
Universidade do Minho

MAP-i Doctoral Programme

Architectural reconfiguration of interacting
services

Nuno Ernesto Salgado Oliveira

Supervised by:

Luís Soares Barbosa

Braga, January 18, 2015

�

�

�

�

��

��

��

��

��

���

���

��

��

�
�
�
�
�
�
�
�
�
�
�

�� ����������� �� ����������� ��������� ������ ����� ������� �����
�������� ��� �������������� ��������� ����������� �������� ���
��������������������������������������

�
�
�
�
�����������������������������������
�
�
���

�

!

!

!

�����������������������

�

�

���

��

��

�������

�

�������������������������������������

�

�

��

�

�����������
���

�

�

Acknowledgements

This is the last page of my Ph.D. dissertation, but for its value and importance, I
made it appear before everything else. The following text is just a piece of me to
you in appreciation for what you have given me during this adventure. I am in debt
to all of you!

I thank Professor Luís Soares Barbosa for his great motivational, comforting,
words and his tireless effort in leading me always into the right direction. His con-
stant availability for receiving me, even when his schedule was tight, was priceless
to me. Most of the times, I must confess, I was just looking for his hypnotic conver-
sation in order to regain the necessary motivation to go through this process. Less
couldn’t I expect from such a wise human being, who knows his trade better than
anyone else. More than a supervisor, a friend.

I thank Professor Pedro Rangel Henriques for being one of the most admirable
men I know. I appreciate his cheerful conversations, jokes and important advices
even through his dark and heavy moments in life. All the things he pushed me
to do, even though not related with my Ph.D., have made me more aware of my
work and served as a refuge to be in contact with other research interests, some of
them, clearly present in this dissertation. I am happy I was able to absorb, from
Pedro, values and behaviours that have reconfigured me and, for sure, I will carry
throughout my life. He is the truth supervisor for life.

I thank Professor Farhad Arbab for receiving me so well at CWI. I felt like
I was at home. During my stays in Amsterdam we had fruitful conversations and
discussions that have made me understand better some of the things I was doing. Of
course, I would like also to thank his team at CWI, in particular, Sung, Kasper and
Enric, for being great colleagues and bringing up nice discussions. Warm regards,
guys. A special thank goes to Minnie, for arranging everything I need so I could be
comfortably installed at the guest house.

I thank Alexandra Silva for bringing into discussion a research topic that, cer-
tainly, changed the course of my thesis. I would be forever in debt to her for the
support she gave me to carry this research both remotely and closely at Nijmegen.

I appreciate the conversations and the amazing moments in Brazil with Renato
Neves and Alexandre Madeira. Paulo Novais, César Analide, David, Marco, Isabel,
Fábio, André, thank you so much for the good times we had together. Ângelo Costa
and Tiago Oliveira, how can I appreciate their friendship? Two different people with
whom I have learned so many things; two different people that made me aware of
a whole different set of concerns and values in life. I make them responsible for a
great part of the success of this Ph.D.. Thank you very very much! José João, Nuno
Carvalho, Maria João, Ricardo Martini, Daniel Cerejo and Dima, another thank

v

Architectural reconfiguration of interacting services

you for all the conversations and conferences we had and the work we have achieved
together.

A special acknowledgement to Flávio Rodrigues, my first M.Sc. student. His
co-supervision, with professor Luís Barbosa, was an amazing experience. For all
his commitment to the work and for all the discussions we had professionally and
personally, a huge hug and thank you.

I thank my MAP-i colleagues and friends Carlos Pereira, Nuno Luz, Ricardo
Anacleto and João Freitas, for their presence since the first moment of our doctoral
program, whose end is fast approaching. For sure, friendship will remain after such
an adventure.

I thank Daniela da Cruz for her support when I needed to hear those motivational
words. I cannot forget the opportunity she offered me to join her team at Checkmarx,
and for being so flexible and comprehensive. Thank you very much, my dear friend!

Of course, I cannot forget Daniela Fonte and Ismael Vilas Boas for their friend-
ship and support whenever I need. For being so attentive people, with always a nice
word to say and cheer one up, I really thank you.

Agradeço aos meus pais, Arlindo e Teresa, por tudo, e tudo será pouco! Agradeço
em especial a paciência para ouvirem os meus desabafos sobre o trabalho. Agradeço
ainda as palavras de motivação e apoio quando realmente as precisei de ouvir, ou
as palavras de desespero por eu nunca mais terminar a empreitada. Esta tese não
é de ouro, nem poderia ser, mas para mim vale isso e muito mais, e vocês sentem e
sabem. E por esse saber especial, que é o saber de pais, vos gradeço mais uma vez.

Agradeço à minha irmã, Patrícia, e seu marido, Ibraim, pelo apoio incondicional
que sempre me deram. As conversas sobre o andamento da tese e a propulsão
emocional que me forneceram de forma a atingir os meus objetivos, como se fossem os
deles, são impagáveis. Por isso, e pela referência que são para mim, muito obrigado!

Finalmente agradeço à Ângela, a minha namorada, que personifica toda esta dis-
sertação. O meu percurso com ela iniciou com o doutoramento; e como no doutora-
mento, houve altos e baixos, certezas e incertezas, vencidas da melhor maneira.
Agora termino o doutoramento, mas felizmente continuo o percurso com ela. Por
toda a paciência em esperar, apoiar, motivar, eu lhe agradeço. Pela presença con-
stante mesmo na minha ausência, eu lhe agradeço. Por fazer parte de mim, eu lhe
agradeço!

O trabalho apresentado nesta dissrtação foi suportado pela Fundação para a
Ciência e Tecnologia (FCT) através de uma Bolsa de Doutoramento com referência
SFRH/BD/71475/2010.

vi

Architectural Reconfiguration of Interacting Services
(Abstract)

The exponential growth of information technology users and the rising of their expecta-
tions imposed a paradigmatic change in the way software systems are developed. From
monolithic to modular, from centralised to distributed, from static to dynamic. Soft-
ware systems are nowadays regarded as coordinated compositions of several computational
blocks, distributed by different execution nodes, within flexible and dynamic architectures.
They are not flawless, though. Moreover, execution nodes may fail, new requirements may
become necessary, or the deployment environment may evolve in such a way that measures
of quality of service of the system become degraded. Reconfiguring, repairing, adapting,
preferably in a dynamic way, became, thus, relevant issues for the software architect.

But, developing such systems right is still a challenge. In particular, current (formal)
methods for characterising and analysing contextual changes and reconfiguration strategies
fall behind the engineering needs.

This thesis formalises a framework, referred to as aris, for modelling and analysing
architectural reconfigurations. The focus is set on the coordination layer, understood in the
context of the Reo model, as it plays the key role in defining the behaviour of compositional
systems. Therefore, it proposes a notion of a Coordination Pattern, as a graph-based
model of the coordination layer; and of Reconfiguration Patterns, as parametric operations
inducing topological changes in coordination patterns.

Properties of reconfigurations can be stated and evaluated from two different perspec-
tives: behavioural and structural. The former compares the behavioural semantics of the
reconfigured system based on whatever semantic model one associates to coordination pat-
terns. The latter focuses on the graph topology of the coordination pattern. Properties are
expressed in a propositional hybrid logic, referring to the actual connectivity expressed in
that graph.

To bring quality of service into the picture, the thesis also contributes with a new se-
mantic model for stochastic Reo, based on interactive Markov chains. This opens new
possibilities for analysis of both coordination patterns and reconfigurations. In particular
for inspecting the effects of reconfigurations in the system’s quality of service, or deter-
mining reconfiguration triggers, based on the variations of the latter.

Another contribution of the thesis is the integration of aris in a monitoring strategy
that enables self-adaptation and attempts to deliver it as a service in a cloud environment.

Tools are delivered to support aris. In particular, language-based technology to en-
code, transform and analyse coordination and reconfiguration patterns, materialises it in
a dedicated editor.

All the above mentioned contributions are assessed through a case study where a static
system is worked out to support self-adaptation.

vii

Reconfiguração Arquitetural da Interação de Serviços
(Resumo)

O crescimento exponencial de utilizadores de tecnologias de informação e o aumento das
suas expetativas, impuseram uma mudamça paradigmática na maneira como os sistemas
de software são desenvolvidos. De monolíticos para modulares, de centralizados para dis-
tribuídos, de estáticos para dinâmicos. Os sistemas de software são, hoje, tidos como a
composição coordenada de vários blocos de computação, distribuídos por diferentes nodos
de execução, com arquiteturas flexíveis e dinâmicas. Não são infalíveis, porém. Nodos de
execução podem falhar, novos requisitos podem tornar-se necessários, ou o ambiente de
produção pode evoluir de tal modo que medidas de qualidade de serviço se podem degradar.
Reconfigurar, reparar, adaptar, de preferência dinamicamente, tornaram-se assim con-
ceitos importantes para o arquiteto de software.

Mas desenvolver estes sistemas corretamente é ainda um desafio. Em particular, os
atuais métodos (formais) para a caraterização e análise contextual, e para a estratégias
de reconfiguração estão aquém das necessidades da engenharia.

Esta tese formaliza uma framework, denominada aris, para a modelação e análise
de reconfigurações arquiteturais. A atenção é focada na camada de coordenação, vista
sob o prisma do modelo de coordenação Reo, dado que esta desempenha um papel chave
na definição do comportamento de sistemas compostos. Assim, é proposta uma noção de
Padrão de Coordenação, como sendo um modelo da camada de coordenação baseado em
grafos; e outra de Padrão de Reconfiguração, como sendo operações parametrizáveis que
produzem alterações topológicas nos padrões de coordenação.

Propriedades das reconfigurações podem ser expressas e avaliadas sob duas perspetivas
diferentes: comportamental e estrutural. A primeira compara a semântica de comporta-
mento do sistema reconfigurado com base num modelo semântico qualquer escolhido para
associar aos padrões de coordenação. O último foca-se na estrutura topológica do padrão de
coordenação. Propriedades são expressas numa lógica híbrida proposicional, referindo-se
à conetividade capturada em tal grafo de estrutura.

Fazendo a qualidade de serviço entrar em cena, a tese contribui também com um
novo modelo semântico para Reo estocástico, baseado em cadeias de Markov interativas.
Este modelo proporciona novas possibilidades para análise de padrões de coordenação e
reconfiguração. Em particular, para investigar os efeitos das reconfigurações na qualidade
de serviço do sistema, ou para determinar pontos de reconfiguração com base nas variações
da mesma.

Outro contributo da tese é a integração de aris numa estratégia de monitorização que
habilita a auto-adaptação, e define um marco na tentativa de a entregar como um serviço
em ambientes Cloud.

Ferramentas são disponibilizadas para suporte a aris. Em particular, tecnologia baseada
em linguagens para descrever, transformar e analisar padrões de coordenação e reconfig-
uração, materializa a framework num editor dedicado.

Todas as contribuições mencionadas acima são avaliadas através de um caso de estudo,
onde um sistema estático é trabalhado para suportar a sua auto-adaptação.

ix

To the three women who architected my life:
Mãe Teresa, who designed my structure;

Avó Maria, who established my behaviour;
Ângela, who reconfigured my qualities.

Para as três mulheres que arquitetaram a minha vida:
Mãe Teresa, que desenhou a minha estrutura;

Avó Maria, que estabeleceu o meu comportamento;
Ângela, que reconfigurou as minhas qualidades.

Contents

Acronyms xvii

Figures xxii

Tables xxiii

Listings xxv

1 Introduction 1
1.1 Context . 2
1.2 Motivation . 5

1.2.1 A scenario . 5
1.2.2 Modelling and analysis . 6
1.2.3 Reconfigurations . 7

1.3 Aims and contributions . 7
1.3.1 Thesis . 7
1.3.2 Goals . 8
1.3.3 Contributions . 9

1.4 Document organisation . 11

2 Background 13
2.1 The Reo coordination model . 13

2.1.1 Channels, nodes and connectors 13
2.1.2 Semantic models . 15
2.1.3 Stochastic Reo . 19

2.2 Interactive Markov chains . 19
2.2.1 Process algebra and labelled transition systems 20
2.2.2 Markov process and continuous-time Markov chains 20
2.2.3 Interactive Markov chains . 23

2.3 Hybrid Logic . 26
2.3.1 Modal Logic . 26
2.3.2 Hybrid extension to modal logic 28

I A stochastic model for software coordination 29

3 State of the Art: Models for Performance Evaluation 31

xiii

Architectural reconfiguration of interacting services

3.1 Algebraic stochastic models . 31
3.1.1 Stochastic process algebras . 31
3.1.2 Stochastic Petri nets . 32
3.1.3 Stochastic automata networks 33
3.1.4 Markovian-based models . 34

3.2 Queueing networks . 34
3.3 Component-based performance evaluation 36
3.4 Coordination-oriented stochastic approaches 38

3.4.1 Generic coordination . 38
3.4.2 Workflow, choreography and orchestration 40

4 Interactive Markov chains for stochastic Reo 43
4.1 IMCReo . 43
4.2 IMCReo composition . 46

4.2.1 Parallel composition . 46
4.2.2 Synchronisation . 48
4.2.3 Properties . 50
4.2.4 Cleaning up unintended transitions 53
4.2.5 Composition idiosyncrasies . 55

4.3 Distilled IMCReo . 58
4.3.1 The writer, the reader, the channel and the node 60
4.3.2 DIMCReo: the distilled IMCReo 62
4.3.3 Composition in DIMCReo . 66

4.4 Summary . 70

II Reconfiguration of interacting services 73

5 State of the Art: Software Reconfiguration 75
5.1 Architectural reconfigurations . 75

5.1.1 Algebraic approaches . 76
5.1.2 Pattern-based approaches . 79
5.1.3 Coordination-targeting approaches 81

5.2 Languages for reconfiguration . 85
5.2.1 Languages for architecture description 85
5.2.2 Languages for reflective adaptations 88

5.3 Self-adaptation . 90
5.3.1 Approaches . 90
5.3.2 Adaptation specification . 94

6 Modelling Reconfigurations 97
6.1 Coordination patterns . 97
6.2 Reconfigurations . 101

6.2.1 Primitive reconfiguration operations 101
6.2.2 Composing reconfigurations 104
6.2.3 Reconfiguration patterns . 108

6.3 Supporting dynamic reconfigurations via consistent state transfer . . 114

xiv

CONTENTS

6.3.1 Symbolic states . 114
6.3.2 State transfer . 116

6.4 Reconfigurations on the stochastic setting 118
6.4.1 Stochastic coordination patterns 118
6.4.2 Reconfigurations revisited . 121

6.5 Summary . 123

7 Reasoning about reconfigurations 125
7.1 Behavioural reasoning . 125

7.1.1 Comparing reconfigurations 126
7.1.2 A behavioural classification of reconfigurations 129

7.2 Structural reasoning . 131
7.2.1 A hybrid logic . 131
7.2.2 Bisimulation for HpE . 134
7.2.3 Expressing ‘long scope’ properties 138
7.2.4 Comparing reconfigurations 139
7.2.5 A structural classification of reconfigurations 141

7.3 The stochastic case . 142
7.3.1 Quantitative reasoning . 143
7.3.2 A quantitative classification of reconfigurations 147

7.4 Summary . 148

8 Self-adaptation of Architectures 151
8.1 A self-adaptation approach . 151

8.1.1 The offline phase: planning reconfigurations 152
8.1.2 The online phase: the feedback loop 154

8.2 Triggering of reconfigurations . 157
8.3 Adaptation as a Service . 159

8.3.1 Architecture and main workflow 160
8.3.2 Discussion . 164

8.4 Summary . 164

III Tool support and case study 167

9 Tool Support 169
9.1 CooPLa . 169

9.1.1 Channels . 170
9.1.2 Patterns . 172
9.1.3 Stochastic extension . 174

9.2 ReCooPLa . 176
9.2.1 Reconfigurations . 177
9.2.2 Application of reconfigurations 179

9.3 The CooPLa Editor . 180
9.3.1 Editor Overview . 181
9.3.2 IMCREOtool . 184
9.3.3 Reconfiguration engine . 187

xv

Architectural reconfiguration of interacting services

9.3.4 Importer and exporter . 188
9.4 Summary . 191

10 Case Study: towards an adaptable system 193
10.1 The ASK system . 193

10.1.1 The architecture . 194
10.1.2 The static performance on a dynamic environment 195

10.2 Planning adaptations . 196
10.2.1 Adaptable-ASK design . 196
10.2.2 Analysis of RTS configurations 199
10.2.3 Objectives, constraints and filters 201

10.3 Runtime situation . 203
10.4 Summary . 205

11 Conclusion 207
11.1 Retrospective . 207
11.2 Related work discussion . 211

11.2.1 Models for performance evaluation 212
11.2.2 Software reconfiguration . 213

11.3 Future work and research directions 216

A Deriving IMCReo from Stochatic Coordination Patterns 221

B CooPLa Grammar 223

C ReCooPLa Grammar 225
C.1 The Grammar . 225
C.2 Reconfiguration Patterns in ReCooPLa 226

References 228

xvi

Acronyms

A

AaaS adaptation as a service.

ACID atomicity, consistency, isolation and durability.

ADL architecture description language.

ASK Access Society’s Knowledge.

B

BPMN business process modelling notation.

C

CA constraint automaton.

CCA continuous-time constraint automaton.

CLI command line interface.

CSP communicating sequential processes.

CTL computation tree logic.

CTMC continuous-time Markov chain.

D

DSL domain-specific language.

DTMC discrete-time Markov chain.

E

eBNF extended Backus-Naur form.

ECT extensible coordination tools.

EMPA extended Markovian process algebra.

xvii

Architectural reconfiguration of interacting services

F

FOL first order logic.

G

GPS global position system.

GUI graphical user interface.

H

HL hybrid logic.

I

IDE integrated development environment.

IMC interactive Markov chain.

IO input/output.

IT information technology.

J

JVM Java virtual machine.

L

LTL linear temporal logic.

LTS labelled transition system.

M

ML modal logic.

O

OCL object constraint language.

P

PA port automaton.

PEPA performance evaluation process algebra.

Q

QIA quantitative intensional automaton.

xviii

Acronyms

QoS quality of service.

R

RA Reo automaton.

REST representational state transfer.

RTS reconfiguration transition system.

S

GSPN generalised stochastic Petri net.

SaaS software as a service.

SAN stochastic automata network.

SLA service level agreement.

SOAP simple object access protocol.

SOA service-oriented architecture.

SOC service-oriented computing.

SPA stochastic process algebra.

SPN stochastic Petri net.

SRA stochastic Reo automaton.

U

UDDI universal description discovery and integration.

UML unified modelling language.

W

WSDL web service description language.

WS web service.

X

XML extensible markup language.

xix

Figures

2.1 Primitive Reo channels and Reo connectors 14
2.2 Constraint automata for the primitive Reo channels and connectors. . 16
2.3 Reo automata for primitive Reo channels and connectors. 18
2.4 Primitive stochastic Reo channels. 19

4.1 IMC for the basic stochastic Reo channels. 45
4.2 Fragment of the parallel composition of a lossy and a fifoe channel. . . 47
4.3 Composing two 2fifoe connectors. 48
4.4 Fragment of the parallel composition of two 2fifoe 48
4.5 Parallel composition after synchronisation and cleaning 54
4.6 Fragments of two equivalent synchronised IMCReo models 55
4.7 Composing a lossy and a sync channel. 56
4.8 Composing a lossy and a fifoe channel. 57
4.9 Composition of two fifoe channels (fragment). 57
4.10 three-port basic connectors and corresponding IMCReo models. 59
4.11 Connector refactoring for composition via two channel end nodes. . . 59
4.12 The essential components of stochastic Reo 61
4.13 The two-pase component-based stochastic Reo model of a lossyfifo. . . 62
4.14 The DIMCReo for the basic stochastic Reo channels 63
4.15 The IMCReo for the reader and writer components 63
4.16 Different Reo node configurations. 64
4.17 DIMCReo models for merger−replicator and merger−router nodes. 65
4.18 The IMCReo models for the node configurations in Figure 4.16. 66
4.19 Design-phase DIMCReo model for the lossysync connector. 68
4.20 Deployment-phase DIMCReo model for lossysync connector. 69

6.1 The Sequencer coordination pattern. 100
6.2 Reconfigurations of the Sequencer coordination pattern 111
6.3 Step-by-step example of moveP reconfiguration. 112
6.4 Example of dynamic reconfigurations and state transfer. 117

7.1 The ProActiveDependentSequencer pattern and its semantics. 127
7.2 Semantics of Sequencer pattern variants (1). 128
7.3 Semantics of Sequencer pattern variants (2). 129
7.4 Behavioural taxonomy for reconfigurations. 130
7.5 Example of a displaced invariant. 140
7.6 Structural taxonomy for reconfigurations. 142

xxi

Architectural reconfiguration of interacting services

7.7 Quantitative taxonomy for reconfigurations. 147
7.8 An ontology base for reconfigurations 150

8.1 Feedback loop based on a reconfiguration transition system. 154
8.2 Sequence diagram for the Monitor component. 155
8.3 Sequence diagram for the Planner component. 156
8.4 Sequence diagram for the Executor component. 157
8.5 Adaptation as a Service architecture overview. 161

9.1 CooPLa description of some Reo channels. 171
9.2 CooPLa description of the router channel. 172
9.3 CooPLa specification of the Sequencer. 174
9.4 Channels added of stochastic labels 175
9.5 Stochastic instance sseq of the Sequencer coordination pattern. . . . 176
9.6 ReCooPLa implementation of the OverlapP reconfiguration. 179
9.7 Reconfiguration script for updating the Sequencer. 180
9.8 A toolchain for the CooPLa Editor. 181
9.10 IMCREOTool triggering button. 184
9.11 IMCREOTool wizard pages. 185
9.12 Working labels . 187
9.13 Reconfiguration engine triggering button. 187
9.14 The application of a reconfiguration. 188
9.15 The importing and exporting features. 188
9.16 Exported coordination pattern to Vereofy notation. 189
9.17 Using the ECT and the CooPLa Editor together. 190

10.1 The architecture of ASK. 194
10.2 The Executer component model with stochastic information. 195
10.3 Configurations for the Adaptable-ASK system. 198
10.4 RTS for the Adaptable-ASK system. 199
10.5 The PRISM model for the scaled out coordination pattern. 200
10.6 Throughput ratio values for the Adaptable-ASK configurations. . . . 201
10.7 Performance of Adaptable-ASK . 204

xxii

Tables

7.1 Values for Latency, Throughput and Blocking quality dimensions . . 146

9.1 Primitive reconfigurations and their counterpart formal names 178
9.2 Working label values and meaning. 186

10.1 Requests to the ASK system during a day 195
10.2 Adaptable-ASK properties. 197
10.3 Steady-state throughput ratio analysis for RTS configurations. 200
10.4 Predicted configurations for filters. 202

xxiii

Listings

A.1 Converting stochastic coordination pattern into IMCReo. 221
A.2 Converting stochastic coordination pattern into DIMCReo. 222
B.1 CooPLa main grammar . 223
B.2 CooPLa channels grammar . 223
B.3 CooPLa coordination patterns grammar 223
B.4 CooPLa stochastic instances grammar 224
C.1 ReCooPLa main grammar . 225
C.2 ReCooPLa reconfiguration grammar 225
C.3 ReCooPLa application grammar . 226

xxv

�

�

Chapter 1

Introduction

That is what I find so wonderful [Pause] The
way man adapts himself [Pause] To changing
conditions.

