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Abstract. This report presents the Galculator, a tool aimed at deriving
equational proofs in arbitrary domains using Galois connections as the
fundamental concept. When combined with the pointfree transform and
the indirect equality principle, Galois connections offer a very powerful,
generic device to tackle the complexity of proofs in program verification.
We show how rewriting rules derived from the properties of the Galois
connections are applied in proofs using a strategic term rewriting system
which, in the current prototype, is implemented in Haskell. The prospect
of integrating the Galculator with other proof assistants such as eg. Coq
is also discussed.
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1 Introduction

Proving algebraic equalities can be a hard task even in presence of intuitively
simple mathematical operators. Take equality (a/b)/c = a/(cb), for b, c 6= 0,
for instance. If a/b denotes division of two real numbers (in a field, in general),
that is, a/b = ab−1, the task is not difficult at all: (a/b)/c = (ab−1)c−1 yielding
a(cb)−1 almost at once.

Let, however, a/b denote the whole division of two natural numbers a and b
(b 6= 0). Does (a/b)/c = a/(cb) still hold? It does but the proof is not so immedi-
ate because, although intuitive, the definition of division on natural numbers is
not easy to manipulate, be it implicit definition c = a/b ≡ 〈∃ r : 0 ≤ r < a :
a = cb+r〉, be it explicit definition a/b = 〈

∨
c :: cb ≤ a〉 based on suprema (

∨
)

or be it defined by recursion on the natural numbers (the well-known algorithm
based on repeated subtraction), leading to an inductive proof 1.

Altogether, difficulties clearly arise from the simple fact that the existence of
multiplicative inverses, captured by equivalence

c× b = a ≡ c = ab−1 (1)

1 The proof that the remainder is at most the divisor is not so simple to carry out [23]
using the implicit definition in the Coq [8] proof assistant (under the ring tactics.
Still in this alternative, the new problem can be mapped into the old by defining,
back to real numbers, a/b to be (a− (a mod b))/b, and exploiting the properties of
the modulo operator.



(b 6= 0) is not ensured once we move from real to natural numbers. However,
looking closer at the properties of whole division we can see that the two equal-
ities in (1) can be weakened to inequalities,

c× b ≤ a ≡ c ≤ a/b (2)

thus obtaining a property valid in the natural numbers, for b 6= 0 2. With equiv-
alence (2) in mind we can tackle the problem from a different perspective: for
every natural number n,

n ≤ (a/b)/c

≡ { by (2) }

n× c ≤ a/b

≡ { (2) again }

(n× c)× b ≤ a

≡ { multiplication is associative }

n× (c× b) ≤ a

≡ { (2) again }

n ≤ a/(c× b)

That is, every natural number n at most (a/b)/c is also at most a/(c× b), and
vice versa. We conclude that the two expressions are the same.

A fundamental ingredient of this surprisingly simple proof is the ability to
transform an expression involving a “hard” operator (whole division) into an
expression involving an “easy” one (multiplication). Also essential is the step
of the proof in which associativity of multiplication is assumed; all other steps
are a kind of “shunting” of operators between the two sides of each inequality.
After these steps, all that is needed is to bring the whole division back into the
expression by “shunting” in the opposite direction. But, above all, it is the rule
of indirect equality 3

a = b ≡ 〈∀ x :: x ≤ a ≡ x ≤ b〉 (3)

which implicitly shapes the whole strategy of the proof 4.
2 Note how this property matches with the explicit definition given earlier on: fixing a

and b and reading (2) as an implication from left to right, this already tells us that
a/b is the largest c such that c× b ≤ a holds.

3 We use notation 〈∃ x : R : T 〉 meaning there exists some x in the range R such
that T holds.

4 The reader unaware of this way of indirectly establishing algebraic equalities will
recognize that the same pattern of indirection is used when establishing set equality
via the membership relation, cf. A = B ≡ 〈∀ x :: x ∈ A ≡ x ∈ B〉 as opposed to,
eg. A = B ≡ A ⊆ B ∧ B ⊆ A.



