Visualization of Domain-Specific Programs’ Behavior

Nuno Oliveira
University of Minho
Braga, Portugal
nunooliveira@di.uminho.pt

Maria Jodo Varanda Pereira
Polythecnic Institute of Braganca
Braganca, Portugal
mjoao @ipb.pt

Pedro Rangel Henriques
University of Minho
Braga, Portugal
prh@di.uminho.pt

Daniela da Cruz
University of Minho
Braga, Portugal
danieladacruz @di.uminho.pt

Abstract

Program domain concepts are rather complex and low
level for a fast assimilation. On the other hand, problem
domain concepts are closer to human’s mind, hence they
are easier to perceive. Based on Brook’s theory, a full com-
prehension of a program is only achieved if both domains
are connected and visualized in synchronization, resulting
on an action-effect visualization.

Domain-specific languages, as languages tailored for a
specific class of problems, raise the abstraction of the pro-
gram domain concepts and approximate them to the prob-
lem domain’s. This way, a systematic approach can be used
to perform the action-effect visualization of a program writ-
ten in a domain-specific language. In this paper, we use a
domain-specific language to exemplify how the concepts in-
volved in both domains are visualized and how it is possible
to map each problem domain situation (depicted by images)
to the program domain operations.

1 Introduction

The visualization of a program is commonly performed
at the program domain level. Such a visualization is made
using execution trees, dependency graphs, call graphs and
other similar artifacts [6]. But these are approaches some-
what distant from the needs of a person who relies on vi-
sualization to understand a program. Human brain needs
more than that to be capable of mapping the relations be-
tween how the program executes internally (program do-
main level) and what are the effects produced, externally,
by such execution (problem domain level).

A synchronized visualization of these two aspects would
give a more interesting and intuitive perspective on the pro-

gram being visualized. Program domain concepts are at a
lower level when compared with the concepts of the prob-
lem domain. Such visualization would not set them at the
same level, nonetheless it would gather their synergy to pro-
vide an action-effect point of view.

When dealing with a Domain-Specific Language (DSL),
these domains are closer to each other [2]. This means that
the program domain concepts are at a much higher level
than in a General-purpose Programming Language (GPL).
Then, it is easier to infer the problem domain from the lan-
guage definition and to create mappings between the con-
cepts of both domains [5]. The approach for the visualiza-
tion of Domain-Specific Programs (DSP)', proposed in this
paper, is based on the creation of mappings between both
domains. We use Alma system [1] to construct the visu-
alization of the source code, based on the formal definition
of the language and traditional grammar-based techniques;
then we extend Alma to cope with the problem domain vi-
sualization. The latter is, in fact, the association of figures
of one or more objects that depict a situation in the problem
domain, with the concepts of the program domain.

Looking to the literature, we found many papers on pro-
gram comprehension tools for GPLs [7], and some refer-
ences to proposals and projects about DSL debuggers [3].
However we did not find any work directly related to pro-
gram comprehension for DSLs.

In the reminder of this paper we present an example of
a DSL, describe its specific problem domain, formalize the
language, and build the mapping between the program and
problem concepts (Section 2). Then we show some fig-
ures about the synchronized visualization of both domains,
(Section 3). Finally we draw some conclusions in Section 4.

I'To programs written in a DSTL, we call DSP.

L I = Y S T

11
12
13
14
15
16
17
18
19
20

2 Karel, an Example

Karel programming language was designed by Pattis [4].
It is a language to control a small robot, called Karel?, in a
small virtual world. The robot is neither a full-featured nor
a sophisticated machine. Besides turning on or off, mov-
ing one step ahead, turning left, picking objects from the
ground, keeping them in an object bag, and putting them
back on the ground, Karel, the robot, knows (i) which di-
rection it is facing to; (i¢) whether it is blocked by walls or
even (iii) whether it sees objects on the ground. The tasks
this robot can perform fit inside the boundaries of handling
objects from a place to another.

The robot only understands a few basic instructions,
hence, the language to control it is simple as can be noticed
in Listing 1, where we list a fragment of this DSL>.

Listing 1. Formal Definition of Karel DsL

start — BEGINNING-OFPROGRAM program
END-OF-PROGRAM
program — definition™ BEGINNING-OF—EXECUTION

statement™ END-OF-EXECUTION
definition — DEFINE-NEW-INSTRUCTION identifier
AS statement

statement — block | iteration | loop
| conditional | instruction
block — BEGIN statement™ END
iteration — ITERATE number TIMES statement
loop — WHILE condition DO statement
—

IF condition THEN statement
(ELSE statement)?

conditional

instruction — TURNON | MOVE | TURNLEFT
| PICKBEEPER | PUTBEEPER
| TURNOFF | identifier
condition — FRONT-IS—CLEAR
[
identifier — [a—z] ([a—z] | [0=9]T)*

2.1 Domains Interconnection

To achieve a visualization of the problem domain, the
concepts related to the behavior of the controlled object
(the robot in this case) must be intrinsically associated with
some parts of the syntax and semantics of the DST.