– Samuel Beckett, Happy Days

Along the last decade, the world has witnessed a revolution in the information
technology (IT) area. Software systems, once monolithic and centralised, became dis-
tributed, modular, performant and multi-platform. For this revolution contributed
the evolution and emergence of web and infrastructure technologies, programming
languages and (software) architecture paradigms.

Software systems are, now, required to perform seamlessly in a variety of plat-
forms (e.g., web, mobile, desktop, etc.) and environments (e.g., hardware archi-
tecture, operating system, etc.) under a certain context (e.g., user requests, type
of network, memory availability, processing power, etc.), each of which setting for-
ward a number of challenges on development, deployment and maintenance of such
systems. The performance of a system is characterised by several dimensions also
referred to as the systems’ non-functional or quality of service (QoS) requirements.
These include scalability, availability, security, dependability, reliability and adapt-
ability, to mention but a few. Although some of these are qualitative dimensions, the
majority delivers a quantitative perspective to the system, enabling their measuring
and analysis.

The correct development of these systems postulate, thus, the existence of (for-
mal) models and techniques that allow for their modelling and analysis. In particu-
lar, the analysis shall traverse the quantitative aspects of these systems, so that QoS
requirements are also inspected. Actually, in ever-evolving contexts, these require-
ments soon start degrading, possibly leading the system into failure. To avoid this,

1

Architectural reconfiguration of interacting services

systems shall be able to adapt to changes, by reconfiguring themselves. Assuming
that systems’ architectures are flexible enough, and practice already came up with
solutions for dynamically applying the required changes, how can one predict that
after such reconfigurations, the system will response as expected both quantitatively
and qualitatively? How can reconfigurations be formally modelled and analysed?
Are formal methods prepared to deal with these hot topics?

These questions establish the starting point for this Ph.D. thesis. In the context
of new trends of software development, in the era of cloud computing, new challenges
arrive to the formal instance of software engineering that are still remaining to be
tackled.

In this chapter. The context and basic concepts on software composition and
coordination is presented. Then, a motivation introduction along with open issues
in the framed context open way to the definition of the thesis statement, its goals
and concrete contributions.

1.1 Context

The development of software has evolved hand in hand with the exponential growth
of information technology users and the rising of their expectations. Reutilisation,
performance and ubiquitousness became, thus, central concerns in new software
development trends. The advent of cloud computing confirmed the development
paradigm change and made possible these three pillars to stand out.

Cloud computing [72], is the ultimate technological advance to support the needs
of large scale, highly demanding, computing. Clouds are unanimously defined as
large distributed systems consisting of pools of virtualised computers, that dynam-
ically provide computational resources depending on the real-time needs of hosted
software systems [73, 248, 239]. A cloud hides from its users all the infrastructural
complexity, as much as electricity grids do; being, therefore, exploited as a pay-per-
use model. The dynamic provision of resources (the elasticity of the cloud) offer
(the feeling of) infinite computation resources. This, together with powerful load-
balancing mechanisms, contributes to the desired minimisation of QoS degradation.
The principle of cloud computing is to offer computing, storage and software, in a
stack of services: infrastructure, platform and software. The first, provides compu-
tation, storage and communication resources through virtual machines managed by
the users as much as in a normal server or grid. Platforms are delivered as services
where the practitioners can develop and deploy their software solutions without the
need for managing infrastructural issues. Software applications constitute the top

2

1.1. Context

layer of the cloud stack; this enables the access to services offered by software ap-
plications, that otherwise would have to be installed and managed by users on their
local machines. The term software as a service (SaaS) was coined to refer to this
cloud layer, where software runs taking advantage of potentially infinite computa-
tional resources. The easy access to these services and their confirmed performance
led to the adoption of emerging architectural styles such as service-oriented archi-
tecture (SOA).

SOA [116, 158, 115, 154], as opposed to other software architectural styles [130,
237, 244, 243], is completely in line with both the cloud and business environments.
Enterprise software solutions greatly benefit from using such architectural paradigm
as business concerns are modularly separated and organised into services. Services
are reusable loosely-coupled loci of computation offering a designated behaviour via
their public interfaces. They may be owned by different organisations, run on dif-
ferent physical locations and written in different programming languages. New SOA
systems are constructed by composing services’ interfaces, in order to achieve some
business objective. Concretely, SOA empowered the integration and interoperability
of systems, including legacy ones, by resorting to standard web technologies like
web services (WSs), which constitute the de facto realisation of services. A protocol
for the standardised development of WSs and, consequently, SOA systems assumes
that service providers describe their services’ interface and behaviour in web service
description language (WSDL), and make such descriptions public in a universal de-
scription discovery and integration (UDDI) repository; in turn, a service consumer
accesses those services via messaging protocols like simple object access protocol
(SOAP) or representational state transfer (REST), in order to integrate them into a
new system, in accordance to the system (or company) goals.

Consequently, the development of SOA systems, referred to as service-oriented
computing (SOC), sets its emphasis, not only on the implementation of services as
reusable building blocks, but also (and primarily) on the designing of the global
system architecture. Such an architectural design includes taking decisions ranging
from: which services are to be selected and reused as part of the new system; to:
how they are composed together to fulfil some business goal, while maximising the
coverage of a agreed levels of QoS.

A multitude of languages, traditionally referred to as architecture description
languages (ADLs), have been proposed to aid on the task of designing software
architectures. Some representatives include ACME [126, 128], Wright [9, 7, 8], Dar-
win [181], Rapide [178, 177], ArchJava [5, 4], PiLar [102, 103] or Archery [234, 233].
An ADL provides syntactic constructs for the characterisation of the software sys-

3

Architectural reconfiguration of interacting services

tem’s structure and behaviour [126], taking into account three main concepts (ADL
elements): component, connector and configuration. Components abstract the no-
tion of a computation unit (e.g., procedure, service, etc.); connectors abstract the
notion of interaction policies among components; and configurations define the topol-
ogy of the architecture, i.e., how components are connected to other components via
connectors. The concrete description of components and connectors in ADLs typ-
ically include the definition of an interface, for communication with components/-
connectors; a semantics, usually based on algebraic semantic models, for general
analysis or requirement consistency check; and constraints, for defining invariant
properties of the element. The description of the configuration element varies from
ADL to ADL; it may include only the definition of the topology, but some languages
go forward, providing features to describe non-functional properties of the whole
architecture or how it evolves to cope with scalability and performance threats.

However, classical ADLs usually do not capture all notions that are essential in
SOC, such as the coordination of services (i.e., the interaction constraints between
services), which in particular subsumes workflow, control flow, synchronisation, mu-
tual exclusion, non-determinism or context-dependency. Coordination provides the
necessary glue code to compose the building blocks into a complete system. Notably,
it plays an important role in the description of a system’s architecture and global
behaviour, in order to meet the system function and non-functional requirements.

In the context of SOA, coordination of services is commonly referred to as or-
chestration or choreography [71]. The former defines the system behaviour based on
a central process (i.e., the coordinator) which coordinates the actions of the partici-
pating services. Such services just provide their functionalities and are not aware of
both other participants and its participation on a coordinated process. The latter is
otherwise: the system behaviour is defined from the set of all participant services,
which are aware of each other and know when to provide functionality and syn-
chronise with their peers. Coupling and decoupling of coordinated entities (i.e., the
degree to which they are dependent on each other) or their reutilisation is usually im-
posed by the kind of coordination practiced. It can be classified as endogenous [214]
or exogenous [11, 12]. The former incorporates/hardcodes the coordination strate-
gies (by means of primitives) within the computation of the coordinated entities.
The latter defines the coordination strategies outside of the coordinated entities, in
a completely separated layer of code.

Exogenous models of coordination that cater for SOC within cloud environments,
provide the essential focal point for this thesis’s work, as discussed in the sequel.

4

1.2. Motivation

1.2 Motivation

In this section, the motivation for this thesis is exploited. In particular, a scenario
and an overview of the main issues in the research area underlying this thesis are
discussed.

1.2.1 A scenario

Picture a system for elderly surveillance. Its main feature is to capture vital in-
formation from the elderly, and send it back to a central (established in a cloud
environment), from where healthcare professionals read it and act accordingly. It
also serves as agenda (e.g., for medical appointments), reminder (e.g., for medicine
taking), telephone (e.g., for direct contact with healthcare assistant). When outside,
it still works as a global position system (GPS) with the ability of both recording
important path points (e.g., where the car was parked) and taking random pictures
for later remembrance (e.g., for aiding people with Alzheimer’s disease).

This is a typical intelligent system in the ambient intelligence research area [22,
97, 23, 99], which during the last decade has gained relevance within the research
community.

It goes without saying that this system works on a mobile platform, being depen-
dent on internet signal (wifi, 3G/4G). Moreover, it takes into consideration wearable
sensors for acquiring vital information, which ship it to the mobile device via blue-
tooth, and from the device into the central, with a flavour of real-timeliness. Services
(agenda, reminders, GPS, photos, among others) are coordinated and composed to-
gether to fulfil system’s functional requirements. The computational resources and
battery power of these systems are limited, while bluetooth and 3G/4G technologies
consume considerable amounts of energy. In this sense, the system should act (and
react) in accordance to both maximise the battery life when working under such
contexts, and minimise resources usage to avoid bottlenecks, failures and similar
problems. In general, to cope with non-functional (QoS) requirements.

In order to always meet the requirements in contexts where change is the norm
rather than the exception, it is necessary that these systems are able to evaluate
themselves on their overall behaviour and performance. This is usually achieved
by considering faithful models of the system that allow for checking the desired
properties and reasoning about resource allocation and overall performance.

Whenever requirements are not met (which may happen for a plethora of rea-
sons), these systems should be able to evolve at runtime, entailing the need for
dynamic adaptation [133]. Adaptation implicitly demands a change in the internals

5

Architectural reconfiguration of interacting services

of the system (given that the context and the environment is not controlled). Mod-
ifications at the architectural level, in particular in the coordination layer, and how
they can be correctly designed and applied, play the essential motivation for the
work in this thesis. Let’s, then, detail briefly the major issues involved.

1.2.2 Modelling and analysis

The practical reach of formal methods is leaning towards software composition. It is
an endeavour to providing compositional models, where properties of the composed
system can be derived from the properties of its building blocks and the coordina-
tion glueing them. Several formalisms and models have been proposed to achieve the
requirements of software coordination. Valuable representatives include Linda [83],
CoLaS [101], LGI [192], PICCOLA [2], BPEL (a.k.a WS-BPEL or BPEL4WS) [104],
Join Calculus [124], Reo [14], CommUnity [119], ROAD [96], ARC [226], PBRD [242],
Orc [193] and BIP [35, 34]. Although sharing philosophy, they are different in nature;
and not all of them meet the coordination and compositionality requirements. From
the presented set, Reo gains relevance because it is one of the few that comprise no-
tions of synchronisation, mutual exclusion, non-determinism or context-dependency.
Moreover, it is an exogenous channel-based approach, which allows for complex co-
ordination structures to be obtained by the composition of simpler ones. Also, it
approximates high-level models like BPEL, that allow for encoding long-studied busi-
ness work- and control-flow patterns [1, 231, 257, 116] into coordination policies [26].

The underlying semantics of (some of) these formalisms form the basis of be-
haviourally reasoning about the coordination layer, which subsumes the overall anal-
ysis of system functional requirements. But behavioural analysis is just the tip of
the iceberg. In addition, as motivated early on, the fulfilment of non-functional re-
quirements is also of ultimate importance for this kind of systems. Maintaining QoS
requirements above certain levels and deciding resource allocation, demands tech-
niques for analysing systems in a quantitative setting. At this point, formal methods
fall short in providing coordination models with both a notion of their own QoS and
a suitable compositional semantic model for their quantitative analysis. There are,
nonetheless, efforts to shorten this gap; even if failing in their conjugation. On the
one hand, for instance, stochastic Reo [16] embodies the necessary notion of QoS
in the Reo coordination model, but no quantitative semantic model with practical
evidence is associated to it. On the other hand, a plethora of stochastic semantic
models exist [172, 24, 28, 143, 110, 86, 141] but most of them are not compositional,
do not provide necessary tool support for practitioners, or are not able to capture
the complex semantics of existing coordination models.

6

1.3. Aims and contributions

1.2.3 Reconfigurations

Traditionally, an architectural reconfiguration mainly targets the manipulation (e.g.,
substitution, update or removal) of components, often disregarding connectors, or,
otherwise, abstracting them as yet another component [225, 211, 148, 182, 236].
SOAs provide the necessary flexibility to easily achieve such changes. In fact, ser-
vice discovery, and their binding and unbinding to the architecture is ideally deferred
to runtime, in this paradigm [120]. This brings multiple advantages, one of them be-
ing the possibility of discovering and binding services that will ensure better global
system performance for the current context. But this may not be enough. Some-
times, it is the interaction policy between these services (i.e., the structure of the
coordination code) that must be reconfigured, as discussed, for instance, in [170].
Reconfigurations may, thus, substitute, add or remove parts of the coordination
layer, in order to restructure the encoded policies, in accordance to changes.

This suggests that coordination models should provide mechanisms for their con-
struction, deconstruction and mobility. Fortunately, this is already contemplated in
some of the formalisms considered above; and there are already approaches that
formalise reconfigurations on top of these formalisms, ranging over varied tech-
niques [91, 170, 55].

What is still lacking, however, is a formal notion of reconfigurations with ap-
propriate support for their analysis and comparison as a way of (i) perceiving the
consequences of applying these reconfigurations; (ii) guaranteeing that after a re-
configuration, the requirements hold; and (iii) the system preserves its integrity and
consistency on transferring execution states. Moreover, a connection between recon-
figurations and QoS is missing. This would allow for determining how and when a
reconfiguration take place.

1.3 Aims and contributions

1.3.1 Thesis

The correct reconfiguration of (the coordination between) interact-
ing services, in a quantitative setting, is possible once suitable for-
mal mechanisms (e.g., calculus, languages, semantic models) for its
modelling and analysis are provided.

7

Architectural reconfiguration of interacting services

1.3.2 Goals
Set up a conceptual and formal framework for modelling and
analysing (behaviourally, structurally and quantitatively) reconfig-
urations.

This constitutes the overall goal of this thesis. Concretely, the study of these re-
configurations is narrowed down to software connectors in the context of exogenous
coordination. The break down of this main goal is summarised as follows:

Analysing coordination structures. Current practice in formal methods counts
on semantic models for coordination formalisms that restrict analysis to a be-
havioural perspective. It is objective of this thesis to push this subject forward
by offering models that enable the analysis of both structural and performance
properties of coordination structures.

Modelling reconfigurations. This topic plays the central role in this thesis. In
concrete, it is one’s objective to formalise a notion of reconfigurations, where the se-
mantics of applying them is defined upon the mathematical structure of coordination
elements.

Analysing reconfigurations. With the existing semantic models, and those de-
veloped in the context of these thesis, it becomes interesting to observe how dif-
ferent reconfigurations compare when applied to coordination structures. To know
the benefits and drawbacks in behavioural, structural and performative aspects of
coordination structures after applying reconfigurations is another goal of this thesis.

Triggering reconfigurations. After studying the coordination structures of a
system, and deciding how to reconfigure them, it is necessary to decide when and
why these reconfigurations shall be applied. Triggering reconfigurations is a well-
studied topic, but with little effort put on its formalisation. Formalising QoS-aware
triggering of reconfigurations constitutes an endeavour of bridging theory and prac-
tice in what concerns self-adaptive software.

Tool support. To wrap up the research work and endow software architects with
means for designing and analysing evolvable systems, it is also an objective of this
thesis to devise suitable tool support. This includes an integrated editor featuring
both domain-specific languages for the specification of coordination structures, re-
configurations and their actual application. Upon this, converters are envisioned

8

1.3. Aims and contributions

that transform such specifications and make them available as models used by well-
established tools for model-checking and analysis in general.

1.3.3 Contributions

The main contributions of this thesis are the following:

• a quantitative semantic model for stochastic Reo;
• a framework, referred to as aris (expanding to the tile of this thesis), for

modelling and analyse reconfigurations of coordination structures, including,

– an abstract model for modelling coordination structures;

– a notion of reconfigurations for coordination structures;

– a methodology for reasoning about reconfigurations under three different
perspectives: behaviour, structure and performance;

• a strategy for self-adaptation of software architectures on top of the aris

framework;
• a set of support tools for aris.

Most of these results appeared in the following list of publications.

- Nuno Oliveira, Nuno Rodrigues, and Pedro R. Henriques. “Domain-Specific Language for Coordination
Patterns”. In: Computer Science and Information Systems 8.2 (May 2011), pp. 343–359.

- Nuno Rodrigues, Nuno Oliveira, and Luís Soares Barbosa. “The role of coordination analysis in software inte-
gration projects”. In: On the Move to Meaningful Internet Systems: OTM 2011 Workshops. Ed. by P. Herrero
R. Meersman T. Dillon. Vol. 7046. Lecture Notes in Computer Science. Berlin Heidelberg: Springer-Verlag,
Oct. 2011, pp. 83–92.

- Nuno Oliveira and Luís S. Barbosa. “On the reconfiguration of software connectors”. In: Proceedings of the
28th Annual ACM Symposium on Applied Computing. Vol. 2. SAC ’13. Coimbra, Portugal: ACM, Mar.
2013, pp. 1885–1892.

- Nuno Oliveira and Luís S. Barbosa. “Reconfiguration Mechanisms for Service Coordination”. In: Web Services
and Formal Methods. Ed. by Maurice H. ter Beek and Niels Lohmann. Vol. 7843. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2013, pp. 134–149.

- Nuno Oliveira and Luís S. Barbosa. “A self-adaptation strategy for service-based architectures”. In: Pro-
ceedings of the 8th Brazilian Symposium on Software Components, Architectures and Reuse. Vol. 2. SB-
CARS’2014. Distinguished with Best Paper Award. Maceió, Alagoas, Brasil: SBC – Brazilian Computer
Society, Sept. 2014, pp. 44–53.

- Nuno Oliveira, Alexandra Silva, and Luís S. Barbosa. “Quantitative Analysis of Reo-based Service Coor-
dination”. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing. Vol. 2. SAC’14.
Gyeongju, Korea: ACM, Mar. 2014, pp. 1247–1254.

- Nuno Oliveira, Alexandra Silva, and Luís S. Barbosa. “ IMCReo: interactive Markov chains for stochastic Reo”.
In: Journal of Internet Services and Information Security 5.1 (Feb. 2015). Imprint.

- Alejandro Sanchez, Nuno Oliveira, Luis S. Barbosa, and Pedro Henriques. “A perspective on architectural
re-engineering”. In: Science of Computer Programming 98 (Jan. 2015), pp. 764–784.

9

Architectural reconfiguration of interacting services

- Flávio Rodrigues, Nuno Oliveira, and Luís S. Barbosa. “ReCooPLa: a DSL for Coordination-based Reconfig-
uration of Software Architectures”. In: 3rd Symposium on Languages, Applications and Technologies. Ed. by
Maria J. V. Pereira, José P. Leal, and Alberto Simões. Vol. 38. OpenAccess Series in Informatics (OASIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, June 2014, pp. 61–76.