The structure of the calculational proof above was not accidental: equation
(2) is an instance of an ubiquitous concept in mathematics, that of a Galois
connection [20]. Galois connections relate pairs of functions between pre-ordered
domains providing “shunting” laws between them. Functions which are inverses
of each other form a special case of a Galois connection where both orders are
the equality relation, as in (1). Additionally, Galois connections have interesting
properties that can also be exploited in proofs; if a function participates in a
Galois connection it enjoys such general properties. Moreover, Galois connections
form an algebra and can be combined to form arbitrarily complex connections.

Likewise, the indirect equality principle is also more general: two elements a
and b in a partial order (A,v) are the same if and only if they are related with
the same objects:

a = b ≡ 〈∀ x :: x v a ≡ x v b〉
≡ 〈∀ x :: a v x ≡ b v x〉

Clearly, these ingredients can be put together in order to solve more complex
problems. Let, for instance, multiplication and whole division in (2) be replaced
by other operators which exhibit the same algebraic properties in a different
domain: that of binary relations ordered by inclusion. In fact, Galois connection

X ·R ⊆ Y ≡ X ⊆ Y / R (4)

holds for arbitrary relations X, R and Y operated by relational composition

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (5)

and division:

c(S / R)a ≡ 〈∀ b : a R b : c S b〉 (6)

(References [1, 3] give a comprehensive account of how to structure the calculus
of binary relations around Galois connections such as the one just above.) Since
relational composition is associative, it should be clear that the calculation of
relational equality

(S / R) / U = S / (U ·R)

would be made along the very same steps as in inferring (a/b)/c = a/(cb) above
— despite the fact that the calculated equality is far less immediate once its
meaning is spelt out: it actually means, for all a, b, the equivalence

〈∀ j : aUj : 〈∀ k : jRk : bSk〉〉 ≡ 〈∀ k : 〈∃ j : aUj : jRk〉 : bSk〉

known as the ∀,∃-“splitting rule” [3].
This capability of dealing with identical structures despite their complexity

makes Galois connections a very powerful tool. Transposition of results such as
seen above shows the magic of the concept, which turns reasoning about complex



mathematical objects such as those found in theoretical computer science 5 quite
simple.

The appreciation of all these advantages has led the authors of the current
report to embark on a project whose main aim is the design and implementation
of a rewriting system — the ‘G’alculator — solely based on Galois connections,
their algebra and the associated tactics (such as indirect equality). The idea is
to evaluate how far one can go in mechanical proofs solely relying on the Galois
connection concept.

The purpose of this document is to report work on a prototype of this tool
which uses strategic term rewriting [28] implemented in the Haskell functional
programming language [15]. The rest of the report is organized as follows: Sec-
tion 2 introduces Galois connections in more detail. Section 4 describes the ar-
chitecture of the Galculator, including the use of the pointfree transform in the
rewriting phase (Section 3) and a description of the strategies implemented (Sec-
tion 4.2). Section 5 gives an account of related work. Finally, Section 6 concludes
and suggests paths for future work.

2 Galois connections

This section presents an overview of Galois connections and their algebraic
properties. Given two pre-ordered sets (A,vA) and (B,vB) and two functions

B A
foo and A B

goo , the pair (f, g) is a Galois connection if and only
if, for all a ∈ A and b ∈ B:

f a vB b ≡ a vA g b (7)

Function f (resp. g) is referred to as the lower adjoint (resp. upper adjoint)
of the connection. In this report we will display Galois connections using the
graphical notation

A
f

++

vA
��

B
g

kk

vB
��

which we in-line in text by writing arrow (A,vA) (B,vB)
(f,g)oo . Both nota-

tions always represent the source domain of the lower adjoint on the left. As
we shall see, the arrow notation emphasizes the categorial structure of Galois
connections, which are closed under composition and exhibit identity. The right
to left arrow is visually more consistent with function composition which will be
heavily used through the rest of this report.
5 The best known application of Galois connections in computer science is perhaps

that of abstract interpretation [9, 22]. References [1–3] provide a far more expressive
account of such applications, ranging over the predicate calculus, number theory,
parametric polymorphism, etc.



