
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use of partially ordered sets. In other cases, lattices or even complete lattices may be
required.

In this presentation, we will try to provide results in their maximum generality.
Only when stronger requirements are needed, we will require partially ordered sets or
lattices in the definitions.

Notation. A standard notation for Galois connections does not exist. In this doc-
ument we will display Galois connections using the graphical notation introduced in
[Silva and Oliveira, 2008]

A
f

,,

vA
��

B
g

ll

vB
��

which we in-line in text by writing (A,vA)
(f,g)←−− (B,vB) . Both notations always

represent the source domain of the lower adjoint on the left. As we shall see, the arrow
notation emphasizes the categorial structure of Galois connections, which are closed
under composition and exhibit identity.

Sections and families of Galois connections. Galois connections’ adjoints are
unary functions: they only take one argument. Nevertheless, many important examples
of Galois connections arise from binary operators. Therefore, in order to form Galois
connections one of their arguments must be fixed, so that they become unary functions
on the other argument. In general, given binary operator θ, one defines two unary sec-

tions2, (aθ) and (θb), for every suitably typed a and b, such that (aθ) x = a θ x (called
the left section) and (θb) y = y θ b (called the right section), respectively. Thus, instead
of having just one Galois connection, we build a family of Galois connections indexed
by the frozen argument (a and b above).

The definition of Galois connection where adjoints are left sections becomes: given
two binary functions B A× Cθoo and A B × Cφoo , for a given c ∈ C, the pair
(θc, φc) is a Galois connection family indexed by c, if and only if for all a ∈ A and
b ∈ B:

(θc) a vB b ⇔ a vA (φc) b (5.2)

2This terminology is taken from functional programming, where sections are a very popular pro-
gramming device [Peyton Jones, 2003]. It is also used by Backhouse et al. [2002].
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In our notation,

A
(θc)

,,

vA
��

B
(φc)

ll

vB
��

This is the case for left sections; an analogous definition can be derived to right sections
providing that domains of functions are correct.

Ore’s definition. The definition we gave before is due to Schmidt [1953]. Equa-
tion (5.1) is quite elegant and easy to remember because of its symmetry. An alterna-
tive definition is due to Ore [1944] which defines Galois connections in terms of the
monotonicity of adjoints and their cancellation properties. Thus, given two preordered

sets (A,vA) and (B,vB) and two functions B A
foo and A B

goo , the pair (f, g)

is a Galois connection if and only if the following conditions hold:

1. For all a ∈ A and b ∈ B, a vA g (f a) and f (g b) vB b;

2. f and g are monotonic.

The generalization for the case where adjoints are sections of binary operators is
straightforward.

Hybrid definition. Another definition mixes monotonicity and the cancellation
property of the upper adjoint with Equation (5.1) weakened to an implication. This
definition is mostly useful to find the lower adjoint when the upper adjoint is a known
function [Backhouse, 2000].

Let (A,vA) and (B,vB) be two preordered sets and B A
foo and A B

goo

two functions. The pair (f, g) is a Galois connection if and only if the following
conditions hold:

1. g is monotonic;

2. For all a ∈ A, a vA g (f a);

3. For all a ∈ A and b ∈ B, a vA g b⇒ f a vB b.

A dual version of this definition exists based on the monotonicity of f [Priestley,
2000].
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Pair algebras. Hartmanis and Stearns [1964, 1966] introduced pair algebras, a re-
lated concept which provides a good way of further understanding Galois connections.

Given two posets (A,vA) and (B,v), a binary relation B ARoo forms a pair

algebra if there exist functions B A
foo and A B

goo such that, for all a ∈ A and
b ∈ B,

(b, a) ∈ R ⇔ f a vB b and (b, a) ∈ R ⇔ a vA g b (5.3)

It is not difficult to see that the concepts are equivalent: a pair algebra establishes a
Galois connection and a Galois connection connections defines a pair algebra [Back-
house and Backhouse, 2004]. Moreover, from Equation (5.3) we infer that the relation
established by f a vB b is equal to the relation established by a vA g b [Backhouse,
2000].

Recalling our examples from Sections 1.1.1 and 1.1.2 concerning whole division,
we would obtain a pair algebra Rc , such that, for all a, b and c ∈ N, c 6= 0,

a(×c) 6 b ⇔ (a, b) ∈ Rc ⇔ a 6 b(÷c)

Table 5.2 shows some values of the pair algebra Rc when we fix c to be equal to 3
and 7 (these values are arbitrary and this example would be valid for any instantiation
of c 6= 0). This gives us an insight about the equivalence between the three relations
and helps us understand the theoretical result [Backhouse, 2000, 2004] which states
that given a pair algebra R we can define functions f and g , satisfying (5.3), for all
a ∈ A and b ∈ B,

f a
def
= 〈

l
b : (a, b) ∈ R : b〉 (5.4)

g b
def
= 〈

⊔
a : (a, b) ∈ R : a〉 (5.5)

For instance, this means that from R3 we can extract the definition of function (×3)

as 0 × 3 = 0, 1 × 3 = 3, 2 × 3 = 6, . . . and the function (÷3) as 0 ÷ 3 = 0, 1 ÷ 3 =

0, 2÷ 3 = 0, 3÷ 3 = 1, 4÷ 3 = 1, . . .
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a(×3) 6 b a 6 b(÷3) R3

0× 3 6 0 0 6 0÷ 3 (0, 0)
0× 3 6 1 0 6 1÷ 3 (0, 1)

. . . . . . . . .
1× 3 6 3 1 6 3÷ 3 (1, 3)
1× 3 6 4 1 6 4÷ 3 (1, 4)
1× 3 6 5 1 6 5÷ 3 (1, 5)
1× 3 6 6 1 6 6÷ 3 (1, 6)
1× 3 6 7 1 6 7÷ 3 (1, 7)

. . . . . . . . .
2× 3 6 6 2 6 6÷ 3 (2, 6)
2× 3 6 7 2 6 7÷ 3 (2, 7)
2× 3 6 8 2 6 8÷ 3 (2, 8)
2× 3 6 9 2 6 9÷ 3 (2, 9)

. . . . . . . . .
3× 3 6 9 3 6 9÷ 3 (3, 9)

. . . . . . . . .
10× 3 6 30 10 6 30÷ 3 (10, 30)
10× 3 6 31 10 6 31÷ 3 (10, 31)

. . . . . . . . .

a(×7) 6 b a 6 b(÷7) R7

0× 7 6 0 0 6 0÷ 7 (0, 0)
0× 7 6 1 0 6 1÷ 7 (0, 1)

. . . . . . . . .
1× 7 6 7 1 6 7÷ 7 (1, 7)
1× 7 6 8 1 6 8÷ 7 (1, 8)
1× 7 6 9 1 6 9÷ 7 (1, 9)
1× 7 6 10 1 6 10÷ 7 (1, 10)
1× 7 6 11 1 6 11÷ 7 (1, 11)

. . . . . . . . .
2× 7 6 14 2 6 14÷ 7 (2, 14)
2× 7 6 15 2 6 15÷ 7 (2, 15)
2× 7 6 16 2 6 16÷ 7 (2, 16)
2× 7 6 17 2 6 17÷ 7 (2, 17)

. . . . . . . . .
3× 7 6 21 3 6 21÷ 7 (3, 21)

. . . . . . . . .
10× 7 6 70 10 6 70÷ 7 (10, 70)
10× 7 6 71 10 6 71÷ 7 (10, 71)

. . . . . . . . .

Table 5.1: Example of pair algebra Rc induced by whole division, for c = 3 and c = 7.
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Explicit definition. If in Equations (5.4) and (5.5) we replace the pair algebra R by
an equivalence given by (5.3), we get, for all a ∈ A and b ∈ B,

f a
def
= 〈

l
b ∈ B : a vA g b : b〉 (5.6)

g b
def
= 〈

⊔
a ∈ A : f a vB b : a〉 (5.7)

This result gives the explicit definition of one adjoint in terms of the other.

Perfect connections. Let (A,v)
(f,g)←−− (B,�) be a Galois connection. Then, the

following are equivalent:

1. f is surjective;

2. g is injective;

3. g b = 〈
⊔

a ∈ A : f a = b : a〉;

4. f ◦ g = idB.

In this situation, (A,v)
(f,g)←−− (B,�) is said to be a perfect Galois connection (also

called Galois insertion or retraction) [Priestley, 2000; Bělohlávek, 2000; Hankin,
2005].

An alternative formulation for perfect Galois connections [von Karger, 2000;
Bělohlávek, 2000] arises by strengthening the other cancellation rule to equality in-
stead. The following are equivalent:

1. f is injective;

2. g is surjective;

3. f a = 〈
d

b ∈ B : a = g b : b〉;

4. g ◦ f = idA.

Making perfect connections. From a Galois connection (A,v)
(f,g)←−− (B,�), we

can always obtain a perfect Galois connection by enforcing that the lower adjoint is
injective. This can be achieved by partitioning the domain of f in equivalence classes,
each class containing the elements that share the same image, i.e., supposing A as the
domain of f , elements a and a′ ofA belong to the same equivalence class if and only if
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f a = f a′. Then, all elements of an equivalence class are represented by their infimum
in the new perfect connection [Hankin, 2005].

We define the reduction operator A Aςoo as, for all a ∈ A,

ς a
def
= 〈

l
a′ ∈ A : f a = f a′ : a′〉 (5.8)

Then, (ς(A),v)
(f,g)←−− (B,�) is a perfect Galois connection, where ς(A) is the set

resulting from the application of ς to all elements of A.

Closure operators. Given a poset (A,v), a closure operator is an endo-function

A Acoo where for all a, a′ ∈ A,

a v c a (5.9)

a v a′ ⇒ c a v c a′ (5.10)

c (c a) = c a (5.11)

i.e., it is an increasing (5.9), monotonic (5.10) and idempotent (5.11) operator [Priest-
ley, 2000; Erné et al., 1993]. An element a ∈ A is said to be closed if c a = a and the
set of closed elements of A is defined as

Ac
def
= { a ∈ A : c a = a : a}

Interior operators. Given A Aioo monotonic, idempotent and decreasing, i.e.,
such that for all a ∈ A,

i a v a (5.12)

i is said to be an interior operator [Erné et al., 1993]. An element a ∈ A is said to be
open if i a = a and the set of open elements of A is defined as

Ai
def
= { a ∈ B : i a = a : a}

Closures and Galois connections. Let (A,v)
(f,g)←−− (B,�) be a Galois connection

where (A,v) and (B,�) are posets. We define two endo-functions A Acoo and
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B Bioo as

c
def
= g ◦ f (5.13)

i
def
= f ◦ g (5.14)

Then, c is a closure operator on A and i is an interior operator on B [Priestley, 2000;
Bělohlávek, 2000; Erné et al., 1993].

The set of closed elements of A is Ac
def
= { a ∈ A : g (f a) = a : a} and the set

of open elements of B is Bi
def
= { b ∈ B : f (g b) = b : b}. Posets Ac and Bi are

isomorphic, the isomorphism functions being the lower and upper adjoint with the
domain restricted to these sets, i.e., f(Ac) = Bi and g(Bi) = Ac [Erné et al., 1993;
Priestley, 2000]. This means we have a new Galois connection,

Ac

f
,,

=
��

Bi
g

ll

=
��

(5.15)

Closures from Galois connections. Conversely, every closure operator A Acoo

is the composition of a lower adjoint Ac A
foo and an upper adjoint A Ac

goo

of a Galois connection, i.e., c
def
= g ◦ f . The lower adjoint is defined as f a

def
= c a, a

mapping from the set A into its closure under c; the upper adjoint is just the trivial
embedding A Ac

ρAoo of Ac into the set A [Priestley, 2000].

A similar result is valid for every interior operator B Bioo , but the adjoints are

inverted. The upper adjoint is defined as g b
def
= i a and the lower adjoint it the trivial

embedding B Bi
ρBoo of Bi into the set B.

5.3 Existence

In this section we will describe some results about necessary and sufficient conditions
for the existence of a Galois connection. We start with a result for partially ordered sets
which requires completeness, and then we transpose it to complete lattices. Finally, we
discuss a more general result that holds in any partially ordered set.

Complete posets. Let A and B be complete posets and B A
foo and A B

goo

be functions. Then [Backhouse, 2000],
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1. f is a lower adjoint in a Galois connection if and only if f preserves existing
suprema, i.e., for all subsets A′ ⊆A if when

⊔
AA′ exists then

⊔
B f(A′) exists

and f(
⊔
AA′) =

⊔
B f(A′);

2. g is an upper adjoint in a Galois connection if and only if g preserves existing
infima, i.e., for all subsets B′⊆B if when

d
B B′ exists then

d
A g(B′) exists and

f(
d
B B′) =

d
A g(B′).

Complete lattices. This result can be modified if A and B are complete lattices. In
a complete lattice,

⊔
AA′ and

d
B B′ always exist, thus these existence conditions can

be dropped [Priestley, 2000].

Posets. Melton et al. [1986, Theorem 2.6] present a necessary and sufficient condi-
tion for the existence of a Galois connection between partially ordered sets that drops
the completeness requirement. This theorem is independent from the properties of
functions and solely based on the properties of the underlying sets. We will not enun-
ciate the theorem here but just describe its guidelines.

Let A and B be partially ordered sets. The theorem requires the existence of two
isomorphic sets, A′ and B′, such that A′ ⊆ A and B′ ⊆ B. A′ must be a system of
representatives for a partition of A such that each representative element is greater or
equal to the represented elements; B′ must be a system of representatives for a parti-
tion of B such that each representative element is smaller or equal to the represented
elements. Additionally, the representative elements, both of A′ and B′, must maintain
the original order of the represented elements.

5.4 Properties

From the definitions and existence conditions some of the properties of Galois connec-
tions can be inferred. In this section, we will explore some other important results.

Figure 5.1 summarizes the main properties of Galois connections.

Uniqueness. Uniqueness is an important property of Galois connections, that is,
each adjoint uniquely determines the other [Priestley, 2000]. This means that Equa-
tions (5.6) and (5.7) explicitly show how a lower and an upper adjoint, respectively,
are uniquely defined in terms of the other adjoint.
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General properties

f a vB b⇔ a vA g b “Shunting rule”
a vA g (f a) Lower cancellation
f (g b) vB b Upper cancellation

a vA a′⇒ f a vB f a′ Monotonicity
b vB b′⇒ g b vA g b′ Monotonicity

Properties for partial orders

f (g (f a)) = f a Semi-inverse
g (f (g b)) = g b Semi-inverse

Distributivity properties (lattices)

g (b uB b′) = g b uA g b′ Distributivity
f (a tA a′) = f a tB f a′ Distributivity

g>B = >A Top-preservation
f ⊥A = ⊥B Bottom-preservation

Legend

f Lower adjoint g Upper adjoint
>A Top element of A, if it exists ⊥A Bottom element of A, if it exists
>B Top element of B, if it exists ⊥B Bottom element of B, if it exists

a uA a′ = a ⇔ a vA a′ b uB b′ = b ⇔ b vB b′

a tA a′ = a′ ⇔ a vA a′ b tB b′ = b′ ⇔ b vB b′

for partial orders vA and vB

Figure 5.1: Summary of the most important properties of Galois connections.
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This uniqueness result is valid for a pair of adjoints in a certain preordered set. If
we change the underlying order, different connections arise. As we shall see in the
sections to follow, a lower adjoint of one connection can become the upper adjoint of
another connection, or a polymorphic function can be the adjoint of several different
operators depending of the underlying structure.

Preservation. From Ore’s definition we already know that adjoints must be mono-
tonic functions. But Galois connections have stronger preservation properties, as the
existence result suggests. Thus, for Galois connection (A,v)

(f,g)←−− (B,�), f pre-
serves existing suprema and g preserves existing infima [Priestley, 2000]. In particular,
for the binary case this means that

f (a tA a′) = f a tB f a′

g (b uB b′) = g b uA g b′

Moreover, if A and B have least and greatest elements, then

f ⊥A = ⊥B
g>B = >A

Opposites. Let (A,v)
(f,g)←−− (B,�) be a Galois connection where (A,v) and (B,�)

are posets. The restriction of both adjoints to the images g(B) ⊆ A and f(A) ⊆ B is
an isomorphism [Melton et al., 1994],

g(B)
f

--

=
��

f(A)
g

mm

=




This means that an element a ∈ A belongs to g(B) if and only if g (f a) = a; and
an element b ∈ B belongs to f(A) if and only if f (g b) = b [Melton et al., 1994].
Therefore, we can see that g(B) = Ac and f(A) = Bi, respectively, the sets of closed
elements of A and the set of open elements of B, where closure and interior operators
are defined as in (5.13) and (5.14).

The sets f(A) and g(B), besides being isomorphic, are also posets [Bělohlávek,
2001]. Moreover, if A and B are (complete) lattices, then so are f(B) and g(B)

[Melton et al., 1994, 1986].
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g

f

f⊤A

B

g⊥B

A
f

g

⊤A
⊤B

⊥A
⊥B

Figure 5.2: Opposites diagram.

Unity-of-opposites. The “unity-of-opposites” diagram (Figure 5.2) shows how sets
are connected when both A and B have top and bottom elements. Backhouse [2004]
explains the origin of this name which illustrates the behavior of Galois connections:
the shaded sets are isomorphic (the unity) but f(A) is a set of “small” elements and
g(B) is a set of “large” elements (the opposites). This is a consequence from the fact
that one defines the lower adjoint as a minimum and the upper adjoint as a maximum.
The diagram also helps to justify the choice of the names “lower” and “upper” for the
adjoints.

Semi-inverses. From the unit-of-opposites property above, we know that if we have
a Galois connection (A,v)

(f,g)←−− (B,�), then f ◦g is the identity function on elements
of the form f a, for all a ∈ A; conversely, g ◦ f is the identity function on elements
of the from g b, for all b ∈ B [Priestley, 2000]. Thus, we conclude the semi-inverse

property of Galois connections: f ◦ g ◦ f = f (i.e., f (g (f a)) = f a) and g ◦ f ◦ g = g

(i.e., g (f (g b)) = g b) already mentioned in Figure 5.1.

This property requires anti-symmetry, thus it does not hold for pre-orders. How-
ever, there is a weaker formulation for pre-orders: f

.

� f ◦g ◦f
.

� f and g
.

v g ◦f ◦g
.

v g

[Erné et al., 1993] (
.

v and
.

� are lifted versions of pre-ordersv and�, respectively, cf.
defined in Section 4.1).

Factorization. From a Galois connection (A,v)
(f,g)←−− (B,�), we know that the re-

striction of their adjoints to f(A) and g(B) yields an isomorphism between these sets.
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Moreover, we know that f(A) = Ac for closure operator c
def
= g ◦f ; and that g(B) = Bi

for interior operator i
def
= f ◦ g. Finally, we also know that every closure (interior) oper-

ator is a composition of two adjoints, where the lower (upper) adjoint is just the closure
(interior) operator itself and the upper (lower) adjoint is an embedding function.

Therefore, (A,v)
(f,g)←−− (B,�) can be expressed as the composition of three Galois

connections:

(A,v)
(g◦f,ρA)←−−−−− (Ac,v), (Ac, =)

(f,g)←−− (Bi, =) and (Bi,�)
(ρB,f◦g)←−−−− (B,�).

In fact, every Galois connection can be factored in this way [Erné et al., 1993].

Ordering. Suppose that (A,v)
(f1,g1)←−−−− (B,�) and (A,v)

(f2,g2)←−−−− (B,�) are Galois
connections. Then we have that [von Karger, 2000]:

f1

.

� f2 ⇔ g2

.

v g1 (5.16)

where
.

� and
.

v are the lifting of the underlying orders (recall the lifting of an order
from Section 4.1).

Using these lifted orders we can define an order for Galois connections. Thus, we
define an order relation E between Galois connections with the same domains, as

(A,v)
(f1,g1)←−−−− (B,�) E (A,v)

(f2,g2)←−−−− (B,�) if and only if f1

.

� f2 (5.17)

or, equivalently (by (5.16)), as

(A,v)
(f1,g1)←−−−− (B,�) E (A,v)

(f2,g2)←−−−− (B,�) if and only if g2

.

v g1 (5.18)

5.5 Building connections from relations

We already saw how to build a relation (pair algebra) from a Galois connection. How-
ever, in order to be a pair algebra the relation must obey some conditions. The con-
structions we will introduce below are generic and valid for any relation. They are
always defined on sets of sets (power sets) and ordered by set inclusion (or reverse set
inclusion).
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Function image. Given two sets A and B, and a function B Ahoo we can build

a new Galois connection (℘A,⊆)
(f,g)←−− (℘B,⊆) where the adjoints are defined as fol-

lows, for all A′ ⊆A and B′ ⊆ B:

f(A′) def
= { b ∈ B : 〈∃ a′ : a′ ∈ A′ : h a′ = b〉 : b} (5.19)

g(B′) def
= { a ∈ A : 〈∃ b′ : b′ ∈ B′ : h a = b′〉 : a} (5.20)

f is called the direct image ofA′ under h, and g is called the inverse image of B′ under
h [Erné et al., 1993].

Moreover, if we define another function ℘B ℘Ajoo as, for all A′ ⊆A,

j(A′) def
= { b ∈ B : g {b} ⊆ A′ : b} (5.21)

we obtain another Galois connection (℘B,⊆)
(g,j)←−− (℘A,⊆), where g is now the lower

adjoint and j is the upper adjoint [Priestley, 2000].

Polarities. A polarity arises from a binary relation B ARoo defined on sets A and

B, and establishes a Galois connection (℘A,⊆)
(f,g)←−− (℘B,⊇) between the power set

of A ordered by inclusion and the power set of B ordered by the “includes” order (or,
equivalently, the dual of the power set of B ordered by inclusion).

We will use the notation of Priestley [2000] and denote the lower adjoint f by . and
the upper adjoint g by /. Thus, the adjoints are defined as, for all A′ ⊆A and B′ ⊆ B,

A′. def
= { b ∈ B : 〈∀ a′ ∈ A′ :: bRa′〉 : b} (5.22)

B′/ def
= { a ∈ A : 〈∀ b′ ∈ B′ :: b′Ra〉 : a} (5.23)

and satisfy

A′. ⊇ B′ ⇔ A′ ⊆ B′/ (5.24)

Polarities correspond to the order-reversing version of Galois connections. In fact,
the adjoints are monotonic in the dual order.

Polarities are important an important subject in their own because they are the basis
of formal concept analysis [Ganter and Wille, 1999].
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Axialities. Another way of obtaining a Galois connection from a relation is through
axialities [Erné et al., 1993]. Given a relation B ARoo between sets A and B, we

build a Galois connection (℘A,⊆)
(f,g)←−− (℘B,⊆) where, for all A′ ⊆A and B′ ⊆ B,

f(A′) def
= { b ∈ B : 〈∃ a′ ∈ A′ :: bRa′〉 : b} (5.25)

g(B′) def
= { a ∈ A : 〈∀ b ∈ B : bRa : b ∈ B′〉 : a} (5.26)

Unlike polarities, axialities are order preserving.

5.6 Building new connections from old

A most useful ingredient of Galois connections lies in the fact that they build up on top
of themselves thanks to a number of combinators which enable one to construct (on
the fly) new connections out of existing ones. Let us see some of these combinators.

5.6.1 Basic combinators

Identity. The simplest of all Galois connections is the identity,

A
id

,,

vA
��

A
id

ll

vA
��

where adjoints are instances of the polymorphic identity function id mentioned in
Section 2.4.1.

Composition. Two Galois connections (A,v)
(f,g)←−− (B,�) and (B,�)

(h,k)←−− (C, 6)

with matching preorders can be composed, forming Galois connection

A
h◦f

++

v
��

C
g◦k

ll

6
��

(Note how adjoints compose in reverse order.) Composition is an associative operation
and the identity Galois connection is its unit. Thus, Galois connections form a monoid
structure.
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Isomorphism. The particular case in which both orders are equalities boils down to
both adjoints being isomorphisms (bijections), i.e.,

f a = b ⇔ a = g b (5.27)

which we can write as

A
f

,,

=
��

B
g

ll

=
��

This means that both functions f and g are simultaneously lower and upper adjoints.
They are also inverses of each other, that is, g = f∪ and f = g∪.

In proofs by indirect equality, we use partial orders and not equalities. However,
equality can be trivially replaced in (5.27) by any reflexive order, thus forming equiv-
alent Galois connections. If vA and �B are reflexive orders defined on sets A and B,
respectively, among several possible combinations, for all a ∈ A and b ∈ B,

f a �B b ⇔ a vA g b

g b vA a ⇔ b �B f a

are Galois connections.

Converse. The converse combinator on Galois connections switches adjoints while
inverting the orders. That is, from (A,v)

(f,g)←−− (B,�) one builds the converse con-
nection (B,�)

(g,f)←−− (A,w).

5.6.2 Relators

Relators. Every relator F preserves Galois connections between preordered sets.
Therefore, from (A,v)

(f,g)←−− (B,�) one infers, for every such relator, a new Galois
connection (F A,F v)

(F f,F g)←−−−−− (F B,F �).

When (A,v) and (B,�) are posets instead, relator F is required to distribute
through binary intersections, i.e., F(R ∩ S) = F R ∩ F S, in order to preserve Ga-
lois connections [Backhouse and Backhouse, 2004]. The distributivity through binary
intersection implies that (F A,F v) and (F B,F �) are also partial orders. If this
condition does not hold for a relator F , a weaker Galois connection is built, since
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(F A,F v) and (F B,F �) are just preorders. Appendix A provides the proofs of
these preservation properties of relators.