The last publication reports on results partially obtained in collaboration with
Flávio Rodrigues, whose M.Sc. thesis with bibliographic reference

- Flávio Rodrigues. “An Engine for Coordination-based Architectural Reconfigurations”. M.Sc. thesis. Braga,
Portugal: Departamento de Informática, Universidade do Minho, Dec. 2014.

was co-supervised by the author.
The tools developed and companion documentation is available at

coopla.di.uminho.pt

Moreover, a stand-alone command-line interface for the generation of analysable
assets from the design of QoS-augmented coordination pieces is available at

http://reo.project.cwi.nl/reo/wiki/ImcReo.

For pretty printing Reo-like circuits, a LATEX package was developed, documented
and made available on the CTAN repository, at

http://www.ctan.org/pkg/reotex.

Along the last four years, the author made also a number of contributions in areas
not directly relevant for the thesis, but witnessing his collaboration in the research
dynamics of the university. The following list presents all such contributions that
mainly result from co-orientations of master theses and collaboration with fellow
research groups.

- Ines Čeh, Matej Črepinšek, Tomaž Kosar, Marjan Mernik, Pedro R. Henriques, Maria J. V. Pereira, Daniela
da Cruz, and Nuno Oliveira. “Tool-Supported Building of DSLs from OWL Ontologies”. In: INForum’11 —
III Simpósio de Informática: 5th Compilers, Programming Languages, Related Technologies and Applica-
tions (CoRTA’2011). Ed. by Raul Barrosa and Luís Caires. Universidade de Coimbra, Sept. 2011, pp. 210–
221.

- Ivan Luković, Maria João Varanda Pereira, Nuno Oliveira, Daniela da Cruz, and Pedro R. Henriques. “A
DSL for PIM Specifications: Design and Attribute Grammar based Implementation”. In: Computer Science
and Information Systems 8.2 (May 2011), pp. 379–403.

- Nuno Oliveira, Maria J. V. Pereira, Alda L. Gancarski, and Pedro R. Henriques. “Learning Spaces for
Knowledge Generation”. In: 1st Symposium on Languages, Applications and Technologies, SLATE 2012.
Ed. by Alberto Simões, Ricardo Queirós, and Daniela da Cruz. Vol. 21. OASIcs. Germany: Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, June 2012, pp. 175–184.

- Maria J. V. Pereira, Mario Berón, Daniela da Cruz, Nuno Oliveira, and Pedro R. Henriques. “Problem
Domain Oriented Approach for Program Comprehension”. In: 1st Symposium on Languages, Applications
and Technologies, SLATE 2012. Ed. by Alberto Simões, Ricardo Queirós, and Daniela da Cruz. Vol. 21.
OASIcs. Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, June 2012, pp. 91–105.

10

1.4. Document organisation

- Ismael Vilas Boas, Nuno Oliveira, Pedro Rangel Henriques, and Daniela da Cruz. “Agile development for
education effectiveness improvement”. In: Proceedings of the XV international symposium on computers in
education (SIIE’2013). Viseu, Portugal, Nov. 2013, pp. 299–304.

- Maria João Varanda Pereira, Nuno Oliveira, Daniela da Cruz, and Pedro Rangel Henriques. “Choosing
Grammars to Support Language Processing Courses”. In: 2nd Symposium on Languages, Applications and
Technologies. Ed. by José Paulo Leal, Ricardo Rocha, and Alberto Simões. Vol. 29. OpenAccess Series in
Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, June 2013,
pp. 155–168.

- Pedro Carvalho, Nuno Oliveira, and Pedro Rangel Henriques. “Unfuzzying Fuzzy Parsing”. In: 3rd Sym-
posium on Languages, Applications and Technologies. Ed. by Maria João Varanda Pereira, José Paulo
Leal, and Alberto Simões. Vol. 38. OpenAccess Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, June 2014, pp. 101–108.

- Daniela Fonte, Ismael Vilas Boas, Nuno Oliveira, Daniela da Cruz, Alda Lopes Gançarski, and Pedro Rangel
Henriques. “Partial Correctness and Continuous Integration in Computer Supported Education”. In: CSEDU
2014 — Proceedings of the 6th International Conference on Computer Supported Education. Ed. by Susan
Zvacek, Maria Teresa Restivo, James Uhomoibhi, and Markus Helfert. Vol. 2. SciTePress — Science and
Technology Publications, Apr. 2014, pp. 205–212.

- Maria João Varanda Pereira, Nuno Oliveira, Daniela da Cruz, and Pedro Henriques. “An effective Way to
Teach Language Processing Courses”. In: Innovative Teaching Strategies and New Learning Paradigms in
Computer Programming. Ed. by Ricardo Queirós. Hershey, PA, USA: IGI Global, Nov. 2014.

1.4 Document organisation

The thesis is organised into three parts.
Part I deals with stochastic semantic models for coordination structures. Chap-

ter 3 is devoted to a literature review on models, tools and techniques for perfor-
mance evaluation of software systems. Chapter 4 introduces a new stochastic model
for capturing the semantics of stochastic Reo.

Part II develops aris, a framework for modelling and reasoning about archi-
tectural reconfiguration of interacting services. State of the art in architectural
reconfiguration is reviewed in Chapter 5. Chapter 6 formalises notions of coordina-
tion and reconfigurations patterns in either static, dynamic and stochastic settings.
Chapter 7 proposes a methodology for reasoning about, comparing and classify-
ing reconfigurations. Chapter 8 presents a strategy for self-adaptation of software
systems taking advantage of the techniques developed in the previous chapters; it
provides also an approach for delivering adaptation as a service.

Part III reports on tool support for aris, in Chapter 9, and includes an illustra-
tive case study, in Chapter 10.

Not included in either of the three mentioned parts, Chapter 2 presents back-
ground references to relevant areas underlying this thesis and, finally, Chapter 11
concludes the thesis with a retrospective of the work done and a proposal of research
topics for further work.

11

Chapter 2

Background

A little knowledge is a dangerous thing. So is
a lot.

– Albert Einstein

In this chapter. The Reo coordination model is recalled along with its most
renowned semantic models, as it is preponderant in the illustration of coordination
based reconfigurations in the context of this thesis. Stochastic Reo is also addressed,
as it plays a central role in the definition of stochastic notions for coordination and
reconfigurations. Additionally, Interactive Markov Chains are introduced as they
were chosen as the target quantitative model for the analysis of reconfigurations.
To finish the chapter, the basics of Hybrid Logic are briefly recalled, as such logic
is used for expressing structure architectural constraints.

2.1 The Reo coordination model

Reo [12, 18, 14, 15] is a popular model for exogenous coordination of software com-
ponents based on channels. It is compositional, in the sense that complex coordi-
nation structures are achieved from the combination of channels. Moreover, it has
well-established semantics that determine the constrained behaviour of such complex
structures.

2.1.1 Channels, nodes and connectors

A Reo channel is a point-to-point communication device with exactly two directed
ends and a behaviour (i.e., coordination policy) defined by a semantic model. A

13

Architectural reconfiguration of interacting services

channel end may accept or dispense data, in which cases it is said to be a source,
or a sink, respectively. Normally, a channel has one source and one sink end, but
Reo also allows channels to have two source or two sink ends. Channels are the
primitive construct for coordination in Reo. Channel ends can be joined into nodes
to assembly complex connectors. Nodes may be of three distinct types: (i) a source
node connects only source channel ends; (ii) a sink node connects only sink channel
ends and (iii) a mixed node which connects both source and sink ends. Source
and sink nodes are also referred to as the boundary nodes or ports of a connector.
Figure 2.1 depicts a basic set of primitive Reo channels, and four connectors built
from the composition of some of these primitives.

a b

sync

a b

lossy

a b

drain

a b

fifoe

•a b

fifof

a

o1 o2

j k

x

Sequencer

a b

cr

Replicator

a

b

c

m

Merger

a

b

c

l

m

j
x

ExclusiveRouter

Figure 2.1: Primitive Reo channels (first row) and Reo connectors (second row).

In general, channels (and connectors) are activated by the presence of input/out-
put (IO) requests (also referred to as read and write operations) pending at their
boundaries. Each channel presents a different behaviour.

Informally, the sync channel consumes data at its source end and transmits it to
its sink end, provided that there are IO requests at both ends at the same logical
time. Otherwise, the channel blocks until communication is allowed to proceed. The
lossy channel behaves likewise, but, instead of blocking, it loses data taken from its
source end, whenever there is not a matching read operation pending at the sink end.
The drain channel takes data from its two source ends, consuming it synchronously.
Differently, a fifo channel has a buffering capacity of one memory position, allowing
for asynchronous communication between its ends. Qualifiers e and f refers to the
channel internal state (either empty or full, respectively).

The Sequencer and the ExclusiveRouter are examples of Reo connectors built from
the composition of several primitive Reo channels, by joining their ends into nodes.
A mixed node behaves as a Replicator (respectively, a Merger) when composed of a
source (respectively, a sink) channel end and two or more sink (respectively, source)
ends. In the first case it accepts data at the source end and replicates it to all
connected sink ends. In the second, it merges non-deterministically to the sink

14

2.1. The Reo coordination model

end data selected from the connected source ends. Clearly, when a mixed node
is composed of multiple source and sink ends, data is simultaneously merged and
replicated. This behaviour is referred in the Reo literature as the pumping station.

The Sequencer connector takes data from node a and transmits it to node o1 and
buffer x in a first synchronous step. Then it takes data from the buffer to node o2
in a second synchronous step. The net effect is that nodes o1 and o2 receive data
in sequence. The ExclusiveRouter connector takes data from node a and transmits
it either to b or to c. In detail, data is transmitted to b (respectively, c) when
this node has pending requests, but there are no requests at node c (respectively,
b). When there are pending requests at both b and c, the merger node x chooses
non-deterministically one of these nodes to receive data.

Graphically, the white circles represent the boundaries of the connectors, i.e.,
source and sink nodes (used to link the connector to services or other connectors),
while the black ones represent mixed (internal) nodes. The ExclusiveRouter node
that assumes the behaviour of its homonym connector is usually represented as .

From the set of primitive channels and connectors depicted in Figure 2.1, atten-
tions shall be drawn to the lossy channel as it presents a context-dependent behaviour.
This is, its behaviour (more precisely, whether it loses data or not) depends exclu-
sively on the environment issuing or not IO requests to its boundary nodes. This
feature clearly deviates lossy channel from nondeterministic channels or connectors
like the Merger. The ExclusiveRouter is another interesting case of a connector, as
it presents both context-dependent and non-deterministic behaviour. The context-
dependency feature is, therefore, a desired characteristic of some Reo channels, and
as such, it is required that Reo semantic models correctly capture it.

2.1.2 Semantic models

Most of the work on Reo concerns the definition of a precise semantics for connectors
and their composition. It is without surprise, then, that a multitude of models to
formally describe the semantics of Reo have been proposed since its emergence [156].
Some semantic models describe data flow through timed data streams [13, 19]; oth-
ers introduce colours to describe how and why data flows through nodes and chan-
nels [100, 93]; others still resort to some form of generalised automata. In this section
the two most prominent automata-based models are recalled: constraint automata
(CA) [29, 27] and Reo automata (RA) [54].

15

Architectural reconfiguration of interacting services

Constraint Automata

Constraint automata [29, 27] are defined over a set ⌃ of nodes representing the
connector ports, and data constraints over ⌃. Data constraints, collected in set
DC, are given by the grammar:

g 3 true | dA = dB | g1 _ g2 | ¬g,

where A,B 2 ⌃, dA, dB represent data items and the atomic proposition dA = dB

holds when node A is assigned the datum coming from B. Formally,

Definition 2.1. A constraint automaton A is a tuple (Q,⌃,−!, Q0), where Q is
a set of states, Q0 ✓ Q, is the set of initial states, ⌃ is a (finite) set of ports, and
−! ✓ Q⇥ 2⌃ ⇥DC ⇥Q, is the transition relation: each state transition is labelled
by the set of ports which become active on its firing and a set of data constraints.

Two binary relations, ⌘ and , are defined over DC as follows: g1 ⌘ g2 if g1 and
g2 define equal data assignments; g1 g2 if data assignments in g1 imply those in g2.
Additionally, dc(q,N, P) =

W

{g : q
N,g
−! p ^ p 2 P} is the weakest data constraint

that ensures the existence of a transition from q to any state in P , via a set of names
N .

Figure 2.2 depicts the constraint automata for each of the primitive Reo channels
and connectors shown in Figure 2.1. Consider, for instance, the sync channel: label
{a, b} captures the fact that both ends a and b are synchronously activated, while
the constraint db = da specifies that data present in a is transmitted to b.

q

{a, b}

db = da

sync

q

{a, b}

db = da

{a}

lossy

q

{a, b}

drain

p q(x)

{a}

x = da

{b}

db = x

fifo

p q(x)

{a, o1}

do1 = da ^ dx = da

{o2}

do2 = dx

Sequencer

q

{a, b, c}

db = da ^ dc = da

Replicator

q

{a, c}

dc = da

{b, c}

dc = db

Merger

q

{a, b}

db = da

{a, c}

dc = da

ExclusiveRouter

Figure 2.2: Constraint automata for the primitive Reo channels and connectors.

Constraint automata compose (composition is, as usual in automata theory, a

16

2.1. The Reo coordination model

combination of product and hide [29]). However, the model is unable to capture
context dependent behaviour. For example, a constraint automata corresponding to
a lossy channel models non deterministically the choice between data flow and data
loss, a decision which is intended to be (deterministically) made by the environment.

Definition 2.2 (Bisimulation [29, 50]). Let A1 = (Q1,N ,−!, Q01) and A2 =

(Q2,N ,−!, Q02) be two constraint automata. An equivalence relation R ✓ Q1⇥Q2

is a bisimulation if and only if for any (q1, q2) 2 R, the following holds:

dc(q1, N, P) ⌘ dc(q2, N, P) (2.1)

q1
N,_
−! q01) 9q02

. q2
N,_
−! q02 ^ (q01, p

0
2) 2 R (and vice versa) (2.2)

where N ✓ N is the set of names through which data may flow and P ✓ Q1 [Q2 is
the set of states to where it is possible to transit via names in N .

Two constraint automata A1 and A2 are bisimilar (denoted A1 ⇠ A2) if and
only if there exists a bisimulation R such that for all initial states Q01 of A1 there
is an initial state q02 2 Q02 of A2 such that (q01 , q02) 2 R.

If equation (2.1) is replaced by dc(q1, N, P) dc(q2, N, P) and in equation (2.2)
the vice-versa condition is dropped, then R is a simulation. Accordingly, two con-
straint automata A1 and A2 are similar (denoted A1 � A2) if and only if there
exists a simulation R such that for all initial states Q01 of A1 there is an initial state
q02 2 Q02 of A2 such that (q01 , q02) 2 R.

Reo Automata

Reo automata [54], on the other hand, are context-sensitive and act as acceptors of
guarded strings. Formally, let ⌃ = {σ1, . . . , σ2} be a set of ports. The set of guards
is the free Boolean algebra B⌃ over ⌃ generated by the following grammar

g 3 σ 2 ⌃ | > | ? | g _ g | g ^ g | g.

and represent constraints on the firing of a transition. Atomic guards, collected in
set At⌃, are conjunctions of p, p, for p 2 ⌃. Intuitively they specify which ports
are and are not enabled (i.e., exhibiting pending requests or their absence). A
guarded string over ⌃ is a sequence h↵1, f1i...h↵n, fni, for n ≥ 0, fi ✓ ⌃, where each
↵i is a guard and each fi stands for the ports that synchronously fire read/write
operations. Relation on guarded strings is defined as g1 g2 () g1 ^ g2 = g1,
thus expressing logic implication.

17

Architectural reconfiguration of interacting services

Definition 2.3. A Reo automaton AReo is a tuple (⌃, Q, δ), where ⌃ is a set of
ports, Q is a set of states and δ ✓ Q⇥B⌃ ⇥ 2⌃ ⇥Q is the transition function which
satisfies the reactivity and uniformity conditions.

A transition (q, g, f, q0), typically represented as q
g|f
−! q0, says that if the connec-

tor is in state q and the port requests present at the moment, encoded as an atomic
guard ↵, are such that ↵ g, then the ports in f will fire and the connector will
evolve to state q0. Intuitively, reactivity ensures that data flows through ports with
pending requests, and uniformity enforces that the firing set of a port is a subset of
its request set (see [54] for the formal definition).

Figure 2.3 depicts the RA for each of the primitive Reo channels and connectors
considered in Figure 2.1.

q

ab|ab

sync

q

ab|ab

ab|a

lossy

q

ab|ab

drain

e f

a|a

b|b

fifo

e fx

ao1|ao1

o2|o2

Sequencer

q

abc|abc

Replicator

q

ac|ac

bc|bc

Merger

q

abc|ab

abc|ac

ExclusiveRouter

Figure 2.3: Reo automata for primitive Reo channels and connectors.

As shown in the lossy channel example, the context-awareness is well captured
through the use of negative information in Reo automata. In this example, the
operation in a fires (without synchronisation with b) when there is a request in a

but not in b (represented by b), as expressed in the guard.

Definition 2.4 (Bisimulation [54]). Let A1 = (⌃, Q1, δ1) and A2 = (⌃, Q2, δ2) be
two reo automata. An equivalence relation R ✓ Q1 ⇥ Q2 is a bisimulation i↵ for
all (q1, q2) 2 R the following (and vice versa) hold:

8
q1

g|f
−!q012δ1 ^ ↵ 2 At⌃

. ↵ g , 9
q2

g0|f
−!q022δ2

.w ↵ g0 ^ (q01, q
0
2) 2 R (2.3)

If equation (2.3) holds only in one direction, then R is a simulation. Accordingly,
a Reo automaton A2 simulates another Reo automaton A1 (denoted A1 � A2) i↵

all states of q1 of A1 are in relation R with some state q2 of A2, and R is a simulation.
Similarly, A1 and A2 are bisimilar (denoted A1 ⇠ A2) i↵ for all states q1 of A1

there is a state q2 of A2 such that (q1, q2) 2 R, with R a bisimulation.

18

2.2. Interactive Markov chains

2.1.3 Stochastic Reo

Stochastic Reo [16, 200] extends Reo by modelling coordination from a quantitative
perspective. Non-negative real values are added both to channels and to their ends
to represent, respectively, processing delays and arrival rates of IO requests. The
former models the time needed for the channel to process data from one point to
another, where point refers to a channel end, a buffer or a null space where data
is lost or automatically produced. One channel may be annotated with more than
one processing delay, depending on their operational behaviour. The latter models
the time interval between consecutive arrivals of environment-issued IO requests to
channel ends.

Figure 2.4 shows the basic channels used in stochastic Reo. In essence, they are
represented as normal Reo channels, but annotated with stochastic values (rates and
delays).

γab

γbγa

sync

γab

γaL γbγa

lossy

γab

γbγa

drain

γaB γBb

γbγa

fifoe

γab

γaLγa

γbB γBc

γc

lossyfifo

Figure 2.4: Primitive stochastic Reo channels.

Stochastic Reo is still compositional. Each composed channel retains its process-
ing delay stochastic value. The request arrival rates, however, are only preserved
for the boundary nodes of the connector. Mixed nodes cease their communication
with the environment and are always ready to read/write data from/to the chan-
nels; therefore the arrival rates associated to the constituent channel ends are ignored
(c.f., lossyfifo connector in Figure 2.4). This behaviour is known as the self-contained
pumping station, firstly referred in [14].

2.2 Interactive Markov chains

Interactive Markov chains (IMCs) [143, 144, 58, 258] were proposed as a model
for performance evaluation of distributed (communicating) systems. IMCs extend
process algebra [149, 190, 191, 25, 42] by modelling systems from a quantitative
perspective framed in continuous time. IMCs address, then, qualitative and quanti-
tative (probabilistic) behaviour of systems in a combination of process algebra and
continuous-time Markov chains (CTMCs) [247, 28, 24].

19

Architectural reconfiguration of interacting services

2.2.1 Process algebra and labelled transition systems

The expression process algebra refers to a mathematical way of describing the ob-
servable (possibly nondeterministic) behaviour of a distributed (communicating)
system. In this regard, it presents (variants of) three operators for the sequential,
alternative and parallel composition of processes (via their atomic actions), as well
as fundamental laws on such operators. Process algebra, thus, enables the study
of the behaviour of distributed system in what respects the interaction between its
parts and their environments. Key studies include the verification that the specified
system satisfies certain qualitative properties. Such verification (done through model
checking techniques [94, 224, 95, 189, 138]) require, however, more abstract repre-
sentations. Therefore, it is usual to formulate processes as automata-like structures:
the labelled transition systems (LTSs).

Definition 2.5 (Labelled transition system). A LTS is a triple (S,Act,), where
S is a set of states; Act is a set of actions and ✓ S ⇥ Act ⇥ S is a set of
interactive transitions.

If, in addition, an initial state is added to the definition of LTS, then it is called
an interactive process [143]. In the context of process algebra, transitions in a LTS
are labelled with the atomic actions with which the modelled process interacts with
other processes, in particular, and the system environment, in general.

Process algebra and LTSs are not tailored, however, to model and study concur-
rent systems that present probabilistic behaviour. The specification of these systems
requires their combination with other mathematical structure namely, for example,
Markov processes.