Galois connections have several important properties, relating them to the
underlying ordered structure, of which Table 1 gives a summary. (See [3] for
a full account.) The main advantage of this rich theory is that once a concept
is identified as adjoint of a Galois connection, all generic properties are inher-
ited, even when the other adjoint is not known. For instance, every adjoint is
monotonic; upper adjoints preserve top elements while lower adjoints preserve
bottom-elements, and so on.

A most useful ingredient of Galois connections lies in the fact that they build
up on top of themselves thanks to a number of combinators which enable one
to construct (on the fly) new connections out of existing ones. As we shall see,
this is in fact central to the Galculator which provides several combinators of
the Galois connections algebra. Let us see some of these combinators.

The simplest of all Galois connections is the identity, (A,v) (A,v)
(id,id)oo ,

where id is the (polymorphic) identity function such that id x = x, for all x. Two

Galois connections (A,v) (B,�)
(f,g)oo and (B,�) (C,≤)

(h,k)oo with matching

preorders can be composed, forming Galois connection

A
h·f

++

v
��

C
g·k

kk

≤
��

(Note the reverse composition order in which adjoints compose.) Composition
is an associative operation and the identity Galois connection is its unit, thus
forming a monoid structure.

The particular case in which both orders are equalities (A,=) (B,=)
(f,g)oo boils

down to both adjoints being isomorphisms. The converse combinator on Galois
connections switches adjoints while inverting the orders. That is, from connection

(A,v) (B,�)
(f,g)oo one builds the converse connection (B,�) (A,w)

(g,f)oo .

Moreover, every relator F 6 that distributes through binary intersections pre-

serves Galois connections [2]. Therefore, from (A,v) (B,�)
(f,g)oo one infers, for

every such relator, (FA,F v) (FB,F �)
(Ff,Fg)oo . This extends to binary relators

such as, for instance, the product A×B which pairs elements of A with elements
of B ordered by the pairwise orderings. Products also enable one to express more

complex Galois connections such as eg. (A,v) (A×A,v × v)
(δ,u)oo (where δ

is the diagonal function δa = (a, a)) which captures the definition of greatest
lower bounds in partial orders:

a v b ∧ a v c ≡ a v b u c

Summing up, it is now possible to explain, back to Section 1, our introductory
example in terms of the algebra of connections sketched above: the example is
6 Relators are the relational counterpart of functors. See eg. [1, 5] for details.



nothing but the composition of the two connections (IN ,≤) (IN ,≤)
((×b),(/b))oo and

(IN ,≤) (IN ,≤)
((×c),(/c))oo , where IN denotes the set of natural numbers.

Notations (×b), (/b), etc. call for an explanation: since the operations in equa-
tion (2) are binary, in order to form Galois connections one of their arguments
must be fixed, so that they become unary functions on the other argument. In
general, given binary operator θ, one defines two unary sections 7 (aθ) and (θb),
for every suitably typed a and b, such that (aθ)x = a θ x and (θb)y = y θ b, re-
spectively. Thus, instead of having just one Galois connection, we build a family
of Galois connections indexed by the frozen argument.

In this context, should (ZZ,≤) (ZZ,≤)
((×b),(/b))oo be the extension of connection

(2) to integers ZZ (with b > 0) and (ZZ,≤) (ZZ,≤)
((+b),(−b))oo the Galois connection

c + b ≤ a ≡ c ≤ a− b

Then, the outcome of the same calculation using the composition of the above
Galois connections would wield equality

a/b− c = (a− cb)/b

Well, not exactly the same: distributivity of multiplication over addition would
have been the property assumed about the lower adjoints (the “easy” ones),
instead of associativity of multiplication 8.

This use of algebraic properties associated with the binary operators whose
sections participate in Galois connections leads us into the explanation of how
the Galculator actually works, which is the topic addressed in the next section.