These results extend to binary relators such as, for instance, the product A × B
which pairs elements of A with elements of B ordered by the pairwise orderings.

Forks. Let (A,v)
(f1,g1)←−−−− (B,�) and (A,v)

(f2,g2)←−−−− (C, 6) be Galois connections.
Is it possible to build a new Galois connection (A,v)

(f,g)←−− (B × C,�×6)? A im-
mediate candidate to the lower adjoint is f

def
= f1∇ f2 where∇ is the fork combinator,

i.e., (f1 ∇ f2) a
def
= (f1 a, f2 a). The definition of the upper adjoint is more difficult.

Let us calculate it, for all a ∈ A, b ∈ B and c ∈ C,

Proof

(f1 ∇ f2) a �×6 (b, c)

⇔ { Definition of ∇. }

(f1 a, f2 a) �×6 (b, c)

⇔ { Definition of (�×6). }

f1 a � b ∧ f2 a 6 c

⇔ { Shunting. }

a v g1 b ∧ a v g2 c

⇔ { Universal property of u. }

a v g1 b u g2 c

�

Thus,

f a
def
= (f1 ∇ f2) a (5.28)

g (b, c)
def
= g1 b u g2 c (5.29)

In fact, this is the composition of the Galois connection obtained using the
product relator (A×A,v×v)

(f1×f2,g1×g2)←−−−−−−−− (B × C,�×6), and the infimum Ga-
lois connection (A,v)

(4,u)←−−− (A×A,v×v) where 4 is the doubling function:
4 a

def
= (a, a) (i.e.,4 def

= id ∇ id ).
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5.6.3 Function spaces

Post-composition. Galois connections can be lifted to function spaces, i.e., adjoints
map functions to functions ordered by a lifted order relation.

Then, (A,v)
(f,g)←−− (B,�) is a Galois connection if and only if for all functions h

and k according to the diagram,

A
f

--

v
��

B
g

mm

�
��

C
h

ffMMMMMMMMMMMMM k

88qqqqqqqqqqqqq

the following holds,

f ◦ h
.

� k ⇔ h
.

v g ◦ k (5.30)

In other words, (A ← C,
.

v)
((f◦),(g◦))←−−−−−− (B ← C,

.

�) is a Galois connection if and
only if (A,v)

(f,g)←−− (B,�) is a Galois connection. [Backhouse, 2000].

Pre-composition. If (A,v)
(f,g)←−− (B,�) is a Galois connection then, for all mono-

tonic functions h and k according with the diagram,

A
f

--

v
��

h

&&MMMMMMMMMMMMM B
g

mm

�
��

k

xxqqqqqqqqqqqqq

C
6

RR

the following holds,

h ◦ g
.

6 k ⇔ h
.

6 k ◦ f (5.31)

Thus, (C ← A,
.

6)
((◦g),(◦f))←−−−−−− (C ← B,

.

6) is a Galois connection if
(A,v)

(f,g)←−− (B,�) is a Galois connection, provided that (C ← A,
.

6) and (C ← B,
.

6)

are sets of monotonic functions [Backhouse, 2000].



5.6 Building new connections from old 109

Lifting. By composing the previous constructions of Galois connections on func-
tion spaces, we get a new construction that is very important for building analyses in
abstract interpretation [Cousot, 1999; Hankin, 2005].

From a Galois connection (A,v)
(f1,g1)←−−−− (B,�), using (5.31), we build another

connection (C ← A,
.

6)
((◦g1),(◦f1))←−−−−−−− (C ← B,

.

6). The choice of C as co-domain is
not accidental; this allow us to take another Galois connection (C, 6)

(f2,g2)←−−−− (D,⊆)

and, using (5.30), to build (C ← B,
.

6)
((f2◦),(g2◦))←−−−−−−− (D ← B,

.

⊆). In this way we can
compose them, obtaining (C ← A,

.

6)
((f2◦)◦(◦g1),(◦f1)◦(g2◦))←−−−−−−−−−−−−− (D ← B,

.

⊆). By defining
f

def
= (f2◦) ◦ (◦g1) and g

def
= (◦f1) ◦ (g2◦), this means that, for every monotonic functions

C Aαoo and D B
βoo ,

f α
def
= f2 ◦ α ◦ g1 (5.32)

g β
def
= g2 ◦ β ◦ f1 (5.33)

according to diagram:

C
f2

,,

⊆
��

D
g2

kk

⊆
��

A
f1

,,

v

LL

α

OO

B
g1

ll

�

RR

β

OO

5.6.4 Homomorphic image

Endo-functions. From a preordered set (A,v) and a function A Bhoo , a new
preorder � on B can be defined as

� def
= h∪ ◦v ◦ h (5.34)

as explained in Oliveira [2005]. Function h is a preorder homomorphism which lifts
results from the v-order to the �-order. The homomorphism can be written as

h ◦� = v ◦ h
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corresponding to the point-free version of

a � a′ ⇔ h a v h a′

Using this construction we can build new Galois connections from existing ones.
First, we analyze the case in which adjoints are endo-functions.

Let (A,v)
(f,g)←−− (A,v) be a Galois connection in which v is a preorder and let

A Bhoo be a function. Suppose that B B
f ′oo and B B

g ′oo are h-homomorphic
functions to lower adjoint f and upper adjoint g , respectively, i.e.:

h ◦ f ′ = f ◦ h (5.35)

h ◦ g′ = g ◦ h (5.36)

Then, (B,�)
(f ′,g′)←−−− (B,�) is a Galois connection [Oliveira, 2005], according to

diagram:

A
f

,,

v
��

A
g

ll

v
��

B
f ′

,,

�

LL

h

OO

B
g′

ll

�

RR

h

OO

General case. In order to generalize to Galois connection in which adjoints are not
limited to endo-functions, we need two homomorphic functions h and h ′, such as the
diagram which follows:

A
f

,,

v
��

B
g

ll

�
��

C
f ′

,,

6

LL

h

OO

D
g′

kk

⊆

RR

h′

OO

where the following equations must hold:

6
def
= h∪ ◦v ◦ h (5.37)

⊆ def
= h′

∪
◦� ◦ h′ (5.38)
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h′ ◦ f ′ = f ◦ h (5.39)

h ◦ g′ = g ◦ h′ (5.40)

Then, as we prove in Appendix A, (C, 6)
(f ′,g′)←−−− (D,⊆) is a Galois connection.

Partial orders. The previous construction is only valid, in general, for preorders.
If we are dealing with partial orders the following question is important: in which
conditions the derived order � as defined in (5.34) is a partial order, provided that
anti-symmetry holds for v?

As we prove in Appendix A, a function preserves anti-symmetry if it is injective.
Therefore, we can use (5.34) to build partial orders provided that h is injective. Conse-
quently, we can also use the previous homomorphic construction to lift existing Galois
connections between posets.

5.6.5 Higher-order Galois connections

Backhouse and Backhouse [2004] provide an expressive account of how Galois con-
nections and free-theorem about polymorphic functions can be combined to build new
higher-order Galois connections, and how this provides for safe abstract interpreta-
tions. Here, we will just provide some of the results concerning the construction of
new Galois connections.

Type expressions. Backhouse and Backhouse [2004] define the grammar of type
expressions t as

t ::= v Type variable

| t′′ ← t′ Function type

| F(t1, . . . tn) n-ary type relator

The use of type variables v allows for the use of parametric polymorphism. Basic types
correspond to 0-ary type relators.

Assignments. The key of building higher-order Galois connections is the use of an
assignment that extends individual variable assignments to type expressions.
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Backhouse and Backhouse [2004] define a variable assignment as a function with
domain the set of type variables, and divide it in two kinds, depending on the range.
One kind assigns posets and the other assigns relations on posets to type variables.
Thus, if V is a variable assignment and Σv is the set of type variables, poset Σv

Voo

is an assignment of the first kind and relations on posets Σv
Voo is an assignment of

the second kind.

Given two variable assignment V and W of the same kind, we can extend the
assignment to arbitrary type expressions t by defining the following operator:

[V, W ]v
def
= Vv

[V, W ]t′′←t′
def
= [V, W ]t′′ ← [W, V ]t′

[V, W ]F(t1,...,tn)

def
= F([V, W ]t1 , . . . , [V, W ]tn)

Higher-order Galois connections. Let (Av,vv) and (Bv,�v) be posets. If we have
a Galois connection (Av,vv)

(fv ,gv)←−−−− (Bv,�v) for each type variable v, then, for all
type expressions t,

[f, g∪]∪t ◦�t = vt ◦ [g, f∪]t (5.41)

i.e., (At,vt)
([f,g∪]t,[g,f∪]t)←−−−−−−−−− (Bt,�t) is a Galois connection, for each type expression t.

This result follows from the instantiation of the variable assignment with a pair algebra
induced by a Galois connection, for each type variable [Backhouse and Backhouse,
2004].

5.6.6 Algebra of Galois connections

The combinators we have presented may be seen as operators of an algebra. Thus, we
have defined an algebra of Galois connections.

Definition. An algebra of Galois connections is a tuple (G, ◦, id ,∪ ) satisfying the
following axioms, for any g, h, j ∈ G:

g ◦ (h ◦ j) = (g ◦ h) ◦ j (5.42)

g ◦ id = g = id ◦ g (5.43)
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(g ◦ h)∪ = h∪ ◦ g∪ (5.44)

(g∪)∪ = g (5.45)

This structure is just a composition monoid (G, ◦, id) with a converse operation.

Interpretation. Galois connections are models for algebras of Galois connections.
The validity of these axioms when the elements of G are interpreted as Galois connec-
tions can be easily proved using the definitions.

5.7 Galois connections and categories

Galois connections relate themselves with categories in two ways: they are instances of
adjunctions between categories of ordered sets; and they themselves form a category.
Here, we briefly discuss this relation.

5.7.1 Galois connections as adjunctions

Adjunctions [Priestley, 2000]. An adjunction between categories A and B is a struc-
ture (F ,G, e, ε), such that B A

Foo and A B
Goo are monotonic functors; for all

A ∈ A and B ∈ B, the arrows GF(A) A
eAoo and FG(B) B

εBoo exist; and the
following conditions hold:

1. For arrows A′ Auoo and B′ B
ϕoo , where A, A′ ∈ A and B, B′ ∈ B the

following diagrams commute

A
u //

eA

��

A′

eA′

��
GF(A)

GF(u) // GF(A′)

B
ϕ // B′

FG(B)
FG(ϕ) //

εB

OO

FG(B′)

εB′

OO

2. For A ∈ A and B ∈ B, u and ϕ are associated in such a way that the following
diagrams commute

A
eA //

u
''OOOOOOOOOOOOOO GF(A)

G(ϕ)

��
G(B)

B
εB //

ϕ
''OOOOOOOOOOOOOO FG(B)

F(u)

��
F(A)
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Interpretation. When in the above definition, categories A and B are categories of
ordered sets, the adjunction is interpreted as a Galois connection, where the functors
F and G are, respectively, the lower and upper adjoints, and u and ϕ are the orders
[Priestley, 2000].

However, developing the theory on Galois connections in the categorical setting
is much more complex than using order theory. Furthermore, not all properties valid
for Galois connections hold for adjunctions. As Aarts et al. [1992] put it: “To call a

Galois connection an adjunction is just mathematical overkill!”

5.7.2 Category of Galois connections

Galois connections form their own category if we take the following definitions:

Objects. Preordered sets or posets.

Arrows (morphisms). Galois connections between the preordered sets. The source is
the domain of the lower adjoint and the target is the domain of the lower adjoint.

Identity arrow. The identity Galois connection.

Composition. The composition of Galois connections which is an associative opera-
tion and has the identity Galois connection as unit.

Functors. Functors in the Galois connections category are relators from other cate-
gories. When the objects are posets, relators must distribute over binary meet.

5.7.3 Galois connections and allegories

This sections explores how a category in which objects are partial orders and arrows
are Galois connections can be extended to the more general concept of an allegory.

Inclusion. We define the inclusion order as the ordering of Galois connections E.
We must show that the composition of Galois connections is monotonic with respect
to this order. Thus, if we have that

α1 = (A,v)
(f1,g1)←−−−− (B,�) E α2 = (A,v)

(f2,g2)←−−−− (B,�)

and

β1 = (B,�)
(h1,j1)←−−−− (C, 6) E β2 = (B,�)

(h2,j2)←−−−− (C, 6)
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both hold, then

α1 ◦ β1 E α2 ◦ β2

must hold either.

By definition of composition of Galois connections and of E, this is equivalent to
prove that

h1 ◦ f1

.

6 h2 ◦ f2

under assumptions f1

.

� f2 and h1

.

v h2.

Proof

h1 ◦ f1

.

6 h2 ◦ f2

⇔ { Definition of lifted order (4.56). }

h1 ◦ f1 ⊆ 6 ◦ h2 ◦ f2

⇐ { Transitivity of 6. }

h1 ◦ f1 ⊆ 6 ◦ 6 ◦ h2 ◦ f2

⇐ { Monotonicity of an adjoint. }

h1 ◦ f1 ⊆ 6 ◦ h2 ◦� ◦ f2

⇐ { Assumption and definition of lifted order (4.56). }

h1 ⊆ 6 ◦ h2

⇔ { Assumption and definition of lifted order (4.56). }

>

�

Meet. We define the meet operation e as, for all Galois connections g1 and g2,

g1 e g2 = g1
def⇔ g1 E g2 (5.46)
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Therefore, we must show that, for all Galois connections x, g1 and g2, the universal
property of meet holds (4.60), i.e.,

x E g1 e g2 ⇔ x E g1 ∧ x E g2 (5.47)

Proof

x E g1 e g2

⇔ { Definition (5.46). }

x e (g1 e g2) = x

⇔ { Case analysis: g1 e g2 = g1 and g1 e g2 = g2. }

x e g1 = x ∧ x e g2 = x

⇔ { Definition (5.46). }

x E g1 ∧ x E g2

�

Converse. We define the converse ∪ as the standard converse operator for Galois
connections. From the algebra of Galois connections we already know that it is
an involution and that contravariance holds. Thus, we only must prove that con-
verse is monotonic with respect to E, i.e., for α1 = (A,v)

(f1,g1)←−−−− (B,�) and
α2 = (A,v)

(f2,g2)←−−−− (B,�),

α1 E α2 ⇔ α∪1 E α∪2

which by definition of converse and E is equivalent to prove that,

f1

.

� f2 ⇔ g1

.

w g2

Proof

f1

.

� f2

⇔ { Equivalence (5.16). }

g2

.

v g1
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⇔ { Definition of converse. }

g1

.

w g2

�

Modular law. Finally, all the introduced operations on Galois connections must sat-
isfy the modular law (4.64), i.e.,

(α1 ◦ α2) e α3 E α1 ◦ (α2 e (α∪1 ◦ α3)) (5.48)

The proof follows, for all Galois connections x,

Proof

x E (α1 ◦ α2) e α3

⇔ { Universal property of meet (5.47). }

x E α1 ◦ α2 ∧ x E α3

⇒ { Monotonicity of composition with respect to inclusion. }

x E α1 ◦ α2 ∧ α∪1 ◦ x E α∪1 ◦ α3

⇔ { Assuming α∪1 ◦ α2 E α3⇔ α2 E α1 ◦ α3. }

α∪1 ◦ x E α2 ∧ α∪1 ◦ x E α∪1 ◦ α3

⇔ { Universal property of meet (5.47). }

α∪1 ◦ x E α2 e (α∪1 ◦ α3)

⇔ { Assuming again α∪1 ◦ α2 E α3⇔ α2 E α1 ◦ α3. }

x E α1 ◦ (α2 e (α∪1 ◦ α3))

∴ { By indirect inequality (see Section 8.3). }

(α1 ◦ α2) e α3 E α1 ◦ (α2 e (α∪1 ◦ α3))

�

In the proof above, a kind of “shunting” property of Galois connections was assumed:

α∪1 ◦ α2 E α3 ⇔ α2 E α1 ◦ α3 (5.49)
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The proof of this theorem is deferred to Appendix A.4. However, since we assume
that objects are partial orders, (5.49) only holds in the particular case when α1 is an
isomorphism. Therefore, the modular law (5.48) only holds for Galois connections
when α1 is an isomorphism. Appendix A.4 discusses the typing issues that do not
allow to further generalise (5.49). A similar argument can be applied to (5.48).

Thus, Galois connections do not satisfy all the axioms of an allegory because the
modular identity does not hold, in general. However, the particular case when arrows
are isomorphisms forms an allegory.

5.8 Summary

Galois connections are the principal concept behind the design of the Galculator. This
chapter provided a theoretical introduction to the subject, together with a short histor-
ical overview. As usually happens with ubiquitous and important concepts in Mathe-
matics, various distinct definitions of Galois connections exist, depending of the field
of application. This chapter gave several of the different but equivalent definitions
which appear in the literature.

Galois connections enjoy several interesting and important properties which were
analyzed. One advantage of Galois connections is that once a concept is identified
as an adjoint, it automatically enjoys all the general properties of Galois connections.
This will be exploited in the design of the Galculator as a way of improving genericity.

Also of special importance on the design of the Galculator is the ability of building
new Galois connections from existing ones. This allowed us to build an algebra of
Galois connections which will be used by Galculator. Moreover, as we have shown, it
is possible to define a category of Galois connections. The extension of this result to
allegories is also discussed.

In the following chapter, several examples of Galois connections spreading through
several different fields will be described. This will hopefully show their wide range of
application, as well as the usefulness of their algebraic nature and properties.



Chapter 6

Examples and applications of Galois
connections

This chapter provides an overview of some important examples of Galois connections
and their applications. The list is not exhaustive but it should give a good insight about
the ubiquity of Galois connections and their relevance in software design. More ex-
amples can be found in the literature about abstract interpretation [Cousot and Cousot,
1977; Cousot, 2001; Hankin, 2005; Backhouse and Backhouse, 2004] or in references
such as [Backhouse et al., 2002; Backhouse, 2004; Erné et al., 1993; Denecke et al.,
2004; Melton et al., 1986].

6.1 Abstract interpretation

Abstract interpretation [Cousot and Cousot, 1977] is, perhaps, the most well-known
application of Galois connections in Computer Science. Below we provide an
overview of the theory of abstract interpretation, mostly based on Cousot [1999] and
Hankin [2005].

6.1.1 Description

A known limitation of static automatic approaches to program correctness is that many
interesting properties are undecidable. However, we can often “forget” some details
and approximate the original problem by a simpler one. Moreover, we can repeat this
process until we reach a solvable problem. As Cousot [2001] puts it: “The purpose of

119
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abstract interpretation is to formalize this notion of approximation in a unified frame-

work.”.

Approximation entails loss of information. The question is: which information
should one ignore? Usually, the abstractions used in abstract interpretation over-
approximate the concrete property and in this sense they are safe. That is, if the abstract
property holds then the corresponding concrete property holds; if the abstract property
does not hold we cannot conclude nothing about the concrete property. In this way,
false positives are not allowed but false negatives can occur.

In a more general setting, abstract interpretation can be seen “. . . as a theory for

approximating sets and set operations as considered in set (or category) theory. . . ”

[Cousot, 2001]. Galois connections arise naturally as a device for building abstractions
in a constructive way.

Concrete properties. General analysis must be valid for any program in a given
programming language. Thus, we must use the semantics of the language, which is
usually defined over a set V of values (states, traces, etc.). The semantics of a program
specifies how it transforms the values of V .

A concrete property P is the set of all values of V that satisfy the property, thus,
P ∈ ℘V .

Abstract properties. In order to approximate the domain of concrete properties, we
use another (more abstract) domain L. An abstract property p ∈ L corresponds to an
approximation of concrete property P ∈ ℘V .

Usually, the set L is a complete lattice (L,v,⊥,>,t,u) wherev is a partial order
(referred to as the approximation order) which corresponds to abstract implication, ⊥
is the false value, > is the true value, t is the abstract disjunction and u is the abstract
conjunction [Cousot, 1999].

Concretization functions. Abstract properties are related to concrete properties by
a monotonic concretization function ℘V Lconoo such that for each p ∈ L it returns
the corresponding P ∈ ℘V . The monotonicity condition implies that, for all abstract
properties p, q ∈ L,

p v q ⇒ con p⊆ con q
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In general, there is not an equivalent abstract property p of a concrete property P .
Therefore, in order to be safe, p must over-approximate P , i.e., P ⊆ con p, meaning
that con p is weaker than P .

Abstraction functions. Is there an optimal over-approximation p of a concrete prop-
erty P ? Intuitively, an over-approximation is optimal if it is the smallest one which
includes P , i.e., {

⋂
p : P ⊆ con p : con p}. This situation corresponds to an abstrac-

tion function L ℘Vabsoo which maps every P ∈ ℘V to its best over-approximation,
abs P ∈ L.

In this way, abs and con are defined as for all P ∈ ℘V and p ∈ L,

abs P
def
= 〈

l
p : P ⊆ con p : p〉 (6.1)

con p
def
= {

⋃
P : abs P v p : P} (6.2)

which corresponds to the explicit definition of a Galois connection. Thus, abs and con

form a Galois connection,

℘V
abs

,,

⊆
��

L
con

ll

v
��

such that, for all P ∈ ℘V and p ∈ L,

abs P v p ⇔ P ⊆ con p (6.3)

From the properties of Galois connections, abs and con immediately satisfy the
following important properties [Cousot, 1999], for all P, Q ∈ ℘V and p ∈ L,

P ⊆Q ⇒ abs P v abs Q abs preserves implication

P ⊆ con(abs P ) abs P over-approximates P

abs(con p) v p con controls the loss of information

When abs and con form a perfect Galois connection, the last property becomes

abs(con p) = p

meaning that no information is lost.
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Representations and extractions. It is often the case that instead of an abstraction
function we have a representation function L V

βoo , according to diagram

℘V
abs

,, L
con

ll

V
{·}

``AAAAAAAA β

??��������

We can define the abstraction and concretization functions from the representation
function β, for all V ′ ⊆ V and l ∈ L,

absV ′ def
= 〈

⊔
p ∈ V ′ :: β p〉

con l
def
= { p ∈ V : β p v l : p}

Another common situation occurs when L = (℘A,⊆) and we have an extraction
function A V

ηoo . Then, the abstraction and concretization functions are defined as,
for all A′ ⊆A and V ′ ⊆ V ,

absV ′ def
= { v ∈ V ′ :: η v}

conA′ def
= { a : η a ∈ A′ : a}

6.1.2 Building new analysis

Even after abstracting from concrete properties ℘V to abstract propertiesL, some prop-
erties remain undecidable or require too complex computations. This means that we
must further abstract our domain L and/or combine it with other abstractions of ℘V .
We will call an analysis to the process of abstracting from a certain domain (Cousot
refers to this as abstraction).

An important element of abstract interpretation is the possibility of building com-
plex and powerful analysis by composing simpler ones. The literature about the field
presents several constructions that preserve the best over-approximation properties of
the basis analysis. In fact, it all boils down to combinational properties of Galois con-
nections and the constructions we have described in Section 5.6.

Composition of analysis. Composition allows for the construction of analysis of
increased abstraction provided that there exists a pair of abstraction and concretization
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functions between domains. This means that from a set of concrete properties L0 =

℘V it is possible to build an analysis on Ln, if there exists (absi, coni) for 0 6 i 6 n,
i.e.,

℘V
abs1 ++ L1
con1

kk
abs2 ++ L2
con2

kk
abs3 ++ . . .
con3

kk
absn ++ Ln
conn

kk

This is a direct consequence of the fact that the composition of Galois connections is
still a Galois connection.

Independent attribute method. The independent attribute method [Hankin, 2005]
combines two analysis

L1

abs1 ,,

v1

��
M1

con1

ll

�1

��
L2

abs2 ,,

v2

��
M2

con2

ll

�2

��

in just one defined over pairs of values

L1 × L2

abs1×abs2 ..

v1×v2

��
M1 ×M2

con1×con2

mm

�1×�2

��

where any possible relation between the pairs is lost. In fact, this is just the construction
of Galois connections using the product relator (recall Sections 4.6 and 5.6).

Relational method. The relational method [Hankin, 2005] combines two analysis

℘A1

abs1 ,,

⊆
��

℘B1
con1

mm

⊆
��

℘A2

abs2 ,,

⊆
��

℘B2
con2

mm

⊆
��

in just one

℘(A1 ×A2)
abs12 ..

⊆×⊆
��

℘(B1 × B2)
con12

nn

⊆×⊆




This is the composition of the independent attribute method, i.e., Galois connection
(℘(A1)× ℘(A2),⊆×⊆)

(abs1×abs2,con1×con2)←−−−−−−−−−−−−− (℘(B1)× ℘(B2),⊆×⊆), and the set
relator construction we saw in Section 5.6.
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The relation method preserves some information about the relation between values
leading to more precise analysis than the independent attribute method.

Direct product method. The direct product method [Hankin, 2005] combines two
analysis

L
abs1 ,,

v
��

M1
con1

ll

�1

��
L

abs2 ,,

v
��

M2
con2

ll

�2

��

in just one sharing the same domain

L
abs12 ..

v
��

M1 ×M2
con12

ll

�1×�2

��

In fact, this is just the fork construction of Galois connections.