To conceptually do such a connection we need to retrieve
the most important concepts resident in both domains. In
problem domain we can identify the following concepts:
i) turn off, ii) turn on, iii) turn left, iv) step ahead, v)
pick object and vi) drop object. From the program domain
we retrieve:) TURNON, ii) MOVE, %ii) TURNLEFT, iv)
PICKBEEPER, v) PUTBEEPER and vi) TURNOFE. As we are
dealing with a very abstract DSL the mapping of concepts is
trivial. Each row in Table 1 represents a connection between
the concepts at both domains.

2The robot inherited its name from the inventor of the word and concept
robot: Karel Capek, a well-known Czech writer and playwright.

3The original grammar is available at http: //mormegil .wz.cz/
prog/karel/prog_doc.htm

Table 1. Concepts effective connection
] PROBLEM DOMAIN PROGRAM DOMAIN

Turn Off TURNOFF

Turn On TURNON
Step Ahead MOVE

Turn Left TURNLEFT
Pick Object PICKBEEPER
Drop Object PUTBEEPER

2.2 Problem Domain Visualization

At this moment, the connection of domains was done.
However no steps on the visualization of the problem do-
main were given. In our visualization technique, the expert
should define a set of images that represent the objects as
well as the situations involved in the domain. When these
situations require movement, it should be defined animation
sequences to represent them.

In the Karel DSL, great part of the situations are depicted
by sequences of poses of the controlled object. Figure 1
shows the several poses that the robot can hold.

o) 1
v twt
1 9) 5
, ,\Jj& ,{J’/;
IL;)@ ﬂgr

Figure 1. Possible poses for Karel, the Robot

With these poses we can define the visualization and an-
imation of the problem domain, by associating the images
with the concepts of the problem domain. In Table 2 we
present the mapping between the poses (represented by the
number of the images in Figure 1) and the concepts at the
problem domain level.

Obviously the visualization/animation may require more
artifacts than just images. For instance, for the Step Ahead
concept, we define the sequence: image 2 to image 2; but, in
fact, what should change in this sequence is the position of
the image. Another example is the concept Turn Left: image
3 is the same as image 2, only rotated 90° to the left. This
kind of aspects define the mappings between the images and
the DSL’s semantics at program domain level.

® N U R W —

10
11
12
13
14
15
16
17
18
19
20

Table 2. Behavioral Visualization Definition
| PROBLEM DOMAIN POSES SEQUENCE |

Turn Off 2—1

Turn On 1 -2
Step Ahead 2—2

Turn Left 2—3
Pick Object 2—-5—-4-2
Drop Object 2—-4—-5-2

In the end, there is a threesome connection that involves
the problem domain concepts, the images and the program
domain concepts.

3 Synchronized Visualization

In the previous section we conceived the behavioral vi-
sualization of Karel programs. Under the hood, we used the
extended version of Alma system to automatically gener-
ate operational and behavioral views of the input program®.
In this section we show some results of the visualization, in
Alma, of the Harvest Program’. Listing 2 shows a fragment
of this program.

Listing 2. Sample of the Harvest Program

BEGINNING—-OF-PROGRAM
DEFINE-NEW-INSTRUCTION turnright AS
ITERATE 3 TIMES
TURNLEFT
DEFINE-NEW-INSTRUCTION harvest AS
ITERATE 3 TIMES
BEGIN
PICKBEEPER
MOVE
END
BEGINNING-OF-EXECUTION
TURNON
turnright
MOVE
harvest

END-OF-EXECUTION

END-OFPROGRAM

Alma gives us, for free, a visualization of the program
domain. The views offered are the Interpretation Tree, the
Identifier Table and the Source Code. The Interpretation
Tree correspondent to the program under study is depicted
in Figure 2. By Interpretation Tree we mean a tree that is
a static/dynamic semantic representation of the input pro-
gram, either in an imperative or declarative language. Usu-
ally in the literature it is named execution tree.