3 Pointfree transform

As is well-known when transforming expressions, one must be very careful about
variables: free and bound variables make substitutions tricky. However, often
this complexity is not really needed. Many variables are not useful, they are just
placeholders for connecting parts of the expressions. By removing these variables
and introducing another connection mechanism, the calculus can be simplified.

A solution for this problem is the pointfree transform (PF-transform) [4, 26,
19]. By applying this technique, variables are abstracted from expressions, and
composition (5) becomes the overall glue among terms. Once this transform
is applied, variables are only needed in functional sections of shape (aθ) and

7 This terminology is taken from functional programming, where sections are a very
popular programming device [21].

8 It should be stressed that two families of Galois connections are in fact used: the

one given and, for the case b < 0, (ZZ,≤) (ZZ,≥)
((×b),(/b))oo . The proofs are, anyway,

fully analogous.



Property Description

f a vB b ≡ a vA g b “Shunting rule”
g (b uB b′) = g b uA g b′ Distributivity (UA over meet)
f (a tA a′) = f a tB f a′ Distributivity (LA over join)

a vA g (f a) Lower cancellation
f (g b) vB b Upper cancellation

a vA a′⇒ f a vB f a′ Monotonicity (LA)
b vB b′⇒ g b vA g b′ Monotonicity (UA)

g >B = >A Top-preservation (UA)
f ⊥A = ⊥B Bottom-preservation (LA)

Table 1. Properties of Galois connections. Legend: UA — upper adjoint. LA — lower
adjoint. Properties involving meet, join, top and bottom assume preorders vA and vB

form lattice structures.

(θb), recall Section 2. One particular rule of the PF-transform which is specially
helpful in removing variables from expressions is

(f b) R (g a) ≡ b(f◦ ·R · g)a (8)

where f◦ denotes the converse of f . (In general, the converse of relation R,
denoted R◦, is such that a(R◦)b holds iff bRa holds.)

It is easy to see that the application of (8) to both sides of (7) yields

a(f◦ · vB · id)b ≡ a(id · vA · g)b

which leads to the relational equality

f◦ · vB = vA · g

once variables are removed (and also because id is the unit of composition). So
we can deal with expressions involving adjoints of Galois connections by equating
terms without variables.

The indirect equality rule can also be formulated without variables thanks to
the PF-transform. Consider two functions B A

foo and B A
goo , where

(A,v) and (B,�) are partial orders. That

f = g ≡ � · f = � · g (9)

(or, equivalently, f = g ≡ f ◦· v= g◦· v) instantiates indirect equality can be
easily checked by putting variables back via (8).

Switching to PF-terms makes the operation of the Galculator a lot easier.
Let us then see how the calculation which motivated our introduction is actually
performed inside the Galculator : first of all, equation (2) becomes a family of
equalities

(×b)◦ · ≤ = ≤ · (/b) (10)



indexed by b (assuming b 6= 0), where (×b) and (/b) are the right section func-
tions of multiplication and division, respectively. Then the following series of
equalities are calculated:

≤ · ((/c) · (/b))

= { composition is associative }

(≤ · (/c)) · (/b)

= { substitution of equals for equals (10) }

((×c)◦ · ≤) · (/b)

= { associativity again }

(×c)◦ · (≤ · (/b))

= { (10) again }

(×c)◦ · ((×b)◦ · ≤)

= { associativity again }

((×c)◦ · (×b)◦) · ≤

= { converse of composition: (R · S)◦ = S◦ ·R◦ }

((×b) · (×c))◦ · ≤

= { multiplication is associative: (a× c)× b = a× (c× b) }

(×(b × c))◦ · ≤

= { (10) again }

≤ · (/(b × c))

:: { indirect equality (9) }

(/c) · (/b) = (/(c× b))

It is true that the pointfree notation makes expressions more cryptic. Although
proofs are harder to understand, inside the Galculator they are much easier to
rewrite, via simple equational rules and substitutions of equals by equals.