Direct tensor product method. The direct tensor product method [Hankin, 2005]
combines two analysis like the direct product method but saves some relation between
values like the relational method. In the case of two analysis defined over the power
set relator

℘L
abs1 --

⊆
��

℘M1
con1

ll

⊆
��

℘L
abs2 --

⊆
��

℘M2
con2

ll

⊆
��

they form a single analysis

℘L
abs12 ..

⊆
��

℘(M1 ×M2)
con12

mm

⊆×⊆




We can see this method as the composition of the fork construction with the set relator
construction of Galois connections.
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Monotone function space method. The monotone function space method allows for
approximating monotonic functions in abstract domains. Given two analyses,

L1

abs1 ,,

v1

��
M1

con1

ll

�1

��
L2

abs2 ,,

v2

��
M2

con2

ll

�2

��

we can build another analysis, for all monotonic functions φ and ϕ

L1
abs1 //

v1

��
M1

�1

��

L2

v2

KK

φ

OO

M2con2

oo

�2

SS

abs12(φ)

OO L1

v1

��
M1

con1oo

�1

��

L2 abs2
//

v2

KK

con12(ϕ)

OO

M2

�2

SS

ϕ

OO

where abs12 and con12 are defined as

abs12 φ
def
= abs1 ◦ φ ◦ con2

con12 ϕ
def
= con1 ◦ ϕ ◦ abs2

If we have a monotonic function L1 L2
φoo , then abs12 φ is the best over-

approximation of a (more abstract) function of type M1 ← M2. This corresponds
to the lifted construction of Galois connections of Section 5.6.

6.1.3 Examples of analysis

Below we present just a few examples of analysis used in abstract interpretation, more
specifically in Array Bound Analysis. This is a technique for statically determining
whether an array index does not fall behind the limits (bounds) of the given array.
These concrete examples are adapted from [Hankin, 2005] which shows how they can
be combined to form a complete analysis.
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Sign analysis. The sign analysis is a simple analysis on integers which only retains
the information about their sign. From the extraction function defined as, for all z ∈ Z,

sign z
def
=


− if z < 0

0 if z = 0

+ if z > 0

we get the following abstraction and concretization function, for all Z ⊆ Z and S ⊆
{−, 0, +},

absZ def
= { z ∈ Z :: sign z}

conS def
= { z ∈ Z : sign z ∈ S : z}

Thus, (℘Z,⊆)
(abs,con)←−−−−− (℘{−, 0, +},⊆) is a Galois connection.

Range analysis. The range analysis is identical to the sign analysis but more precise

since more information is retained (the unit). The extraction function is, for all z ∈ Z,

range z
def
=



<−1 if z < −1

−1 if z = −1

0 if z = 0

+1 if z = 1

>+1 if z > 1

and the abstraction and concretization functions, defined as, for all Z ⊆ Z and R ⊆
{<−1,−1, 0, +1, >+1},

absZ def
= { z ∈ Z :: range z}

conR def
= { z ∈ Z : range z ∈ R : z}

form a Galois connection (℘Z,⊆)
(abs,con)←−−−−− (℘{<−1,−1, 0, +1, >+1},⊆).

Magnitude difference analysis. The magnitude difference analysis abstracts a pair
of integers by the difference of their absolute values, according with the extraction
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function

diff(z1, z2) = |z1| − |z2|

defined for all z1, z2 ∈ Z.

The abstraction and concretization functions defined as, for all P ⊆ Z × Z and
Z ⊆ Z,

absP def
= { z1, z2 : (z1, z2) ∈ P : diff(z1, z2)}

conZ def
= { z1, z2 : diff(z1, z2) ∈ Z : (z1, z2)}

form the (℘Z× Z,⊆)
(abs,con)←−−−−− (℘Z,⊆) Galois connection.

Interval analysis. Interval analysis is a traditional analysis in which the complete
lattice of intervals is used to represent potentially infinite domains of integers. Interval
analysis can be used for Array Bound Analysis or for determining the sign of addition
[Cousot, 1999; Hankin, 2005].

The set of integers is extended with top and bottom elements Z ∪ {−∞,∞}. An
interval is either empty, ⊥, or it is given by its limits

[z1, z2]
def
= { z ∈ Z : z1 6 z 6 z2 : z}

such that z1 6 z2. The infimum and supremum operators of an interval i are defined
as:

inf i =

∞ if i = ⊥

z1 if i = [z1, z2]
sup i =

−∞ if i = ⊥

z2 if i = [z1, z2]

The inclusion order in intervals is then defined as, for all intervals i1 and i2, i1 vi

i2
def
= inf i2 6 inf i1 ∧ sup i1 6 sup i2. Order vi is a partial order since it is defined as

a conjunction of two partial orders (ordering 6 on integers).

From this we define the concretization and abstraction function which follows, for
all intervals i and Z ⊆ Z,

con i
def
= { z ∈ Z : inf i 6 z 6 sup i : z}
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absZ def
=

⊥ if Z = ∅

[inf z, sup z] otherwise

form a perfect Galois connection [Hankin, 2005]. (℘Z,⊆)
(abs,con)←−−−−− (Int,vi), where

Int is the set of all intervals over Z.

6.2 Formal concept analysis

Description. Formal concept analysis (FCA) [Ganter and Wille, 1999] is another
important application of Galois connections. FCA intents to analyse the hierarchical
structure and dependencies among objects and their attributes [Priestley, 2000]. Ob-
jects and attributes are, in this context, mathematical formal concepts as discussed by
Priss [2006b].

One important feature of FCA is that it can be automatized. Several applications
exist that extract the so-called concept lattice. Moreover, concept lattices can be visu-
alized graphically using Hass diagrams, also known in FCA as line diagrams.

The applications of FCA spread over several fields: linguistics, software engineer-
ing, psychology, sociology, artificial intelligence, information retrieval, date mining
and others [Priss, 2006b].

Ganter and Wille [1999] provide the mathematical foundations of FCA; [Priss,
2006b] is a more gentle introduction to the field which summarizes the applications
and relevant bibliography about FCA.

Contexts. Let triple (G, M, R) denote a context where G is the set of objects, M is
the set of attributes and G MRoo is a relation. (g,m) ∈ R (or just gRm) means
that ’object g has attribute m’ [Priestley, 2000].

Two functions, . and /, called, respectively, left and right polar, are defined as
follows, for all A ⊆ G and B ⊆M ,

A. def
= {m ∈M : 〈∀ g ∈ A :: gRm〉 : m}

B/ def
= { g ∈ G : 〈∀m ∈ B :: gRm〉 : g}
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. and / verify

A. ⊇ B ⇔ A⊆ B/

This means that (℘G,⊆)
(.,/)←−− (℘M,⊇) is a Galois connection, corresponding to the

polarity definitions of Section 5.5.

These functions have an intuitive meaning: A. returns the set of attributes common
to all objects in A; B/ returns the set of all objects which share all the atttibutes in
B [Priestley, 2000].

Concepts. The pair (A,B), such that A ⊆ G and B ⊆M , is a concept if

A = B/ and A. = B

The set of all concepts ordered by ⊆×⊇ is referred to as a concept lattice.

6.3 Residuation

Residuation theory studies the interaction between ordered structures like lattices and
semigroup operations. In this section we will not use the traditional definition of resid-
uation in terms of preservation properties of principal ideals. Instead, we use Ga-
lois connections to specify the relation between the underlying order structure and
the semigroup operators. Our intent is to show that some structures can be elegantly
defined by requiring that a certain operator has an adjoint.

Residuated semigroups [Erné et al., 1993]. A partially ordered semigroup is a
poset (A,v) with a monotonic associative operation, ⊗. The partially ordered semi-
group is said to be residuated if both right and left sections of ⊗ have upper ad-
joints, that is, (A,v)

((a⊗),(a\))←−−−−−− (A,v) and (A,v)
((⊗a),(/a))←−−−−−− (A,v) are Galois con-

nections. It turns out that another Galois connection (A,v)
((\a),(a/))←−−−−−− (A,w) arises

from the combination of these two connections as can be easily inferred from the def-
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initions, for all a, b and c ∈ A:

a⊗ b v c ⇔ b v a \ c (6.4)

a⊗ b v c ⇔ a v c / b (6.5)

a \ c w b ⇔ a v c / b (6.6)

Sections (a\) and (/a) are called, respectively, right and left division.

Complete residuated semigroups [Erné et al., 1993]. A complete partially ordered
semigroup, also known as a quantale, is said to be residuated if and only if ⊗ dis-
tributes over arbitrary suprema, i.e., for all a ∈ A and A′ ⊆ A, the following both
hold,

a⊗
⊔
A′ = 〈

⊔
a′ ∈ A′ :: a⊗ a′〉⊔

A′ ⊗ a = 〈
⊔

a′ ∈ A′ :: a′ ⊗ a〉

Commutative residuated semigroups. If the operation ⊕ is commutative left and
right division coincide (see proof in Appendix A) and may be both denoted by / as it
is usual in arithmetics. Thus, we have the following Galois connections:

a⊗ b v c ⇔ b v c / a

a⊗ b v c ⇔ a v c / b

c / a w b ⇔ a v c / b

Whole division (dealt with in Section 1.1) is an example of this since multiplication is
commutative.

Regular algebras. A regular algebra is a tuple (L, 6, +, 0,×, 1) such that (L, 6

, +, 0) is a complete, completely distributive lattice with least element 0; (L,×, 1) is
a monoid; and, (a×) and (×a) are lower adjoints, for all a ∈ L [Backhouse, 2004].
Thus, a regular algebra is an instance of a residuated semigroup.

Regular algebras are important in Computer Science because the monoid structure
models composition and the complete distributive lattice models choice. Additionally,
by requiring the existence of a certain fixed point, regular algebras also model the
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iteration of composition. Backhouse [2004] presents several interesting examples that
are instances of regular algebras such as graphs, vectors and optimization problems.

Languages. Backhouse [2004] presents the concept of a language as a regular alge-
bra.

Let T be a finite set of symbols called alphabet. Finite sequences of elements of
T are called words; the empty word (length zero) is denoted by ε. There is a binary
associative operator · called concatenation which forms new words by joining existing
words. The empty word is the unit of concatenation, i.e., for all words w, w · ε = w =

ε · w. Therefore, (T ∗, ·, ε) forms a monoid structure; T ∗ denotes the set of all words.

A language is a subset of T ∗; thus, the set L of all languages is just the power
set of T ∗ and, consequently, a complete lattice ordered by set inclusion. Backhouse
[2004] extends the monoid structure of T ∗ to the lattice L by defining the concatena-
tion operation of words and languages, for all words w and languagesM,

w · M def
= {

⋃
m : m ∈M : w ·m}

and the concatenation of languages, for all languagesM and N ,

M ·N def
= {

⋃
m : m ∈M : m · N}

The concatenation operator is residuated and thus verifies, for all languages L,M
and N ,

L ·M⊆N ⇔ M⊆L \ N

L ·M⊆N ⇔ L⊆N /M

N ·M ⊇ L ⇔ M⊆L \ N

Thus, L\N is the greatest languageM such that L·M⊆N , andN /M is the greatest
language L such that L ·M⊆N . More intuitively, L\N is the greatest language that
when concatenated after L (suffix), the resulting language is still smaller or equal to
languageN . In the same way,N /M is the greatest language that when concatenated
beforeM (prefix), the resulting language is still smaller or equal to language N .

Backhouse [2004] presents another interesting example of a Galois connection
concerning the word concatenation operator. For all words w and languages L and
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M,

w · L ⊆M ⇔ L⊆ ∂wM

where ∂wM is called the w-derivative ofM and is defined by

x ∈ ∂wM ⇔ w · x ∈M

Boolean algebras. In von Karger [2000] a Boolean algebra is defined as a lattice
(B, 6,∧,∨) with an operator ¬, such that it satisfies the following law, for all p, q and
r ∈ B,

p ∧ q 6 r ⇔ q 6 ¬p ∨ r (6.7)

i.e., (B, 6)
((p∧),(¬p∨))←−−−−−−− (B, 6) is a Galois connection.

von Karger [2000] presents proofs based on the properties of Galois connections
that the lattice has least and greatest elements, with their respective definition, that the
lattice is distributive, and that double negation and contraposition both hold. He also
proves the De Morgan’s rules and the complement rule.

The duality principle ensures that instead of (6.7), the Galois connection

¬p ∧ q 6 r ⇔ q 6 p ∨ r

could be used.

Heyting algebras. Heyting algebras are generalizations of Booleans algebras. Like
Boolean algebras model propositional logic, Heyting algebras model intuitionistic
propositional logic, a kind of logic in which the law of excluded middle does not
hold, in general [Priestley, 2000].

A Heyting algebra is a lattice (B, 6,∧,∨, true, false) with greatest (true) and least
(false) elements, and an operator⇒ such that, for every p, q and r ∈ B, the following
holds

p ∧ q 6 r ⇔ q 6 (p⇒ r)

i.e., (B, 6)
((p∧),(p⇒))←−−−−−− (B, 6) is a Galois connection.
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This definition is very similar to the definition of Boolean algebras above, mostly
because in classical logic, ¬p ∨ q ⇔ p⇒ q. However, in intuitionistic logic this
equivalence is weakened to ¬p∨q 6 p⇒q and negation is defined as ¬p

def
= p⇒ false

where ¬p is called a pseudo-complement. A Heyting algebra is a Boolean algebra in
the particular case that, for all p ∈ B, fact p⇒ false 6 false = p holds.

Residuated lattices. A residuated lattice [Ward and Dilworth, 1939] is a commuta-
tive residuated semigroup, with least (false) and greatest element (true) and an identity
element (id ) of the residuated operation. Therefore, (L,∧,∨, false, true) is a bounded
lattice, (L,⊗, id) is a commutative monoid and the left and right section of⊗ are lower
adjoints in a Galois connection [Bělohlávek, 2001].

Complete residuated lattices are used in fuzzy set theory to represent truth values.
Thus, the “classical” relation B ARoo becomes a fuzzy relation L B ×ARoo ,
i.e., a function from pairs (b, a) ∈ B × A to values l ∈ L representing the grade of
membership of (b, a) in relation R. Thus, the classical case occurs when L = B.

Bělohlávek [2000] uses fuzzy relations and fuzzy sets to define the concept of fuzzy

Galois connections (or L-Galois connections). In fact, when L = B it boils down to
the classical polarity definition.

Bělohlávek [2001] discusses how fuzzy Galois connections can be used to extend
FCA for the case when the relation between the objects and concepts is “non-sharp”.

Relation algebras. As seen earlier on Chapter 4 relation algebras are an extension of
Boolean algebras with the addition of the composition and converse operations, which
yields a residuated semigroup structure. The interaction between the several operators
and structures originates many Galois connections, some of which are listed below, for
R, S and T of the correct types:

R⊆ S ∩ T ⇔ R⊆ S ∧R⊆ T

R ∪ S ⊆ T ⇔ R⊆ T ∧ S ⊆ T

R ∩ S ⊆ T ⇔ S ⊆ ¬R ∪ T

¬R ∩ S ⊆ T ⇔ S ⊆R ∪ T

R⊆ ¬S ⇔ ¬R⊇ S

R∪ ⊆ S ⇔ R⊆ S∪

R ◦ S ⊆ T ⇔ S ⊆R \ T
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R ◦ S ⊆ T ⇔ R⊆ T / S

R \ T ⊇ S ⇔ R⊆ T / S

Two more Galois connections known as “shunting rules” [Bird and de Moor, 1997]
exist, linking functions and relations. In fact, it can be shown that a relation f is
a function if and only if, for all relations R and S of the correct types, any of the
following Galois connections hold

f ◦ R⊆ S ⇔ R⊆ f∪ ◦ S (6.8)

R ◦ f∪ ⊆ S ⇔ R⊆ S ◦ f (6.9)

6.4 Other examples

Injectivity. An injectivity order 6 can be defined on relations [Oliveira, 2005]. This
order measures the “degree of injectivity” (or, equivalently, if a relation is “more or

less defined”).

The injectivity is a property of the kernel of a function. The kernel operator is
defined, for all relations R, as

ker R
def
= R∪ ◦ R (6.10)

Intuitively, the kernel relates elements of the domain which share the same images1.

The injectivity order on relations is defined, for all relations R and S , as

R 6 S
def⇔ ker S ⊆ ker R (6.11)

where R 6 S means that R is less injective than S . As expected, relation S is more
injective than R because its kernel is smaller, i.e., there are less elements of the do-
main that share the same images. This definitions allows for comparing relations with
different co-domains, provided that their domains are the same.

Since kernel is a function, and R and S can be seen as variables in the definition

1Recall from Section 4.1 that we extend the concept of domain and co-domain from functions to
relations.
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above, we can use the point-free transform to simplify (6.11):

〈∀ R,S :: R 6 S ⇔ ker S ⊆ ker R〉

⇔ { Converse. }

〈∀ R,S :: S 6∪ R ⇔ ker S ⊆ ker R〉

⇔ { Related functional results. }

〈∀ R,S :: S 6∪ R ⇔ S(ker∪ ◦⊆ ◦ ker)R〉

⇔ { Extensional equivalence. }

6∪ ⇔ ker∪ ◦⊆ ◦ ker

⇔ { Converse. }

6 ⇔ (ker∪ ◦⊆ ◦ ker)∪

⇔ { Contravariance and involution. }

6 ⇔ ker∪ ◦⊆∪ ◦ ker

Thus, the injectivity order can be expressed as

6
def
= ker∪ ◦⊇ ◦ ker (6.12)

This clearly instantiates the construction (5.34) introduced in Section 5.6.4, where
h := ker and v:= ⊇.

Using the homomorphic image construction, we can lift Galois connections de-
fined on relations ordered by the inclusion order ⊇, to Galois connections defined
on relations ordered by the injectivity order 6, provided that their adjoints are ker-
homomorphic. Let functions f and g be adjoints of a Galois connection defined
on relations ordered by (converse) inclusion order ⊇. Functions f ′ and g ′ are ker-
homomorphic to f and g , respectively, if by instantiating h := ker in (5.35) and (5.36),
equations

ker ◦ f ′ = f ◦ ker (6.13)

ker ◦ g′ = g ◦ ker (6.14)

hold. If this is the case, then f ′ and g ′ are adjoints of a Galois connection defined on
relations ordered by injectivity 6.



136 6 Examples and applications of Galois connections

Let us try to establish a shunting rule for functions similar to (6.8) and (6.9) that
works with the injectivity order. Thus, supposing that f ′ := (◦j∪) and g′ := (◦j), we
will use (6.13) and (6.14) to calculate f and g , and verify if these two functions are
Galois connected. If this is the case, we can conclude that f ′ and g ′ are adjoints of a
Galois connection.

We start by calculating function f :

ker ◦ f ′ = f ◦ ker

⇔ { Assuming f ′ := (◦j∪). }

ker ◦ (◦j∪) = f ◦ ker

⇔ { Relation extensional equality. }

〈∀ R :: (ker ◦ (◦j∪)) R = (f ◦ ker) R〉

⇔ { Relation application. }

〈∀ R :: ker(R ◦ j∪) = f (ker R)〉

⇔ { Definition of kernel (6.10). }

〈∀ R :: (R ◦ j∪)∪ ◦ R ◦ j∪ = f (ker R)〉

⇔ { Contravariance and involution of converse. Associativity of composition. }

〈∀ R :: j ◦ R∪ ◦ R ◦ j∪ = f (ker R)〉

⇔ { Definition of kernel (6.10). }

〈∀ R :: j ◦ ker R ◦ j∪ = f (ker R)〉

⇔ { Variable introduction. }

〈∀ R :: (j ◦ X ◦ j∪ = f X) ∧ (X := ker R)〉

∴ { Abstracting the variable. }

f X = j ◦ X ◦ j∪

Using a similar calculus we can obtain the definition of function g . Thus, for all
relations X and Y , f and g are defined as

f X
def
= j ◦ X ◦ j∪ (6.15)

g Y
def
= j∪ ◦ Y ◦ j (6.16)

Now, we must prove that functions f and g are Galois connected in the original
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preorder, i.e., that f X ⊆ Y ⇔X ⊆ g Y holds.

Proof

f X ⊆ Y

⇔ { Definition (6.15). }

j ◦ X ◦ j∪ ⊆ Y

⇔ { Shunting of functions (6.8). }

X ◦ j∪ ⊆ j∪ ◦ Y

⇔ { Shunting of functions (6.9). }

X ⊆ j∪ ◦ Y ◦ j

⇔ { Definition (6.16). }

X ⊆ g Y

�

Thus, f is the lower adjoint and g is the upper adjoint of a Galois connection.

However, we should be careful because the injectivity order definition (6.12) uses
the converse inclusion order. This means that we should consider the converse Galois
connection instead, i.e., g Y ⊇ X ⇔ Y ⊇ f X , in which g is the lower adjoint and f

is the upper adjoint. By the homomorphic construction, g ′ and f ′ are, respectively, the
lower and upper adjoints of the new Galois connection. Thus, we conclude that, for all
relations R and S , we have the Galois connection

R ◦ j 6 S ⇔ R 6 S ◦ j∪

which closely resembles connection (6.9), the only difference being the order.

This procedure can be exploited to obtain more Galois connections involving the
injectivity order (see [Oliveira, 2005]), or extended to other orders.

Suprema and infima. Traditionally, suprema and infima are defined in terms of sets
of upper and lower bounds [Priestley, 2000]. However, Backhouse [2000] defines
suprema and infima in terms of the range of a function B A

foo , where (A,v) and
(B,�) are partially ordered sets. This allows for the characterization of different kinds
of infima and suprema by changing the domain of f (this is called the shape poset).
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So let (B ← A) BKoo be the constant function defined as (K b) a
def
= b that al-

ways returns the same value b ∈ B. If the infimum of function f exists we write uf to
denote it, where B (B ← A)uoo is a function defined over functions. Similarly, a

function B (B ← A)too returns the supremum of f if it exists.
If u (resp. t) exists it is the lower (resp. upper) adjoint of a Galois connection in

which the constant function is the other adjoint. Thus, for all b ∈ B,

K b
.

� f ⇔ b � uf (6.17)

tf � b ⇔ f
.

� K b (6.18)

The particular case where A = B boils down to the binary infimum and supremum
operators, i.e., for all a, b and c ∈ B,

a t b v c ⇔ a v c ∧ b v c

a v b u c ⇔ a v b ∧ a v c

Although these equivalences do not seem like instances of Galois connections, we can
recognized the fact after rewritten them as

t (a, b) v c ⇔ (a, b) (v×v) 4 c

a v u (b, c) ⇔ 4 a (v×v) (b, c)

where4 is the doubling function introduced in Section 5.6.2, defined as4 a
def
= (a, a),

and the product order is defined as (a, b) (v×v) (c, d)
def
= a v c ∧ b v d.

Some properties of the binary supremum operator (and, by duality, of the binary
infimum operator) immediately follow from the above definitions as a direct conse-
quence of the properties of logical conjunctions, e.g., idempotence, commutativity and
associativity:

x t x = x

x t y = y t x

(x t y) t z = x t (y t z)

A lattice is a poset for which (6.17) (or equivalently (6.18)) exists for all shape
posets A [Backhouse, 2004].
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An example of how infimum and supremum operators can be defined using Galois
connections is the maximum and minimum operators on real numbers. In fact, for all
x, y and z ∈ R, we have the following Galois connections,

x ↑ y 6 z ⇔ x 6 z ∧ y 6 z

z 6 x ∧ z 6 y ⇔ z 6 x ↓ y

Another example arises when natural numbers are ordered by the “divides” order-
ing, denoted as \, in which m \ n means that m exactly divides n, i.e., there exists
p ∈ N such that m × p = n. In this ordering, the least common multiple, lcm, is the
supremum operator while the greatest common divisor, gcd, is the infimum operator.
Therefore, for all m,n and p ∈ N, we have the following Galois connections,

lcm(m,n) \ p ⇔ m \ p ∧ n \ p

p \m ∧ p \ n ⇔ p \ gcd(m, n)

Temporal algebra. Temporal logic is the general name given to logical systems that
study the truth value of assertions through time, based on the principle that certain
assertions are valid only for a limited period of time. Temporal logic has become im-
portant in computer science for the specification and verification of reactive computer
programs [Pnueli, 1977].

von Karger [2000] gives an algebraic presentation of temporal logics, including
linear temporal logic, interval temporal logic and duration calculus. The author uses
an algebraic structure with two additional Galois connections (what he calls a “Galois

algebra”) which adjoints are to be interpreted as the next and previous operators. See
[von Karger, 2000] for more details.

Hash transpose. Oliveira and Rodrigues [2004] generalize the concept of functional
transposition which is used transform relations into functions. If we apply the trans-
pose operator Λ to a relation B ARoo we obtain a function ℘B A

foo , such that

f = ΛR ⇔ (bRa⇔ b ∈ f a)
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or

f = ΛR ⇔ R = ∈ ◦ f

Functional transposition is then extended to hash tables. For a fixed hash func-
tion B Ahoo , the hash-transpose of a set, represented by a co-reflexive relation

A ASoo is a function ℘A Btoo , such that t = ΘhS, where the hash-transpose
operator ΘhS is defined as

Θh S
def
= Λ(S ◦ h∪)

Another operator, which takes a hash table ℘A Btoo and returns the (“best”)
associated co-reflexive relation, is defined as

Ξh t
def
= rng (∈ ◦ (t

.
∩ Λ(h∪)))

They show that the pair (Θh, Ξh) forms a Galois connection

Θh S
.