2.2.2 Markov process and continuous-time Markov chains

A Markov process is a stochastic process (i.e., a collection of random variables
{Xt| t 2 T} in a discrete state space S, with T a total ordered set representing
time) that fulfils the Markov property, which says:

Prob{Xtn+1 = j| Xtn = itn , Xtn−1 = itn−1 , · · · , Xt0 = it0}

= Prob{Xtn+1 = j| Xtn = itn} (2.4)

That is, at a given time instance tn, the proceeding behaviour of variable Xtn+1

depends only on the current state (itn), and not on its history. Markov processes
can be homogeneous, if each variable Xt is completely independent of time t, or

20

2.2. Interactive Markov chains

inhomogeneous, if they depend on that time instance. Time can be regarded as
discrete or continuous, in which cases it is assumed T = N or T = R+, respectively.
The time domain defines classes of Markov processes: discrete-time Markov chains
(DTMCs) [172] for the discrete-time domain and CTMCs for the continuous-time
domain.

A consequence of the Markov property is the memoryless property, which states
that the sojourn time (i.e., the waiting time) at a state is independent of the time
already spent in that state. Therefore, it is required that the random variables of
the subjacent Markov process follow a distribution that observes this memoryless
property. Only geometric and exponential probability distributions [117, 221] present
such a property. The former is suitable for the discrete domain while the latter
capture the continuous case. These are, therefore, the distributions associated to
DTMCs and CTMCs, respectively.

Since performance of distributed systems is measured in the continuous-time
domain, CTMCs are the suitable Markov processes to model the quantitative part
of such systems. As a consequence, DTMCs are not recalled here.

A CTMC is, then, a Markov process with a discrete state space and continuous
time range. It meets the Markov property (2.4). If the time is regarded as t0 <
· · · < tn−2 < tn−1 < tn < tn +Δt, for some small time variation Δt, we obtain:

Prob{Xtn+Δt = j| Xtn = itn , Xtn−1 = itn−1 , · · · , Xt0 = it0}

= Prob{Xtn+Δt = j| Xtn = itn}

= Prob{XΔt = j| Xt0 = it0}.

This means that in the continuous time, the probability of being in a state
j 2 S is only dependent on the initial state (or its distribution) and on the time
Δt remaining to elapse on the current state itn 2 S. For each Δt and each pair of
states i and j, there is a γ 2 R+ that defines how the probability of going from i

to j increases with time, making clear that, eventually, a transition occurs. For this
reason, a CTMC is better formulated as a transition system.

Definition 2.6 (Continuous-time Markov chain). A CTMC is a tuple (S, , si),
where S is a set of states, si 2 S is the initial state, and ✓ S ⇥R+ ⇥ S is a set
of markovian transitions, satisfying the following:

1. | \ ({i}⇥ R+ ⇥ {j})| 1, for all i, j 2 S;

2. (i, γ, i) 62 , for all i 2 S and γ 2 R+.

21

Architectural reconfiguration of interacting services

Informally, these two points mean, respectively, that, at most, one transition
mediates two consecutive states; and that loops are not considered, as the probability
of staying in a state decreases with time.

Each markovian transition (i, γ, j) contributes to a delay of leaving state i. In
concrete, γ is called the rate of a markovian transition and it models an exponen-
tial distribution that defines the sojourn time of a state. The probability of being
less than t time units in a state i with a unique outgoing transition is given by
Prob{sojourn(i) t} = 1 − e−γt. In general, when two or more transitions share
the same source state, a race condition occurs. If such is the case, a transition exe-
cutes with delay determined by the minimum of the rates of the transitions, which
is exponentially distributed on the sum of these rates. In the same conditions, to
know the probability of going to a specific state in t time units, the following is used:
Prob(i, j) = R(i,j)

E(i)

�

1− e−E(i)t
�

, where R(i, j) is the rate of the transition from i to
j and E(i) =

P

j02S R(i, j0) is the exit rate of state i, given as the sum of the rates of
all transitions leaving that state. In general, for C ✓ S, E(i, C) =

P

j02C R(i, j0) and
Prob(i, C) =

P

j02C Prob(i, j
0). These formulas come from the essential properties

of the exponential distribution:

• An exponential distribution Prob{delay t} = 1− e−γt is characterised by a
parameter γ 2 R+ (the rate of the distribution). The mean duration of delay
is given by 1/γ.

• Exponential distributions observe the memoryless property. Consequently, the
remaining delay after some delay t0 has elapsed, is exponentially distributed.

Prob{delay t+ t0|delay > t0} = Prob{delay t}

• Exponential distributions are closed under the minimum. The minimum of
two exponential distributions with rates γ1 and γ2, respectively, exponentially
distributed with parameter γ1 + γ2:

Prob{min(delay1, delay2) t} = 1− e−(γ1+γ2)t.

• The probability that a delay (with rate γ1) is smaller than another (with rate
γ2) is given by their rates as follows:

Prob{delay1 < delay2} =
γ1

γ1 + γ2
,

and vice versa.

22

2.2. Interactive Markov chains

• The continuous time domain of exponential distributions ensures that no two
delays elapse at the same time.

Although making part of the most adopted stochastic models for modern systems
analysis, CTMCs are not compositional and do not allow for specifying observable
nondeterministic behaviour of system, as process algebras do. Therefore, CTMCs
are not enough to represent all aspects of distributed communicating systems with
probabilistic behaviour. A more comprehensive model is in order.

2.2.3 Interactive Markov chains

IMCs combine process algebra (or LTSs, to be concrete) and CTMCs to model systems
that present both nondeterministic and probabilistic behaviour. Consequently, they
are regarded as transition systems that evolve through two kinds of transitions:
interactive and Markovian.

Definition 2.7 (Interactive Markov chain). An IMC is a tuple (S,Act, , , s),
where S is a nonempty set of states; Act is a set of actions; ✓ S⇥Act⇥S is the
set of interactive transitions; ✓ S ⇥ R+ ⇥ S is the set of Markovian transitions
and s 2 S is the initial state of the chain.

As expected, Markovian transitions (s, γ, s0), denoted by s
γ
s0, model a ran-

dom delay in the system’s (internal) evolution governed by an exponential distri-
bution parameter γ 2 R+. Interactive transitions capture the system’s interaction
with the environment by means of action labels. Each transition (s, a, s0), denoted
as s a

s0, represent a change in the system from state s to state s0 via an external
(single) action a that is executed atomically either immediately or blocked until the
environment triggers it.

Operations

The combination of LTSs with CTMCs brings composition to stochastic models the
useful property of composition, that, for instance CTMCs do not observe alone. It is
then feasible to define a composition operation for IMCs — the parallel composition
or product — that allows for the modular combination of simple chains into more
complex structures.

Definition 2.8 (Parallel composition of IMCs [143]). Let I = (SI , ActI , I , I , si)

and J = (SJ , ActJ , J , J , sj) be two IMCs. The parallel composition of I and
J with respect to a set of actions M is an IMC (S,Act, , , (si, sj)), where

23

Architectural reconfiguration of interacting services

S = SI ⇥ SJ , Act = ActI [ActJ , and and are the smallest relations satis-
fying

1. If i1
aI

I i2 and aI 62M , then (i1, j)
aI

(i2, j), for j 2 SJ ;

2. If j1
aJ

J j2 and aJ 62M , then (i, j1)
aJ

(i, j2), for i 2 SI ;

3. If i1
a

I i2, j1
a

J j2 and a 2M , then (i1, j1)
a

(i2, j2);

4. If i1
γ

I i2, then (i1, j)
γ

(i2, j), for j 2 SJ ;

5. If j1
γ

J j2, then (i, j1)
γ

(i, j2), for i 2 SI .

After composing two IMCs, they execute in parallel, and synchronise on shared
external actions. This way, two systems only synchronise after a stimulus from the
environment. But, often, it is desired that this synchronisation occurs internally,
making the whole system a black box. Accordingly, IMCs adopt such a notion and
define the abstraction — or hiding — operation as follows.

Definition 2.9 (Hiding of IMCs [143]). Let I = (S,Act, I , I , s) be an IMC. The
abstraction of I with respect to a set of actions M is an IMC (S,Act\M, , I , s),
where is the smallest relations satisfying

1. If i1
a

I i2 and a 62M , then i1
a
i2;

2. If i1
a

I i2 and a 2M , then (i1)
⌧

(i2).

The interactive transitions with the special action ⌧ are referred to as ⌧ -transitions.
As expected, such transitions represent internal (unobservable) activities. For fur-
ther reference, the source states of ⌧ -transitions are said unstable; otherwise they
are said stable.

Since ⌧ -transitions do not interact with the environment, they are assumed to
take place immediately. Consequently, ⌧ -transitions always precede Markovian ones,
when their source states coincide. This owes to the fact that the probability of
leaving a state with a 0-time units delay is always null: 1−e−γ.0 = 1−e0 = 1−1 = 0.
This is known as the maximal progress assumption and, in practice, has the effect
of reducing the size of IMCs. Notice, however, that this only concerns Markovian
transitions; interactive transitions may as well execute immediately.

Comparing IMCs

Internal transitions play an important role in the behaviour of an IMC. Due to the
presence of such transitions, two IMCs may present equivalent observable behaviour,

24

2.2. Interactive Markov chains

but being different when regarded in a step-wise perspective, this is, when compared
through weak or strong bisimulation, respectively.

Definition 2.10 (Strong bisimulation [144]). Let I = (S,Act, , , s) be an IMC.
An equivalence relation R ✓ S⇥S is a strong bisimulation on I if for any (i, j) 2 R

and equivalence class C 2 S/R the following holds:

1. for any a 2 Act, if i a
i0, then there exists a state j 0 2 S such that j a

j0,
and (i0, j0) 2 R (and vice-versa);

2. if i is a stable state, then E(i, C) = E(j, C);

Two IMCs I and J with disjoint state spaces SI and SJ and initial states i
and j, respectively, are strong bisimilar (denoted I ⇠ J) if there exists a strong
bisimulation R ✓ SI [SJ such that (i, j) 2 R. As expected, strong bisimilarity is
the largest strong bisimulation and it is a congruence w.r.t. parallel composition
and hiding operations [143].

Intuitively, strong bisimulation looks at all interactive transitions in a step-wise
way (as traditional bisimulation in LTSs) and require that the cumulative rates of
moving from bisimilar states to the same equivalence class is equal, unless the states
are unstable. Differently, weak bisimulation regards visible interactive transitions
in a step-wise way, but sees no difference between one ⌧ -transition or a sequence of
them; completely assuming, thus, the maximal progress notion.

Definition 2.11 (Weak bisimulation [144]). Let I = (S,Act, , , s) be an IMC.
An equivalence relation R ✓ S ⇥ S is a weak bisimulation on I if for any (i, j) 2 R

and equivalence class C 2 S/R the following holds:

1. for any a 2 Act, if i a
i0, then there exists a state j 0 2 S such that j a

j0,
and (i0, j0) 2 R (and vice-versa);

2. if i is stable then E(i0, C) = E(j0, C) for some state j 0 stable such that j ⌧⇤

j0

and (i, j 0) 2 R.

Two IMCs I and J with disjoint state spaces SI and SJ and initial states i and j,
respectively, are weak bisimilar (denoted I ⇡ J) if there exists a weak bisimulation
R ✓ SI [SJ such that (i, j) 2 R. As expected, weak bisimilarity is the largest
strong bisimulation and it is a congruence w.r.t. parallel composition and hiding
operations [143].

25

Architectural reconfiguration of interacting services

2.3 Hybrid Logic

Hybrid logic (HL) [49, 56, 47, 174, 57] extends modal logic (ML) [48] by adding
to the latter the possibility of referring to specific states in the underlying Kripke
structure. This new expressive power is brought by the introduction of both a new
sort of propositional symbols, called nominals ; and the satisfaction operator, @.
These extensions are addressed in detail later on in this section. Before, however,
one shall recall the basic notions of ML.

2.3.1 Modal Logic

ML (or propositional ML) springs from classic propositional logic and it allows for
talking about relational structures from a local and internal perspective, which is
not offered by other logics.

Syntax

As a derivation from propositional logic, ML language resorts to a set of propositional
variables Φ = {p, q, r, . . .}, the boolean connectives {¬,^,_,!,$,>,?} and adds
two new unary operators: the diamond, 3, and the box, ⇤. Sentences (or formulas)
of this modal language respect the following grammar:

φ, 3 p | ¬φ | _ φ | 3φ,

where p 2 Φ. The other boolean connectives are obtained as usually: > = φ _ ¬φ

? = ¬>; ^ φ = ¬(¬ _ ¬φ); ! φ = ¬ _ φ and $ φ = (! φ) ^ (φ !).
Finally, the box operator is obtained from the diamond: ⇤φ = ¬3¬φ (as much
as the existential quantifier operator, 9, is obtained from the universal quantifier
operator, 8, in first order logic (FOL)).

Semantics

Relational structures or, in general, transition systems, are the object of study of
ML. ML formulas are analysed from a precise point or state of a relational structure.
Intuitively, formulas of the form 3φ and ⇤φ express that φ possibly holds in some of
the states in relation with the original one; and φ necessarily holds in all the states
in relation with the original one, respectively.

A relational structure, in this context, is often referred to as a Kripke structure
and its states are called worlds.

26

2.3. Hybrid Logic

To formally define the semantics of the modal language trough a satisfaction
relation, it is necessary, first, to recall the notion of model (of the modal language).

Definition 2.12 (Model). A Model (of a modal language) is a pair M = (F, ⌫),
where F = (W,R) is Kripke structure with W a non-empty set of worlds and R a
binary relation on W ; and ⌫ : Φ ! 2W is a valuation function that assigns to each
p 2 Φ a subset of W where p holds.

Therefore,

Definition 2.13 (ML Satisfaction). Let M = (W,R, ⌫) be a model, w 2 W a state
and φ a modal formula. The satisfaction of φ at state w in model M, denoted
M, w |= φ, is inductively defined as follows:

M, w |= p i↵ w 2 ⌫(p), for p 2 Φ

M, w |= ¬φ i↵ M, w 6|= φ

M, w |= _ φ i↵ M, w |= or M, w |= φ

M, w |= 3φ i↵ 9w02W · (w,w0) 2 R ^M, w0 |= φ

Again, the semantics of ⇤φ and of the remaining boolean connectives is obtained
from this minimal set of inductive rules.

Clearly, the satisfaction relation |= can be lift to global satisfaction in a model
M by quantifying over the states of such a model. Thus, φ is globally satisfied in a
model M if it is satisfied in all the states of M, written M |= φ. In practice it may
be useful to lift the satisfaction relation to a state in a Kripke structure, to a Kripke
structure or even to a set of such structures [48].

Definition 2.13, however, is for the basic ML presented. Variants of this logic
exist, where the modalities 3 and ⇤ are further extended with parameters that pro-
vide them different meanings. For instance, temporal logic takes into consideration
time as a linear relational structure and uses modalities with parameters F and P

(c.f., hF i, hP i, [F] and [P]) to refer to the future and the past, respectively. Upon
this one, linear temporal logic (LTL) [95] and computation tree logic (CTL) [245]
arose, that introduce even more modalities to refer to properties checked on the
Kripke structure. Despite their crescent complexity, these modal languages fail to
provide concrete syntactic ways to directly address states of relational structures.
This motivates the hybrid extension to ML.

27

Architectural reconfiguration of interacting services

2.3.2 Hybrid extension to modal logic

As mentioned above, HL adds to a modal language the ability to name, or to ex-
plicitly refer to, specific states of the underlying Kripke structure. This extension
is partially done through the introduction of a new sort of propositional variables,
called nominals : ⇤ = {i, j, k, . . .}. The particular difference between nominals and
propositional variables is that the former hold in exactly one state, instead of in a
set of states. The satisfaction operator, @, in introduced to complete the hybrid
extension to modal logic, and being able to directly refer to an exact point in the
Kripke structure. The @ operator is used to formalise that some sentence φ holds
at exactly some point w of the Kripke structure, named by a nominal i: @i φ.

Syntax

Naturally, the hybrid language of HL builds on top of the modal language recalled
before. Thus, for i 2 ⇤ and p 2 Φ, sentences or formulas on HL respect the following
grammar:

φ, 3 i | p | ¬φ | _ φ | 3φ | @i φ.

Semantics

HL is, as expected, interpreted in a model M = (W,R, ⌫), over the satisfaction
relation |=. But differently to the ML models, the valuation function, ⌫, in HL
has domain in Φ [⇤, range in 2W and counts with the restriction |⌫(i 2 ⇤)| = 1.
Accordingly, the satisfaction relation, |=, for this hybrid extension of the basic ML
is formalised as follows:

Definition 2.14 (HL Satisfaction). Let M = (W,R, ⌫) be a model, w 2 W a state
and φ an hybrid formula. The satisfaction of φ at state w in model M, denoted
M, w |= φ is inductively defined as follows:

M, w |= i i↵ w = ⌫(i), for i 2 ⇤

M, w |= @i φ i↵ M, ⌫(i) |= φ

The semantics for the other formulas is as presented in Definition 2.13. As
usually, M |= φ defines the lift to global satisfaction in a model. Note that all the
formulas of the form @i φ are globally satisfied in a model. Actually, the introduction
of the @ operator breaks the need to analyse a formula in the context of a specific
state w. This is because w does not interfere in the satisfaction of @i φ, since φ is
always verified at the state referred by i, irrespective of w.

28

Part I

A stochastic model for software
coordination

Chapter 3

State of the Art: Models for
Performance Evaluation

I will never believe that God plays dice with
the universe.

– Albert Einstein

In this chapter. The state-of-the-art models and techniques for performance eval-
uation are reviewed. In concrete, models are addressed that sprang from algebraic
counterparts, such as process algebra, Petri nets, automata or Markov chains. Mod-
els based on queueing theory and those specific to capture component-based software
performance are also addressed. Finally, models conferring stochastic semantics to
concrete (stochastic-based) coordination models are discussed.

3.1 Algebraic stochastic models

A number of algebraic models have been extended to support stochastic informa-
tion, in an attempt to go along with the crescent quantitative demands of software
systems. In this section, relevant contributes that define the state of the art of such
models are reviewed.

3.1.1 Stochastic process algebras

Stochastic process algebras (SPAs) [145, 89] are a stochastic extension to process al-
gebra that integrate stochastic processes into the former. As such, they are intended
to serve as models of performance analysis for (typically concurrent) systems that

31

Architectural reconfiguration of interacting services

communicate and interact with each other. SPAs present multiple characteristics,
among which composition, formality and abstraction are highlighted. The first al-
lows for modelling a complex system from the specification and interaction of its
parts; the second endows the formalism with the definition of precise semantics to
all its constructs; and finally, the third enables regarding systems as black boxes, by
allowing to hide internal specificities, as desired.

Several SPA representatives arose with the intent of capturing different aspects
in the quantitative modelling of concurrent systems. The performance evaluation
process algebra (PEPA) [146] formalism was the first such representative to deliver
Markovian support for performance calculation. In this formalism, the specification
of a system is described by the interaction of its components. Components are able
to perform actions in order to synchronise with other components. Each action is
assumed to be associated with a random variable, modelling its duration. Durations
are exponentially distributed, and hence, the relate to Markovian processes. Syn-
chronisation in PEPA allows for more than one action in a component to be carried
out, given that they do not exceed the bounded capacity assumed for the component.
Extended Markovian process algebra (EMPA) [44] is another SPA representative also
based in Markovian processes. It differs from PEPA in the sense that during syn-
chronisation, only one action can be carried out. More representatives have been
proposed. Among them are interactive Markov chain (IMC), already detailed in Sec-
tion 2.2, stochastic ⇡ calculus [223] or MoDeST [105], to mention but a few. These
formalisms intend to overcome SPA limitations like, for instance, the specific use of
exponential distributions to model time. MoDeST, is one such representative that
accepts general distributions to that end.

3.1.2 Stochastic Petri nets

Stochastic Petri nets (SPNs) [194] were introduced as stochastic extensions to clas-
sic Petri nets. They associate exponential distributions to model firing delays of
each transition in a Petri net. The introduction of these random variables made
possible to prove that the reachability graph of the SPN is isomorphic to a Markov
process. Continuous-time Markov chains (CTMCs) may, then, be generated from
the SPNs, enabling the computation of performance measures. This formalism ex-
cels in modelling computer systems that use multiple resources. However, it is not
compositional and does not take into account the global synchrony of events that are
mostly required in concurrent systems. Moreover, it presents both a large number
of reachability markings and complex solutions. It does no allow to model internal
behaviour disregarding time.

32

3.1. Algebraic stochastic models

In order to partially solve these problems, M. Marsan [183, 184] proposed the
generalised stochastic Petri nets (GSPNs). In this model, two sets of transitions are
considered: timed and immediate transitions. The former associate firing delays
to transitions as in SPNs and the latter have no delays associated, having, for that
reason, priority over the timed transitions. Moreover probabilistic behaviour can also
be associated to immediate transitions by adding priority levels to them. Summing
up, this enables the reachability graph of a SPN to be partitioned into two markings
that decrease the complexity of the solution model. Nevertheless, these are still non
compositional models.

3.1.3 Stochastic automata networks

Stochastic automata networks (SANs) [240, 118] became popular in the late nineties
to formalise parallel and distributed systems. In this formalism, each component
is modelled as a stochastic automaton that may either run independently or syn-
chronously interact with other such automaton. It is, thus, a natural compositional
model.