4 Galculator

We start by overviewing the architecture of the current prototype of the Gal-
culator. Then we give an overview of the term rewriting system. For a more
detailed description of the implementation see [24].
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Fig. 1. Architectural components of the Galculator prototype

4.1 Architecture

The current prototype of the Galculator is implemented in Haskell. This lan-
guage was chosen because of its representation capabilities due to a powerful
data type system and its ability to perform symbolic manipulation.

Following a modular approach, the Galculator tool is divided into several
components (see also Figure 1):

Interpreter. The command line interpreter provides for interactive user interfac-
ing. Several options are offered: loading modules, exploiting Galois connections’
algebra, checking expressions and doing proofs. Currently, proofs are interactive,
with the system providing a list of applicable rules; the user can choose which
one to use in each step. At the end, a complete proof log, with all equational
steps and justifications can be obtained.

Parser. A domain specific language (DSL) was defined in order to express the
concepts we use: Galois connections, relations, orders, functions and so on. The
parser recognizes the user-defined input of the interpreter. Currently, the syntax
is not much user friendly since it reflects closely the internal representation. The
choice of a more definitive interface syntax has been deferred to a later phase in
which the Galculator will interface with other theorem provers, namely Coq [8].
(See Section 6.)

Type inference. The Galculator is a typed environment. Besides being imple-
mented in a typed language, it has its own type system in order to check for the
correctness of expressions. Errors in expressions and proofs can be detected by
the use of types. Altogether, the user is released from having to provide explicit
types in expressions.



The Galculator type system supports parametric polymorphism. A unifi-
cation mechanism on type variables has been implemented using the Hindley-
Milner algorithm [12]. Polymorphism is useful for deriving the so-called free-
theorems of functions [31, 2], a kind of commutative property enjoyed by poly-
morphic functions directly inferred from their types.

Term rewriting system. The core of Galculator is its term rewriting system
(TRS) whose rewrite rules (derived from the theory explained in Section 2)
are applied to terms in order to build proofs. The developed system uses the
flexibility of strategies [15] and their combinatorial properties in order to build
complex proof strategies. Moreover, since the whole system is typed, the TRS
is also typed, making it possible to apply rewrite rules to expressions of a de-
termined type. In fact, two TRS have been built: one deals with the expression
representation, the other works on the internal type representation. More details
are provided in Section 4.2.

Modules. The Galculator allows for grouping different theories into modules that
can be loaded by the user. Each theory has its own concepts, partial orders, Ga-
lois connections and additional algebraic properties. Modules reduce the number
of rules that have to be scanned in order to find the right one.

Property inference. Galois connections are specified by their type (sets on which
they are defined), the pre-orders involved and the adjoint functions. This com-
ponent derives the properties stated in Table 1 from the definition. The result
are equational expressions recorded in the internal representation notation.

Rule inference. The equational laws expressed by our representation are purely
declarative; they cannot be used in rewriting because they are not functions.
Thus, we developed a rule inference engined developed which takes an equational
expression and returns a rewrite function applicable by the TRS. This component
ensures most of the genericity of Galculator.

GADTs. Symbolic systems implemented in functional languages use represen-
tations based on algebraic data types (ADTs). These allow for building typed
representation of terms in a combinatorial manner. Moreover, ADTs have a close
link with context-free grammars since their relationship with the corresponding
abstract syntax tree is straightforward.

In the Galculator we have used generalized algebraic data types (GADTs)
[13]. GADTs extend the notion of ADT by allowing restrictions of the domain
of data constructors to certain types as well as the restriction of the result
type. Thus the representation can contain more accurate restrictions on the
valid expressions. This means that GADTs can represent the abstract syntax of
languages plus some type restrictions, usually in the scope of semantical verifi-
cation. Moreover, the technique used to encode type representation (GADTs are
used as singleton types) makes it possible to define a type-safe equality between
types.