6 t ⇔ S ⊆ Ξh t

which explains the representation of data collections by hash-tables and vice-versa.

Predicates. Backhouse [2000] gives several interesting examples of Galois connec-
tions that arise from predicates.

Let (A,v) be a poset with greatest element > and let B A
poo be the predicate

p x
def⇔ x v a, for some constant a ∈ A. Denoting expression “if b then a1 else a2 fi”

by [a1, a2]← b, then, for all x ∈ A and b ∈ B,

p x⇐ b ⇔ x v [a,>]← b

is a Galois connection.

Several other Galois connections of this kind arise, as shown in [Backhouse, 2004;
Backhouse and Backhouse, 2004], namely:

dk m⇐ b ⇔ m/([k, 1]← b)
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s ∈ S ⇐ b ⇔ S ⊇ [{s}, ∅]← b

(S 6= ∅)⇐ b ⇔ S ⊆ [∅,U ]← b S ⊆ U

where B N
dkoo is the predicate that tests if a number is divisible by k ∈ N; / is the

division order on natural numbers (the converse of the divides ordering (\) presented
before), that is, m/n means that n divides m; and s ∈ S def

= {s} ⊆ S.

Weakest liberal precondition. Backhouse [2000] gives us another example of a Ga-
lois connection relating preconditions and post-conditions of program statements.

Let s2 s1
Soo be a program statement from state s1 to state s2, and p and q two

predicates on the state space of S. A conditional correctness assertion (also known
as Hoare triple [Hoare, 1969]), {p}S{q} means that if the predicate p s1 holds, and
S executes successfully, then q s2 also holds. p is the precondition and q is the post-

condition of S. This states the conditional (or partial) correctness of S because S may
fail to terminate [Backhouse, 2000].

Dijkstra [1976] takes a different but related approach to total correctness based on
predicate transformers. The standard predicate transformer is a function that maps
post-conditions to preconditions [Back and von Wright, 1998]. In order to deal with
possible non-termination, below we present a “liberal” version which ensures correct-
ness whenever the program terminates (conditional correctness).

The weakest liberal precondition, wlpS q, is a predicate transformer that from a
post-condition q returns the weakest precondition p capable of guaranteeing the condi-
tional correctness of S, i.e.,

{p}S{q} ⇔ p⇒ wlpS q

Conversely, the strongest liberal post-condition, slpS p, is a predicate transformer
that from a pre-condition p returns the strongest post-condition q capable of guaran-
teeing the conditional correctness of S, i.e.,

{p}S{q} ⇔ slpS p⇒ q

In fact, {p}S{q} defines a pair algebra on predicates, and thus

slpS p⇒ q ⇔ p⇒ wlpS q
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is a Galois connection.

Separation logic. Hoare logic allow us to reason about the correctness of imper-
ative programs [Hoare, 1969]. However, it does not handle with structures such as
linked lists, trees and so on. Reynolds [2002] describes separation logic as “. . . an

extension of Hoare logic that permits reasoning about low-level imperative programs

that use shared mutable data structure”. Separation logic introduces commands for
accessing and modifying shared structures and explicit allocation and deallocation of
storage. Moreover, assertions are enriched with a separating conjunction and impli-
cation. Separating conjunction is specially important because it allows for assertions
about disjoint parts of the heap.

Wang et al. [2008] propose confined separation logic as an extension to separation
logic that is able to deal with dangling references. Confined separation logic enriches
standard separation logic with three new variants of separating conjunction that de-
scribe the behavior of dangling references.

In [Wang et al., 2008], the authors prove that each type of conjunction of confined
separation logic is a lower adjoint in a Galois connection, and that the respective upper
adjoints are a form of implication. In particular, the standard separating implication
is the upper adjoint of the separating conjunction. The properties of Galois connec-
tions are used to derive, for “free”, the rules of separating conjunction and implication
previously given in [Reynolds, 2002].

Data type refinement. The general theory of data type refinement [Oliveira, 1990;
Alves et al., 2005] is not based on Galois connections. However, Galois connections
arise naturally in certain situations that are sufficiently important to mention as exam-
ples of this ubiquitous concept in computer science.

Let us consider that data types are preordered sets. Thus, for two data types (A,v)

and (B,�)

A
con

''
6 B
abs

gg

such that,

abs ◦ con = idA
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we say that “data type B implements, or refines data type A” [Alves et al., 2005]. abs

is a surjective and simple relation called the abstraction relation; con is a injective and
total relation called the representation relation.

In particular, whenever abs and con are monotonic functions which verify

idB vB con ◦ abs

then (B,v)
(abs,con)←−−−−− (A,�) is a perfect Galois connection.

Oliveira [2008] provides a deeper explanation of the application of Galois connec-
tions to data type refinement.

6.5 Summary

This chapter provided some examples and applications of Galois connections, with
special emphasis on abstract interpretation, probably the most well-known applica-
tion of Galois connections. Abstract interpretation clearly shows the usefulness of the
combinatory nature of Galois connections in the construction of complex analysis us-
ing more simple ones. The properties of Galois connections are also used to ensure
that the preservation conditions are met.

However, many other examples were given such as their use in formal concept anal-
ysis or in data refinement. Also of special importance is the role of Galois connections
in residuation theory and, in particular, their relevance in relation algebra.

This chapter closes the first part of this dissertation. Now we will move to the
analysis of the design and implementation of the Galculator.
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Chapter 7

The language

This chapter presents Galois, the DSL which models the design of the Galculator. The
emphasis will be on the algebraic nature of the language which is a consequence of the
concepts which underpin the tool. Thus, only a subset of the complete DSL is de-
scribed: the operational parts which deal with the execution of commands, derivation
of rules and proofs are left out for economy of presentation.

For each module of the language (sub-language), we present its context-free gram-
mar (lexical aspects and disambiguation issues are not discussed), its denotational se-
mantics and its typing rules.

We start by introducing the language design principles that have guided the devel-
opment of Galois. The following sections introduce the syntax, semantics and typing
rules of the several sub-languages: types (Section 7.2); fork algebras (Section 7.3);
functions (Section 7.4); orders (Section 7.5); Galois connections (Section 7.6); and
modules (Section 7.7). Most of the material of this section follows [Silva et al., 2009].

7.1 Language design

Notation. Galois aims at taking advantage of the algebraic nature of the concepts
being represented, maintaining the combinatory style of fork algebras and Galois con-
nections. The notation tries to resemble the mathematical symbols, being as intuitive
as possible. A decision was made of following the set-theoretical notation for relations
instead of the fork algebra notation. The former is easier to represent in plain text
and probably best known. However, some trade-offs were needed because it is hard to
write symbols like > or ⊥ in text; meaningful keywords are used instead.

147
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Fork

Formula
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Module
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DefinitionDefinition Axiom Strategy

Type

 Galois 
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Rewriting 
Combinator
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FunctionOrder

Figure 7.1: Structure of the sub-languages of the Galois DSLs. The arrows represent
inclusion between languages; the shaded boxes are the fragments corresponding to the
theoretical concepts introduced in the previous chapters.

Sub-languages. The complete language comprehends several sub-languages or
modules concerning the different aspects of the Galculator. Its hierarchical structure
is described in Fig. 7.1 where the shaded boxes correspond to the theoretical concepts
introduced in the previous chapters. We start by giving a brief description of the sub-
languages that are not discussed in this chapter:

Proof Step. Command language for handling proof steps, namely sequencing of sin-
gle steps, finalization of proofs and the introduction of proofs by indirect equal-
ity.

Rewriting Combinator. The language of rewriting combinators allowing for the ap-
plication of proof steps (rewriting rules) during proofs. Galculator uses a strate-
gic term rewriting system [Silva and Oliveira, 2008] and this language closely
follows its combinatory approach.

Derivation. Allows for the automatic derivation of equational properties from Galois
connections and free-theorems from polymorphic functions. Once derived, these
properties can be used as rewriting rules in proofs.
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Syntax definition in SDF. The grammar of Galois is defined using the Syntax Def-
inition Formalism (SDF) [Heering et al., 1989]. SDF is a formalism for specifying
languages which offers modular design, lexical and context-free syntax and declara-
tive disambiguation. It is not tied to a particular parsing technique, although a complete
set of tools for grammar development using SDF exists [van den Brand et al., 2001].

In SDF, a production for a non-terminal B is written as A → B. Note that the
non-terminal symbol of the production appears on the right-hand side which differs
from most syntax formalisms. Terminal symbols are defined between quotes where
backslash is the escape character. An optional symbol A is written as A?. An alternative
between symbols A and B is written as A | B. Expression {A“;”}∗ represents a sequence
of zero or more symbols A separated by symbol “;” .

SDF supports attributes in productions specified inside braces. In this text, we use
the cons attribute which does not belong directly to SDF but is widely used by other
tools to specify abstract syntax constructors.

Lexical variables. In the syntax definition we use the symbols Identifier, Variable and
Constant which are part of the lexical grammar representing, respectively, identifiers of
external definitions (references), variables and constant names.

Semantics. We specify the semantics of Galois by defining a semantic function from
the abstract syntax to the denoted mathematical objects. Each semantic function takes
an environment (Σ, Γ, Θ) where

• Σ is a mapping from identifiers into their respective definitions. In the next
sections, we will abuse notation and use Σ in different contexts with different
meanings: it can be a mapping from identifiers to fork terms, functions, orders
or Galois connections. We could define a product of mappings, one for each
concept, instead. However, it is always clear from the context which mapping is
being used and this improves readability.

Σ is a partial function, that is, it is not defined for all identifiers. Thus, before
applying is to an identifier i, we must verify if it belongs to the domain of Σ:
i ∈ dom(Σ). If this fails, the expression is meaningless.

Notation {i ⇀ e} ] Σ is used to denote the extension of the partial function Σ.
This is only valid when the identifier i does not belong to the domain of Σ. After
the extension, the value of Σ for i becomes e, i.e., Σ(i) = e.
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• Γ is an injective (total) function from variable names to variables. Like Σ we also
use Γ in different contexts with different meanings. Thus, it can map variable
names into type, relation, function, order or Galois connection variables.

Being total means that it is defined for all variable names and that equal variable
names are assigned to the same variable. Injectivity ensures that variables are
not shared by different variable names.

• Θ is an injective function from constant names to a set of index constants. Thus,
each constant name is associated with an index constant and an index constant
cannot be shared by different constant names. The index constants are used to
introduce sections of binary operations as introduced in Section 8.2.

Typing. We follow the traditional approach of presenting typing rules for each ab-
stract syntax constructor based on the types of its components. An environment
(Σ, Γ, Θ) is used: Σ is a mapping from identifiers to their types; Γ is an injective
function from variable names to type variables; and Θ is an injective function from
constant names to their types. In fact, we can take (Σ, Γ, Θ) as the same environment
used before for semantics, by considering that Σ, Γ and Θ return a value and its re-
spective type. For instance, Σ maps an identifier in a definition and its respective type,
i.e., for an identifier i its definition is given by Σ(i) = expr and its type is given by
Σ(i) = t, meaning that expr : t (notation a : t means that “a has type t”). Thus,
Σ(i) : Σ(i), which we simply write as i : Σ(i). When evaluating semantics, we only
take the definition, while in typing rules we only take the typing information. Later
on, we will explore this duality.

Using this overloading, we define the following as axioms:

Σ,Γ,Θ ` i : Σ(i) Σ,Γ,Θ ` v : Γ(v) Σ,Γ,Θ ` c : Θ(c)

Σ and Γ are used in different contexts with different meanings in the same way as
semantic functions. The meaning of type expressions used in the following sections is
summarized in Table 7.2.

7.2 Types

Syntax. The language for type declarations is very simple. We define it in SDF as
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Type expression Meaning

1 Unitary data type (1 element)
B Boolean data type (2 elements)
Z Integer numbers
R Real numbers

t1 × t2 Product of types t1 and t2

t1 + t2 Disjunct sum of types t1 and t2

℘(t) Power set of type t

t? Sequence of type t

t1 ← t2 Function between types t1 and t2

t1 ∼ t2 Relation between types t1 and t2

t1 ⇀ t2 Map between types t1 and t2

(t1,vt1) Poset t1 equipped with partial order vt1

(t1,vt1)
(,)←− (t2,vt2) Galois connection between posets (t1,vt1) and (t2,vt2)

Figure 7.2: Meaning of type expressions.

context-free syntax

“(” Type “)” → Type

Variable → Type { cons(“TVar”) }

“One” → Type { cons(“One”) }

“Bool” → Type { cons(“Bool”) }

“Char” → Type { cons(“Char”) }

“String” → Type { cons(“String”) }

“Int” → Type { cons(“Int”) }

“Float” → Type { cons(“Float”) }

“Maybe” Type → Type { cons(“Maybe”) }

“Set” Type → Type { cons(“Set”) }

“List” Type → Type { cons(“List”) }

Type “<−|” Type → Type { cons(“Map”) }

Type “><” Type → Type { cons(“Prod”) }

Type “−|−” Type → Type { cons(“Either”) }

Type “<−” Type → Type { cons(“Fun”) }
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Type “<−>” Type → Type { cons(“Rel”) }

Type “∼∼” Type → Type { cons(“GC ”) }

“Ord” Type → Type { cons(“Ord”) }

“Expr” Type → Type { cons(“Expr”) }

Semantics. In the definition which follows we avoid entering on complex details
about types by considering them as sets of values together with possible invariant con-
straints. We omit Σ and Ω of the environment because they are not used.

CType[[TVar v ]](Γ) .= Γ(v)

CType[[One]](Γ) .= 1

CType[[Bool ]](Γ) .= B

CType[[Char ]](Γ) .= {’a’,. . . ,’z’,’A’,. . . ,’Z’,’0’,. . . ,’9’}

CType[[String]](Γ) .= ({’a’,. . . ,’z’,’A’,. . . ,’Z’,’0’,. . . ,’9’})?

CType[[Int]](Γ) .= Z

CType[[Float]](Γ) .= R

CType[[Prod t1 t2 ]](Γ) .= CType[[t1 ]](Γ)× CType[[t2 ]](Γ)

CType[[Either t1 t2 ]](Γ) .= CType[[t1 ]](Γ) + CType[[t2 ]](Γ)

CType[[Maybe t]](Γ) .= 1 + CType[[t]](Γ)

CType[[Set t]](Γ) .= ℘(CType[[t]](Γ))

CType[[List t]](Γ) .= (CType[[t]](Γ))?

CType[[Map t1 t2 ]](Γ) .= CType[[t1 ]](Γ) ⇀ CType[[t2 ]](Γ)

CType[[Fun t1 t2 ]](Γ) .= CType[[t1 ]](Γ)← CType[[t2 ]](Γ)

CType[[Rel t1 t2 ]](Γ) .= CType[[t1 ]](Γ) ∼ CType[[t2 ]](Γ)

CType[[GC t1 t2 ]](Γ) .= (t ′1 ,vt ′1
)

(,)←− (t ′2 ,vt ′2
) where

t ′1 = CType[[t1 ]](Γ)

t ′2 = CType[[t2 ]](Γ)

CType[[Ord t]](Γ) .= (t ′,vt ′) where

t ′ = CType[[t]](Γ)

CType[[Expr t]](Γ) .= CType[[t]](Γ)
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Char corresponds to a set of characters and String is a sequence of characters. Ord t

corresponds to a type equipped with a partial order. However, the type system does
not enforce that this invariant holds. GC t1 t2 corresponds to a Galois connection
between two types equipped with partial orders. Again, the type system does not
enforce the invariant. Expr is an alias for the argument type; it is just used to ensure
the correctness of some constructions.

7.3 Fork Algebras

Syntax. The syntax of Galois for the fork algebra operators is defined in SDF as

context-free syntax

Term “=” Term → Formula { cons(“Equal”) }

Term “<=” Term → Formula { cons(“Less”) }

“(” Term “)” → Term

Identifier → Term { cons(“Ident”) }

Variable → Term { cons(“Var”) }

“Id” → Term { cons(“Id”) }

“Top” → Term { cons(“Top”) }

“Bot” → Term { cons(“Bot”) }

“Pi1” → Term { cons(“Pi1 ”) }

“Pi2” → Term { cons(“Pi2 ”) }

“∼” Term → Term { cons(“Neg”) }

Term “∗” → Term { cons(“Conv”) }

Term “/\” Term → Term { cons(“Meet”) }

Term “\/” Term → Term { cons(“Join”) }

Term “.” Term → Term { cons(“Comp”) }

Term “/ ∗ \” Term → Term { cons(“Fork”) }

Term “><” Term → Term { cons(“Prod”) }

“Ord” “[” Order “]” → Term { cons(“Ord”) }

“Fun” “[” Function “]” → Term { cons(“Fun”) }
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The order and function languages are embedded in the fork language by using the
“Ord” and “Fun” keywords, respectively. Although lacking in elegance, this deci-
sion is a trade-off between the usual practice in mathematics of using an overloaded
notation, and the ease of implementation. In fact, this makes the disambiguation of the
grammar much simpler. Otherwise, a possible solution would be to extend the type
system of Galculator to support some kind of type overloading [Silva and Oliveira,
2008].

Semantics. The semantics of the language is almost straightforward for most of the
constructors: they denote the corresponding operation in fork algebra.

CFormula[[Equal r1 r2 ]](Σ,Γ,Θ) .= CTerm[[r1 ]](Σ,Γ,Θ) = CTerm[[r2 ]](Σ,Γ,Θ)

CFormula[[Less r1 r2 ]](Σ,Γ,Θ) .= CTerm[[r1 ]](Σ,Γ,Θ)⊆ CTerm[[r2 ]](Σ,Γ,Θ)

CTerm[[Ident i ]](Σ,Γ,Θ) .= Σ(i) if i ∈ dom(Σ)

CTerm[[Var v ]](Σ,Γ,Θ) .= Γ(v)

CTerm[[Id ]](Σ,Γ,Θ) .= id

CTerm[[Top]](Σ,Γ,Θ) .= >

CTerm[[Bot]](Σ,Γ,Θ) .= ⊥

CTerm[[Pi1 ]](Σ,Γ,Θ) .= π1

CTerm[[Pi2 ]](Σ,Γ,Θ) .= π2

CTerm[[Neg r ]](Σ,Γ,Θ) .= ¬CTerm[[r ]](Σ,Γ,Θ)

CTerm[[Conv r ]](Σ,Γ,Θ) .= CTerm[[r ]](Σ,Γ,Θ)∪

CTerm[[Meet r1 r2 ]](Σ,Γ,Θ) .= CTerm[[r1 ]](Σ,Γ,Θ) ∩ CTerm[[r2 ]](Σ,Γ,Θ)

CTerm[[Join r1 r2 ]](Σ,Γ,Θ) .= CTerm[[r1 ]](Σ,Γ,Θ) ∪ CTerm[[r2 ]](Σ,Γ,Θ)

CTerm[[Fork r1 r2 ]](Σ,Γ,Θ) .= CTerm[[r1 ]](Σ,Γ,Θ)∇ CTerm[[r2 ]](Σ,Γ,Θ)

CTerm[[Comp r1 r2 ]](Σ,Γ,Θ) .= CTerm[[r1 ]](Σ,Γ,Θ) ◦ CTerm[[r2 ]](Σ,Γ,Θ)

CTerm[[Prod r1 r2 ]](Σ,Γ,Θ) .= CTerm[[r1 ]](Σ,Γ,Θ)× CTerm[[r2 ]](Σ,Γ,Θ)

CTerm[[Ord o]](Σ,Γ,Θ) .= COrd[[o]](Σ,Γ,Θ)

CTerm[[Fun f ]](Σ,Γ,Θ) .= CFun[[f ]](Σ,Γ,Θ)

COrd and CFun are semantic functions defined for partial orders and functions, re-
spectively, as explained in sections to follow.
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Typing. The typing rules for fork algebra formulæ and terms are

Σ,Γ,Θ ` r1 : t Σ,Γ,Θ ` r2 : t

Σ,Γ,Θ ` Equal r1 r2 : t

Σ,Γ,Θ ` r1 : t Σ,Γ,Θ ` r2 : t

Σ,Γ ` Less r1 r2 : t

Σ,Γ,Θ ` Σ(i) : t

Σ,Γ,Θ ` Ident i : t

Σ,Γ,Θ ` Γ(v) : t1 ∼ t2
Σ,Γ,Θ `Var v : t1 ∼ t2

Σ,Γ,Θ ` Id : t ∼ t

Σ,Γ,Θ ` Top : t1 ∼ t2 Σ,Γ,Θ ` Bot : t1 ∼ t2

Σ,Γ,Θ ` Pi1 : t1 ← t1 × t2 Σ,Γ,Θ ` Pi2 : t2 ← t1 × t2

Σ,Γ,Θ ` r : t1 ∼ t2
Σ,Γ,Θ `Neg r : t1 ∼ t2

Σ,Γ,Θ ` r : t1 ∼ t2
Σ,Γ,Θ ` Conv r : t2 ∼ t1

Σ,Γ,Θ ` r1 : t1 ∼ t2 Σ,Γ,Θ ` r2 : t1 ∼ t2
Σ,Γ,Θ `Meet r1 r2 : t1 ∼ t2

Σ,Γ,Θ ` r1 : t1 ∼ t2 Σ,Γ,Θ ` r2 : t1 ∼ t2
Σ,Γ,Θ ` Join r1 r2 : t1 ∼ t2

Σ,Γ,Θ ` r1 : t1 ∼ t2 Σ,Γ,Θ ` r2 : t2 ∼ t3
Σ,Γ,Θ ` Comp r1 r2 : t1 ∼ t3

Σ,Γ,Θ ` r1 : t1 ∼ t2 Σ,Γ,Θ ` r2 : t3 ∼ t2
Σ,Γ,Θ ` Fork r1 r2 : (t1 × t3) ∼ t2

Σ,Γ,Θ ` r1 : t1 ∼ t2 Σ,Γ,Θ ` r2 : t3 ∼ t4
Σ,Γ,Θ ` Prod r1 r2 : (t1 × t3) ∼ (t2 × t4)

Σ,Γ,Θ ` o : (t,vt)
Σ,Γ,Θ `Ord o : t ∼ t

Σ,Γ,Θ ` f : t1 ← t2
Σ,Γ,Θ ` Fun f : t1 ∼ t2
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7.4 Functions

Syntax. The syntax of the function sub-language is a restriction of the fork algebra
language to the operations for which functions are closed. It only introduces syntax to
denote sections of binary functions:

context-free syntax

“(” Function “)” → Function

Identifier → Function { cons(“FunctionIdent”) }

Variable → Function { cons(“FunctionVar”) }

“Id” → Function { cons(“FunctionId”) }

Function “.” Function → Function { cons(“FunctionComp”) }

Function “<” Section “>” → Function { cons(“RightSection”) }

“<” Section “>” Function → Function { cons(“LeftSection”) }

Constant → Section { cons(“Const”) }

Function “<” Constant “,” Constant “>” → Section { cons(“FunctConst”) }

Semantics. The environment of the semantic function is similar to the one used be-
fore for fork algebra terms and formulas.

CFun[[FunctionIdent i ]](Σ,Γ,Θ) .= Σ(i) if i ∈ dom(Σ)

CFun[[FunctionVar v ]](Σ,Γ,Θ) .= Γ(v)

CFun[[FunctionId ]](Σ,Γ,Θ) .= id

CFun[[FunctionComp f1 f2 ]](Σ,Γ,Θ) .= CFun[[f1 ]](Σ,Γ,Θ) ◦ CFun[[f2 ]](Σ,Γ,Θ)

CFun[[RightSection f s]](Σ,Γ,Θ) .= CFun[[f ]](Σ,Γ,Θ)
(CSect[[s]](Σ,Γ,Θ))

CFun[[LeftSection s f ]](Σ,Γ,Θ) .=
(CSect[[s]](Σ,Γ,Θ))

CFun[[f ]](Σ,Γ,Θ)

CSect[[Const c]](Σ,Γ,Θ) .= Θ(c)

CSect[[FunctConst f s1 s2 ]](Σ,Γ,Θ) .=(Θ(s1 )) CFun[[f ]](Σ,Γ,Θ)(Θ(s2 ))

The subscript notation is used to denote sections of functions. Therefore, given a
binary function C B × Afoo , the right section of f is denoted as fa for a value
a ∈ A, and the left section of f is denoted as bf for a value b ∈ B. The simultaneous
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sectioning of both arguments of function f is denoted by bfa, for values a ∈ A and
b ∈ B, corresponding to a value of type C. Sections of binary functions will be further
discussed in Section 8.2.