Each stochastic automaton has its own probability transition matrix and is con-
sidered to have two types of transition rates. In one, rates are constants and are
independent of any other automaton in the network; in the other, rates are functions
from the global state space to the nonnegative reals. Moreover these automata are
assumed to have two types of interaction: functional and synchronising. In the first
type of interaction, only the local state of the automaton performing the interac-
tion is affected. Thus, no global information of the system is required, besides the
knowledge about the global state of the network. For the second sort of interaction,
though, it is necessary to compute a global matrix of possible transitions. This may
force a change in the states of the automata in the network, changing its global
state.

In summa, the model mitigates the state space explosion problem of Markovian
models as they are represented by small transition matrixes. Relevant properties
of the system may be inspected without the need for computing a global matrix.
But a requirement of these systems is that they operate almost independently and
very rarely synchronise. Otherwise, state space may explode as much as in other
state-based formalisms.

33

Architectural reconfiguration of interacting services

3.1.4 Markovian-based models

Markovian-based models are the de facto formalisms to measuring performance of
computational systems. With effect, most of the reviewed stochastic models have
an underlying counterpart Markovian model, that is actually used for obtaining the
desired quantitative results. Discrete-time Markov chains (DTMCs) and CTMCs are
two of the most used models.

However, DTMCs model time as discrete events, and thus have limited applica-
bility. CTMCs, although observing time continuously, which makes them suitable
for modelling real-time systems, they are not naturally compositional. They fail to
deliver means for correctly modelling interacting systems. Contrarily, IMCs are com-
positional and have underlying support for continuous-time modelling. It supports
non-determinism and delays. Recently, Markov automata [114, 110] were proposed
as a model able to support non-determinism, probabilistic behaviour or time de-
lays. This is, in fact, a combination of the theories behind IMCs and probabilistic
automata.

As mature models for performance evaluation, tools abound to support reason-
ing about and analysing systems modelled in such formalisms. PRISM [173] and
CADP [125] are two of the most popular and generic ones.

3.2 Queueing networks

Queueing theory [247, 61, 141] also plays an important role in the stochastic mod-
elling of systems. In particular, the components of a system can be reduced to
queues and the system itself as a network of queues.

A queue is a system to serve customers. Customers arrive to be served by a
service station, and when served leave the system. A queue is endowed with one
or more servers in its service station, and a waiting room with possibly unbounded
capacity. Customers wait in the waiting room when all the servers are busy. A
discipline is associated to queues for selecting the next customer to be served. Usu-
ally, first-come-first-served discipline is adopted, but more complex models may be
adopted, for instance, one that prioritise customers.

A queue is a high-level model describing a probabilistic system with underlying
semantics of a CTMC. The model incorporates stochastic processes for customer
arrival and service delay times. It counts on other parameters like, for instance,
the number of servers and the size of the waiting room. Given these parameters,
a queue may be represented as, for instance M/M/1. This is the simplest queue
representation considered in queueing theory. The first M means that the arrival of

34

3.2. Queueing networks

customers is modelled as a Poisson process; the second M informs that the service
time is modelled by a Markovian process lead by an exponential distribution; and
finally, 1 means that the queue counts on a unique server. Moreover, this queue is
unbounded and follows a first-come-first-served serving discipline.

In turn, a queueing network is regarded as a graph, where nodes are queues
and edges are connections between them. Consequently, queueing networks have a
routing matrix associated that define the probabilities with which a customer goes
from a node into another. Special probabilities are assumed to exist to determine
entering and leaving the network. Moreover, the network still adopts the notion of
state, which is given by a vector, where each element is the number of clients in each
station. This state is useful to describe state-dependent routing probabilities.

Performance analysis requires to know the stationary probabilities of the network
(that hold in equilibrium). Although finding such stationary probabilities is a com-
plex problem, these can be computed whenever the networks are separable. When
such is the case, the stationary probability of the whole is given by the product of
the individual queueing stations.

Classic queueing theory define important properties and formulas for queueing
networks, in order to obtain desired performance evaluations. But usually, the un-
derlying networks assume queues with unbounded waiting rooms. This is a main
drawback in modelling real systems since resources (e.g., memory) are always lim-
ited.

Queueing networks with finite capacity [32, 31, 213] can more realistically repre-
sent software systems. In these queues, when the servers are busy and the waiting
room reaches its capacity, the queue prevents the flow of customers. This makes
other queues (that flush customers into the busy and full one), and possibly the
surrounding environment, to block.

Research in queueing networks also includes the study of losses in the context
of finite capacity networks of queues [163]. The results of such studies become
interesting for modelling systems that present such loss behaviour. In fact, loss-
related performance measures are necessary for intensively accessed systems.

However, finite capacity queueing networks do not have, in general, a closed
product-form. That is, the global analysis of the network cannot result from the
individual analysis of each node. Clearly, this adds complexity to performance
analysis. Approximation and simulation solutions are proposed for these queues.
But this is not always desired when modelling, for instance, critical software systems.
Moreover, although queueing networks are a compositional model, theory for fully
supporting synchronisation is still an open issue.

35

Architectural reconfiguration of interacting services

3.3 Component-based performance evaluation

Models for the evaluation of component-based software performance usually fo-
cus on the components operational behaviour and disregard important information.
This includes, for instance, development processes, specificities of component model
paradigms or the context in which the system is to be deployed [168]. In this context,
several approaches have been proposed that rely on high-level models of components
and define, upon these, specific models for measuring quality attributes, excelling
on performance measuring. In the end, these approaches result in a more human-
friendly way of designing systems with non-functional requirements and obtain their
performative measures.

A. Bertolino and R. Mirandola [45] present the CB-SPE framework, a composi-
tional approach for performance evaluation of component-based software. It con-
siders the entire life-cycle of software development, allowing for assessing quality
attributes from requirement elicitation to deployment and maintenance.

The companion tool resorts to the unified modelling language (UML) notation for
modelling components and their predicted performance attributes. The approach
considers two modelling layers. One is a component layer, where architects cre-
ate a repository of components. The components present predicted performance
properties that are platform (deployment context) independent. The other is an
application layer, where architects select the required components to compose a
concrete architecture. Use cases are associated with some probability in order to de-
fine usage profiles of the application, and sequence diagrams model the control flow
between the components. Moreover, by this time, the architect is in possession of
deployment information and, thus, is able to associate to the context-dependent per-
formance attributes of the components. This is done by producing UML deployment
diagrams that describe resources and communication means.

Once the complete performance model is established, the CB-SPE tool is able to
convert the underlying UML diagrams into a suitable queueing network. The latter
is, in fact, the responsible for computing the global performance properties of the
application.

E. Bondarev et al [53, 52] devise an approach for component-based performance
evaluation on top of the ROBOCOP component model [132]. ROBOCOP components
are modelled with resource consumptions, functional and behavioural specificities
and an execution implementation. Each component has performance measures for
each task they can execute, which are independent from the deployment environ-
ment. These components are then assembled together in an application architec-
ture, which combines the behaviour and the resource consumption specifications.

36

3.3. Component-based performance evaluation

The application is then simulated for critical scenarios, outputting result concerning
execution times, latency and resource utilisation of each task.

The authors defend this approach as useful for predicting timing properties at
early stages of development. Simulation avoids computation complexity by dis-
carding full-state analysis of the system. Moreover, synchronisation and scheduling
aspects are considered in this model, as desired in interacting systems.

V. Grassi et al [136, 137, 135, 134] introduce an approach for performance pre-
diction of component-based software systems, centred on a kernel language named
KLAPPER. The approach aims at hiding knowledge about performance analysis
methodologies from the architects. This is achieved by using model transforma-
tion techniques that convert system models (e.g., UML) into analysis models (e.g.,
Markov chains or queueing networks).

The KLAPPER language establishes this desired bridge between design and anal-
ysis. It captures the necessary information for the performance evaluation from the
design models, and converts them into stochastic models. The architects just need
to define transformation rules that convert their component models into KLAPPER.

S. Becker et al [38] present an approach to performance evaluation of distributed
systems upon a model of components called Palladio. The Palladio component model
is used to specify architectures in a parametric way. The underlying development
methodology offers support for different development roles. Concretely, it sepa-
rates concerns for component developers, software architects, system deployers and
domain experts. The component developers model components by using control
flow graphs annotated with information about resource consumption. This infor-
mation is parametrised so that it is independent of the deployment environment
specificities. The software architects select components and glue them together in
an application architecture. The system deployers are responsible for modelling the
deployment environment and associate components demands to the environment re-
sources. Lastly, domain experts model usage profiles that influence variables like,
for instance, workload.

Tool support exists for this approach, endowing the developers with means for
modelling a component-based system at a high-level of abstraction. The tool is
responsible for weaving the parts concerning each development phase into a complete
model. The latter is then translated into suitable queueing networks for performance
analysis either via simulation or numerical analysis.

J. Karim et al [159] define an approach for performance assessment of component-
based software systems, that targets the early phases of the software life-cycle. The
architecture of the system (the first product) is regarded as the main piece for this

37

Architectural reconfiguration of interacting services

approach. It is from its description that the overall system performance is evaluated.
Such architecture is designed by using UML diagrams. In particular, component di-
agrams are considered to specify the structure of the system; and sequence diagrams
to describe both component behaviour and component interaction. The approach
takes each component sequence diagram and converts it into an interface automa-
ton [6], via an algorithm devised by the authors. The set of all interface automata
are combined, defining the formal foundation for evaluation. It is in this combi-
nation that performance values are added. Synchronisation and processing delays
are considered in the edges of the interface automata and combined conveniently.
Finally, queueing theory is used to compute several performance attributes based
on the obtained automata.

3.4 Coordination-oriented stochastic approaches

In the last few years, research on coordination models redirected attention to the
quantitative area, as imposed by the performative demands of new software systems.
This led to improving and extending already existing models of coordination, by
incorporating quantitative information therein. In the sequel, models for generic
coordination and also those centred on choreography and orchestration of services
are considered.

3.4.1 Generic coordination

SBIP [40] is a stochastic extension of the BIP coordination model [35, 34]. In short,
the BIP model specifies the static coordination of component-based architectures
based on three layers: a behavioural, an interaction and a priorities layer. In the
behavioural layer, the operational semantics for atomic components is laid out as
finite state automata. States of the automata refer to locations where the compo-
nents wait for synchronisation and store data in variables. Transitions are labelled
with actions/ports and are constrained by guards on data and executions, which
are provided in external functions. In the interaction layer, the actual communi-
cation policies (connectors) are defined for the component interaction. They are
regarded as sets of ports that shall synchronise. In the priorities layer, interactions
are prioritised taking into account conditions that are used, for instance, to solve
non-determinism. The semantics of BIP is obtained by the composition (formally
defined as the cartesian product) of the automata corresponding to each atomic
component. Synchronisation is performed on the labels of the automata transitions
as defined in the interaction protocols.

38

3.4. Coordination-oriented stochastic approaches

SBIP allows for the specification of stochastic aspects of atomic components in
BIP. Stochastic behaviour is brought into scene by the use of stochastic variables in
the automata states. These variables are associated with some probabilistic distribu-
tion which can be updated on transitions. The combination of BIP components with
stochastic variables creates a stochastic semantics based on transition systems, capa-
ble of modelling both stochastic and non-deterministic behaviour. Non-determinism
(which may remain after applying priorities) is removed from the resulting transi-
tion system. This is essential in order to obtain purely stochastic semantics. The
construction of the overall transition system for the set of all atomic components
and their interactions is made as in BIP.

SBIP is supported by suitable tools and algorithms that cater for statistical
model checking of quantitative and qualitative properties expressed in (probabilistic)
bounded linear temporal logic. Contrary to many other stochastic models, SBIP is
not restricted to exponential distributions. C functions are assumed to be attached
to the model that deliver support for other probabilistic distributions.

Several approaches were also attempted in the Reo community. In particular,
such efforts centred on extending and incorporating stochastic behaviour into the es-
sential semantic models of Reo. In the following paragraphs, the most representative
quantitative semantic models are addressed.

C. Baier and V. Wolf [30] proposed continuous-time constraint automata (CCA)
as an extension to constraint automata. It incorporates quantitative information
on transitions of the latter, representing a (high-level) delay on the continuous-time
setting. The CCA model follows closely the IMCs model in the sense that it presents
two types of transitions: one is for interaction with the environment and the other
is for delaying the evolution between states. The former behave as the transitions
on constraint automaton (CA); the latter (also referred to as Markovian transitions)
take a positive real value (the parameter of an exponential distribution), which
governs a stochastic process modelling the average delay between the occurrence of
consecutive actions.

As a descendant of the CA model, it inherits relevant properties, namely com-
position, however, it fails to capture context-dependency. Moreover, the state-space
increases to aport states where the coordination structure is waiting for interaction
with the environment; and it is not consistent, as there is not a unique model for
each Reo channel.

F. Arbab et al [16] introduce quantitative intensional automata (QIA). This
model spring from intensional automata [100] by adding data constraints, as in
CA, and quantitative information to model processing delays and arrival rates of

39

Architectural reconfiguration of interacting services

interaction actions with the environment. Its states model the internal (memory)
configuration of the connector together with the configuration of its boundary nodes,
i.e., the existence/absence of pending input/output (IO) requests.

QIA correctly captures context dependency, but it suffers from state explosion
even when representing simple connectors, restricting scalability. Moreover, it is not
a compositional model, because of its unstructured composition operator [198, 16].

Y.-J. Moon [199, 198, 200] proposed stochastic Reo automata (SRA). It extends
Reo automata (RA) by incorporating processing delays into transitions, and arrival
rates of IO requests into the nodes of the Reo connector. In fact, this is the semantic
model underlying the stochastic Reo model as presented in Section 2.1.3.

The resulting models are compositional (as inherited from RA), compact, and
capture context-dependency. The practical use of stochastic Reo automata is, how-
ever, constrained by the lack of tool support. In an attempt to bridge this gap,
partial translations were provided of these automata into CTMC and IMC, so that
tool support from these standard models could be used [200]. The translation into
IMC was, however, concluded not to correctly capture stochastic Reo semantics [200];
the other provided, indeed, concrete models for performance computation. Unfor-
tunately, CTMC are not to compositional models, which enforces to recalculate the
SRA model and translate it into CTMC every time the underlying Reo connector
changes.

3.4.2 Workflow, choreography and orchestration

Workflow, choreography or orchestration notations like BPEL (and variants), busi-
ness process modelling notation (BPMN) or Orc are extensively used for the high-
level definition of business processes. In particular, they have a preponderant role
in the specification of both workflows and interaction of system components and
services. In the sequel, some state-of-the-art representatives of research on these
models with respect to performance evaluation are mentioned.

D. Bruneo et al [63] propose a method for studying the quality of service (QoS)
of composed web services (WSs) at design time. The underlying technique is to
derive non-Markovian stochastic Petri net models from WS-BPEL models that are
defined during application design. QoS information is added as annotation to the
activities in the WS-BPEL models.

Y. Xia et al [256] proposed a similar technique that transforms BPEL models into
GSPNs. A set of transformation rules addressing important BPEL constructs like
activities or scopes, are used to that end. The approach only considers the elements
directly related to the flow of activity execution as well as the most relevant aspects

40

3.4. Coordination-oriented stochastic approaches

of service composition. In particular, the authors propose a state-space method for
computing the expected-process-normal-completion-time as the main performance
estimate.

L. Herbert and R. Sharp [142] present a framework for quantitative analysis of
business workflows in a slightly changed subset of BPMN. This extension to BPMN
adds to it stochastic information as well as non-deterministic branching and reward
annotations. The approach is similar to those presented before, in the sense that
the designed workflows are translated into a target stochastic model; in this case,
Markov decision processes. The latter are then submitted to the PRISM model
checker in order to obtain relevant qualitative and quantitative information about
the business process.

A. Benveniste et al [41] provide a complete framework for QoS-aware manage-
ment of monotonic service orchestration. Monotonicity, in this study, refers to the
property that orchestration performance augments as the performance of individual
services augments too. This is not always verified, and thus the authors consider
it a relevant property for the management of service orchestration, making it the
base for a contract-based design of applications. For this, the framework includes an
algebraic calculus for QoS composition, that captures how QoS of the orchestration
is obtained from the individual QoS of the considered services.

In order to concretise performance evaluation, a model of stochastic orchestra-
tion, Probabilistic OrchNets, is devised based on Petri nets. The overall framework
is implemented on top of the Orc orchestration language, but the authors defend
that it is also applicable to BPEL. The use of OrchNets for modelling QoS and Orc
for modelling the operational behaviour of the orchestration, implements the desired
separation of concerns. Weaving techniques are proposed to combine the two in or-
der to obtain a stochastic orchestration model, from where measures of performance
are obtained.

41

Chapter 4

Interactive Markov chains for
stochastic Reo

We can’t solve problems by using the same
kind of thinking we used when we created
them.

– Albert Einstein

In this chapter. A quantitative semantic model for stochastic Reo, based on IMCs,
is formalised. Important properties of this model are demonstrated: (i) it is compo-
sitional and (ii) its behavioural equivalence relation is a congruence with respect to
the composition operations. Stochastic Reo is extended to more faithfully approxi-
mate the modelling of real-world software connectors. The latter implies to revisit
the formalised quantitative semantic model over a more modular perspective.

Part of this chapter’s content was previously published, by the author, in:

- Nuno Oliveira, Alexandra Silva, and Luís S. Barbosa. “Quantitative Analysis of Reo-based Service Coor-
dination”. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing. Vol. 2. SAC’14.
Gyeongju, Korea: ACM, Mar. 2014, pp. 1247–1254.

- Nuno Oliveira, Alexandra Silva, and Luís S. Barbosa. “ IMCReo: interactive Markov chains for stochastic Reo”.
In: Journal of Internet Services and Information Security 5.1 (Feb. 2015). Imprint.

4.1 IMCReo

This section introduces IMCReo, a semantic model for stochastic Reo, based on the
IMC formalism (c.f., Section 2.2). In a nutshell, IMCReo is an instance of a classical
IMC with a different (structured) set of states and labels. Its composition builds

43

Architectural reconfiguration of interacting services

on the usual parallel composition for IMC, but discharges, through a synchronisa-
tion operator, the transitions that are not compliant with Reo semantics. These
modifications to the standard definition are imposed so that the behaviour of Reo
is correctly captured in the model.

Before diving into the nitty-gritty of IMCReo, some remarks on what transitions
and states represent in this context, are in order to build intuition.

As expected, states capture the possible behaviour of a connector: data arrivals
and data flowing through ports. Consider sets N and Q as a set of port names, and
a set of internal state names, respectively. Each state in IMCReo is a triple (R, T,Q),
where R, T 2 2N denote sets of ports/nodes with, respectively, pending requests
and data being transmitted; and Q 2 Q is an internal state identifier. The latter is
used to distinguish between control states in state-based connectors. For example,
in the fifo channel it may indicate whether the buffer is empty or full, by taking
Q = {empty, full}. The selectors for each of the three components of an IMCReo state
s are denoted as Rs, Ts and Qs, respectively.

Markovian transitions are labelled by γ 2 R+. The negative exponential distri-
bution parameter, γ, encodes, in each case, the connector processing delays and the
rates of data arrival at its ports.

Interactive transitions, on their turn, are labelled with a set F of ports which,
when firing, allow data to flow through them. Such ports correspond to the set of
actions observable at the relevant IMCReo state. In the sequel, this set is referred
to as actions, for simplicity. The decision to take sets of actions (rather than a
single action) to label interactive transitions is crucial to correctly capture (atomic)
synchrony in the semantics of Reo. In fact, ports firing synchronously to enable data
flow are the rule rather than the exception in Reo.

Intuition being built, IMCReo can now be formally introduced.

Definition 4.1 (IMCReo). An IMCReo is a tuple (S, Act, , , s), where S ✓

Act ⇥ Act ⇥ Q is a nonempty set of states; Act ✓ 2N is a set of actions (the
alphabet of the IMCReo); ✓ S ⇥ Act ⇥ S is the interactive transition relation;

✓ S⇥R+⇥S is the Markovian transition relation; and s 2 S is the initial state.

Markovian transitions (s, γ, s0) are written as s
γ
s0; whereas notation s

a1a2...
s0

is used for interactive transitions (s, {a1, a2, ...}, s0). An interactive transition with
an empty set of actions is said to be unobservable and is denoted by s ⌧

s0.
States of the form (R, ;, Q) are referred to as request states and depicted as

RQ; states of the form (;, T,Q) are referred to as transmission states and depicted
as {T}Q; states of the form (R, T,Q) are called mixed states and are depicted as

44

4.1. IMCReo

R {T}Q; finally, states of the form (;, ;, Q) are represented as ;Q and denote the
absence of both requests and data transmissions. For all representations, the buffer
qualifier Q may be omitted, whenever clear from the context.

Figure 4.1 depicts the IMCReo models corresponding to the basic stochastic Reo
channels. To simplify the picture, transition overlapping is generally avoided by the
graphical replication of states suitably annotated with a dashed circle.