Strategy combinator Symbol

Always failing rule ⊥
Identity rule nop
Sequential composition .
Choice (non-deterministic) ⊕
Choice (Left-bias) �
Map on all children all
Map on one child one

Strategy Definition

try try(s)⇔ s� nop
once once(s)⇔ s� one(once(s))
many many(s)⇔ (s . (many(s)))� nop
top-down topdown(s) ⇔ s . all(topdown(s))
bottom-up bottomup(s) ⇔ all(bottomup(s)) . s
innermost innermost(s) ⇔ all(innermost(s)) . (try(s .innermost(s)))

Table 2. Strategic combinators implemented in the Galculator TRS.

4.2 Details on the Galculator rewriting system

The term rewriting system (TRS) is the core of the Galculator. As already
mentioned, it is based on strategic techniques.

Strategic term rewriting uses simple basic strategies and combinators in or-
der to build arbitrarily complex strategies. This resembles the traditional pattern
in functional programming of using combinators to solve problems in a modu-
lar way. Indeed, the implementation of rewriting strategies in the functional
language Haskell is simple and elegant. This is because the rewriting system
is specified in a declarative style, such as the equations themselves, making the
rewriting strategies easily programmable. Moreover, equations and strategies can
be reused and combined in different ways in order to obtain different TRS. Thus,
strategic TRS allow for good separation of concepts, re-usability of definitions
and great flexibility.

The possibility of allowing for non-confluent and non-terminating sets of
equations is another advantage of using strategies. In the case of program cal-
culi, equations can be used in any direction, thus resulting in a non-terminating
system. In the case of the Galculator, most of the equations are directly de-
rived from the Galois connections defined by the user, so the overall termination
property is hard to ensure.

Stratego [29] and the Rewriting Calculus [7] are among the first strategic
rewriting frameworks implemented. The first frameworks combining strategic
programming and strong typing were Strafunski [15] in the functional paradigm
and the JJTraveler framework [30, 14] in the object-oriented paradigm.

In order to make the implementation of the strategies independent of the
representation, in the Galculator we use a spine representation [13]. The spine
defines how to represent constructors with or without children. Additionally,



two conversion functions are defined: from and to the spine representation. The
strategies that make the traversal through the children of a node (all, one) use
the spine representation in their definitions; the conversion functions allow the
application to actual terms. This greatly reduces the amount of boilerplate code
in the implementation of traversals. Moreover, although the representation has
changed several times, the changes were restricted to the function that converts
terms in their spine representation.

The basic strategy combinators implemented in the Galculator are summa-
rized in Table 2. More elaborate strategies have been built using the basic ones
(Table 2).

Special mention should go to the fact that two different choice operators have
been defined: one for left-bias choice and another for non-deterministic choice.
The left-biased choice combinator (�) always returns the result of applying its
left strategy if this succeeds; only in the case this fails is the right one tried. For
instance, whenever used in combination with the strategic sequential composition
in (s � r) . t, if the application of s succeeds then t is tried; if t fails to apply
then the overall strategy also fails; r is only tried in the case of failure of s.

The non-deterministic choice combinator (⊕) allows for a backtracking be-
havior: any of the argument strategies can be chosen. Therefore, in (s ⊕ r) . t
all the possible applications are tried. The use of non-deterministic choice is im-
portant when different paths should be tried but it comes with a performance
penalty since the search space expands.

5 Related work

Galois connections in Coq. Reference [22] presents a representation of Galois
connections in Coq [8] developed in the context of work on abstract interpreta-
tion. Adjoints are defined over complete lattices (a stricter requirement than in
the general theory) and the fact that they form a connection has to be proved.
Moreover, proofs of the general properties that Galois connections enjoy are de-
fined in order to be executed in Coq. However, Galois connection algebra is not
exploited in order to combine existing connections nor is it applied in proofs.

This work in a sense complements the Galculator approach since it can fulfill
proof obligations about adjoints left to the user of our system.