Typing. The typing rules for functions are

Σ,Γ,Θ ` Σ(i) : t1 ← t2
Σ,Γ,Θ ` FunctionIdent i : t1 ← t2

Σ,Γ,Θ ` Γ(v) : t1 ← t2
Σ,Γ,Θ ` FunctionVar v : t1 ← t2

Σ,Γ,Θ ` FunctionId : t← t

Σ,Γ,Θ ` f1 : t1 ← t2 Σ,Γ,Θ ` f2 : t2 ← t3
Σ,Γ,Θ ` FunctionComp f1 f2 : t1 ← t3

Σ,Γ,Θ ` f : t1 ← t2 × t3 Σ,Γ,Θ ` s : t3
RightSection f s : t1 ← t2

Σ,Γ,Θ ` f : t1 ← t2 × t3 Σ,Γ,Θ ` s : t2
Σ,Γ,Θ ` LeftSection f s : t1 ← t3

Σ,Γ,Θ `Θ(c) : t

Σ,Γ,Θ ` Const c : t

Σ,Γ,Θ ` f : t← t1 × t2 Σ,Γ,Θ `Θ(s1 ) : t1 Σ,Γ,Θ `Θ(s2 ) : t2
Σ,Γ,Θ ` FunctConst f s1 s2 : t

7.5 Orders

Syntax. The syntax for the order sub-language is

context-free syntax

“(” Order “)” → Order

Identifier → Order { cons(“OrderIdent”) }

Variable → Order { cons(“OrderVar”) }

“Id” → Order { cons(“OrderId”) }

Order “∗” → Order { cons(“OrderConv”) }
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Semantics. The semantic function maps each abstract syntax constructor into the
corresponding fork algebra operation. As explained later in Section 8.2, only opera-
tions which are closed for partial orders are defined.

COrd[[OrderIdent i ]](Σ,Γ,Θ) .= Σ(i) if i ∈ dom(Σ)

COrd[[OrderVar v ]](Σ,Γ,Θ) .= Γ(v)

COrd[[OrderId ]](Σ,Γ,Θ) .= id

COrd[[OrderConv o]](Σ,Γ,Θ) .= COrd[[o]](Σ,Γ,Θ)∪

Typing. The typing rules for orders are

Σ,Γ,Θ ` Σ(i) : (t,vt)
Σ,Γ,Θ `OrderIdent i : (t,vt)

Σ,Γ,Θ ` Γ(v) : (t,vt)
Σ,Γ,Θ `OrderVar v : (t,vt)

Σ,Γ,Θ `OrderId : (t,vt)
Σ,Γ,Θ ` o : (t,vt)

Σ,Γ,Θ `OrderConv o : (t,vt)

7.6 Galois Connections

Syntax. The syntax for Galois connections’ combinators is as follows:

context-free syntax

“(” Galois “)” → Galois

Identifier → Galois { cons(“GCIdent”) }

Variable → Galois { cons(“GCVar”) }

“Id” → Galois { cons(“GCId”) }

Galois “.” Galois → Galois { cons(“GCComp”) }

Galois “∗” → Galois { cons(“GCConv”) }
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Semantics. The semantic function maps the abstract syntax into the algebraic oper-
ations defined in Section 4.4.

CGC[[GCIdent i ]](Σ,Γ,Θ) .= Σ(i) if i ∈ dom(Σ)

CGC[[GCVar v ]](Σ,Γ,Θ) .= Γ(v)

CGC[[GCId ]](Σ,Γ,Θ) .= (t,vt)
(id ,id)←−−−− (t,vt)

CGC[[GCConv g]](Σ,Γ,Θ) .= CGC[[g]](Σ,Γ,Θ)∪

CGC[[GCComp g1 g2 ]](Σ,Γ,Θ) .= CGC[[g1 ]](Σ,Γ,Θ) ◦ CGC[[g2 ]](Σ,Γ,Θ)

Note that GGId denotes the identity Galois connection, in which both adjoints are the
identity function defined over any poset (t,vt).

Typing. The typing rules for Galois connections are

Σ,Γ,Θ ` Σ(i) : (t1,vt1)
(,)←− (t2,vt2)

Σ,Γ,Θ `GCIdent i : (t1,vt1)
(,)←− (t2,vt2)

Σ,Γ,Θ ` Γ(v) : (t1,vt1)
(,)←− (t2,vt2)

Σ,Γ,Θ `GCVar v : (t1,vt1)
(,)←− (t2,vt2)

Σ,Γ,Θ `GCId : (t,vt)
(,)←− (t,vt)

Σ,Γ,Θ ` g : (t2,vt2)
(,)←− (t1,vt1)

Σ,Γ,Θ `GCConv g : (t1,vt1)
(,)←− (t2,vt2)

Σ,Γ,Θ ` g1 : (t1,vt1)
(,)←− (t2,vt2) Σ,Γ,Θ ` g2 : (t2,vt2)

(,)←− (t3,vt3)

Σ,Γ,Θ `GCComp g1 g2 : (t1,vt1)
(,)←− (t3,vt3)

7.7 Modules

Galois allows for organizing each theory in its own module, by defining particular
operations and Galois connections, and specifying axioms and theorems about them.
Moreover, modules provide a mechanism of reuse of concepts, since definitions can be
referenced elsewhere in other modules1. Currently, modules are just namespaces, not
allowing any kind of parametrization.

1In the future, we plan to introduce explicit import declarations, thus introducing an hierarchical
structure of modules.
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Syntax. The syntax of a module is a sequence of zero or more definitions, axioms,
theorems or Galois connections, separated by the “;” character. It should be noticed
that the order does not matter and that different kinds of definitions can be mixed.

context-free syntax

{ (Definition | Axiom | Theorem | GaloisDef) “;” }∗ → Module

Identifier “:” Type (“:=” Term)? → Definition

{ cons(“Definition”) }

“Axiom” Identifier “:=” Formula → Axiom

{ cons(“Axiom”) }

“Theorem” Identifier “:=” Formula Proof → Theorem

{ cons(“Theorem”) }

“Galois” Identifier “:=” Function Function Order Order → GaloisDef

{ cons(“GaloisDef ”) }

In a definition, only the specification of its type is mandatory; the defining term is op-
tional. This allows for the introduction of concepts and the respective characterization
by means of their properties instead of an actual definition.

In a theorem, Proof specifies a sequence of proof steps, whose structure is left
out of this document, as explained earlier on. Informally, proofs contain proof step
information necessary for establishing the proof of the argument expression.

Semantics. Modules introduce definitions in a environment where they can be ref-
erenced. We further enrich the environment Σ, such as done before, in order to map
identifier to axioms and theorems. Definitions can be added in any order to the envi-
ronment but we must ensure that the identifier does not exist in the domain of Σ.

CMod[[Definition i type ()]](Σ,Γ,Θ) .= {i ⇀ ()} ] Σ if i 6∈ dom(Σ)

CMod[[Definition i type expr ]](Σ,Γ,Θ) .= {i ⇀ e} ] Σ if i 6∈ dom(Σ)

where e = CTerm[[expr ]](Σ,Γ,Θ)

CMod[[Axiom i expr ]](Σ,Γ,Θ) .= {i ⇀ e} ] Σ if i 6∈ dom(Σ)

where e = CFormula[[expr ]](Σ,Γ,Θ)

CMod[[Theorem i expr proof ]](Σ,Γ,Θ) .= {i ⇀ e} ] Σ if i 6∈ dom(Σ)

and proof is a proof of e
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where e = CFormula[[expr ]](Σ,Γ,Θ)

CMod[[GaloisDef i f1 f2 o1 o2 ]](Σ,Γ,Θ) .= {i ⇀ (f ′1 , f ′2 , o ′1 , o ′2 )} ] Σ

if i 6∈ dom(Σ)

where f ′1 = CFun[[f1 ]](Σ,Γ,Θ)

f ′2 = CFun[[f2 ]](Σ,Γ,Θ)

o ′1 = COrd[[o1 ]](Σ,Γ,Θ)

o ′2 = COrd[[o2 ]](Σ,Γ,Θ)

Typing. The typing rules for modules are

t = CType[[tp]](Σ,Γ,Θ)
Σ,Γ,Θ `Definition i tp () : t

Σ,Γ,Θ ` e : t t = CType[[tp]](Σ,Γ,Θ)
Σ,Γ,Θ `Definition i tp e : t

Σ,Γ,Θ ` e : t

Σ,Γ,Θ `Axiom i e : t

Σ,Γ,Θ ` e : t

Σ,Γ,Θ ` Theorem i e p : t

Σ,Γ,Θ ` f1 : t2 ← t1 Σ,Γ,Θ ` f2 : t1 ← t2 Σ,Γ,Θ ` o1 : (t1,vt1) Σ,Γ,Θ ` o2 : (t2,vt2)

Σ,Γ,Θ `GaloisDef i f1 f2 o1 o2 : (t1,vt1)
(,)←− (t2,vt2)

7.8 Summary

Several formal languages for mathematical reasoning exist. Although most of them are
close to some kind of logic, a few relational languages exist. We could have used one
of those languages as front-end for the Galculator. However, none of them completely
meets our requirements: being simple and close to fork algebras; being strongly typed;
being able to accommodate functions, orders and Galois connections easily. Thus,
we decided to develop Galois a simple language that would satisfy this conditions.
This chapter presented the details of the design of Galois, together with the syntax,
semantics and typing rules of its relevant fragments. In the following chapter, we
will see how declarations in Galois define an equational system which can be used in
proofs. In Chapter 9, we will show how GADTs and existential data types can be used
to implement the language maintaining its type safeness.
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Chapter 8

Foundations of Galculator

This chapter provides the theoretical foundations of Galculator. We start by presenting
the equational theory underlying our calculus. Moreover, we argue about the correct-
ness of using a term rewriting system as the proof engine of Galculator.

Then, we show how Galois connections can be integrated with fork algebras and
how indirect equality is formulated in a point-free setting.

Finally, we go back to the motivation given in the introduction of this dissertation
and show how the proofs in there can be rewriting in a point-free style.

8.1 Equational theory

Recalling the notions introduced in Section 3.2, we start by discussing the equational
theory used by Galculator. In this section, we restrict the Galois language to only fork
algebra formulæ and terms (without the inclusion of function and orders). In the next
sections, we will see that the other concepts are just extensions of the fork algebra
language.

8.1.1 Fork algebras

Equational system. Using Galois concrete syntax we define the equational system
EFork which will serve as the basis of Galculator.

Axiom Meet_comut := r /\ s = s /\ r;

Axiom Meet_assoc := (r /\ s) /\ t = r /\ (s /\ t);

Axiom Meet_absor := r /\ (r \/ s) = r;

163
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Axiom Meet_distr := r /\ (s \/ t) = (r /\ s) \/ (r /\ t);

Axiom Meet_compl := r /\ ˜r = Bot;

Axiom Join_comut := r \/ s = s \/ r;

Axiom Join_assoc := (r \/ s) \/ t = r \/ (s \/ t);

Axiom Join_absor := r \/ (r /\ s) = r;

Axiom Join_distr := r \/ (s /\ t) = (r \/ s) /\ (r \/ t);

Axiom Join_compl := r \/ ˜r = Top;

Axiom Comp_assoc := (r . s) . t = r . (s . t);

Axiom Comp_unit := r . Id = r;

Axiom Comp_distr := (r \/ s) . t = r . t \/ s . t;

Axiom Involution := (r*)* = r;

Axiom Conv_join := (r \/ s)* = r* \/ s*;

Axiom Ctrvariance := (r . s)* = s* . r*;

Axiom Interface := r* . ˜(r . s) <= ˜s;

Axiom Fork := r /*\ s = (Pi1* . r) /\ (Pi2* . s);

Axiom Fork_conv := (r/*\s)* . (t/*\u) = (r* . t)/\(s* . u);

Axiom Fork_cancel := Pi1 /*\ Pi2 <= Id;

Axiom Pi1_def := Pi1 = (Id /*\ Top)*;

Axiom Pi2_def := Pi2 = (Top /*\ Id)*;

Axiom Prod_def := r >< s = (r . Pi1) /*\ (s . Pi2)

The last three axioms are just definitions. They do not enrich the axiomatization and
can be removed provided that the definition is used instead.

An identity s≈t is valid in EFork (EFork`s≈t) if and only if it is derivable from EFork

using the inference rules presented in Section 3.2 (reflexivity, symmetry, transitivity,
substitution and closure under function symbols).

Inequations. Although some axioms appear as inequations rather than equations, we
should recall from Section 4.3 that an inequation of the form r <= s is a shorthand
for an equation of the form r /\ s = r (or equivalently r \/ s = s). Thus, we
will also call equations (or identities) to inequations.
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Reduction relation. The reduction relation inferred from EFork is defined as s→EFork t

if and only if exists an identity (l ≈ r) ∈ EFork such that s[l′] = σ(l) and t = s[σ(r)],
for a substitution σ.

Interpretation. The semantic function CTerm defined in Chapter 7 is an interpreta-
tion of syntactical terms of Galois into fork algebra terms. Using this interpretation
function, we can map every identity of EFork into an axiom of a fork algebra; thus, a
fork algebra (FA) satisfies every identity of EFork, and consequently, FA |= EFork.

Semantic consequence. An identity s≈t is a semantic consequence of EFork (EFork |=
s≈ t) if and only if all models of EFork satisfy it. As we have seen above, fork algebras
are a model of EFork. What about other models of EFork which may arise if a different
definition for CTerm is used? Clearly, any other model of EFork would obey the axioms
of fork algebras. Thus, an identity of EFork which holds for fork algebras holds for any
other model of EFork; the converse may not be true.

Equational theory. The equational theory ≈EFork induced by EFork is defined as

≈EFork

def
= { s, t ∈ Terms : EFork |= s≈ t : (s, t)}

When we use the standard interpretation of EFork as fork algebras, ≈EFork is equivalent
to equality of fork algebra terms.

Word problem and decidability. As we have seen in Section 3.2, Birkhoff’s theo-
rem ensures that EFork |= s≈ t if and only if EFork`s≈ t, i.e.,↔EFork and≈EFork coincide.
Thus, deciding if two fork algebra terms are equal s = t reduces to the word problem,
i.e., if it is possible to transform the term s into the term t using the reduction relation
→EFork . This means that a term rewriting system can be used in Galculator to prove
equalities (theorems) in fork algebras. However, since the word problem is, in general,
undecidable, Galculator is not able to prove all equalities of fork algebras.

From Galois to binary relations. In Section 4.4 we have seen the equivalence be-
tween syntactic derivations in fork algebras and properties holding for binary relations.
Thus, by the above results, in Galculator we can syntactically derive any property that
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holds for binary relations; conversely, any valid derivation corresponds to a true prop-
erty of binary relations.

8.1.2 Theories

In first-order logic, (first-order) theories are defined by adding specific axioms to the
logical axioms. The language of the theory extends that of logic by defining non-
logical symbols with a given signature.

Galois allows for the specification of theories based on fork algebras. Each theory
defines its own symbols and axioms and induces an equational system ETheory.

Definitions. Definitions introduce distinguished relation symbols (identifiers) which
serve to denote specific rather than arbitrary relations. In Galois, definitions are either
opaque or transparent:

Opaque. Opaque definitions only introduce identifiers and types (signatures) for dis-
tinguished relations; an explicit definitions is not provided.

Transparent. Transparent definitions provide an explicit definition using a fork al-
gebra term to an identifier and a type. Thus, they introduce an identity to the
equational system, i.e., from a definition of kind Ident : type := term we
get an identity ETheory ∪ {Ident ≈ term}.

Axioms. In Galois, the definition of an axiom of the form Axiom A := a = b

concerning some theory introduces an identity ETheory∪{a≈ b}. The user is responsible
for ensuring the consistency of the axiomatization.

Equational system of Galculator. The equational system EGalc of the Galculator

is the conjunction of the equational system of fork algebras EFork with the equational
system of all the defined theories ETheory, i.e., EGalc = EFork ∪ ETheory.

8.2 Putting Galois connections and fork algebras to-
gether

In this section, all the ingredients will be put together to form a consistent theory where
proofs can be conducted. The main idea is to take orders and functions as particular
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cases of relations and accommodate them in the point-free fork algebra calculus [Silva
et al., 2009].

As presented in Chapter 4, functions and orders are binary relations with certain
properties. From the completeness result enunciated in Section 4.4 we know that an
equivalence between the properties of binary relations and abstract fork algebra op-
erations exists. Thus, functions and orders can be represented as fork algebra terms
provided that their specific properties are taken as hypothesis. Then, the point-free
transform is used to express Galois connections and indirect equality without variables
using fork algebra formulæ.

Functions. When presenting theorems or statements to prove it is usual to just say
that some relation f is a function. However, this implicitly adds both conditions about
simplicity and totality of f to the hypothesis. Using the natural interpretation of binary
relations as fork algebra terms presented in Section 4.4, simplicity and totality are
expressed, respectively, as f ◦f∪⊆ id and id⊆f∪ ◦f . Therefore, a function f in Galois

implicitly adds two identities to the equational system E ∪{f ◦ f∪ ⊆ id , id ⊆ f∪ ◦ f}.
The identity relation is also a function, as can be easily verified. Moreover, func-

tions are closed under (relation) composition with the identity as unit, forming a
monoid [Bird and de Moor, 1997]. The other fork algebra operations are not, in gen-
eral, closed for functions.

Sections. The absence of variables in point-free representations greatly simplifies the
calculus and the implementation of a proof engine. However, as it was introduced in
Chapter 5, most interesting examples of Galois connections arise as sections of binary
functions. This leads to a question: how to introduce sections of functions in fork
algebras?

Our solution is a trade-off between simplicity and the purity of the point-free style.
We introduce two sectioning operators, one for left sections and another for right sec-
tions, that take binary functions and turn them into unary functions by fixing one of
the arguments. We denote the left and right sections of a binary function f by af

and fb, respectively. Sometimes, such as in the case of some associativity laws, both
arguments must be fixed and the function becomes a constant: we introduce another
operator to handle this case and denote it by afb.

The frozen arguments are constants and should be regarded as indexes. Thus, func-
tions fa and fb are different because they have a different index, while functions with
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the same index are equal. This introduces some kind of name semantics for indexes
that makes the implementation slightly more complicated but it is a fair compromise
between power and simplicity. Moreover, since afb is a constant, it can only appear
where constants can, i.e., as a section of a binary function.

Orders. Indirect equality holds when working at least with partial orders. Like in
the case of functions, we are implicitly adding the conditions about the reflexivity
(id ⊆ v), transitivity (v ◦ v ⊆ v) and antisymmetry (v ∩ v∪ ⊆ id ) of an order v
to the hypothesis of a statement. Like in the case of functions, an order v in Galois

implicitly adds three identities to the equational system:

E ∪ {id ⊆ v, v ◦v ⊆ v, v ∩v∪ ⊆ id} .

The identity relation is also a partial order. It corresponds to the equality ordering
which relates objects when they are equal. Moreover, partial orders are closed under
converse (this corresponds to the dual partial order).

Galois connections. Having established how functions and orders related with fork
algebras, let us express Galois connections as point-free equalities. It is easy to see that
the application of the PF transform for related functional results (4.52) to both sides of
the definition of a Galois connection (5.1) yields, for all suitably typed a and b,

a(f∪ ◦vB ◦ id)b ⇔ a(id∪ ◦vA ◦ g)b

which leads to PF relational equality

f∪ ◦vB = vA ◦ g (8.1)

once variables are removed (and also because the identity function id is its own con-
verse and the unit of composition). So we can deal with logical expressions involving
adjoints of Galois connections by equating the corresponding PF-terms without vari-
ables.

From a definition in Galois of the kind Galois Foo := f1 f2 o1 o2, where
f1, f2, o1 and o2 are correctly defined, several implicit identities are added to E :
the function hypothesis for f1 and f2; the order hypothesis for o1 and o2; and an
identity of the form of (8.1) ensuring the existence of the given Galois connection.
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Since definitions of Galois connections are taken as axioms, the proof obligation that
it really establishes a Galois connection is left to the user.

8.3 Indirect equality

Indirect equality is a powerful tool often used in proofs of lattice theory. However,
its applications are often overlooked in other domains. In this section, we provide
the basics about indirect equality and inequality, as well as the respective point-free
versions.

Indirect inequality. Before introducing indirect equality, we will start by discussing
the weaker and somewhat more intuitive notion of indirect inequality. Suppose that
(A,v) is a preordered set, and we want to prove that a ∈ A and b ∈ A are related,
i.e., a v b. When doing it directly is difficult, we can take advantage of a simple result
arising from the reflexivity and transitivity of v [Dijkstra, 1991]: if a v b then all
elements of A smaller or equal to a are also smaller or equal to b. The converse impli-
cation is also valid. This is called indirect inequality principle, and has two equivalent
formulations: for all a ∈ A and b ∈ B,

a v b ⇔ 〈∀ x :: b v x⇒ a v x〉 (8.2)

a v b ⇔ 〈∀ x :: x v a⇒ x v b〉 (8.3)

Indirect equality. Let (A,v) be a partial order instead. Anti-symmetry of v is
important to establish equalities, usually by mutual inclusion, i.e., for a ∈ A and
b ∈ A, a = b if and only if a v b and b v a. Combining this with indirect inequality
we have

a = b

⇔ { Anti-symmetry of v. }

a v b ∧ b v a

⇔ { Indirect inequality (8.2) and (8.3). }

〈∀ x :: x v a⇒ x v b〉 ∧ 〈∀ x :: x v b⇒ x v a〉

⇔ { Quantification rules. }
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〈∀ x :: x v a⇒ x v b ∧ x v b⇒ x v a〉

⇔ { Mutual implication (anti-symmetry of logical implication). }

〈∀ x :: x v a⇔ x v b〉

Thus, we get the formulation of the indirect equality principle (the second one is
equivalent): for all a ∈ A and b ∈ B,

a = b ⇔ 〈∀ x :: x v a⇔ x v b〉 (8.4)

a = b ⇔ 〈∀ x :: a v x⇔ b v x〉 (8.5)

Therefore, a proof by indirect equality can be seen as the combination of two indi-
rect inequality proofs by mutual inclusion.

Point-free indirect equality. The indirect equality rule can also be formulated with-
out variables thanks to the PF-transform. Let us consider two functions B A

foo

and B A
goo , where (B,�) is a partial order and A is a set. That

f = g ⇔ � ◦ f = � ◦ g (8.6)

f = g ⇔ f∪ ◦� = g∪ ◦� (8.7)

instantiate indirect equality can be easily checked by putting variables back via (4.52)
(the PF transform for related functional results).

Point-free indirect inequality. Using the same reasoning, the indirect inequality

rule also has a point-free formulation

f
.

� g ⇔ � ◦ f ⊆ � ◦ g (8.8)

f
.

� g ⇔ g∪ ◦� ⊆ f∪ ◦� (8.9)

where
.

� is the lifted order for functions. As in the point-wise definition, � is only
required to be a preorder.
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Indirect inequality and lifted orders. We should notice that Equation (8.8) is equiv-
alent to Equation (4.56) defining the point-free lifted order for relations, i.e.,

f
.

� g
def⇔ f ⊆� ◦ g

The proof by mutual implication of this equivalence exploits the fact that � is a pre-
order and that composition is monotonic:

1. Implication� ◦ f ⊆� ◦ g ⇒ f ⊆� ◦ g holds because� is reflexive, i.e., id ⊆�,
and composition is monotonic;

2. Implication f ⊆� ◦ g ⇒ � ◦ f ⊆� ◦ g holds because:

f ⊆� ◦ g

⇒ { Monotonicity of composition. }

� ◦ f ⊆� ◦� ◦ g

⇒ { Transitivity of �, i.e., � ◦�⊆�, and monotonicity of composition. }

� ◦ f ⊆� ◦ g

Application. Equation (8.6) is not a point-free equality but an equivalence between
two point-free equalities. Like the substitution rule, it is a meta-level result and should
be used as an inference rule of the system.

The usual application of indirect equality uses also the transitivity of equality. For
instance, when trying to establish an equality f = g, a partial order is composed with
one of the functions, e.g., v ◦ f . Then, the derivation follows by applying other laws
using the substitution rule:

v ◦ f

= { . . . }

. . .

= { . . . }

v ◦ g

until the expression v ◦ g is obtained. By transitivity of equality, v ◦ f = v ◦ g, and
thus, by indirect equality, we conclude that f = g.