; a

b a, b {a, b}

γa

γb γb

γa ab

γab

γab

γbγa

γab

γbγa

sync and drain

; a

b a, b {a, b}

{a}
γa

γb γb

γa ab

γab

a

γaL

γab

γaL γbγa

lossy

;e a e

b e a, b e

{a}e

b {a}e

;f a f

b f a, b f

{b}f a {b}f;e a e

γa a γaB γa

γb γb γb γb γb

b

γa a γaB γa

b

γBbγBb γa

γaB γBb

γbγa

fifoe

Figure 4.1: IMC for the basic stochastic Reo channels.

The IMCReo model of a stochastic sync channel is interpreted as follows: initially,
no requests are pending neither in port a nor in port b. Request arrive at port a
(respectively, b) at rate γa (respectively, γb). The channel blocks until a request
arrives to the other port. When state a, b is reached, representing a configuration
in which both ports have pending requests, then both eventually fire. That is,
actions a and b are activated simultaneously. At this moment, the channel starts
transmitting data between a and b and evolves back to the initial state with a
processing delay rate of γab. For a drain the interpretation is similar. The IMCReo

45

Architectural reconfiguration of interacting services

model of a stochastic lossy channel is also similar. However it exhibits two additional
transitions to model the possibility of losing data: at state a , port a may fire,
because there is no pending request at port b. When such is the case, the channel
evolves back to the initial state after a delay of discarding data. State a captures
the context-dependent behaviour characteristic of this channel. Finally, the fifoe

stochastic channel differs from the formers by introducing an internal state. Notice
how pending requests at port a automatically fire when the buffer is empty (states
a e and a, b e), and requests at port b block until it is full (states a, b e and b {a}e). Also,
notice that, to maintain consistency, the internal state of this channel only changes
after Markovian transitions representing processing delays succeed. Actually, this is
the rule in IMCReo models.

4.2 IMCReo composition

Reo connectors are composed through the aggregation of interface nodes. In this
section this mechanism is formalised as IMCReo combinators, for which composition
properties are proved.

4.2.1 Parallel composition

The starting point is an adaptation of the usual definition of IMC parallel composi-
tion [143], explicitly dealing with the restructured actions in the labels of interactive
transitions.

Definition 4.2 (Parallel Composition). Let I = (SI , ActI , I , I , si) and J =

(SJ , ActJ , J , J , sj) be two IMCReo models. The parallel composition of I and J
with respect to a set M ✓ N is defined as

I kM J = (S,Act, , , (si, sj))

where S = SI ⇥ SJ , Act = ActI [ActJ , and and are the smallest relations
satisfying

1.
i1

AI

I i2 AI \M = ;

(i1, j)
AI

(i2, j), for j 2 SJ

2.
j1

AJ

J j2 AJ \M = ;

(i, j1)
AJ

(i, j2), for i 2 SI

3.
i1

AI

I i2 j1
AJ

J j2 (AI \AJ) ✓ M AI , AJ 6= ;

(i1, j1)
AI[AJ

(i2, j2)

46

4.2. IMCReo composition

4.
i1

γ
I i2

(i1, j)
γ

(i2, j), for j 2 SJ

5.
j1

γ
J j2

(i, j1)
γ

(i, j2), for i 2 SI

The first three clauses in Definition 4.2 deal with interactive transitions: the
first two tackle the independent evolution of each connector; the third one addresses
their (synchronous) joint evolution. Clauses 4 and 5 deal with Markovian transitions
which are always interleaved.

Notation

i|j is used henceforth to graphically represent a pair of states (i, j).

Example 4.1 Figure 4.2 depicts a fragment of the IMC resulting from the parallel
composition of a lossy and a fifoe channel with respect to set M = {b} of shared nodes.
The complete IMC has 72 states and 182 transitions.

;|;e

a |;e

b |;e. . .

a | c e

a | b e

. . .

{a}| c e. . .

{a}| b e. . .

a, b | b, c e {a, b}| c {b}e

;| c {b}e. . .

{a, b}| c f . . .

γa

γb|

γc
. . .

γb|

a}

a~

. . .|
ab

γab

γbB�

Figure 4.2: Fragment of the parallel composition of a lossy and a fifoe channel. z

Note that clause 3 of Definition 4.2 does not capture the joint evolution of ⌧ -
transitions (which is precluded by condition AI , AJ 6= ;). Actually, this is just a
design decision in accordance to the homologous definition in [143]. Should this
condition be ignored and the model will allow for the joint evolution of two or more
⌧ -transitions. In practice, this would result in an extra internal transition. The
resulting IMCReo chains would be equivalent (at least in a weaker way) due to the
maximal progress assumption.

To illustrate both alternatives, consider the composition of two 2fifoe connectors.
A fragment of the IMCReo model for each 2fifoe is depicted in Figure 4.9. Focus on
the joint state ;f |;e, assuming, for simplicity, their piecewise union. Figure 4.3 shows
the configuration of the two channels, at that state, alongside with a fragment of
the corresponding IMCReo models, which are to be composed in parallel for the set
of nodes {a, c}.

Applying the parallel composition, as in Definition 4.2, will create an IMCReo,
a fragment of which is depicted in solid black in Figure 4.4. State ;fe|;fe has four
Markovian transitions (from the application of clauses 4 and 5) and two ⌧ -transitions
(from clauses 1 and 2). If, otherwise, the alternative version of clause 3 is assumed,

47

Architectural reconfiguration of interacting services

γa b

γc

•

γa

d γc
•

. . . ;fe

a fe . . .

c fe . . .

{b}fe ;fe

c fe . . .

a fe . . .

{d}fe . . .

γa

γc

⌧

γc

γa

⌧k{a,c}

Figure 4.3: Composing two 2fifoe connectors.

. . . ;fe|;fe

a fe|;fe . . .

;fe| a fe . . .

c fe|;fe . . .

;fe| c fe . . .

{b}fe|;fe . . .

;fe|{d}fe . . .

{b}fe|{d}fe . . .

γa

γa

γc

γc

⌧

⌧

⌧

⌧

⌧
•

•

•

•

•

•

•

•

⌧

⌧

⌧

⌧

⌧

Figure 4.4: Fragment of the parallel composition of two 2fifoe (left) and the corre-
sponding circuit evolution (right).

i.e., without the AI , AJ 6= ; condition, the extra transition ;fe|;fe
⌧
{b}fe|{d}fe,

depicted in light grey in Figure 4.4 would be possible.

4.2.2 Synchronisation

The definition of parallel composition has to be adjusted to correctly capture the
intended semantics for channel composition in Reo. The mismatch concerns Reo
mixed nodes which are not supposed to actively block behaviour, but rather acting
like self-contained pumping stations, in the popular Arbab’s metaphor [16]. Failing to
take this into account generates unwanted behaviour, making the semantics unsound.

Consider again Example 4.1. The presence of transition a | b e
a

{a}| b e shows
that in the composed connector a data item arriving to port a could be lost, even
when the buffer is empty. This possibility violates the mixed node assumption in
the Reo rationale, in the sense that transitions cannot occur from a state which
actively blocks a mixed node. The following definition captures such a notion of
active blocking.

Definition 4.3 (Active Block). Let (S1 ⇥ S2, Act, , , s) be an IMCReo model
over a composite state space, and M ✓ N . A state (i, j) actively blocks M (denoted
(i, j)⇤M) if there exists a transition (i, j)

X
(_,_) with X \M = ;, Ri \M = ;

and Rj \M 6= ;, or vice-versa.

48

4.2. IMCReo composition

Notation

i 7 M is used hereafter to denote that state i does not actively block the set of
nodes M .

Clearly, in Example 4.1, state a | b e actively blocks the (singleton) set of nodes
M = {b} in the composition of the two connectors.

Defined that is such a notion, it is now possible to introduce a synchronisation
operation to prune this sort of unwanted transitions.

Notation

i�M identifies a restricted state i = (R, T,Q) in which all ports in a set M are
removed from the set of active requests in i (i.e., i �M= (R \ M,T,Q)). This
extends to composite states (i, j) in the obvious way: (i, j)�M= (i�M , j�M).

Definition 4.4 (Synchronisation). Let I = (S1 ⇥ S2, Act, , , s) be an IMCReo

model over a composite state space, and M ✓ N . The synchronisation of I with
respect to M is given by

@MI = (SM , Act \M, M , M , s)

where SM = {(i, j)�M | (i, j) 2 S1⇥S2} and M and M are the smallest relations
satisfying, respectively, conditions 1 and 2 below:

1.
(i, j)

X
(i0, j0) (i, j) 7 M

(i, j)�M
X\M

M (i0, j0)�M

2.
(i, j)

γ
(i0, j0) (Ri0 [Rj0) \M = ;

(i, j)�M
γ

M (i0, j0)�M

In Figure 4.2, interactive transitions that need to be deleted because their source
states actively block a set of mixed nodes, are labeled with ~. One such transition
is a | b e

a
{a}| b e, where, as explained above, for M = {b}, X = {a}, clearly

X \ M = ;, R a \ M = {a} \ M = ;, and R b e
\ M holds {b} \ M 6= ;.

That is, port b, which was expected to automatically fire, is blocked and only port
a fires. Markovian transitions going to states with requests in the mixed nodes
are labeled with |. An example is transition ;|;e

γb
b |;e, where for M = {b},

(R b [R;e) \M 6= ;.

Composition in IMCReo can finally be defined resorting to both parallel compo-
sitiona and synchronisation combinators,

Definition 4.5. The composition of IMCReo models I and J , with respect to M ✓ N ,
is given by

@M(I1 kM I2)

49

Architectural reconfiguration of interacting services

This two-step composition approach is not a novelty in the definition of compo-
sition operations in the context of Reo. The one introduced above is, in fact, very
much in the same spirit of the one defined for Reo automata [54].

4.2.3 Properties

This section discusses a number of properties of the composition operators with
respect to (strong) bisimilarity. The latter is introduced in Definition 4.6 as a slight
extension of standard IMC bisimilarity [143] to cope with labels as sets.

Definition 4.6 (Strong bisimulation). Let I = (S,Act, , , s) be an IMCReo

model. An equivalence relation R ✓ S ⇥ S is a strong bisimulation if for any
(i, j) 2 R and equivalence class C 2 S/R the following holds:

1. for each A ✓ Act and some i0 2 C, if i A
i0 then there exists a state j 0 2 C

such that j A
j0, and (i0, j0) 2 R, and vice-versa;

2. if i is a stable state then E(i, C) = E(j, C);

Recall, from Chapter 2, that E(i, Q) = ⌃i02Q[γ | i
γ
i0].

Two IMCReo models I and J with disjoint state spaces SI and SJ and initial states
i and j, respectively, are strong bisimilar (standardly denoted by I ⇠ J) if there
exists a strong bisimulation R on SI [SJ such that (i, j) 2 R. Strong bisimilarity
is the largest strong bisimulation, which is, as expected, an equivalence relation.

Theorem 4.1. Let I, I1, I2 and I3 be IMCReo models, where Act1 is the alphabet of
I1 and M,N ✓ N . The following holds:

1. @M(I1 kN I2) ⇠ I1 kN @MI2, if Act1 \M = ;

2. @N(@MI) = @M(@NI) = @M[NI

3. (I1 kM I2) kM I3 ⇠ I1 kM (I2 kM I3)

4. I1 kM I2 ⇠ I2 kM I1

Proof. For 1, note that interactive transitions in @M(I1 kN I2) can be of one of the
following forms:

• a M restriction of a transition (i, j)
X

(i0, j), such that i X
i0 exists in I1,

X \N = ; and (i, j) 7M .

• a M restriction of a transition (i, j)
X

(i, j), such that j X
j0 exists in I2,

X \N = ; and (i, j) 7M .

50

4.2. IMCReo composition

• a M restriction of a transition (i, j)
X1[X2

(i0, j0), such that i X1
i0 and j X2

j0

exists in I1 and I2, respectively, X1 \X2 ✓ N and (i, j) 7M .

All such transitions are possible for I1 kN @MI2, but it remains to show that in
neither of them can the origin state block M . Consider the first type of transitions
(the argument for the others are similar). Note that there are only two ways of state
(i, j) being able to block M . The first possibility is X \M = ;, which is the case:
Ri\M = ; because Act1\M = ;, and Rj \M 6= ;, which is false because all labels
in any transitions in @MI2 do not contain elements of M . The second alternative
requires X \ M = ; again, and Rj \ M = ;, which holds as discussed above,
but also Ri \M 6= ; which is false by hypothesis. Therefore, allowed transitions
in I1 kN @MI2 do not block M . In principle, it could exhibit more interactive
transitions than @M(I1 kN I2), namely transitions in I1 with elements in M . This
cannot be the case, however, because of the assumption Act1 \M = ;.

In turn, Markovian transitions in @M(I1 kN I2) can be of one of the following
forms:

• a M restriction of a transition (i, j)
γ

(i0, j), such that i
γ

i0 exists in I1

and (Ri0 [Rj) \M = ;.

• a M restriction of a transition (i, j)
γ

(i, j0), such that j
γ
j0 exists in I2

and (Ri [Rj0) \M = ;.

Both cases also occur in I1 kN @MI2; it remains to show that the request sets of the
target states of these transitions do not have elements in M . In fact, assumption
Act1 \M = ; implies that Markovian transitions in I1 cannot have target states
i0 with Ri0 \M 6= ;; and, by definition, for all the target states j 0 of Markovian
transitions in @MI2, Rj0\M = ; holds. Hence, Markovian transitions in I1 kN @MI2

are the same as in @M(I1 kN I2), which preserves the cumulation of rates.
For 2, it is enough to note that, in both sides of the bisimilarity equation, inter-

active and Markovian transitions are restricted to M [N , and also that interactive
transitions in I whose origin state does not actively block neither M nor N do the
same for M [N .

Associativity and commutativity of kM are easy to prove: for Markovian transi-
tions strict interleaving applies and therefore the contribution of each chain is always
preserved; for interactive transitions, when in presence of sharing, associativity and
commutativity of [entail 3 and 4, respectively.

Theorem 4.2 (Substitutability for kM). Let I1, I2 and I3 be IMCReo models, and
M ✓ N , such that I1 ⇠ I3. Then, I1||MI2 ⇠ I3||MI2.

51

Architectural reconfiguration of interacting services

Proof. Every interactive transition of I1 is exactly matched by an equally labelled
transition in I3, because I1 ⇠ I3. Therefore, the contribution of both I1 and I3

for interactive transitions of their parallel composition with I2 is the same. For
Markovian transitions I1 ⇠ I3 guarantees that for bisimilar states the cumulative
rate in both chains is the same. In the parallel composition Markovian transitions of
I1 are interleaved with those of I2. Once a state of I1 is replaced by a bisimilar one,
the cumulative rates are not affected, even if the number of Markovian transitions
may differ.

This result establishes substitutability for parallel composition with respect to
a set of nodes M . A similar result for @M holds only for a stricter notion of equiv-
alence. Actually, synchronisation prunes a number of transitions which depend on
the data requests active in each state. This entails the need to incorporate this sort
of information in a suitable definition of behavioural equivalence.

Definition 4.7 (Behavioural equivalence). Two IMCReo models I and J are be-
haviourally equivalent, denoted by I ⌘ J , if they are strong bisimilar and for each
pair (i, j) of related states, their sets of requests are equal: Ri = Rj.

Clearly ⌘ ✓ ⇠. With this coarser equivalence, a substitutability result for @M
can be established.

Theorem 4.3 (Substitutability for @M). Let I1 and I2 be two IMCReo models , and
M ✓ N , such that I1 ⌘ I2. Then, @MI1 ⌘ @MI2.

Proof. An interactive transition in @MI1 is the M restriction of a I1 interactive tran-
sition, say (i, j)

X
(i0, j0) such that (i, j) 7M . As I1 ⇠ I2 there exists a transition

(k, l)
X

(k0, l0) in I2 for bisimilar states (i, j) and (k, l). The extra condition in
the definition of ⌘ further imposes that R(i,j) = R(k,l), which, both being composed
states, has to be stated piecewise, i.e., Ri = Rk and Rj = Rl. But this means that
if the original transition in @MI1 does not block M , this one in @MI2 has the same
property. A similar argument applies to the analysis of Markovian transitions. Ac-
tually, for stable, bisimilar states (i, j) and (k, l) in I1 and I2, respectively, and each
bisimilarity equivalence class C, Γ((i, j), C) = Γ((k, l), C). This equality does not
necessarily holds when comparing @MI1 and @MI2 because the definition of synchro-
nisation considers only (M restrictions of) Markovian transitions (i, j)

γ
(i0, j0)

such that (Ri0 [Rj0) \ M = ; and so, unless Ri0 = Rk0 and Rj0 = Rl0 , one can
not conclude that the corresponding cumulative rates Γ((i0, j0), C),Γ((k0, l0), C) are
equal, because different markovian transitions could have been pruned in @MI1 and
@MI2. But such is the case, however, if I1 ⌘ I2.

52

4.2. IMCReo composition

4.2.4 Cleaning up unintended transitions

In general, when Reo channels are set in parallel within a connector, they evolve
independently. However, when connected through their ends, data flows from one
to the other, in sequence, and there is a clear intended flow direction. Up until now,
IMCReo has been refrained from explicitly modelling the difference between input and
output ports, which are responsible for setting the intended flow direction. This may
generate unintended transitions.

Consider Example 4.1 (Figure 4.2) once again. Node {a, b}| c {b}e evolves inter-
leaved via γab or γbB to the same state. This leads to an artificial configuration in
which the buffer becomes full before data is transmitted through the lossy channel.

Another sort of unintended transitions arise when a channel is transmitting data
from one port to another and requests arrive to those ports. This is undesirable,
as ports are busy. A last sort of unintended transitions is related to the fact that
nondeterminism may arise where it shall not exist.

These unintended transitions must be cleaned from the model so that it correctly
captures the desired operational behaviour of Reo. The following definition formally
presents such an operation.

Definition 4.8 (Cleaning). Let M ✓ N and I = (S,Act, , , s) be an IMCReo

model. Suppose the existence of a relation < on N such that a < b when data flows
from a to b, with a, b 2 N . The cleaning of I with respect to M , denoted CMI,
corresponds to restricting @MI so that for all its Markovian transitions i

γ
f

1. Rf \ AN(i) = ; ^ Ri ⇢ Rf , where AN(i) = Ti [{j| 9k2Ti
.j < k ^ k < j};

2. Tf ⇢ Ti;

hold, and all its interactive transitions j X
k respect

3. ¬9
j

Y
l2

· X = Y ^ Tk \M = ; ^ Tl \M 6= ;.

Informally, an IMCReo model failing to respect condition 1 allows requests on
nodes that are actively transmitting data. Whenever condition 2 does not hold,
the model fails to preserve transmission sequencing. Finally, if condition 3 fails,
nondeterminism is being enforced where it should not exist. Condition 3 is a special
case of active blocking resulting from the comparison of transitions; thereof it cannot
be identified by Definition 4.3.

Illustration of conditions 2 and 3 can be found in Figure 4.2. Note that the
transition marked with � does not respect transmission sequencing: {a, b}| c {b}e

γbB

{a, b}| c f . Actually Ti = T{a,b}| c {b}e = {a, b} and Tf = T{a,b}| c f
= {a, b}, so Ti 6⇢ Tf .

53

Architectural reconfiguration of interacting services

In turn, the transition marked with } enforces nondeterminism. Note that state
a | c is equal to a, b | b, c , modulo �M , forM = {b}. Therefore, after synchronisation the
following transitions coexist: a | c

a
{a}| c and a | c

a
{a, b}| c {b}. Nondeterminism

is enforced because both transitions are equally labelled and T{a}| c \M = ; and
T{a, b}| c{b}\M 6= ;.

The composition illustrated in Figure 4.2 is revisited in Figure 4.5 after synchro-
nisation and cleaning.

;|;e a |;e a | c e...
...

{a, b}| c {b}e ;| c {b}e. . .
γa γc a γab

Figure 4.5: Parallel composition of a lossy and fifoe after synchronisation and cleaning.

A substitutability result for CM can only be formulated in terms of a slightly
coarser version of strong bisimilarity as follows.

Definition 4.9 (Time-independent strong bisimulation). Let I = (S,Act, , , s)

be an IMCReo model. An equivalence relation R ✓ S⇥S is a time-independent strong
bisimulation if for any (i, j) 2 R and equivalence class C 2 S/R the following holds:

1. for each A ✓ Act and some i0 2 C, if i ⇤ A ⇤
i0, then there exists a state

j0 2 C such that j ⇤ A ⇤
j0, and (i0, j0) 2 R, and vice-versa,

where ⇤ represents a possibly empty sequence of Markovian transitions.

Two IMCReo models I and J with disjoint state spaces SI and SJ and initial states
i and j, respectively, are time-independent strong bisimilar (denoted I ⇠ti J) if there
exists a time-independent strong bisimulation R on SI [SJ such that (i, j) 2 R.

Theorem 4.4 (Time-independent Equivalence). Let I and J be two IMCReo models,
such that I ⇠ J . Then I ⇠ti J .

Proof. From the structure of a IMCReo model, it is obvious that each interactive
transition is of the form i

⇤ A ⇤
i0, where i (respectively, i0) is the target

(respectively, the source) state of some interactive transition. The same goes to J :
each interactive transition is of the form j

⇤ A ⇤
j0, with j (respectively, j 0)

being the target (respectively, the source) state of some interactive transition in J.
Since I ⇠ J (by assumption) then, i and j are bisimilar and so are i0 and j 0. This
is exactly the case when I ⇠ti J .