2LT. The core of the Galculator is inspired on the 2LT system [11]. 2LT is aimed
at schema transformation of both data and migration functions in a type safe
manner. Further developments deal with calculating data retrieving functions
in the context of data schema evolution [10] and invariant preservation through
data refinement.

Our representation technique and the rewriting strategies implemented were
mostly influenced by this system, although the rewriting rules of 2LT are defined
using functions and therefore hard-wired into the system. Although 2LT also
uses a type representation, it does not support polymorphism. Moreover, 2LT is



not a prover: it calculates data and functional transformations using a correct-
by-construction philosophy. Although 2LT does not rely on Galois connections
explicitly, its underlying theory does so [18].

PF-ESC. This tool, which performs pointfree extended static checking [17] and is
also inspired in 2LT, uses the relation calculus to simplify PF-transformed proof
obligations. Galois connections are used implicitly in the underlying calculus.
Although it shares some common concepts with the Galculator, the two systems
are different. The PF-ESC representation uses properties to classify relations
while the Galculator uses the type representation itself. The advantage of using
properties is that the system is more flexible in so far as allowing for new kinds
of relation. Moreover, no type-lifts are needed like in our approach. However,
predicate functions which calculate the properties of expressions are required in
order to apply certain transformations. This makes the system not extensible
because rewrite equations must be hard-wired into functions. Because the Gal-
culator is based on types, predicate function are not needed and the rewrite rules
can be purely declarative. Moreover, the representation used in the Galculator
is statically safer, since incorrect constructions are not allowed.

Proof processor system. The authors of [6] advocate the use of the calculational
approach proposed by Dijkstra and Scholten in teaching discrete maths. Based
on the E logical calculus, a tool was developed in Haskell to exploit equational
proofs written in the Z notation [25]. The system helps the user by detecting
errors in proofs and suggesting valid deductive steps. Unlike our approach, this
system does not provide type support and does not use Galois connections as a
building block of the calculus implemented.

6 Concluding remarks

Despite being in its infancy, the Galculator already shows how Galois connection
algebra, indirect equality and pointfree representation can be used together in
an effective proof assistant. The pointfree representation can be regarded as an
extension to relations of the combinatory logic approach to functional notation
[27]. Strategic term rewriting provides the other ingredient of the approach,
thanks to the support of GADTs.

We decided to develop our own rewriting system instead of using another
rewriting engine, e.g. Stratego [28] or Maude [16],mainly because the typed be-
havior of the system would be lost. more effort than needed to implement the
whole rewriting system. Since it is relies on Haskell monads its implementation
is quite simple and extensible. For instance, adding state information may be in
order to implement some of the future features.

The tool is still in the prototype stage, thus many ideas are still left to be
explored and many improvements are likely to be made as more experimentation
takes place. Some directions of the future work are as follows:



Automated proofs. Currently, the Galculator is used as a proof assistant where
proofs are guided by the user. Some efforts have been made in order to automate
proofs which exhibit recurrent patterns. However, the developed strategies can
only deal with some of these patterns. More general strategies applicable to a
wider range of problems are needed.

User defined strategies. The user can apply the rewriting rules using some of
the pre-defined global strategies. However, more flexibility can be achieved by
allowing the user to define his/her own strategies by combining the existing
ones. It would be interesting to study what kind of strategies can be used to
solve certain problems and classify them accordingly.

Free-theorems. Exploiting free-theorems with Galois connections has been one
of our objectives since the beginning of the Galculator project, specially because
from [2] we know how to calculate free-theorems about Galois connections based
on their types. Currently, some work has been done in this field but it is not
fully satisfactory because the approach is not sufficiently generic, in particular
concerning relator typed representation.

Integration with ‘host’ theorem provers. Galculator is not a general theorem
prover: it works only with well-defined situations involving adjoints of Galois
connection. Used together with other theorem provers it can behave like a spe-
cialized add-on component able to discharge proofs wherever terms involve ad-
joints of known GC s. Currently, we are working on integrating the Galculator
with Coq [23]. The prospect of its integration with other proof assistants is also
open.
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