172 8 Foundations of Galculator

8.4 Proofs in point-free style

Whole division implementation. For example, let us see how the calculation in the
introduction (Section 1.1.1) is actually performed inside the Galculator: first of all,
equations (1.3), (1.4) become families of PF-equalities

(×y)∪ ◦ 6 = 6 ◦ (÷y) (8.10)

(−b)∪ ◦ 6 = 6 ◦ (+b) (8.11)

indexed by y (assuming y 6= 0) and b, respectively, where (×y), (÷y), (−b) and (+b)

are the right section functions of multiplication, division, subtraction and addition,
respectively. We deviate from the convention of using subscripts to denote sections of
functions since, in this example, it improves readability. Then the following series of
equalities are calculated:

6 ◦ (÷y)

= { Shunting (8.10) assuming y > 0. }

(×y)∪ ◦ 6

= { Cancellation, thanks to (8.11) — steps omitted. }

((−y) ◦ (×y))∪ ◦ 6 ◦ (−y)

= { Distributivity. }

((×y) ◦ (−1))∪ ◦ 6 ◦ (−y)

= { Distributivity of converse through composition. }

(−1)∪ ◦ (×y)∪ ◦ 6 ◦ (−y)

= { Shunting (8.10). }

(−1)∪ ◦ 6 ◦ (÷y) ◦ (−y)

= { Shunting (8.11). }

6 ◦ (+1) ◦ (÷y) ◦ (−y)

From this, the Galculator uses indirect equality to infer equality:

(÷y) = (+1) ◦ (÷y) ◦ (−y)
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Simple property about whole division. The corresponding point-free calculation of
the proof of Section 1.1.2 is

6 ◦ ((÷c) ◦ (÷b))

= { Associativity of composition. }

(6 ◦ (÷c)) ◦ (÷b)

= { Shunting (8.10). }

((×c)∪ ◦ 6) ◦ (÷b)

= { Associativity of composition. }

(×c)∪ ◦ (6 ◦ (÷b))

= { Shunting (8.10). }

(×c)∪ ◦ ((×b)∪ ◦ 6)

= { Associativity of composition. }

((×c)∪ ◦ (×b)∪) ◦ 6

= { Contravariance of converse and composition. }

((×b) ◦ (×c))∪ ◦ 6

= { Associativity of multiplication. }

(×(b× c))∪ ◦ 6

= { Shunting (8.10). }

6 ◦ (÷(b× c))

∴ { Indirect equality equality. }

(÷c) ◦ (÷b) = ÷(c× b)

This proof in point-free style is equivalent to the previous one, although a little bit
longer because the explicit use of the associativity steps. It also illustrates the proof
format of Galculator: simple equational steps provided with clear justifications. In
fact, this proof, tallies the example proof script given in Section 1.2.
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8.5 Summary

This chapter discussed the theoretical foundations of the Galculator. The equational
theory used by Galculator comes from the axioms of fork algebras together with the
axioms of the specific theory being used. The Birkhoff’s theorem ensures that a term
rewriting system can be used to prove theorems in fork algebras, although this is,
in general, an undecidable problem. Galois connections can be integrated with fork
algebras by considering their point-free (equational) definition. Moreover, the point-
free definition can be extended to indirect equality as well. We have shown how all
concepts can be integrated together and used in calculational proofs. The examples
presented in the introduction (Sections 1.1.1 and 1.1.2) were revisited and rewritten in
this point-free calculational style which serves as foundation of the Galculator.



Chapter 9

Functional prototype

This chapter describes the Galculator prototype, starting from its basic design princi-
ples and general architecture and proceeding to the technical details of the implemen-
tation.

9.1 Design principles

Galois connections are the Galculator’s main building block. They are combined as
needed, forming arbitrarily complex new connections from existing ones. From each
Galois connection the Galculator derives its properties as given by Figure 5.1 which,
together with fork algebra laws1 and algebraic properties of the particular domain of
the problem being solved, form the set of laws of the system. In order to represent
all these concepts (Galois connections, fork algebra, particular domain theory), sev-
eral embedded DSLs are defined. These embedded DSLs are implementations using
GADTs of the Galois DSL specified in the previous chapters.

Galculator proofs are transformations of the abstract representation of the equality
being proved. These transformations are made according to the equalities enabled
by the laws of the system. However, laws are objects arising from the theoretical
level; they cannot be applied to representations. Thus, a mechanism is defined for
deriving functional applications of the available laws in the form of rewrite rules. The
application of such rules is performed by a strategic term rewrite system (TRS).

Basic rewrite strategies can be combined in order to build more complex ones,
according to the complexity of the problem. Moreover, with the same set of rules

1In this chapter, we shall refer to equalities in the theory level as laws.
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Figure 9.1: Design principles of the Galculator prototype.

several different rewrite systems can be easily built and tried.

A summary of the components and design principles which guide the Galculator

prototype is given in Figure 9.1.

9.2 Architecture

The Galculator is divided in several logical modules. Below we give an overview of
these before presenting a more technical description.

Interpreter. The command line interpreter provides for interactive user interfacing.
Several options are offered: loading modules, exploiting Galois connection algebra,
checking expressions and doing proofs. Currently, these are performed in interactive
proof mode. At each step, the user can choose a rule derived from the set of laws
available from the system. Rules can be applied using the strategies built from the
combinators provided by the term rewriting system. The system offers hints about the
applicable rules in the current proof step. At the end, a complete proof log, with all
equational steps and justifications is made available.

Parser. Several domain specific languages (DSL) are available in order to express
the concepts in use: Galois connections, relations, orders, functions and so on. For
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each one a parser was implemented using parsing combinators [Leijen and Meijer,
2001]. This technique makes it easy to use a DSL inside another simply by calling the
respective parsing combinators.

Type inference. Types are useful in finding errors, not only in programs but also in
proofs: they give insight in some misleading details that are often overlooked. The
Galculator prototype is a typed environment with its own type system, based on the
Haskell type system using a type representation. Altogether, the user is released from
having to provide explicit types in expressions.

The Galculator type system supports parametric polymorphism. The type repre-
sentation is extended with support for type variables. However, it is not possible to
rely on the type system of the host language alone in order to account this addition.
Thus a unification mechanism on type variables has been implemented based on the
Hindley-Milner algorithm [Milner, 1978]. Polymorphism is useful for deriving the so-
called free-theorems of functions [Wadler, 1989; Backhouse and Backhouse, 2004], a
kind of commutative property enjoyed by polymorphic functions solely inferred from
their types.

Term rewriting system. The core of Galculator is its term rewriting system (TRS),
whose rules (derived from the theory explained in Chapter 5 and Chapter 8) are applied
to terms in order to build proofs. The system uses the flexibility of strategies and their
combinatorial properties in order to build more complex proof strategies. Moreover,
since the whole system is typed, the TRS is also typed, allowing for type directed
rewriting rules.

Property inference. Galois connections are specified by their types (sets on which
they are defined), the pre-orders involved and the adjoint functions. This component
derives the properties stated in Figure 5.1 from the starting specification and adds them
to the system.

Rule inference. The equational laws expressed in our representation are purely
declarative; they cannot be used in rewriting because they are not functions. Thus, we
developed a rule inference engine which takes an equational expression and returns a
rewrite function usable by the TRS. This component ensures most of the genericity of
Galculator.
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9.3 Representation

The concepts used in the system (relations, functions, orders, Galois connections) are
represented by GADTs. As mentioned in Section 2.4.3, GADTs naturally induce an
associated language. Thus, in fact, with GADTS we are defining very small DSLs
which integrate with each other.

Types. The following data type encompasses the basic types in the domains we want
to use our tool:

data Type a where

One :: Type One

Bool :: Type Bool

Char :: Type Char

String :: Type String

Int :: Type Int

Float :: Type Float

List :: Type a → Type [a ]

Set :: Type a → Type (Set a)

Maybe :: Type a → Type (Maybe a)

· × · :: Type a → Type b → Type (a, b)

·+ · :: Type a → Type b → Type (a + b)

·⇀ · :: Type a → Type b → Type (a ⇀ b)

Ord :: Type a → Type (PO a)

Fun :: Type a → Type b → Type (a ← b)

Rel :: Type a → Type b → Type (a ∼ b)

GC :: Type a → Type b → Type (GC a b)

Expr :: Type a → Type (Expr a)

type One = () -- Unitary type
type b ← a = a → b -- Functions
data b ∼ a -- Relations
data PO a -- Partial orders
data GC b a -- Galois connections
data Expr a -- Expressions
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We deviate from the usual Haskell representation for functions (we use← instead of
→) because the right to left arrow is visually more consistent with function composi-
tion which is the main connector of our point-free calculus. Of special interest are the
PO and GC data types which will allows us to work with partial orders and Galois
connections, respectively. Thus, type PO a represents a type a which is equipped with
a partial order forming a poset (a,va). Type GC b a represents a Galois connection
(b,vb)

(,)←− (a,va) between posets (b,vb) and (a,va).
This representation works with a closed universe of types. So, parametric poly-

morphism is not possible. In type polymorphism type variables which range over the
universe of types are allowed. In order to deal with parametric polymorphism we
must enrich our type representation with another constructor which represents type
variables:

data Var

type Variable = String

data Type a where

. . .

TVar :: Variable → Type Var

This means that all type variable representations have the same type (Var ). Using
Type a does not work because it would not be possible to define a type equality
mechanism over it. The drawback of the use of Var is that Haskell type inference
mechanism fails to unify Var with any type, like it would do with a normal Haskell

type variable. Thus, we cannot solely rely on the Haskell type-system and thus have to
create our own unification mechanism (Section 9.4).

Combinators. The point-free calculus presented in Section 4.5 presents a set of re-
lational combinators. The relation calculus is the basis of all proofs once Galois con-
nections are encoded in the point-free style (recall Equation 8.1). Thus, we represent
the combinators of Section 4.5 using constructors of a GADT. Here is how they are
defined:

data R r where

· = · :: R a → R a → R (Expr a)

· ⊆ · :: R a → R a → R (Expr a)

Var :: Variable → R (b ∼ a)
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id :: R (a ∼ a)

⊥ :: R (b ∼ a)

> :: R (b ∼ a)

¬ · :: R (b ∼ a)→ R (b ∼ a)

·∪ :: R (b ∼ a)→ R (a ∼ b)

· ∩ · :: R (b ∼ a)→ R (b ∼ a)→ R (b ∼ a)

· ∪ · :: R (b ∼ a)→ R (b ∼ a)→ R (b ∼ a)

· ◦· · :: Type b → R (c ∼ b)→ R (b ∼ a)→ R (c ∼ a)

· ∇ · :: R (b ∼ a)→ R (c ∼ a)→ R ((b, c) ∼ a)

· × · :: R (b ∼ a)→ R (d ∼ c)→ R ((b, d) ∼ (a, c))

π1 :: R (a ← (a, b))

π2 :: R (b ← (a, b))

. . .

The meaning of each operator should be clear since we use lhs2TeX to mirror the
mathematical notation introduced in previous chapters. Note the use of a type anno-
tation Type b in the definition of the composition operator. This is necessary during
traversals of the representation in order to get the common type back. This type is
existentially quantified and otherwise it could not be known.

Type lifting. Functions and orders are particular cases of relations. Thus, it should
be possible to use them wherever a relation can; however their types do not match.
Two embeddings are defined for this purpose:

ωo(·) :: R (PO a) → R (a ∼ a)

ωf (·) :: R (b ← a)→ R (b ∼ a)

. . .

Expression ωo(o) turns order o into a relation; ωf (f ) makes the function f a relation.

Functions. The representation of functions is given by a number of constructors:

FunctionVar :: Variable → R (b ← a)

FunctionId :: R (a ← a)

FunctionComp :: Type b → R (c ← b)→ R (b ← a)→ R (c ← a)

. . .
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FunctionVar a denotes a function variable with name a; FId denotes the identity
function; FComp t f g denotes the composition of functions f and g with intermediate
type t .

Sections. As explained in Chapter 5, many adjoints arise as sections of functions.
We provide the following sectioning operators:

··::· :: Type c → R (a ← (b, c))→ R c → R (a ← b) -- Right section

·::· · :: Type b → R (a ← (b, c))→ R b → R (a ← c) -- Left section

Const :: Constant → R a

·(·::·,·::·) :: Type b → Type c

→ R (a ← (b, c))→ Constant → Constant → R a

. . .

Given a binary function f with the right type and v a value with type t , v ::t f denotes the
left section of f ; fv ::t denotes the right section of f . As happens with the composition
operator, type annotations are again needed in order to retain existentially quantified
types. Const a represents a constant of name a and f(c1 ::t1 ,c2 ::t2 ) represents simulta-
neous right and left sections of a binary function f , whose sections c1 and c2 have,
respectively, types t1 and t2 .

We should notice the link between the sectioning operators at the function rep-
resentation level and sections at the functional level. Operators vb::t f and fvc::t are
representations of the Haskell sectioning operations for uncurried functions described
in Section 2.4.1. Let us consider the corresponding objects at the functional level:
f ::R (a ← (b, c)) is the representation of a function of type f ′ :: (b, c)→ a); vb ::R b

is the representation of a value vb ′ :: b; and vc :: R c is the representation of a value
vc ′ :: c. Therefore, ignoring type annotations, the left section operator vb::t f represents
curry f ′ vb ′ and the right section operator fvc::t represents flip (curry f ′) vc ′.

Orders. The representation of orders is given by a number of constructors:

OrderVar :: Variable → R (PO a)

OrderId :: R (PO a)

OrderConv :: R (PO a)→ R (PO a)

. . .
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OrderVar a denotes an order variable with name a; OrderId denotes the identity
order; OrderConv o denotes the converse of order o.

Galois connections. Our representation of Galois connections puts together two ad-
joint functions and two partial orders, suitably typed. Moreover, the operations of
Galois connection algebra are also provided:

GCVar :: Variable → R (GC b a)

GCId :: R (GC a a)

GCComp :: Type b → R (GC c b)→ R (GC b a)→ R (GC c a)

GCConv :: R (GC b a)→ R (GC a b)

GCVar a denotes a Galois connection variable with name a; GCId represents the
identity Galois connection; GCComp g g ′ represents the composition of Galois con-
nections g and g ′ with appropriated types; and GCConv g represents the converse
connection of g .

9.4 Type equality and type unification

Type equality witness. An advantage of using explicit type representations is that
equality can be computed at run-time, allowing for the introduction of dynamic typing
mechanisms in a static environment [Baars and Swierstra, 2002]. For this, a GADT
definition is used:

data a = b where Eq :: a = a

This is called a witness type because it can only be built if the types are equal. This
is ensured by the type checker by analysing the types of the type indexes (recall Sec-
tion 2.4.1). Moreover, thanks to this witness the type-checking mechanism can recog-
nize values of the two types as interchangeable.

Type equality. Given two type representations, the teq function tries to build an Eq

witness of their equality: if the types are equal the witness is returned; otherwise it
fails. Using GADTs computing type representation equality reduces to computing
syntactical equality between data constructors:
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teq :: MonadOr m ⇒ Type a → Type b → m (a = b)

teq Int Int = return Eq

teq (a × b) (a ′ × b ′) = do

Eq ← teq a a ′

Eq ← teq b b ′

return Eq

. . .

teq = mzero

However, implementing type equality over type variable representation leads to the
question: when are two type variables of the same type? A type variable represen-
tation is just a placeholder, it can be replaced by another type representation. Using
polymorphic type representations we cannot rely on the type checker in order to infer
that types are equal. We have to implement a type unification mechanism which helps
the type-checker to infer the types correctly.

Type unification. Type unification can be easily solved with a unification algorithm
such as one presented in Section 3.2. The algorithm receives a system of equations
stating the supposed equalities between types. If some of the equalities do not hold,
e.g., trying to unify integers with Booleans, the algorithm fails. Otherwise, a set of
substitutions is returned with mappings from variables into the type which they should
be instantiated to. One property of this algorithm is that if it succeeds, it returns the
most general unifier. Function

η :: MonadOr m ⇒ [Equation ]→ m [Substitution ]

implements this algorithm, where equations and substitutions are synonyms for the
same type which is just a pair of type representations existentially quantified:

data Constraint where

· :=: · :: Type a → Type b → Constraint

type Equation = Constraint

type Substitution = Constraint
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9.5 Parsing and type inference

Embedding DSLs implies that the user knows how to use the host language (writing
modules, compiling files and so on). Thus, in order to allow the user to specify ex-
pressions in a textual format a parser was developed using the parsing combinators of
the Parsec library [Leijen and Meijer, 2001]. However, as we shall see shortly, using
GADTs implies the inference of the type of the expressions being parsed.

The first version of the Galculator prototype mixed parsing and type inference, as
described by Silva and Oliveira [2008]. However, as the prototype evolved, this pro-
cess was decoupled into several phases in order to deal with its increased complexity,
as described in Section 9.5.3.

9.5.1 Fresh variable names

Prior to entering into the details of parsing and type inference, let us introduce a
monadic construction to ensure production of fresh variable names. By fresh we mean
an identifier that is unique in the system and that has never been used before.

We consider the concept of stream which can be seen as an infinite list of objects.
A Haskell class is defined for representing streams

class Stream a v | a → v where

headStr :: a → v

tailStr :: a → a

This definitions uses a multi-parameter type class with a functional dependency a →
v . This means that a stream of type a uniquely determines the type of its objects v .
Method headStr returns the head of the stream while tailStr returns the remaining of
it.

Now we use Stream to define another class

class (Monad m, Stream s v)⇒ MonadFresh s v m | m → s where

getFresh :: m v

together with the implicit invariant that getFresh should provide always different val-
ues. The functional dependency m → s states that a monad m uniquely determines
the associated stream of objects s . Stream s ensures an infinite supply of objects.

The actual implementation of MonadFresh in Haskell takes advantage of lazy eval-
uation and the capability of handling infinite lists.
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9.5.2 First version

Note that in this section, the syntax of the parsed language is different from the specifi-
cation of Galois and similar to the abstract syntax using GADTs. For each constructor
of our representation a parsing combinator is defined. This combinatorial style makes
it easy to embed DSLs inside others: all that is needed is to use the corresponding
parser in a composable approach. While building ASTs using ADTs is almost straight-
forward, representations using GADTs pose some problems because their index type is
only known at run-time: it is dependent on the input. This is circumvented by resorting
to an existential data type to hide the type index

data Covert t = ∀x . Hide (t x )

maintaining static safeness. Recall from Section 2.4.1 that Haskell notation resorts to
the universal quantifier to introduce existential data types.

Covert is a common pattern [Sheard et al., 2005] where t can be parameterized
with the data type we want to use. For instance, for building type representations:

type TypeBox = Covert Type

This can be manipulated in a type-safe manner provided the encapsulated value never
escapes the scope of its quantification.

However, when trying to parse relational representations, for instance, hiding the
index type is not enough. If we define a data type to encapsulate the representation and
a parsing combinator,

type RBox = Covert R

parseR :: Parser RBox

wherever the result of the parsing function is used, for instance, by another parsing
combinator in order to build a more complex term, the index type escapes from its
scope and the compiler cannot ensure type safeness anymore.

The solution is to add an explicit type representation sharing the same index type
of the expression representation, changing the type of parseR accordingly:

data Exists singleton term = ∀t . Exists (singleton t) (term t)

type RType = Exists Type R

parseR :: Parser RType



186 9 Functional prototype

Although the exact index type is not known, the type-checker knows that it must reflect
the type representation (because it is a singleton type), being sufficient to ensure static
type safeness. Thus, for instance, the parsing combinator for the converse operator:

parseConv :: Parser RType

parseConv = do

reserved "Conv"

Exists (Rel t t ′) r ← parseR

return (Exists (Rel t ′ t) (r∪))

Since explicit type annotations are needed, either the user has to provide these or the
system has to infer them. Thanks to the unification mechanism, we just have to gener-
ate the equations. Polymorphic operators need to get fresh variable names in order to
denote their type variable representation; other operators just have to be provided with
the type representation corresponding to their types. An example of an operator that is
polymorphic in its argument, but not in its result is bang (function that takes any value
to the only inhabitant of the unitary type):

parseFBang :: Parser RType

parseFBang = do

reserved "FBang"

tid ← getFresh

return (Exists (Fun One (TVar tid)) bang)

Function getFresh gets always fresh variables names from an infinite stream of identi-
fiers due to lazy evaluation.

Unification is only needed when parsing relational combinators in which some
variables must be equal. Composition is a good example of this situation:

parseComp :: Parser RType

parseComp = do

reserved "Comp"

Exists (Rel t3 t2 ) r1 ← parseR

Exists (Rel t2b t1 ) r2 ← parseR

subst ← η [t2 :=: t2b ]

Hide t1 ′ ← typeRewrite subst t1

Hide t2 ′ ← typeRewrite subst t2



9.5 Parsing and type inference 187

Hide t3 ′ ← typeRewrite subst t3

r1 ′ ← safeCast subst (Rel t3 ′ t2 ′) r1

r2 ′ ← safeCast subst (Rel t2 ′ t1 ′) r2

return (Exists (Rel t3 ′ t1 ′) (r1 ′ ◦t2 ′ r2
′))

After parsing the two relational expressions r1 and r2 we have to make sure that
they have a common type in order to be composable. Thus, a type equation is solved
by unification and the set of type variable substitutions is applied using typeRewrite

(more details in Section 9.8). Next, the representation must also reflect type substi-
tutions. Since constructors in GADTs retain the associated type information, a kind
of type-safe “cast” is needed in order to reflect the new types. Function safeCast is
an embedding function where an expression of type r is transformed in an identical
expression of type t , if types are compatible:

safeCast :: MonadOr m ⇒ [Substitution ]→ Type t → R r → m (R t)

The need for the substitution list is justified by the relational combinators which have
type annotations, like composition, where the substitutions have to be applied also for
consistency.

Finally, the parsing function returns the newly built term with the respective type
annotation. Since all computations are performed in a MonadOr context, should any
of them fail, the whole parsing function will fail.

9.5.3 Second version

The implementation described in the previous section was simplistic: its purpose was
to illustrate how a GADT representation could be built from a textual definition. In
fact, fusing parsing and type inference works for simple cases but can become a burden
on maintenance when languages tend to grow. Moreover, in order to implement the
whole language specified in Chapter 7 additional steps are needed. Therefore, the
whole process was divided into four phases: parsing, verification, variable refreshing
and type inference.

Parsing. The parsing phase still uses the Parsec library but takes advantage of its
capability to build expression parsers. These overcome the traditional limitations of
parsing combinators when dealing with left-recursive grammars.
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The parser follows the specification of Galois given in Chapter 7. Following the
usual approach, we take the abstract syntax annotations as constructors of an ADT
in order to specify the AST of the language. This specification is very close to the
DSL defined in the previous sections using GADTs. The difference is that the ADT
representation does not store type information and does not enforce type correctness.

Verification. The specification of Galois requires that declarations of axioms, the-
orems or Galois connections are unique in a module. Furthermore, references must
refer to declared identifiers.

The verification phase ensures that both these requirements are met; moreover,
definitions are replaced for their references.

Variable refreshing. Several properties of rewriting systems are only valid when
working with ground terms, i.e., without variables. The problem is that rules can
capture variables of the term. This is avoided by ensuring that both sets of variables
are disjoint [Gnaedig and Kirchner, 2009].

Since rewrite rules in Galculator are derived from equalities (as we shall see
briefly), the problem of variable capture arises even among terms. The solution is
to ensure that all variable names in a certain scope are fresh with respect to the whole
module. For instance, every occurrence of a variable named "a" in an axiom declara-
tion is replaced by a fresh variable. Occurrences of the same variable "a" in another
axiom declaration are replaced by a different variable.

Type inference. Having ensured that the abstract representation meets the specifi-
cation requirements, type inference can be performed so as to build another abstract
representation based on GADTs. The type inference process follows the typing rules
of Galois presented in Chapter 7.

Compared to the first version, which did not handle variables, the second imple-
mentation is also slightly more complex. A monomorphic restriction is applied to
variables, i.e., their type is the same in every occurrence.

An inference function is defined for each non-terminal symbol. Thus, function

inferenceTerm :: (MonadOr m,MonadFresh [String ] String m)

⇒ Term → m (RType,VarType)
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given a term returns its GADT representation together with the respective type repre-
sentation (RType) and a VarType defined as

type VarType = [(Variable,TypeBox )]

Type VarType is a environment which associates variable names to type representa-
tions. Since these are existential types, TypeBox is used.

The VarType result is used to keep track of variable types and pass this information
around. Thus, inferenceTerm is defined for relation variables as follows:

inferenceTerm (Var ′ var) = do

t1 ← getFreshT ; t2 ← getFreshT

return (Exists (Rel t1 t2 ) (Var var), [(var ,Hide (Rel t1 t2 ))])

The type of a relation variable is Rel t1 t2 where t1 and t1 are fresh type variables.
At such a moment, it is not possible to say more about the type of var since only
in the end of type inference a definitive type will be available in order to satisfy the
monomorphic restriction. [(var ,Hide (Rel t1 t2 ))] returns this association to the
upper level.

As we did in the first version, let us see how to infer the types of converse and rela-
tional composition are inferred. The type inference of converse is now more complex:

inferenceTerm (Conv r) = do

(Exists tr r ′, vars)← inferenceTerm r

t1 ← getFreshT ; t2 ← getFreshT

subst ← η [tr :=: Rel t1 t2 ]

Hide t1 ′ ← typeRewrite subst t1

Hide t2 ′ ← typeRewrite subst t2

r ′′ ← safeCast subst (Rel t1 ′ t2 ′) r ′

return (Exists (Rel t2 ′ t1 ′) (r ′′∪),

mapVariables subst vars)

The difference is that of resorting to unification instead of Haskell pattern matching for
the type tr of term r . In the first version, instead of returning tr , the result would be
pattern matched againt Rel t1 t2 directly. However, typing errors were very difficult to
report because they looked like pattern matching errors. The second implementation
allows for a possible future refinement: the introduction of type error messages by
adding an error monad to the context of the function.
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Since unification is used, we also need to use the typeRewrite and safeCast func-
tions such as was explained in the first version of type inference for composition. The
returned environment is the application of the function mapVariables to the sub-term
environment. mapVariables is a function which applies a substitution to the type infor-
mation associated with a variable identifier in a VarType . Type inference of converse
does not change the types of relation variables, but the application of substitution is
necessary to ensure that type variables in the environment are consistent with returned
types.