Theorem 4.5 (Cleaning Equivalence). Let M ✓ N and I and J be two IMCReo

models, such that I ⇠ J . Then CMI ⇠ti CMJ

54

4.2. IMCReo composition

Proof. From Theorem 4.4, I ⇠ti J . Therefore, removing Markovian transitions from
I and J in the context of the cleaning operation does not affect the ⇠ti relation. It
remains to show that removing interactive transitions (that enforce nondeterminism)
does not affect the relation as well.

In case that no interactive transition enforces nondeterminism in I (consequently
there is also no such transitions in J , because I ⇠ J), then I ⇠ti J holds trivially. In
case that there is a transition i

A
i0 enforcing nondeterminism in I, then there is

also such a transition j A
j0 in J . They are both removed, in I and J , on cleaning.

Possibly, there remain Markovian transitions that have also to be removed as their
source states become unreachable after the mentioned interactive transitions are
eliminated; this will not affect the relation (because I ⇠ti J). Possible interactive
transitions removed in I for the same reason are also removed in J . This ensures
CMI ⇠ti CMJ .

Note that CMI ⇠ CMJ when I ⇠ J , or even when I ⌘ J , does not hold in
general, as illustrated in the following example.

Example 4.2 Consider the two IMCReo models, I and J , in Figure 4.6 that appear after
their synchronisation over a set M = {b}. In this case, I ⇠ J .

; · · · a | c

{a}| c

{a, b}| c {b} · · ·

a

0.5

a
0.4

I

; · · · a | c {a, b}| c {b} · · ·
a

0.5

0.4

J

Figure 4.6: Fragments of two equivalent synchronised IMCReo models

After cleaning, transitions a | c
a

{a}| c
0.5

; in I will disappear. Clearly, states
{a, b}| c {b} (in both chains) will not remain bisimilar since their commutative rates become

0.4 in I and 0.9 in J . z

4.2.5 Composition idiosyncrasies

This section discusses some particularities of the IMCReo composition operation,
through a set of suitable examples.

Identity element

The IMCReo composition has an identity element. The IMCReo model of the sync

channel plays that role. Figure 4.7 depicts the composition of a lossy and a sync

55

Architectural reconfiguration of interacting services

;|; a |;

;| c a | c

{a, b}|{b, c}

{a}|;

;|{b, c}

γa

γc γc

γa

ac

γab

γbc

a

γaL

γab

γaLγa

γbc

γc

Figure 4.7: Composing a lossy and a sync channel.

channel. The result is an IMCReo corresponding to a lossy channel with ports a
and c and a processing delay rate φ(γab, γbc), which combines (via convolution) the
exponential distributions modelled by γab and γbc as an approximated exponential
distribution.

Up to this rate, the sync channel behaves as the identity element for IMCReo

composition. This is an expected result since the sync plays the same role in Reo.
This is confirmed when comparing lossy and lossysync disregarding time, via time-
independent strong bisimilarity.

Context-awareness

IMCReo is context-aware, and its composition operation preserves this desired prop-
erty. The structure of the IMCReo states provides the necessary information to make
it possible.

Figure 4.8 depicts the composition of a lossy and a fifoe channel, i.e., the lossyfifo

connector first shown in Figure 2.4. Observe that data is not lost when the buffer
is empty, as it may be the case in other semantic models for Reo unable to capture
context-awareness (see discussion in [54]). Contrariwise, data is lost only when the
buffer is full and there is a request at the input port.

Atomic dataflow behaviour

The IMC maximal progression assumption (inherited by IMCReo) makes possible the
desired behaviour of atomic data flow. This means that when data is able to flow
from a channel to another, the model immediately allows it. IMCReo composition
enables this feature via the synchronisation definition (c.f., Definition 4.4).

Figure 4.9 shows a fragment of the composition of two fifoe channels (the complete
model has 39 states and 75 transitions). Note that, when the first buffer is full and
the second one is empty, data may flow immediately to the latter, freeing the former.

56

4.2. IMCReo composition

;|; a |;e

c |;e a | c e

{a, b}|{b}e

{a, b}| c{b}e

;|{b}e

;| c{b}e

;|;f a |;f {a}|;f

;| c f a | c f {a}| c f

;|{c}f a |{c}f {a}|{c}f

{a}|;e {a}| c e

a |;e

;|;e ;| c e

γa

γa

γc γc

a

a

γc

γab

γab

γc

γbB

γbB

γc

γa

γa

c

γc

c

a

γc

c

a

γa a

γBc

γaL γc

γaL

γaL

γaL

γBc

γBc

γaL

Figure 4.8: Composing a lossy and a fifoe channel.

The ⌧ -transitions, which result from synchronisation operation, explicitly model this
behaviour.

;e|;e

;e| c e

a e|;e

a e| c e

{a}e|;e

{a}e| c e

;f |;e

a f |;e

;f | c e

a{b}f |;e

{b}f |;e

{b}f | c e

. . .

. . .

. . .

. . .

. . .

γa

γc

γa

γc

a

a

γc

γaB

γaB

γc

γa

⌧

⌧

⌧

γaB γBb

γa

γbB γBc

γc

Figure 4.9: Composition of two fifoe channels (fragment).

Small primitive models

IMCReo assumes small models for each Reo primitive. Consequently, complex mod-
els arise from their composition. This follows the Reo rationale: obtain complex
connectors from the composition of simpler ones [14]. Despite of being a typical
approach, it is recognised that the use of higher-level models could improve compo-
sition efficiency.

Consider the case of fifo channels. A two- or more-memory positions fifo channel
is obtained from the composition of the same number of one-memory position fifo

57

Architectural reconfiguration of interacting services

channels. This introduces inefficiency to composition as the state space grows with
the growth of memory positions.

An alternative solution would be to assume the family of n-memory positions fifo
channels, and regard each of its element as traditional queues [61] with a bounded
capacity. This would require, for instance, that states in IMCReo were modelled as
triples (R, T, n), where n stands for the number of free memory positions.

Without practical evidence it is hard to draw conclusions about the final state
space size generated by both approaches. Intuition says that the difference would
not be considerable. Differences could be relevant, though, during the composition
process, since the IMCReo model of each n-memory position fifo channel would be
regarded as a primitive model.

Binary combination

IMCReo composition is assumed to be performed on nodes that share, at most, two
channel ends. When three or more channel ends have to be joined, the connector is
refactored to comply to this assumption through the use of mergers, replicators and
routers delivered as stochastic primitive three-port channels.

Figure 4.10 (first row) presents the (abstracted) stochastic version of the replicator,
the merger and the router connectors. The corresponding IMCReo models are in the
second and third rows. These abstractions assume that the annotated processing
delays correspond to the relevant composition of all delays involved in each relevant
flow path. In a replicator there is only one such path which involves all the nodes
of the connector. In a merger there are two: one involving nodes a,m and c1, and
another involving nodes b,m and c. Finally, in a router there are also two paths:
one involving nodes a, j, l, x and b and the other a, j,m, x and c.

Figure 4.11 illustrates how a connector is transformed to comply to the assump-
tion that each node connects, at most, two channel ends.

4.3 Distilled IMCReo

IMCReo, as introduced, suffers from some scalability problems. Its composition oper-
ation (which involves parallel composition, synchronisation and cleaning) generates
a state space that remains considerably big even after minimisation via bisimulation.
This has efficiency repercussions, not only on the final model analysis, but also (and
perhaps more significantly) on the composition operation. Two main problems con-
tribute to such a lack of efficiency. One is internal to the IMCReo approach. It resides

1These node names refer to the connectors depicted in Figure 2.1.

58

4.3. Distilled IMCReo

γa

γb

γc

γabc

replicator

γa

γb

γc
γac

γbc

merger

γa

γb

γc

γab

γac

router

; b

a

c

a, c

a, b

b, c

a, b, c

{a, b, c}

a, c ;

γa

γb

γc

γc

γb

γa

γc

γa

γb

γb

γc

γa
abc

γabc

replicator

; b

a

c

a, c

a, b

b, c

a, b, c

b {a, c}

a {b, c}

{a, c}

{b, c}
a, c

a

b

;

;

γa

γb

γc

γc

γb

γa

γc

γa

γb

ac

bc

γb

γa

γc
ac

bc

γac

γbc

γac

γbc

merger

; b

a

c

a, c

a, b

b, c

a, b, c

{a, c}

{a, b}

b {a, c}

c {a, b}

a, c

b

a

a, b, c

;

γa

γb

γc

γc

γb

γa

γc

γa

γb

ac

ab

γb

γa

γc

ac

ab

γac

γb

γab

γc

γac

γbc

router

Figure 4.10: Stochastic three-port basic connectors and corresponding IMCReo models.

γa

γb

γc

γd

γe

γat

γbt

γct

γft

γdt

γet

γa

γb

γc

γd

γe

γat

γbt

γct

γft

γdt

γet

γm11

γm12
γm21

γm22

γr1

γr2

Figure 4.11: Connector refactoring for composition via two channel end nodes.

59

Architectural reconfiguration of interacting services

in the assumption that each Reo node connects at most two channel ends. Since
this is not always the case in Reo specifications, a refactoring strategy is adopted as
presented before. Three-port channels are assumed, whose associated IMCReo model
the behaviour of replicator, merger and router nodes. These models subsume a con-
siderable state space size. The other one is due to some design decisions on the
stochastic Reo model itself.

The latter is discussed in detail in the sequel. In particular, improvements to
stochastic Reo are proposed that will influence to look into IMCReo in a more modular
and scalable way.

4.3.1 The writer, the reader, the channel and the node

As an exogenous coordination model, Reo disregards services or components when it
comes to specifying a coordination schema. It only assumes that such computation
loci are bound to the ports of the connector, which receive IO impulses whenever
communication is requested. Consequently, stochastic Reo inherits the same philos-
ophy. But, does it? Not quite! In fact, stochastic Reo circuits are not completely
exogenous in the sense of being concerned only with aspects related to coordination.
Actually, they embody, in their request arrival rates: information that is inherently
associated to the induced stochastic behaviour of the interacting services, whose
communication stochastic Reo circuits coordinate. As expected, this hampers the
reutilisation of stochastic Reo models, and introduces unnatural simplifications to
make it compositional.

With effect, nodes in Reo and stochastic Reo are built on the self-contained
pumping station assumption. As any other assumption, it makes sense to simplify
the model. But, as any other simplification, it does not reflect the complete real-
ity in the model. As a consequence, undesired analysis errors resulting from such
simplification may occur, leading, ultimately, to defective systems.

To avoid such simplifications and mismatches to exogenous coordination phi-
losophy, one proposes to consider the stochastic version of Reo as a two-phase
component-based coordination model. It is two-phase because it shall be regarded
before (referred to as the design phase) and after deployment (referred to as the
deployment phase); it is component-based because it is constructed from four spe-
cific components: the writer, the reader, the channel and the node, as graphically
presented in Figure 4.12.

The writer and the reader components, represented as black and white squares,
respectively, are synchronous stochastic abstractions of the real-world services that
are to be bound to the ports of the connector. They are annotated with a delay rate

60

4.3. Distilled IMCReo

γwr γrd γab
a b γe γd

Figure 4.12: The essential components of stochastic Reo. From left to write: the
writer, the reader, the channel and the node.

(γwr and γrd, respectively), that models the time between consecutive IO requests
issued by such components.

The channel component, represented as the standard Reo channel notation (c.f.,
Figure 2.1), inherits the usual behaviour of Reo channels. As expected, it also
inherits the processing delay rate of stochastic Reo, which models the duration of
point-to-point data transportation. Note that the request arrival rates are no more
part of a channel model.

The node component, abstractly represented as a black dot, is a synchronous
component that behaves like the replicator, the merger or the router (for last one, the
usual notation is used). Differently from the original version of stochastic Reo, in
this approach, nodes are assumed to take time to enqueue and dequeue data. This
behaviour is modelled by the delay rates γe and γd.

• Enqueueing data takes into account not only the time to process incoming
data but also the time needed to select from which channel data will be read
(in case of being a merger);

• Dequeuing data takes into account the time to write data in the channels; it
further comprises the time to generate copies of the data to write (in case of
being a replicator), and the time to decide to which channels it will write (in
case of being a router).

This concretises a more realistic stochastic behaviour of nodes, as opposed to the
self-contained pumping station behavioural assumption.

The design-phase stochastic Reo models originate from the composition of chan-
nel and node components. As desired, these models become reusable, compositional
and respectful of the exogenous coordination philosophy.

In turn, the deployment-phase models are fixed for a given installation of com-
pounding services. The writer and the reader components are bound to the interface
ports of the connector. Such fixation erases the possibility of reusing the coordi-
nation model, but it provides an holistic vision of the coordinated system, and,
consequently, it allows for analysing the system as a whole. This is, in fact, very
close to the original stochastic Reo model, adding to it, however, a more realistic
separation of concerns.

61

Architectural reconfiguration of interacting services

Figure 4.13 depicts a simple example of a lossyfifo connector in both the design-
and the deployment-phase.

Design-phase model Deployment-phase model

γe

γd

γab

γaLa

γbB γBc

c

γrdc
γwra γe

γd

γab

γaL

γbB γBc

Figure 4.13: The two-pase component-based stochastic Reo model of a lossyfifo.

4.3.2 DIMCReo: the distilled IMCReo

This component-based vision of the stochastic Reo model contributes to looking into
IMCReo in a distilled way, where each channel, node, writer and reader is regarded
as an independent stochastic process that may (or may not) synchronise with the
other elements. This distilled version of IMCReo will be referred to, henceforth, as
DIMCReo. Essentially, DIMCReo is not semantically disruptive with IMCReo, as it will
be remarked in this sequel.

The introduction of delays in nodes raise the need for two new sorts of states with
specific semantics: the state where the node is enqueueing and the state where it is
dequeueing data. A state in DIMCReo is fully characterised as (R, T,E,D,Q) with
E,D 2 2N , where states of the form (;, ;, E, ;, Q) are enqueueing states, meaning
that the node is reading from the channel ends in set E; these states are represented
as E Q. Likewise, states of the form (;, ;, ;, D,Q) are dequeueing states, meaning
that the node is writing to the channel ends in set D; these states are represented
as D Q. All the other state forms are represented as previously.

The formal definition of DIMCReo is precisely the same as the one presented
in Definition 4.1. Consequently, definitions for bisimulation (Definition 4.6) and
time-independent bisimulation (Definition 4.9) considered for IMCReo also hold for
DIMCReo.

The following paragraphs informally present the DIMCReo model of each consid-
ered component.

Channels

Consider the DIMCReo models for the basic Reo channels, as depicted in Figure 4.14.
These models are simply obtained from their counterpart IMCReo models by disre-
garding the environment information.

62

4.3. Distilled IMCReo

; {a, b}

ab

γab

γab
a b

γab
a b

sync and drain

;

{a}

{a, b}

a

ab

γaL

γab

γab

γaLa b

lossy

;e {a}e

;f{b}f

a

γaB

b

γBb

γaB γBb

a b

fifoe

Figure 4.14: The DIMCReo for the basic stochastic Reo channels

Note how simple the models become. When compared to those presented in
Figure 4.1, a significant reduction is visible in their state space: 2

5
for the sync

channel, 1
2

for the lossy channel and 1
4

for the fifoe channel.

The attentive reader will notice that DIMCReo does not entirely capture the
semantics of the stochastic Reo channels. It fails to fully capture, for instance, the
context-awareness property (c.f., lossy IMCReo model in Figure 4.14). This shall not
come as a surprise, however, since the contextual (i.e., environment) information was
relegated to another component. Clearly, these are design-phase models, and as such,
one shall not require that they comprise such holistic behaviour. Consequently, only
the deployment-phase models will capture the semantics of stochastic Reo channels
as previously introduced.

Readers and writers

To obtain deployment-phase models it is necessary to compose design-phase mod-
els with the environment information, i.e., the reader and the writer components.
Observationally, these readers and writers would behave similarly: they issue IO
requests by publishing the intention to write (respectively, read) data; then they
will block until synchronising with the connector ports. Thus, one single DIMCReo

model is enough to model such behaviour. Figure 4.15 depicts it.

; a

γa

a

Figure 4.15: The IMCReo for the reader and writer components

63

Architectural reconfiguration of interacting services

A reader is bound to an output port while a writer is bound to an input port. This
is how readers and writers are distinguished. The composition of these components
with one channel will result in a DIMCReo modelling the semantics of stochastic
Reo channels (and consequently, connectors). This will become clear further in
Section 4.3.3.

Nodes

Reo defines three distinct types of nodes: replicator, merger and router. Consider
Figure 4.16, where six different Reo node configurations are presented based on that
three basic node types.

a b
a b

c

a

b

c a b

c

.
a

b

c

d

. . .

a

b

. . .

c

d

(a) (b) (c) (d) (e) (f)

Figure 4.16: Different Reo node configurations: (a) simple node; (b) replicator node;
(c) merger node; (d) router node (e) merger-replicator node and (f)
merger-router node.

Note that node configurations (a) to (c) are special cases of (e): these nodes
select one incoming channel to read data from, and then copy and write the data
into all the outgoing channels. In turn, node configuration (d) is a special case of
(f): these nodes select one incoming channel to read from, and then route the data
to one of the outgoing channels. Nodes (e) and (f) define, in fact, two families
of nodes, referred henceforth as merger−replicator and merger−router, respectively.
They are parametric on the number of incoming and outgoing channels and also on
the delays for reading (enqueueing) and writing (dequeueing) data, if such delays
are considered.

Consistently, the DIMCReo for nodes would be generated from these two families,
taking into account their parameters as follows:

merger−replicator : 2N ⇥ 2N ⇥ R+ ⇥ R+

merger−router : 2N ⇥ 2N ⇥ R+ ⇥ R+,

where the first parameter is a set of output channel ends (which are the inputs of the
node); the second is a set of input channel ends (which are the outputs of the node);
the third models the time to select and read from one channel end, and finally, the
fourth parameter models the time to copy, route and write data into one channel
end. Without loss of generality, it is assumed that the first two parameters do not

64

4.3. Distilled IMCReo

include the empty set.
The parametric DIMCReo model for both merger−replicator and merger−router

family of nodes can now be presented. Figure 4.17 depicts such generic models.
For simplicity, notation Ii represents the ith element in set I and O represents the
concatenation of all elements in set O. Moreover, it is assumed that the cardinality
of sets I and O are, respectively, n and k.

;

I1

. . .

In

. . . O. . . ;

I1O

InO

γe

γe

γd

k

merger−replicator (I, O, γe, γd)

;

I1, O1

. . .

I1, Ok

. . .

. . .

. . .

In, O1

. . .

In, Ok

. . .

O1

Ok

. ;

I1O1

I1Ok

InO1

InOk

γe

γe

γe

γe

γd

γd

merger−router (I, O, γe, γd)

Figure 4.17: DIMCReo models for merger−replicator and merger−router nodes.

The merger−replicator node blocks until synchronising with one of the input chan-
nel ends and all the output channel ends. Once such synchronisation is achieved,
it starts enqueueing data from the input channel end (delayed for some exponen-
tially distributed time modelled by γe). Then, it dequeues data to all the output
channel ends and returns to the initial blocked state. The delay time of a single
dequeue operation is exponentially distributed with rate γd; since it performs k such
operations, then the average delaying time is exponentially distributed with rate γd

k
.

The merger−router, in turn, blocks until synchronising with one of the input and
one of the output channels ends. Once synchronisation is achieved, it enters in an
enqueueing state and remains there for an exponentially distributed time modelled
by rate γe. Then, it dequeues data to the selected output channel end at a rate γd,
returning to the initial blocked state.

Example 4.3 Consider the node configurations in Figure 4.16. The corresponding
DIMCReo models are presented in Figure 4.18.

Each DIMCReo model is generated by instantiation of the node families with specific
parameters as follows:

(a) merger−replicator ({a}, {b}, γe, γd)

(c) merger−replicator ({a, b}, {c}, γe, γd)

(e) merger−replicator ({a, b}, {c, d}, γe, γd)

(b) merger−replicator ({a}, {b, c}, γe, γd)

(d) merger−router ({a}, {b, c}, γe, γd)

(f) merger−router ({a, b}, {c, d}, γe, γd)

z

65

Architectural reconfiguration of interacting services

; a b
ab γe

γd

(a)

; a b, c
abc γe

γd

2

(b)

;

a

b

c

ac

bc

γe

γe

γd

(c)

;

a, b

a, c

b

c

ab

ac

γe

γe

γd

(d)

;

a

b

c, d

acd

bcd

γe

γe

γd

2

(e)

;

a, c

b, c

a, d

b, d

c

d

ab

bc

ad

bd

γe

γe

γe

γe

γd

(f)

Figure 4.18: The IMCReo models for the node configurations in Figure 4.16.

Note that the enqueueing states of the merger−router DIMCReo are composed of
both the selected input and output channel ends. The semantics of these states
entails that data is being read from input and output ends, what is inaccurate. This
imprecision is required to ensure the correct semantics of a whole connector (as will
be discussed later on). If these states were only composed of the synchronised input
end, each enqueueing state would have k outgoing Markovian transitions, one to
each dequeueing state. This would enable to dequeue data into an end ox when the
selected output end was ok, with ox 6= ok. Notably, this increases the state-space of
such model; however, not as much as in the IMCReo’s approach for node modelling.