4The explanation of how we do this in A1ma is out of this paper’s scope.
3See description at: http://www.cs.mtsu.edu/~untch/
karel/functions.html#style

=
=
—
—
-]
=]
=1
= = - e |
- - T
_ = (=
. -1 o - -1
- ==l
B o = - g =
- = — ~m —
-l
= —=1

Figure 2. Interpretation Tree View

Figure 3 shows some examples of the behavioral visu-
alization of the Harvest Program in Alma. The first image
occurs when the program is initialized, the second occurs
after executing the turnright instruction and the third
after the execution of the move instruction. Finally, the
fourth is one frame of the animation sequence defined for
the pick object concept, and which occurs in the context of
the harvest instruction.

|
4 —)—

I
i |

7+

)

=]

Hespers: |

Figure 3. Karel Poses in A1ma

The tree, the identifier table and the source code views
are always synchronized for a better understanding at pro-
gram level. With the extension made to Alma, we have not
only those three views synchronized with each other, but
also synchronized with the new perspective which depicts,
in every step of the program interpretation, the effects that
the operations provoke in the real world concepts.

Figure 4 is the confirmation of what we stated in the last
paragraph. The four perspectives of the program visualiza-
tion are synchronized. We can see the program and problem
animation together in each step of the program visualization
process.

4 Conclusion

In this paper, we briefly described our visualization tech-
nique that is still under research by presenting some of the

"“;."1 Alnaa D, icuializating and £ hanei —
File 0 st _ﬂb—
entifiers f -
e 'dEmifier | Type Class Value Argume... Passing Executing function |
= posX integer wvariable 3 Fi

pus: posY integer wvariable 1 [
:F:no;Ie angle integer variable 180
beepert g integer function
MUVF turnright integer function
:_::;:E harvest integer function

i8 integer variable 0 Sratements

T DErTNE-NEW- TS TRUL TN aivest As |
1 9 ITERATE 3 TIMES
2
3 pEll PICKBEEPER
4 niz2 MOVE
5 13 END
6 14
7 DEL5 BEGINNING-OF-EXECUTION ‘]
& 1116 TURNON
9 17 turnright
10 18 MOVE
11 19 harvest l €
12 20 TURNLEFT
13 21 MOVE E
14 pgj22 TURNLEFT
15 @23 MOVE
16 24 harvest
17 25 turnright
18 26 MOVE
19 27 turnright o
20 |2 MOVE (‘ﬁ
21 429 harvest £
-'-lﬂ d
23 31 TURNOFF Asepyrn:
24 32 END-OF-EXECUTION
25 33
26 |34 END-OF-PROGRAM]
27 35 v
24 é' (Zoom-) § Y (Zoom +)

Figure 4. Complete view of the synchronization among the several visualization perspectives

results that were already achieved. From the example re-
ported we learned that:) the connection between program
and problem domains can be achieved effortless when re-
sorting to domain-specific languages; i¢) the connection be-
tween both domains not only allows a bigger intuition about
how the program does, but it also gives a more sophisti-
cated view: the behavior of the program and the changes it
provokes in the domain (what the program does); iii) the
synchronization of the program and problem visualization
resources is a reality and can be attained using traditional
grammar-based approaches.

With this experiment, we reinforce the idea that a pro-
gram is only fully comprehended when the domains are
connected and visualized in synchronization. This exam-
ple was developed using Alma system and all visualiza-
tions were constructed over an abstract representation of
the source program (Karel programs in this case). This fact
turns the tool easily adaptable to cope with other languages.

In the future, the consistency of the tool should be tested
with more and varied domain-specific languages. These
studies should also corroborate the approach we are defend-
ing. Also, it would be imperative to assess, with final users,
the effectiveness of our belief.

References

[1] D.da Cruz, P. R. Henriques, and M. J. Varanda. Constructing
program animations using a pattern-based approach. ComSIS
— Computer Science an Information Systems Journal, Special
Issue on Advances in Programming Languages, 4(2):97-114,
December 2007.

[2] M. Mernik, J. Heering, and A. M. Sloane. When and how
to develop domain-specific languages. ACM Comput. Surv.,
37(4):316-344, December 2005.

[3] T. Mészaros and T. Levendovszky. Visual specification of a
DSL processor debugger. In Proceedings of the 8th OOP-
SLA Workshop on Domain-Specific Modeling, pages 67-72,
Nashville, USA, 2008.

[4] R. Pattis. Karel, The Robot: A Gentle Introduction to the
Art of Programming. John Wiley and Sons, Inc., 1st edition,
1981.

[5] M.J. V. Pereira, M. Mernik, D. da Cruz, and P. R. Henriques.
Program comprehension for domain-specific languages. In
CoRTAO8 — Compilers, Related Technologies and Applica-
tions, Braganga, Portugal, July 2008.

[6] M. Pinzger, K. Grafenhain, P. Knab, and H. C. Gall. A tool
for visual understanding of source code dependencies. In Pro-
gram Comprehension, 2008. ICPC 2008. The 16th IEEE In-
ternational Conference on, pages 254-259, 2008.

[71 M.-A. Storey. Theories, tools and research methods in pro-
gram comprehension: past, present and future. Software
Quality Journal, 14(3):187-208, 2006.