The type inference for composition is now defined as

inferenceTerm (Comp r1 r2 ) = do

(Exists tr1 r1 ′, vars1 )← inferenceTerm r1

(Exists tr2 r2 ′, vars2 )← inferenceTerm r2

t1 ← getFreshT ; t2 ← getFreshT ; t3 ← getFreshT

subst ← η ([tr1 :=: Rel t3 t2 , tr2 :=: Rel t2 t1 ]

++ toConstraints (vars1 ++ vars2 ))

Hide t1 ′ ← typeRewrite subst t1

Hide t2 ′ ← typeRewrite subst t2

Hide t3 ′ ← typeRewrite subst t3

r1 ′′ ← safeCast subst (Rel t3 ′ t2 ′) r1 ′

r2 ′′ ← safeCast subst (Rel t2 ′ t1 ′) r2 ′

return (Exists (Rel t3 ′ t1 ′) (r1 ′′ ◦t2 ′ r2
′′),

mergeVariables subst vars1 vars2 )

The main difference with respect to the first version is the use of environments with as-
sociation of variables to types of both sub-terms. Such environments are concatenated
so that function toConstraints takes this as argument and returns a list of constraints,
one for each repeated identifier. For instance, [("a",Hide t1 ), ("a",Hide t2 )] in the
environment yields a constraint [t1 :=: t2 ]. This ensures that a variable will have the
same type at every occurrence in the sub-terms. The generated constraints are added
to the specific constraints of the composition operator and a most general unifier is
computed over these.

The next steps are similar to the first version of type inference, except for the last
one, where a new environment is returned using function:

mergeVariables :: Substitution → VarType → VarType → VarType

mergeVariables subst v1 v2 = mapVariables subst (union v1 v2 )
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mergeVariables takes the union of two VarType environments and applies a substitu-
tion to the resulting environment. This ensures that the types of relation variables are
correctly updated with the results of unification.

9.6 Laws and rules

Like parsing and type inference, also the derivation of rules from laws was imple-
mented in two versions. The first one, reported by Silva and Oliveira [2008], is unable
to deal with variables. However, the introduction of variables only requires the use of
matching instead of equality. Both versions are presented below.

9.6.1 First version

Recall from Section 9.1 that term Law refers to expressions at the theoretical level,
while term Rule denotes functions applicable by the rewriting system. From an equal-
ity A = B two rules can be inferred, one in each direction of rewriting: A→ B and
B←A. This corresponds to the application of the Leibniz principle: if two objects are
equal we can interchange them keeping the validity of the enclosing expression.

Representing laws. An advantage of using equational reasoning is that it is type
preserving, i.e., expressions of both sides of equalities (or inequalities) have the same
type. Our representation for laws reflects this fact, using an existentially quantified
index type:

type Law = Exists Type R

Thus, this type is essentially equal to RType with the additional invariant (not stat-
ically enforced by the type system) that is only valid to arguments of the form
Exists (Expr t) (r1 = r2 ) and Exists (Expr t) (r1 ⊆ r2 ).

Implementing rules. Following our design principles, laws can be specified in a
purely declarative level using a textual notation from which the parser builds corre-
sponding Law representations; which, in turn, are automatically converted into rewrit-
ing rules. A rewriting rule is defined as a polymorphic function, with type and expres-
sion representations as arguments,
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type Rule = ∀a. Type a → R a → Rewrite (R a)

where Rewrite is a monad that deals with effects during rewriting. (See more de-
tails about this in Section 9.8). The function that, from a law representation returns a
rewriting function (rule), is defined as follows:

getRule :: Law → Rule

getRule (Exists (Expr t1 ) (r1 = r2 )) t2 r = do

cns ← rConstraint r1 r -- 1
subst ← η ([t1 :=: t2 ] ++ cns) -- 2
Hide t1 ′ ← typeRewrite subst t1 -- 3
r ′ ← safeCast subst t1 ′ r -- 4
r1 ′ ← safeCast subst t1 ′ r1 -- 4
r2 ′ ← safeCast subst t2 r2 -- 5
guard (r1 ′ ≡ r ′) -- 6
successEquiv t2 r r2 ′ -- 7

The general principle of this function is that given an argument expression r and its
type t2 it will try to match these with the left hand side of the law r1 and its corre-
sponding type t1 . If they are compatible the right hand side of the law is returned;
otherwise, the function fails.

Each step of getRule is explained below, keeping in mind that it operates in the
context of MonadOr : if one of the steps fails, getRule also fails.

1. Type equations are generated by the rConstraint function by comparing the two
expressions one is trying to match. This is necessary in order to ensure that type
annotations inside data constructors are correctly unified. For instance, when
trying to match · ◦(TVar "a") · and · ◦Int ·, an equation (TVar "a") :=: Int should
be generated. In case the two expressions do not match, rConstraint fails.

2. Type representations of the argument and law are unified, together with the equa-
tions generated in the previous step. The unification failure means that types are
incompatible and no rule can be derived. Otherwise, a set of substitutions is
returned.

3. The substitutions obtained in the previous step are applied to the type represen-
tation of the law.
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4. The type-safe cast function is applied to the two expressions under comparison.
This is needed because these have to be of the same type.

5. The type-safe cast function is applied to the right hand side of the law in order
to make it possible to return a value with the right type t2 , since our system is
type preserving.

6. The argument expression and left hand side of the law, once casted, are compared
for equality.

7. The successEquiv function deals with the details of the Rewrite monad (for
instance, it adds a successful rewriting to a proof log). Otherwise, it could be
just return r2 ′, meaning that it is possible to rewrite r into r2 ′, both having type
t2 .

The inverse rewrite rule (the right hand side by the left hand side of the law) is ob-
tained through a similar function getRuleInv , the only difference being the inversion
of variables.

9.6.2 Second version

Introducing variables only requires replacing equality by matching. The two different
steps with respect to the previous version are signaled:

getRule :: Law → Rule

getRule (Exists (Expr t1 ) (r1 = r2 )) t2 r = do

cns ← rConstraint r1 r

subst ← η ([t1 :=: t2 ] ++ cns)

Hide t1 ′ ← typeRewrite subst t1

r ′ ← safeCast subst t1 ′ r

r1 ′ ← safeCast subst t1 ′ r1

r2 ′ ← safeCast subst t2 r2

rsubst ← rMatch r1 ′ r ′ -- 1
let r2 ′′ = rSubst rsubst t2 r2 ′ -- 2
successEquiv t2 r r2 ′′

The explanation of the two different steps is as follows:
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1. Instead of testing r1 ′ and r ′ for equality one tries to match these. The function
rMatch implements expression matching which is a particular case of unifica-
tion as it was discussed in Section 3.2. rMatch returns a substitution σ such that
σ(r1 ′) ≡ r ′, i.e., every variable of r1 ′ gets assigned a corresponding subexpres-
sion of r ′.

If the two expressions do not match, getRule fails.

2. Function rSubst applies the substitution obtained in the previous step to r2 ′,
using the rewriting system defined on expressions (Section 9.8).

Such as in the previous version, the inverse rewriting rule is obtained simply by invert-
ing variable order.

9.7 Galois connections properties

Galculator exploits Galois connection algebra and properties. These properties are
equational laws representable in the system (recall Figure 5.1). What is needed is a
way of automatically deriving properties from definitions.

For each property, a function is defined, receiving the representation of a Galois
connection together with its type representation. For instance, the point-free version
of the shunting property is generated by function:

gcShunting :: (MonadFresh [String ] String m,MonadOr m)

⇒ Type a → R a → m Law

gcShunting (GC b a) g = do

ladj ← lowerAdjoint g ; uadj ← upperAdjoint g

lord ← lowerOrder g ; uord ← upperOrder g

return $ Law (Expr (Rel a b))

(((ladj ∪) ◦b (ωo(lord))) = ((ωo(uord)) ◦a uadj ))

gcShunting = mzero

The cancellation laws use the · ⊆ · constructor because they are not equalities:

gcCancellationUpper :: (MonadFresh [String ] String m,MonadOr m)

⇒ Type a → R a → m Law

gcCancellationUpper (GC b a) g = do
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ladj ← lowerAdjoint g ; uadj ← upperAdjoint g

uord ← upperOrder g

return $ Law (Expr (Rel a b))

((ωo(uord))⊆ ((ωo(uord)) ◦a (uadj ◦b ladj )))

gcCancellationUpper = mzero

The implementation uses the upperAdjoint and lowerAdjoint functions that from
a Galois connection definition return, respectively their upper and lower adjoint rep-
resentations. Also used are the lowerOrder and upperOrder functions that from a
Galois connection definition return, respectively, the order representation associated
with the lower and upper adjoints.

9.8 Term rewriting system

The term rewriting system (TRS) puts the rules derived from Galois connections to
work. As already mentioned, it is based on strategic techniques (Section 3.4). Our
TRS is not only strategic but also typed, allowing for type-dependent rewriting.

In the context of Galculator, the use of rewrite strategies on proofs can be com-
pared to the use of tactics on traditional theorem provers [Paulson, 1983].

Two strategic TRS have been implemented: one for expressions and another for
types. In spite of using similar strategies, they are slightly different.

Expressions. The definition of rewriting rules for expressions was already presented
in Section 9.6. In fact, Rule is an instance of the general type of rewrite strategies

type GenericM m = ∀a. Type a → R a → m (R a)

parameterized by the Rewrite monad which is defined using monad transformers in
order to combine failure, non-determinism and a proof log. However, GenericM can
be instantiated differently in order to deal with different kinds of effects.

Recall Table 3.3 which summarizes the defined strategy combinators. With the
exception of the traversal (all , one and first) and the fixed point recursion combinators,
the other are just renamings for monadic operations (recall Section 2.4.2). nop and .

are the return and bind operators of the monad class; ⊥ and ⊕ the mzero and mplus

operators of MonadPlus; � the morelse operator of MonadOr .
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Special mention should go to the fact that two different choice operators have been
defined: one for left-biased choice and another for non-deterministic choice. The latter
(⊕) is based on the MonadPlus monad, thus obeying the left-distribution law. The use
of non-deterministic choice is important when all different paths should be tried but it
comes with a performance penalty since the search space expands.

The left-biased choice combinator (�) is based on the MonadOr and thus obeys
the left catch law: the right strategy is only tried if the first one fails. This provides a
mechanism for cutting down unnecessary cases and restricting the search space.

The cost of traversal operators (all, one, first) having to deal with boilerplate code
is minimized by using a spine representation inspired on [Hinze et al., 2006]:

data Typed a where

(: |) :: Type a → R a → Typed (R a)

data Spine a where

Constr :: a → Spine a

(�) :: Spine (a → b)→ Typed a → Spine b

fromSpine :: Spine a → a

fromSpine (Constr c) = c

fromSpine (f � ( : | a)) = (fromSpine f ) a

toSpine :: Type a → R a → Spine (R a)

. . .

The Spine data type is used in order to build a standard representation for construc-
tors: Constr is used for constructors without arguments, � is used for constructors
with arguments. The fromSpine function maps the spine representation back to actual
expressions; toSpine builds a spine representation from a given expression (the cor-
responding type representation is needed also). Changes in expression representation
thus only affect toSpine.

The implementation of the all and one combinators boils down to defining how to
traverse Constr and � and use toSpine and fromSpine to map expressions between
representations. This makes the implementation of the strategies independent of the
representation and reduces the cost of changing.

The fixed point operator is easily defined as

rec s = s (rec s)
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However, in Haskell it is easier to use recursion directly so this operator is not really
necessary in the implementation.

More complex strategies have been defined using the basic combinators:

try s = s � nop

many s = (s . many s)� nop

many1 s = s . many s

once s = s ||| one (once s)

onceFirst s = s � first (onceFirst s)

topdown s = s . all (topdown s)

bottomup s = all (bottomup s) . s

innermost s = all (innermost s) . try (s . innermost s)

Using the fixed point operator, the many strategy would be defined as

many s = rec (λf → ((s . f )� nop))

For instance, if we have a rule that associates any operator to the left, say
assocLeft , and we want to associate an expression to the left we just have to use
innermost assocLeft .

Types. The rewriting system for types uses the same principles and combinators as
the TRS for expressions. However, it is not type preserving because changing type
representations will imply having a different type in the end.

In order to make the type system consider all rewritings as type preserving, the new
type is hidden using another existential data type [Cunha et al., 2006b]:

data View a where View :: Type b → View (Type a)

Thus, the rewrite rule for Type will have the following type:

type Rule m = ∀a. Type a → m (View (Type a))

The result of the rewriting is exactly of the same type, apart from the new type hidden
inside View . Since it is existentially quantified it cannot be used outside the scope of
the quantification. However, we can pass it to other existential types, using the Covert

pattern:
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view2Box :: View (Type a)→ TypeBox

view2Box (View t) = Hide t

Now, it can be manipulated providing that the result never falls outside an existentially
quantified type. Using this approach, the function

typeRewrite :: MonadOr m ⇒ [Substitution ]→ Type t → m TypeBox

receives a list of substitutions to be applied to a type t . Since substitutions on types
are obviously not type-preserving, the result has to be encapsulated inside a TypeBox .

9.9 Free-theorems

9.9.1 Brief introduction

Free-theorems were introduced by Wadler [1989] based on Reynold’s abstraction theo-
rem [Reynolds, 1983]. A free-theorem is a parametric result stating a property enjoyed
by any polymorphic function with a certain type. As Wadler [1989] explains it: “The

key idea is that types may be read as relations”.

Type expressions. Parametric type expressions are defined as in Section 5.6.5:

t ::= v Type variable

| t′′ ← t′ Function type

| F(t1, . . . tn) n-ary type relator

where v ∈ V and V is the set of type variables.

Free-theorem of type t. Suppose we have {Rv}v∈V , a V-indexed family of relations,
i.e., for each type variable v ∈ V we assign a relation Rv. A free-theorem for a
parametrically polymorphic function of type t, is obtained by building a relation Rt

such that (f, f) ∈ Rt. It should be noticed that the two f functions above are, in fact,
different instantiations of the same polymorphic function [Backhouse and Backhouse,
2004]. Relation Rt is inductively defined on t as

1. If t is type variable t = v then Rt = Rv, i.e., the v indexed relation of {Rv}v∈V .
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2. If t is a function type t = B ← A then Rt = RB ← RA, where← is known as
the Reynolds arrow, a relation on functions defined as

f (R← S) g
def
= 〈∀ x, y :: (f x)R(g y)⇐ xSy〉 (9.1)

Intuitively, if input values are related by S then R relates the respective images
through functions f and g .

Using the point-free transform we get an equivalent formulation

f (R← S) g
def
= f ◦ S ⊆R ◦ g (9.2)

3. If t is a n-ary type relator t = F(t1, . . . , tn), where n > 1, then RF(t1,...,tn) =

F(Rt1 , . . . ,Rtn).

4. If t is a 0-ary type relator t = T (basic type), then RT = idT , i.e., corresponds
to the identity relation on T .

An important feature of free-theorems is that they only depend on the type of the
function, and not on the function itself. Thus, if two polymorphic functions share the
same type, they obey the same free-theorem.

Example. The head function that returns the first element of a list has type

a a?headoo , for all data types a. From this, we want to determine the relation Rt

for t = a← a?:

Ra←a?

⇔ { Function type — Rule (2) above. }

Ra ← Ra?

⇔ { Relator type — Rule (3) above. }

Ra ← Ra
?

where Ra is an arbitrary relation. By the free-theorem result we have that

head (Ra ← Ra
?) head

⇔ { Definition of Reynold’s arrow operator (9.2). }

head ◦ Ra
? ⊆ Ra ◦ head
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When Ra is a function f , since inclusion and equality coincide for functions (Equa-
tion (4.1)), this boils down the head natural property:

head ◦ f ? = f ◦ head

Recall that ? is a functor and f ? is equivalent to the function map f of Haskell pre-
sented in Section 2.4.1. This property can be represented by the following commuting
diagram:

a

f

��

a?headoo

f?

��
b b?

head
oo

for types a and b.
The last function that returns the last element of a list has type a a?lastoo , for all

data types a. Since last and head share the same polymorphic type, they both obey
the same free-theorem. Thus, we have for any relation R that

last ◦ R? ⊆ R ◦ last

9.9.2 Implementation

In the following, we describe a simple implementation of a mechanism that derives a
law corresponding to the free-theorem of a given polymorphic function.

Additional representation. First of all, we need to extend our representation with
the Reynolds arrow operator

data R r where

. . .

· ← · :: R (b ∼ a)→ R (d ∼ c)→ R ((b ← d) ∼ (a ← c))

If r and s are relations, r ← s establishes a relation on functions.

Relation from types. The next step is to implement a function corresponding to the
inductive definition of relation Rt for a type expression t. Thus, we have

type2Rel :: (MonadFresh [String ] String m,

MonadState [(String ,RType)] m,
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MonadOr m)

⇒ Type a → m (RType)

type2Rel (TVar v) = maybe

(do r1 ← getFreshR

t1 ← getFreshT ; t2 ← getFreshT

let e = Exists (Rel t1 t2 ) (Var r1 )

modify ((v , e):)

return e)

return ◦ lookup v =<< get

type2Rel (Fun a b) = do

Exists (Rel t1a t2a) ra ← type2Rel a

Exists (Rel t1b t2b) rb ← type2Rel b

return (Exists (Rel (Fun t1a t1b) (Fun t2a t2b)) (ra ← rb))

type2Rel (a × b) = do

Exists (Rel t1a t2a) ra ← type2Rel a

Exists (Rel t1b t2b) rb ← type2Rel b

return (Exists (Rel (t1a × t1b) (t2a × t2b)) (ra × rb))

type2Rel One = return (Exists (Rel One One) Id)

. . .

type2Rel = mzero ′

Instead of an indexed family of relations {Rv}v∈V we use the infinite supply of rela-
tion variables given by getFreshR. For each type variable we lookup an environment
[(String ,RType)] to see if there is any relation variable already assigned to it. If this is
true, we just return the associated value. Otherwise, we ask for a new relation variable,
and keep the association with the type variable in the environment.

The implementation for functions and relators is quite straightforward. However,
to deal with other types such as ·+ ·, Maybe, List , our relation representation has to be
augmented with more relators. For basic types, we just show the definition for One;
the other cases are similar.

Free-theorem. Using type2Rel , we can now define the function free which takes
a type representation associated with a polymorphic function and returns the law ex-
pressing its free-theorem:
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free :: (MonadFresh [String ] String m,MonadOr m)

⇒ Type (b ← a)→ R (b ← a)→ m Law

free (Fun b a) f = do

Exists (Rel (Fun trb tra) (Fun trb ′ tra ′)) (r1 ← r2 )← evalStateT

(type2Rel (Fun b a)) [ ]

subst ← η [Fun b a :=: Fun trb tra,Fun b a :=: Fun trb ′ tra ′ ]

Hide b ′ ← typeRewrite subst b

Hide a ′ ← typeRewrite subst a

f ′ ← safeCast subst (Fun b ′ a ′) f

r1 ′ ← safeCast subst (Rel b ′ b ′) r1

r2 ′ ← safeCast subst (Rel a ′ a ′) r2

return (Exists (Expr (Rel b ′ a ′)) (((ωf (f
′)) ◦a′ r2

′)⊆ (r1 ′ ◦b′ (ωf (f
′)))))

free = mzero ′

9.10 Summary

This chapter presented the description of the actual Galculator prototype written in
Haskell. The prototype uses many advanced features of functional programming,
namely GADTs. Using GADTs, it is possible to build a reflexion mechanism which
provides type information about term during run-time, allowing for type dependent
behavior. This was explored in the implementation of free-theorems automatic deriva-
tion, although more work needs to be done on this subject. Moreover, the use of
GADTs ensures that terms are well-typed by construction. The drawback is that pars-
ing and building AST representations becomes more complex since type-inference on
terms is needed. We have shown how existential data types can be used in this process.

We have extended the traditional type representation mechanism to allow for para-
metric polymorphism, i.e., the introduction of type variables. The drawback is the
increased complexity since type equality has to be replaced by type unification.

Rewriting rules in Galculator are automatically generated from their definitions.
This allows for a complete distinction between the theoretical concepts expressed in
the Galois language and the operational application of the rule during proof in the
assistant. The implementation and use of a strategic term rewriting system, whose
strategies are available to the user, allows for great power and flexibility in the appli-
cation of rules.



Chapter 10

Conclusions and future work

This chapter closes this dissertation by presenting conclusions, discussing contribu-
tions, comparing these with related work and suggesting directions for further work.

10.1 Main contributions

Approach. The approach taken in Galculator is innovative to the best of our knowl-
edge: it is the first time that fork algebras and Galois connections are used together to
perform formal proofs. Fork algebras allow for equational reasoning based on a very
simple inference rule and without the problems usually associated with the manipula-
tion of variables. Galois connections provide structure with nice algebraic properties
and a mechanism of changing the domain of proofs. Fork algebras and Galois con-
nections, together with the introduction of the indirect equality principle provide a
powerful framework to tackle the complexity of proofs in general and about software
correctness in particular.

All these concepts are integrated with an existing proof format amenable for either
pencil-and-paper or computer assisted proofs. This format is suited for clearly stated
equational and inequational proofs, in which each step is suitably justified. This style
also allows for several levels of detail, ranging from formal to informal proofs.

Study of properties and application of Galois connections. This dissertation gath-
ers the most important theoretical results on Galois connections from several different
sources. A comprehensive study of the different approaches to combine existing Ga-
lois connections to form new Galois connections is presented. This leads to an algebra
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of Galois connections. The link with category theory is explored, not just in the tra-
ditional perspective of Galois connections scaled up to adjunctions of a category of
pre-orders, but also in establishing a category of Galois connections. Furthermore, we
have explored the possibility of extending Galois connections to allegories.

A survey of applications of Galois connections is presented. These range from
the well-known ones such as abstract interpretation and formal concept analysis, to
residuated structures, data refinement or temporal and separation logics.

Galois language. A domain specific language have been developed to integrate all
concepts and serve has a front-end to a proof-assistant based on Galois connections.
The syntax and semantics of Galois is derived as a natural consequence of the algebraic
nature of the theoretical definitions. In fact, Galois is a family of DSLs composed in a
hierarchy which mirrors the structure of the theoretical concepts involved.

We aimed to provide some evidence of the importance of a mechanism such as
Galois connections in the design of a language for formal reasoning. The connections
between concepts at a semantic level can be operated syntactically in an equational
approach, with the help of the introduction of indirect equality. We also showed the
usefulness of a strongly typed environment at several levels, even when not using an
approach based on the Curry-Howard isomorphism [Sørensen and Urzyczyn, 2006].

Galculator prototype. The Galculator is a proof assistant which implements an in-
novative approach to theorem proving, different from what is traditional in the field: it
is solely based on Galois connections, their algebra and associated tactics. Thanks to
Galois connection algebra, it builds new connections from old thanks to a number of
combinators enabling such constructions on the fly. It is based on the tactic of indirect
equality, which fits naturally with Galois connections.

To the best of our knowledge, supported by submissions to conferences in the field
[Silva and Oliveira, 2008; Silva et al., 2009], the Galculator is the first proof engine
ever to combine and calculate directly with PF-transformed Galois connections.

Implementation techniques. Most of the techniques employed in the development
of the Galculator are not new, as they are applications of work reported elsewhere in
the literature. Arguably, the extension of the type representation in order to support
polymorphic type representations and the support for unification is new; we are not
aware of any other such implementation, although it may exist.
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We regard the current prototype as a non-trivial illustration of the power of func-
tional programming advanced features for building complex systems. It manages to
combine many often publicized distinctive features of functional languages: GADTs,
existential data types, combinatory approaches (parsing, rewriting), the support for
embedded DSLs, computations as monads, higher-order functions and some other.
Specially, the use of GADTs and existential data types allows for mixing static and
dynamic typing in a powerful way, making it possible to guarantee the static safe-
ness of objects whose type will only be known at runtime, stepping into the power of
dependent typing [Martin-Löf, 1984].

10.2 Final remarks

Fork algebras and allegories. The axiomatization of relations described in this dis-
sertation as basis for the Galculator is that of fork algebras [Frias et al., 2004b]. Fork
algebras were used because of their clear relation with logics steaming from Tarski’s
work on relation algebras [Tarski and Givant, 1987]. The equivalence of fork algebras
and first-order logic is clearly established in terms of expressive and deductive power.
The so-called point-free-transform [Tarski and Givant, 1987; Bird and de Moor, 1997;
Oliveira, 2009] connects the two worlds.

However, the design of Galculator does not exclude the use of other axiomatiza-
tions, since axioms concerning the language symbols are specified externally. This
means that the axiomatization of allegories can be used instead. However, allegories
admit models which are not set-theoretical relations [Bird and de Moor, 1997]. Only
tabular and unitary allegories are close to relations in terms of proof. Tabulations al-
low for proofs resembling point-wise derivations when a “pure” point-free proof does
not exist [Bird and de Moor, 1997]. Thus, unlike fork algebras, there is not a clear
equivalence between allegories and some kind of logic.

Point-free style. Relations are used as modelling devices because they can easily
accommodate failure, partiality and non-determinism. These features naturally lead to
a point-free-style, because, as Bird et al. [2002] state ”Basically, one cannot assign to

a variable ’the result of running program p on input x’, because there may be no or

many results.” Furthermore, the use of point-free relations makes substitutions easier
because the capture of variables is not possible.
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However, the effectiveness of the point-free-style greatly varies. In some cases,
the complex logical quantification structure collapses leading to short and easy to read
point-free expressions, which can be effectively used in proofs. However, in other
cases, the equivalent point-free expression is cumbersome specially because the large
use of fork and projection operators. This effect is extended to some proofs where
many “bookkeeping” steps dealing with forks and projections are necessary. This
seems the point-free equivalent version of the point-wise manipulation of variables.

Variables in point-wise style and forks and projections in point-free style assume
the same role in expressions: they are the “plumbing” devices that feed values to spe-
cific operations. In point-free this feeding works like a real plumbing or an electrical
wiring (despite the fact that in these two examples the feeding is a flow), in which
there are replication and derivation points. The point-wise version works more like ad-
dressing, where values are delivered to points with the same identification (the variable
name).

An interesting question is determining in which cases each style is more effective.
Is there any pattern behind the effectiveness of each style? Currently, no definite an-
swers exist to these questions meaning that more studies are needed about this subject.

Specific vs. general-purpose rewriting system. We decided to develop our own
rewriting system instead of using another rewriting engine, e.g., Stratego [Visser,
2001a], Maude [Clavel et al., 2000] or ELAN [Borovanský et al., 1996]. The use
of such a general-purpose rewriting engine is advisable when implementing a final
version of the proof-assistant, mostly because of performance, but not at the prototyp-
ing stage. In the prototype, we want to explore types and operations on them, while
ensuring correctness. It would be much more difficult to detect errors resorting to an
external tool, mainly because part of the typed behavior of the system would be lost.

Moreover, translating Galculator laws into a foreign rewriting engine would re-
quire more effort than is needed to implement the whole rewriting system. Since this
relies on Haskell monads, its implementation is quite simple and extensible. For in-
stance, state information may be required to implement some of the future features.
This is easily accomplished by using monad transformers.
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10.3 Comparison with related work

After discussing the design of the Galculator prototype, this section compares it with
the related work introduced in Section 2.1.

aRa [Sinz, 2000]. Like in our approach, formalization and translation in aRa fol-
low Tarski and Givant [1987]. However, aRa takes an alternative (in fact, opposite)
direction: relation algebraic formulæ are translated to logical sentences and proved
using logic, while we conduct our proofs in the algebraic setting. Moreover, the ex-
pressive and deductive power of aRa is lower than that of Galculator because it uses
relation algebra rather than fork algebra. The integration of Galois connections is ab-
sent and so does typing.

RALL [von Oheimb and Gritzner, 1997]. RALL is somewhat similar to aRa, so the
comparison with Galculator is identical. The main difference is that, like Galculator,
it checks for type-correctness of all formulæ.

RELVIEW [Behnke et al., 1998]. Unlike RELVIEW, which can only be used with
finite concrete relations, Galculator can be used with infinite relations because they are
defined abstractly. RELVIEW can be seen as the concrete counterpart of the abstract
algebraic perspective of Galculator. An interesting experimental study would be to
see in detail how the two approaches relate and complement each other.

[Höfner and Struth, 2008]. In this work, the Prover9 automated theorem prover is
employed to prove several theorems of relation algebra. However, since only relation
algebras are used, it is restricted to a three-variable fragment of first-order logic, unlike
our approach which uses fork algebra. Höfner and Struth [2008] mention that some
relation operations are adjoints of Galois connections but this fact is not exploited in
proofs. Indirect equality is not used either. Moreover, their approach in not always
equational because some proofs require the use of mutual inclusion, since indirect
equality is not used.

The results of this work are interesting concerning the automatization of proofs.
The core of Galculator would benefit from following a similar approach.
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2LT [Cunha et al., 2006b]. The core of the Galculator is inspired on the 2LT (Two-
level transform) system. Our representation technique and the rewriting strategies
implemented were mostly influenced by the design of the 2LT system, although the
rewriting rules of 2LT are defined using functions and therefore hard-wired into the
system. Moreover, the 2LT type representation mechanism does not support polymor-
phism. Although 2LT does not rely on Galois connections explicitly, its underlying
theory does so [Oliveira, 2008].

PF-ESC [Necco et al., 2007]. Although PF-ESC shares some common concepts
with the Galculator, the two systems are different. The PF-ESC representation uses
properties to classify relations while the Galculator uses the type representation it-
self. An advantage of using properties is that the system is more flexible in so far as
allowing for new kinds of relation. Moreover, the type-lifts of our approach are not
needed. However, predicate functions which calculate the properties of expressions are
required in order to apply certain transformations. This makes the system not extensi-
ble because rewrite equations must be hard-wired into functions. Since the Galculator

is based on types, predicate function are not needed and the rewrite rules can be purely
declarative. Moreover, the representation used in the Galculator is statically safer,
since incorrect constructions are not allowed.

Proof processor system [Bohórquez and Rocha, 2005]. This system, unlike our
approach, does not provide type support and does not use Galois connections as a
building block of the calculus implemented. Moreover, the input notation is Z which
has a relational flavor but it differs from our “pure” relation calculus. However, this
work shows how a system like Galculator can have potential interest for teaching
activities.

Galois connections in Coq [Pichardie, 2005]. This work does not exploit the Galois
connection algebra in order to combine existing connections nor it is applied in proofs.
However, this approach in a sense complements the Galculator system since it can
be used to discharge proof obligations about adjoints prior to loading these into our
system.
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10.4 Future work

The development of Galculator leaves several open questions which may be exploited
in future work.

Integration with ‘host’ theorem provers. Galculator is not a general prover: it
works only with well-defined situations involving Galois connections. Combined with
other theorem provers it can behave like a specialized add-on component able to dis-
charge proofs wherever terms involve adjoints of known connections.

Currently, we are working on integrating the Galculator with Coq [Silva et al.,
2008], either following the believing or the skeptical approach, as discussed by Dela-
haye and Mayero [2005] in integrating Coq with Maple. In the first case, Galculator-
proven assertions are added as axioms. In the second, the idea is to define tactics in
Coq which exploit Galois connection properties and invoke the Galculator in order to
use the built-in strategies to prove the correctness of the steps. The resulting proofs are
then replayed using reflection to build trusted proofs in Coq.

The prospect of integrating the Galculator with other proof assistants is also open.

Mechanization of point-free transform. In Section 4.5, the equivalence between
fork algebra formulas and first-order sentences is described. It would be interesting
to automate such a point-free transformation, like Cunha et al. [2005] have done for
functional programs, and incorporate it as a front-end for Galculator. Moreover, the
point-free transform is not restricted to first-order classical logic; it can be extended to
several non-classical logics as described by Frias et al. [2004b].

Automated proofs. Currently, the Galculator is used as a proof assistant where
proofs are guided by the user. Some efforts have been made in order to automate
proofs which exhibit recurrent patterns. However, the developed strategies can only
deal with some of these patterns. More general strategies applicable to a wider range
of problems are needed.

A possible approach is the one followed by Höfner and Struth [2008] which resorts
to an automated theorem prover, namely Prover9 (Section 2.1).

Free-theorems. Exploiting free-theorems with Galois connections has been one of
the objectives of the Galculator, specially because from Backhouse and Backhouse
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[2004] we know how to calculate free-theorems [Wadler, 1989] about Galois connec-
tions based on their types. We have introduced some basic support for free-theorems
in Galculator. However, since the general theory of free-theorem regards types as
relators, some work needs to be done to access if it is possible to accommodate re-
lators in the fork algebra framework. Otherwise, instead of fork algebras we would
have to use tabular allegories [Bird and de Moor, 1997] as the theoretical foundation
of Galculator.

Extension of the type system. The type system of Galculator is limited although
it supports parametric polymorphism. The set of basic types and type constructors is
fixed and cannot be extended, i.e., the user cannot declare new types. This restricts the
types of relations that can be declared.

Besides an extension mechanism with user declared types, it would be also inter-
esting to explore more sophisticated type system features, such as overloading, type
classes or even dependent types.

Evaluation of the language. The Galois language is very close to the correspond-
ing mathematical language. Intuitively, its usefulness and usability should mirror to
theoretical underpinning. However, our experience with the language does not allow
us to draw definite conclusions, yet. Further experimentation is needed to access the
strengths and weaknesses of the language. Moreover, it should be also compared with
the DSLs of other approaches.

Application to abstract interpretation. Cousot [1999] shows how to design ab-
stract semantics for abstract interpretations satisfying soundness requirements. This
approach caters for correctness of the design by calculation and uses Galois connec-
tions as a fundamental concept. The style of calculus resembles the one used in Gal-

culator, although it uses variables. Thus, the calculus of abstract semantics would be
a natural application of Galculator. However, some work must be done in order to
accommodate the calculus of Cousot [1999] in a relational setting.
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Additional proofs

A.1 Sections of Galois connections

A.1.1 Commutative operators

Let A A×Aθoo and A A×A⊗oo be two binary operators on a poset (A,v),
such that their sections are Galois connected, i.e., for a ∈ A and for all x, y ∈ A,

(aθ)x v y ⇔ x v (a⊗)y (A.1)

If θ is commutative. Let us assume that θ is a commutative operator, i.e., aθb = bθa.
This means that left and right sections of θ coincide:

(θb)a = (bθ)a (A.2)

Proof

x v (a t a′)⊗ y

⇔ { Shunting (A.1). }

(a t a′) θ x v y

⇔ { Commutativity of θ (A.2). }

x θ (a t a′) v y

⇔ { Lower adjoint distributes over t. }

x θ a t x θ a′ v y

211
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⇔ { t-universal. }

x θ a v y ∧ x θ a′ v y

⇔ { Commutativity of θ (A.2). }

a θ x v y ∧ a′ θ x v y

⇔ { Shunting (A.1). }

x v a⊗ y ∧ x v a′ ⊗ y

⇔ { u-universal. }

x v a⊗ y u a′ ⊗ y

∴ { Indirect equality. }

(a t a′)⊗ y = a⊗ y u a′ ⊗ y

�

Therefore, we conclude that if θ is commutative then

(a t a′)⊗ y = a⊗ y u a′ ⊗ y (A.3)

If ⊗ is commutative. Assuming ⊗ commutative:

(⊗b)a = (b⊗)a (A.4)

Proof

(a u a′) θ x v y

⇔ { Shunting (A.1). }

x v (a u a′)⊗ y

⇔ { Commutativity of ⊗ (A.4). }

x v y ⊗ (a u a′)

⇔ { Upper adjoint distributes over u. }

x v y ⊗ a u y ⊗ a′

⇔ { u-universal. }

x v y ⊗ a ∧ x v y ⊗ a′

⇔ { Commutativity of ⊗ (A.4). }
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x v a⊗ y ∧ x v a′ ⊗ y

⇔ { Shunting (A.1). }

a⊗ x v y ∧ a′ ⊗ y v y

⇔ { t-universal. }

a θ y t a′ θ y v y

∴ { Indirect equality. }

(a u a′) θ y = a θ y t a′ θ y

�

Therefore, we conclude that if ⊗ is commutative then

(a u a′) θ y = a θ y t a′ θ y (A.5)

A.1.2 Residuated semigroups

Question. Let (A,v,⊗) be a residuated partially ordered semigroup. Thus, ⊗ is a
monotonic associative operation, for which the following two Galois connections hold,

(a⊗)∪ ◦v ⇔ v ◦ (a\) (A.6)

(⊗a)∪ ◦v ⇔ v ◦ (/a) (A.7)

Suppose that ⊗ is a commutative, i.e.,

(a⊗) = (⊗a) (A.8)

We want to prove that if ⊗ is commutative, then left and right division coincide, i.e.,

(a\) = (/a) (A.9)

Proof

v ◦ (a\)

⇔ { Shunting (A.6). }

(a⊗)∪ ◦v
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⇔ { Commutativity of ⊗ (A.8). }

(⊗a)∪ ◦v

⇔ { Shunting (A.7). }

v ◦ (/a)

∴ { Indirect equality. }

(a\) = (/a)

�

A.2 Relators preserve Galois connections

A.2.1 Preorders

Question. We want to prove that relators preserve Galois connections, i.e, for any
relator F and any Galois connection (A,v)

(f,g)←−− (B,�) between preorders (A,v)

and (B,�), (F A,F v)
(F f,F g)←−−−−− (F B,F �) is also a Galois connection.

F preserves functions. We must first prove that F f and F g are functions. This
holds trivially, because relators preserve functions. The general properties of relators
are discussed in Section 4.6.

F preserves preorders. We must prove that, for any preorder (A,v) and any relator
F , (F A,F v) is also a preorder. A preorder is a reflexive and transitive relation,
respectively,

id ⊆ v (A.10)

v ◦v ⊆ v (A.11)

First, we prove that F v is reflexive:



A.2 Relators preserve Galois connections 215

Proof

id ⊆F v

⇔ { Relators preserve identity. }

F id ⊆F v

⇐ { Monotonicity of relators. }

id ⊆v

⇔ { Assumption (A.10). }

>

�

Then, we prove that F v is transitive:

Proof

F v ◦ F v

= { Relators preserve composition. }

F (v ◦v)

⊆ { Transitivity of v (A.11). Monotonicity of relators. }

F v

�

Thus, we conclude that (F A,F v) is a preorder.

F preserves shunting. Assuming that (A,v)
(f,g)←−− (B,�) is a Galois connection,

that is,

f∪ ◦� = v ◦ g (A.12)

holds, we must prove that

(F f)∪ ◦ F � = F v ◦ F g (A.13)
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Proof

(F f)∪ ◦ F �

= { Relators preserve converse. }

F (f∪) ◦ F �

= { Relators preserve composition. }

F (f∪ ◦�)

= { Shunting (A.12). }

F (v ◦ g)

= { Relators preserve composition. }

F v ◦ F g

�

A.2.2 Partial orders

Question. Assuming that (A,v) is a partial order and F a relator, under which
conditions (F A,F v) is also a partial order?

F preservation properties. As we have proved above, F preserves reflexivity and
transitivity. Therefore, we just have to prove that F preserves anti-symmetry.

The anti-symmetry of a relation v is expressed as

v ∩v∪ ⊆ id (A.14)

We reason,

Proof

F v ∩ (F v)∪ ⊆ id

⇔ { Relators preserve converse. }

F v ∩ F v∪ ⊆ id

⇔ { Relators preserve identity. }

F v ∩ F v∪ ⊆F id
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⇔ { Assume F v ∩ F v∪ = F (v ∩v∪). }

F (v ∩v∪)⊆F id

⇐ { Monotonicity of relators. }

v ∩ v∪ ⊆ id

⇔ { Assumption (A.14). }

>

�

Thus, we conclude that F preserves anti-symmetry if it distributes over binary relation
meet, i.e.,

Fv ∩ Fv∪ = F(v ∩v∪) (A.15)

A.3 Homomorphic image

A.3.1 Preorders

Question. Given a Galois connection (A,v)
(f,g)←−− (B,�) between preordered sets

(A,v) and (B,�), that is,

f∪ ◦� = v ◦ g (A.16)

and two functions h and h ′ such that the following equalities hold

6
def
= h∪ ◦v ◦ h (A.17)

⊆ def
= h′

∪
◦� ◦ h′ (A.18)

f ◦ h = h′ ◦ f ′ (A.19)

g ◦ h′ = h ◦ g′ (A.20)

prove that (C, 6)
(f ′,g′)←−−− (D,⊆) is a Galois connection, i.e.,

f ′
∪

◦⊆ = 6 ◦ g′ (A.21)
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Proof

f ′
∪

◦⊆

= { Definition (A.18). }

f ′
∪

◦ h′
∪

◦� ◦ h′

= { Contravariance. }

(h′ ◦ f ′)∪ ◦� ◦ h′

= { Homomorphism (A.19). }

(f ◦ h)∪ ◦� ◦ h′

= { Contravariance. }

h∪ ◦ f∪ ◦� ◦ h′

= { Shunting (A.16). }

h∪ ◦v ◦ g ◦ h′

= { Homomorphism (A.20). }

h∪ ◦v ◦ h ◦ g′

= { Definition (A.17). }

6 ◦ g′

�

A.3.2 Partial orders

Question. Under which conditions, from a partial order v and a function h, can we
build an order �, defined as

� def
= h∪ ◦v ◦ h (A.22)

which is also a partial order? In other words, under which conditions does h preserve
anti-symmetry?
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Auxiliary result. To answer this question we need to introduce the modular identity
rule

R ◦ S ∩ T ⊆ R ◦ (S ∩R∪ ◦ T ) (A.23)

together with two of its corollaries [Backhouse, 2004]:

(R ◦ S) ∩ (R ◦ T ) = R ◦ (S ∩ T ) ⇐ R∪ ◦ R ◦ T ⊆ T ∨ R∪ ◦ R ◦ S ⊆ S (A.24)

(S ◦ R) ∩ (T ◦ R) = (S ∩ T ) ◦ R ⇐ T ◦ R ◦ R∪ ⊆ T ∨ S ◦ R ◦ R∪ ⊆ S (A.25)

for all relations R,S and T with the right types.

Equations (A.24) and (A.25) are interesting because they express a distributiv-
ity property of composition through relation meet. However, the side-conditions are
somewhat complicated and discharging these may lead to some lengthy derivations
during a proof. Using some calculus, we can derive a stronger but more amenable
formulation:

Proof

R∪ ◦ R ◦ T ⊆ T ∨R∪ ◦ R ◦ S ⊆ S

⇐ { Monotonicity. }

R∪ ◦ R⊆ id ∨R∪ ◦ R⊆ id

⇔ { Idempotence. }

R∪ ◦ R⊆ id

�

Proof

T ◦ R ◦ R∪ ⊆ T ∨ S ◦ R ◦ R∪ ⊆ id

⇐ { Monotonicity. }

R ◦ R∪ ⊆ id ∨R ◦ R∪ ⊆ S

⇔ { Idempotence. }

R ◦ R∪ ⊆ id

�

Although stronger, these conditions correspond to a formulation of two important
properties of relations: R∪ ◦ R ⊆ id means that R is injective and R ◦ R∪ ⊆ id means
that R is simple, i.e., a partial function (Section 4.1). Thus, we can formulate (A.24)
and (A.25) as

(R ◦ S) ∩ (R ◦ T ) = R ◦ (S ∩ T ) ⇐ R∪ ◦ R⊆ id (A.26)

(S ◦ R) ∩ (T ◦ R) = (S ∩ T ) ◦ R ⇐ R ◦ R∪ ⊆ id (A.27)
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Main proof. Back to the main proof, given an partial order v on A, a function

A Bhoo and a preorder � defined as in (A.22), we derive in which conditions � is
also anti-symmetric, i.e., in which circumstances h preserves anti-symmetry:

Proof

� ∩�∪ ⊆ id

⇔ { Definition (A.22). }

h∪ ◦v ◦ h ∩ (h∪ ◦v ◦ h)∪ ⊆ id

⇔ { Contravariance and involution of converse. }

h∪ ◦v ◦ h ∩ (h∪ ◦v∪ ◦ h)⊆ id

⇔ { (A.27) with R := h, S := h∪ ◦v and T := h∪ ◦v∪.

The condition h ◦ h∪ ⊆ id holds because h is a function. }

(h∪ ◦v ∩ h∪ ◦v∪) ◦ h⊆ id

⇔ { (A.26) with R := h∪, S := v and T := v∪.

The condition (h∪)∪ ◦ h∪ ⊆ id ⇔ h ◦ h∪ ⊆ id holds because h is a function. }

(h∪ ◦ (v ∩v∪) ◦ h)⊆ id

⇐ { Anti-symmetry of v and monotonicity of composition. }

h∪ ◦ h⊆ id

⇔ { Definition. }

h is injective.

�

We conclude that h preserves anti-symmetry if it is an injective function.

A.4 Shunting of Galois connections

Recall the two equivalent definitions of the E ordering on Galois connections given in
Section 5.4 (Equations (5.17) and (5.18)):

(A,v)
(f1,g1)←−−−− (B,�) E (A,v)

(f2,g2)←−−−− (B,�) ⇔ f1

.

� f2 (A.28)

(A,v)
(f1,g1)←−−−− (B,�) E (A,v)

(f2,g2)←−−−− (B,�) ⇔ g2

.

v g1 (A.29)
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Question. Let α1, α2 and α3 be Galois connections. We want to prove that Galois
connections enjoy a kind of shunting property:

α∪1 ◦ α2 E α3 ⇔ α2 E α1 ◦ α3 (A.30)

Types. In order to the above expression be well-defined, Galois connections α1, α2

and α3 must be correctly typed. Observing (A.30), the definition of E requires that
the domains of the upper adjoints of α2 and α3 must coincide, although the domains
of their lower adjoints can be different. Thus, for any preorders (A,v), (B,�) and
(C, 6), we have that

α2 = (B,�)
(f2,g2)←−−−− (C, 6) and α3 = (A,v)

(f3,g3)←−−−− (C, 6)

The difficulty arises because both Galois connection α1 and its converse need to be
composed. Observing the right-hand side of (A.30), the definition of composition
and E requires that α1 = (B,�)

(f1,g1)←−−−− (A,v). Consequently, the converse Galois
connection should be α∪1 = (A,w)

(g1,f1)←−−−− (B,�). However, looking at the left-hand
side of (A.30) we conclude that α∪1 = (A,v)

(g1,f1)←−−−− (B,�). This means that, in order
to (A.30) be well-defined, we must have (A,v) = (A,w) and (B,�) = (B,�), i.e.,
v and � must be symmetric.

Two cases should be distinguished, according with Figure 4.1:

1. When v and � are preorders, the additional symmetry requirement means that
they must be equivalence relations;

2. When v and � are partial orders, the additional symmetry requirement means
that they boil down to the identity order (equality). Thus, α1 must be an isomor-
phism (Section 5.6).

From the point-free definition of α1,

f∪1 ◦v = � ◦ g1 (A.31)

we can apply converses g∪1 ◦�∪ = v∪ ◦ f1 and use the symmetry property of v and �
to get the point-free definition for α∪1 :

g∪1 ◦� = v ◦ f1 (A.32)
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Proof

α∪1 ◦ α2 E α3

⇔ { Definition of E (A.29). f1 is the upper adjoint of α1∪ (A.32). }

g3

.

v f1 ◦ g2

⇔ { Lifted order (4.56). }

g3 ⊆v ◦ f1 ◦ g2

⇔ { Shunting (A.32). }

g3 ⊆ g∪1 ◦� ◦ g2

⇔ { Shunting of functions (6.8). }

g1 ◦ g3 ⊆� ◦ g2

⇔ { Lifted order (4.56). }

g1 ◦ g3

.

� g2

⇔ { Definition of E (A.29). g1 is the upper adjoint of α1 (A.31). }

α2 E α1 ◦ α3

�

Thus, (A.30) holds when α1 is defined on equivalence relations. Moreover, it holds in
the particular case when α1 is an isomorphism.
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Quantifier rules

The quantifier rules we present here are taken from [Backhouse, 2004] which should
be inspected for more details.

Symbols
⊕

and
⊗

denote, respectively, the quantifiers associated with the binary
operators ⊕ and ⊗, both associative and commutative. 1⊕ is the unit element of ⊕ and
1⊗ is the unit element of ⊗.

B.1 Bound variables

Dummy renaming.

〈
⊕

j : R : T 〉 = 〈
⊕

k : R[j := k] : T [j := k]〉 (B.1)

Nesting.

〈
⊕

j, js : R ∧ S : T 〉 = 〈
⊕

j : R : 〈
⊕

js : S : T 〉〉 (B.2)

Rearranging.

〈
⊕

j, k : R : T 〉 = 〈
⊕

k, j : R : T 〉 (B.3)

223
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B.2 Range part

Empty range.

〈
⊕

k : false : T 〉 = 1⊕ (B.4)

One-point.

〈
⊕

k : k = e : T 〉 = T [k := e] (B.5)

Splitting.

〈
⊕

k : P : T 〉 ⊕ 〈
⊕

k : Q : T 〉 =

〈
⊕

k : P ∨Q : T 〉 ⊕ 〈
⊕

k : P ∧Q : T 〉 (B.6)

Splitting (Idempotent case). If ⊕ is idempotent, then:

〈
⊕

k : P : T 〉 ⊕ 〈
⊕

k : Q : T 〉 = 〈
⊕

k : P ∨Q : T 〉 (B.7)

Splitting (General idempotent case). If ⊕ is idempotent, then:

〈
⊕

j : R : 〈
⊕

k : S : T 〉〉 = 〈
⊕

k : 〈∃ j : R : S〉 : T 〉 (B.8)

B.3 Trading

Trading.

〈
⊕

k ∈ K : P ∧Q : T 〉 = 〈
⊕

k ∈ { k ∈ K :: P} : Q : T 〉 (B.9)

Trading.

〈
⊕

k : P ∧Q : T 〉 = 〈
⊕

k : Q : if P → T � ¬P → 1⊕ fi〉 (B.10)
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B.4 Term part

Rearranging.

〈
⊕

k : R : T0 ⊕ T1〉 = 〈
⊕

k : R : T0〉 ⊕ 〈
⊕

k : R : T1〉 (B.11)

B.5 Distributivity

Distributivity. If f is a function such that f 1⊕ = 1⊗ and f (x⊕ y) = f x⊗ f y, for
all x and y, then:

f 〈
⊕

k : R : T 〉 = 〈
⊗

k : R : f T 〉 (B.12)
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J. Bohórquez and C. Rocha. Towards the effective use of formal logic in the teaching of
discrete math. Information Technology Based Higher Education and Training, 2005.

ITHET 2005. 6th International Conference on, pages S3C/1–S3C/8, July 2005. doi:
http://dx.doi.org/10.1109/ITHET.2005.1560330.
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R. Hinze and A. Löh. Guide2lhs2tex (for version 1.13), February 2008.
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