By disregarding enqueueing and dequeueing delays, these families of nodes are
simplified into a single DIMCReo model with transition space size of n and n.k for
merger−replicator and merger−router, respectively, corresponding only to interactive
transitions. In fact, this is the result of minimising the DIMCReo models of these
families of nodes via the time-independent strong bisimulation relation.

4.3.3 Composition in DIMCReo

Composition in DIMCReo follows the same principles as in IMCReo. The operation
builds on the parallel composition (Definition 4.2), synchronisation (Definition 4.4)
and cleaning (Definition 4.8). This is, however, only the case for the design-phase
DIMCReo models, when nodes do not delay the composite. When nodes present
delays, the cleaning part of the composition operations needs a revision.

Concretely, the need for a revision to the cleaning operation dues to the fact

66

4.3. Distilled IMCReo

that enqueueing/dequeueing data into/from a node shall respect a specific order.
Concretely, (i) data is always enqueued into the node only after being transmit-
ted to that node; (ii) data is always transmitted to any further node only after
being dequeued from the current one and (iii) data is always enqueued before be-
ing dequeued (from the same node). In rigour, DIMCReo requires that enqueueing
and dequeueing transitions appear immediately one after the other, except in cases
where other operations may occur in parallel; when such are the cases, transitions
will appear interleaved.

Formally, the revised cleaning operation remains the same as shown in Defini-
tion 4.8, but with the second clause is further extended as follows:

Definition 4.10 (DIMCReo Clean up). Let M ✓ N and I = (S,Act, , , s) be
a DIMCReo. Suppose further the existence of a relation < on N such that a < b

when data flows from a to b, with a, b 2 N , with the lift to sets defined as A <

B i↵ 9a2A · 8b2B · a < b.
The cleaning of I with respect to M , denoted CMI, corresponds to restricting

@MI so that all its Markovian transitions i
γ
f respect:

(i) Rf \ AN(i) = ; ^ Ri ⇢ Rf , where AN(i) = Ti [{j| 9k2Ti
.j < k ^ k < j};

(ii)

8

>

>

>

>

<

>

>

>

>

:

Ti \ Tf < Tf if Ti \ Ei 6= ;

Ti = Tf if Ei < Ti

Ti = Tf if Ti \Di 6= ;

Ti \ Tf < Tf otherwise

and all its interactive transitions j X
k respect:

(iii) ¬9
j

Y
l2

· X = Y ^ Tk \M = ; ^ Tl \M 6= ;.

Example 4.4 This example shows the (design-phase) composition of a lossy channel with
a sync channel, as in Figure 4.7, but further considering that enqueueing and dequeueing
data in the mixed node is delayed with a rate γenq and γdeq, respectively. Figure 4.19
depicts the composition of the two channels and the synchronising node.

The greyed-out transitions are those eliminated due to the cleaning operation. In

particular, these transitions do not respect the expected sequencing feature. z

In order to obtain the deployment-phase model, an extra step is required that
compose the design-phase model with the environment model. Such composition
step is as before, but it bypasses the synchronisation operation. Formally,

67

Architectural reconfiguration of interacting services

;

{a}

{a, b}

a

ab

γaL

γab

L

; {c, d}

cd

γcd

S

; b c
bc γenq

γdeq

N

;|;

{a}|;

;| {c, d}

{a, b}|;

{a}| {c, d}

{a, b}| {c, d}

a acd

cd

abcd

ab

cd
γaL

a

ab

γcd

cd
γab

γcd

γab

γaL

γcd

L k; S

;|;{a}|; {a, b, c, d}| b

{c, d}| b {a, b, c, d}| c {a, b}| b

;| b {c, d}| c {a, b, c, d}|; {a, b}| c ;| b

;| c {c, d}|; {a, b}|; ;| c

;|;

a abcd

γaL

γab
γenq

γcd

γcd γenq

γab
γdeq

γcd
γab γenq

γenq γcd γdeq γab γcd γdeq γab

γdeq γcd γab

(L k; S) k{a,b} N

;

{a}

{a, b, c, d}b {c, d}b

{c, d}c{c, d}

a

ad

γaL

γab

γenq

γdeq
γcd

C{a,b}(@{a,b}((L k; S) k{a,b} N))

Figure 4.19: Construction of the design-phase DIMCReo model for the lossysync con-
nector with a delayed node.

68

4.3. Distilled IMCReo

Definition 4.11 (Deployment). Let I be a DIMCReo model of a design-phase stochas-
tic Reo connector, E be a set of DIMCReo models representing all the relevant reader
and writer components defining the environment for I, and finally M ✓ N . The
deployment-phase model of I in environment E with respect to ports M , denoted
IΔE

M
is computed as follows:

CM(I kM Ek),

where Ek is the DIMCReo resulting from parallel composing all elements of E, referred
to as the global environment model.

Example 4.5 Consider LSnd and LSd to be design-phase DIMCReo models of two
lossysync connectors. In the first, nodes are assumed without delays; in the second, nodes
present delays. Consider also W and R to be DIMCReo models of a writer and a reader,
respectively. The deployment-phase model of both lossysync connectors with respect to
{W,R}k = W k; R is depicted in Figure 4.20.

; a

γa

a

W

; d

γd

d

R

; a

d a, d

γa

γd γd

γa

a

d d

a

ad

{W,R}k

; a

d a, d

{a, b, c, d}

{a}

{c, d}

γa

γd γd

γa

ad

γab

γcd

a

γaL

LSnd

Δ
{W,R}
{a,d}

; a

d a, d

{a}

{a, b, c, d}b

{c, d}b{c, d}c{c, d}

γa

γd γd

a

γa

ad

γaL

γabγenqγdeq

γcd

LSd

Δ
{W,R}
{a,d}

Figure 4.20: Construction of the deployment-phase DIMCReo model for the lossy chan-
nel, with and without delaying nodes.

Nota that the resulting deployment-phase DIMCReo without delaying nodes is exactly

the same as obtained with IMCReo (c.f., Figure 4.7). The same does not happen when

nodes present delays. z

Example 4.5 reinforces what was mentioned beforehand: when nodes do not

69

Architectural reconfiguration of interacting services

delay the system, composition of DIMCReo models are not semantically disruptive
with IMCReo and the output is the same. This creates, as expected, a relation
between the two approaches, captured in the following theorem.

Theorem 4.6. Let I be an IMCReo and J a deployed DIMCReo. Consider that both
I and J model the same stochastic Reo connector (i.e., with same stochastic infor-
mation for channels and environment). Then, I ⇠ J i↵ J has no enqueuing and
dequeueing states.

Proof. Let’s prove the left to right implication. Suppose that I ⇠ J , and, by absurd,
that J has enqueueing and dequeuing delays. Because I ⇠ J , then for each stable
state i in I there exists a stable state j in J such that their cumulative rates are equal,
and vice versa. But J has at least a state j representing enqueuing or dequeueing
data. I does not have one such state to make the cumulative rate equal to the
cumulative rate of j. Therefore I 6⇠ J , what is contradictory with the assumption.
Thus it is necessary that J has no enqueuing and dequeueing states.

It remains to prove the other direction. Suppose now that J has no enqueuing
and dequeueing states. Since I and J model the same connector and because they
are obtained via the same operations, then it is possible to trace paths from the
initial states of each model such that every interactive transition evolves via the
same set of actions and the Markovian transitions present the same rate. This
imposes a relation in the states involved in such a path, which can easily be seen to
be a strong bisimulation as in Definition 4.6. Therefore, I ⇠ J .

When there are no delays on nodes, DIMCReo and IMCReo models may be used
interchangeably. This is a result that springs from Theorems 4.1, 4.2 and 4.6

4.4 Summary

This chapter introduced IMCReo, a stochastic model based on IMCs that captures the
desired semantics of the stochastic Reo formalism. It differs from the classical IMC
model by introducing a concrete structure for the states, and by assuming labels
of interactive transitions as sets of actions, while preserving the same important
features of that model.

IMCReo was shown to be compositional and to correctly capture intended proper-
ties of stochastic Reo: for instance, it embodies context-awareness, it has a suitable
identity element and it ensures atomicity of data flow between channels. It presents
some drawbacks that do not favour its practical usage, though. The most relevant
one is the fact that it assumes composition via nodes made of, at most, two channel

70

4.4. Summary

ends. Such number is the exception in practice. When three or more channel ends
have to be composed, IMCReo refactors the node so that it complies to that assump-
tion. Such a refactoring introduces complexity in the connector, and consequently to
the IMCReo model. In order to avoid this problem, a distilled version of IMCReo, the
DIMCReo, was proposed, that is more natural and close to the engineering practice.

DIMCReo regards each channel as a group of four components: writer, reader,
channel and node. Each such component has a simplified (low state space) IMCReo

model; the node model is parametrised on the number of channels it is made of.
It further considers two distinct phases of composition: a design and a deployment
phase. The former composes only channel and node components. The obtained mod-
els do not consider environment information (i.e., request arrivals) and, therefore,
do not completely capture the stochastic Reo semantics. The latter is essentially an
extra composition step that couples readers and writers to the design-phase model.
This brings environment information into the picture, making it compliant with the
stochastic Reo semantics.

71

Part II

Reconfiguration of interacting
services

Chapter 5

State of the Art: Software
Reconfiguration

Study history, study history. In history lies
all the secrets of statecraft.

– Winston Churchill

In this chapter. The state-of-the-art works on software reconfiguration is reviewed
and discussed. It starts with an overview of several approaches to architectural re-
configuration. Afterwards, a number of languages used for the description of recon-
figurations are introduced. Finally, techniques for self-adaptive systems construction
are surveyed.

5.1 Architectural reconfigurations

The topic of software reconfiguration is neither new nor even recent. It can be
dated back to the work of J. Kramer and J. Magee [169], in 1985, concerning the
evolutionary needs of large scale distributed systems. But only after D. Garlan and
M. Shaw [130], in 1993, introduced the concept of software architecture as an high-
level abstraction for software development based on components and connectors,
was that J. Kramer and J. Magee [180, 181] ported their reconfiguration knowledge
to software architectures, coining the term “dynamic architectures”. This topic soon
became attractive among researchers from theoretical computer science to practi-
cal software engineering. Literature reveals that several approaches are addressed
when it comes to deriving frameworks to deal with such dynamic changes of soft-
ware architectures. Such approaches can be set on two perspectives: one is formal

75

Architectural reconfiguration of interacting services

and considers category theory, graph theory, or process algebra for specifying archi-
tectures and reasoning about their reconfigurations; the other is more practical and
focuses on the manipulation of components, connectors and programming languages
to achieve adaptation and update of running systems.

In this section, a number of approaches to architectural reconfiguration based on
these perspectives are presented. A focus is set on reconfigurations within the Reo
framework as it is central to this thesis.

5.1.1 Algebraic approaches

Much of the research on architectural reconfigurations has been based on the work
of H. Ehrig [113], P. Degano [109] and U. Montanari [196] on graph grammars and
their application to the reconfiguration of distributed systems. Categorial accounts
of graph grammars as formal frameworks for reasoning about software architectures
and their dynamic changes are largely explored in the literature. Process algebra
also plays an important role when it comes to describe dynamic architectures, of-
ten, however, in an implicit way underlying some architecture description languages
(ADLs).

Reconfiguration by graph grammars

D. Hirsch, et al [147] model distributed systems as graphs, where edges are pro-
cesses and nodes are shared data. The evolution of these systems is specified in a
graph grammar, where context-free rewriting rules are defined for each process, de-
termining how it evolves. The authors further consider synchronous processes of the
distributed system that are supposed to evolve together on agreement of conditions
imposed on the shared data. Rewriting rules are, for this reason, augmented with
constraints that better define how they shall match.

M. Wermelinger, et al [252, 251, 253] propose the use of category theory as a
base to a framework to model architectures, their reconfigurations and to relate the
computational and the architectural levels. They also use labelled graphs of com-
ponents and connectors to represent the architecture. Categories provide the link
between the high-level architecture and the language programs. Reconfigurations
are expressed through the graph rewriting formalism, in terms of the double pushout
approach [113, 98]. A reconfiguration is a rewriting rule that requires the obtained
result to be an architecture. In this work, the authors go further and take into ac-
count the state of the system to perform dynamic reconfigurations. In this setting, a
dynamic reconfiguration is a rewriting rule extended with a condition over variables

76

5.1. Architectural reconfigurations

of the initial architecture components. This guarantees the transformation of the
architecture without tampering the system’s state.

L. Baresi, et al [33] propose graphs of unified modelling language (UML) class
diagrams to model software architectures and to specify reconfigurations through
graph rewriting rules. In this work, a rewriting rule is a pair of UML diagrams
which define the pre and post conditions of the architectural reconfigurations. Neg-
ative application conditions are also assumed to prevent reconfigurations when the
required properties are not ensured. The dynamic behaviour of reconfigurations is
analysed by validation and verification. Validation is carried out through either in-
teractive simulation, which allows for testing for several scenarios and concentrate
on the important aspects of the architecture, or critical pair analysis, which allows
for checking whether the application of two rules may generate conflicts. For veri-
fication, the authors use techniques like reachability analysis, allowing for checking
whether some configuration is reached from an initial one; and model checking of
properties expressed in temporal logics.

R. Bruni, et al [66] account for the characterisation of four forms of dynamism
in software architectures, using typed graph grammars as a formal model. In par-
ticular, they investigate whether such forms of dynamism (programmed, repairing,
ad-hoc and constructible) are suitable for reasoning about the completeness and
correctness of an architectural specification. Such properties are verified by tak-
ing into account notions of reachable configurations (the configurations allowed by
successive application of reconfigurations, i.e., the graph production rules) and ac-
ceptable configurations (the configurations that conform to a generic graph defining
an architectural style).

In a different approach, R. Bruni, et al [65, 68, 67] adopt architectural design
rewrite [69] (a rule-based technique for the design of dynamic software architectures)
and exploits the notion of hierarchical graphs in the context of this technique. This
allows for nesting graphs to represent partial views of the whole architecture. Archi-
tecture elements are represented uniformly and interfaces are added to the graph,
enabling reutilisation. Reconfigurations are encoded as rewrite rules over design
terms, with a simple sufficient condition that enforces the preservation of the archi-
tectural style. Moreover, reconfigurations may be labelled and inductively defined.
The Maude framework is used to specify the architecture and to perform analy-
sis on its structural and behavioural properties. Structural properties are analysed
by applying spatial logics to both design terms and the architecture; behavioural
properties, in turn, are checked using temporal logics. This is claimed to allow for
reasoning about infinite sequences of reconfigurations.

77

Architectural reconfiguration of interacting services

A. Bucchiaronne [70] proposes, in his Ph.D. thesis, the traffic light process to de-
sign (the structure and behaviour) of dynamic software architectures, analyse them
and generate associated code. This process resorts to typed graph grammars to
represent architectures and their dynamism forms. Graph rewriting rules applied
on the typed graphs represent reconfigurations, i.e., the ways in which new configu-
rations can be generated. Alloy [155] is used to specify the graph of the architecture
and to verify both structural properties and its consistency with respect to the de-
fined architectural styles. Moreover, model-checking techniques are employed for
behavioural analysis of the designed architecture. For this, the author models the
behaviour of each component of the architecture as an UML state-chart, and then
model checks them for usual behavioural properties like deadlocks, liveness or safety.
Once the specification is structurally and behaviourally correct, Java code is gener-
ated using the features of the ADL ArchJava [5, 4]. This process is amenable only
for programmed reconfigurations, i.e., reconfigurations established at design time.
It was successfully applied in a case study for the automotive domain [39].

M. Tichy and B. Klöpper [246] propose the use of graph transformation as a
natural way of modelling architectural reconfiguration for self-adaptive systems.
Specifically, they use UML class diagrams to specify the structure of the architecture
and employ story patterns to specify graph transformations, which are then applied
based on the single pushout formalism [230]. They translate the UML graph speci-
fication into the PDDL language so that planning software can be used to simulate
the self-adaptiveness of the architecture.

Reconfiguration by process calculi

Differently from the previous approaches, M. Bravetti, et al [59] propose the concept
of adaptable processes as a way of overcoming the shortage on describing evolution
in process calculi. The authors devise a calculus for such processes, considering two
variants: structural and behavioural. The former allows for the description of both
static and dynamic processes; the latter allows for the definition of behaviour of pro-
cesses after dynamic updates. The adaptable processes calculus, is intended to be
a tool for verification of key properties of dynamic processes. In this work, the cal-
culus is used to investigate bounded and eventual adaptation properties. Different
characterisations of the calculus affect the expressiveness and decidability/reacha-
bility results. In a follow-up work [60], the same authors extend their verification
framework for this sort of processes by introducing a specific temporal logic.

Other contributions using process algebra for architectural description and re-
configuration are found in the context of ADLs. Relevant representatives include

78

5.1. Architectural reconfigurations

Wright [9, 7, 8], Darwin [181], PADL [43], PiLar [102, 103] or LEDA [78, 79]. Later
in this chapter, some of these ADLs will be briefly reviewed. For an interesting
survey on these languages and how they cope with process algebra, the interested
reader is referred to C. Cuesta et al [103].

5.1.2 Pattern-based approaches

This section reviews works that take advantage of high-level models of software
architectures and develop reconfigurations by adopting the notion of patterns, .

P. Oreizy, et al [211, 212] propose an architecture-based approach to express
the evolution of software at runtime. Four different types of software evolution are
considered: addition, removal and replacement of components, and reconfiguration.
The three first types concern the high-level manipulation of components; the re-
configuration concerns the change of component communication policies in order to
modify the system overall behaviour. The authors consider connectors as discrete
architectural entities playing a central role on runtime evolution. They can be ma-
nipulated as components and shall provide functionalities for binding management.
The approach is implemented in a prototype framework named ArchStudio and is
specifically targeted to C2-based applications. In this framework, the architecture
model is stored in a textual format expressing the interconnection between compo-
nents and connectors and their realisation in Java. Modifications to the architecture
are inserted by the user either textually or visually.

H. Gomaa and M. Hussein [133] introduce an approach for designing reconfigu-
ration patterns in software architectures, with a special focus on software product
line architectures. A reconfiguration pattern is regarded as a solution to recurring
problems on running (component-based) systems that need to change their configu-
ration. The authors model high-level reconfiguration patterns with UML collabora-
tion and state-chart diagrams, as well as reconfiguration scenarios described in terms
of messages between two or more components. The authors propose four such re-
configuration patterns: master-slave pattern, where a master component distributes
load by its (identical) slave components and merges the result when slaves finish
their work; centralised-control pattern, where a central component coordinates the
work of other components (as in an orchestrated approach to service composition);
decentralised-control pattern, where no central component coordinates the work of
other components and they communicate with each other (as in a choreographed ap-
proach to service composition); and client-server pattern, where client components
communicate directly with service components. Moreover, a framework is imple-
mented in the RPULSEE prototype, using the Rational Rose Real Time tool. The

79

Architectural reconfiguration of interacting services

framework interacts with the running system to control the reconfiguration process.
It inherits basic validation for the application of reconfiguration patterns, under the
form of execution control, visual component instance monitoring and analysis of
message trace outputs.

P. Hnětynka and F. Plášil [148] propose reconfiguration patterns in the hierar-
chical component model SOFA [222]. The authors define dynamic reconfigurations
as any modification performed to the system architecture while this is running; and
consider six basic operations upon which a dynamic reconfiguration mew remove and
add a component, remove and add a connection or remove and add a component’s
interface. However, it is claimed that ad-hoc application of the basic operations can
lead to uncontrolled architectural modifications (the so called evolution gap prob-
lem). Thus, reconfiguration patterns are introduced to avoid such problem. Three
patterns are considered: the nested-factory pattern, the component-removal pattern
and the utility interface pattern.

F. Moo-Mena and K. Drira [197] present architectural reconfiguration patterns as
sequences of basic actions to repair the system from faults. The strategy proposed is
model-based and targets faulty web-service applications. In this context, a suitable
extension to UML deployment diagrams is used as a high-level notation for specifying
the structural aspects of architectures. Reconfigurations follow the graph rewriting
approach. Actions are defined as textual specification for pattern matching upon a
graph, where nodes are web-services and edges are the connections between them.
The basic operators are addition and deletion of web-services and their connections,
where restriction rules may be applied to make connections unique. Reconfigurations
are ordered sequences of such actions that implement patterns like the duplication
and the substitution of web-services.

M. Malohlava and T. Bureš [182] propose a simple language to specify the in-
frastructure of component-based systems, which enables the procedural description
of changes. The authors claim that such a language supports both the separation of
coordination patterns from the execution environment and their representation at a
more abstract level. The language constructs are minimal and allow for the instan-
tiation of reconfiguration patterns like the factory pattern, which involves adding
new components and connectors; the removal pattern, which is dual to the factory
pattern; and the dynamic-update pattern, which involves suspending a component,
saving its runtime state, changing its business code, restoring the state and resuming
the updated component.

A. Ramirez and B. Cheng [225] propose the development of dynamically adaptive
systems through a model-based approach, where adaptation design patterns play a

80

5.1. Architectural reconfigurations

central role. In this work, the authors focus on providing a catalogue of adap-
tation design patterns harvested from literature. From a dozen of such patterns,
four of them concern reconfiguration of the adaptable system: component-insertion,
component-removal, server reconfiguration and the decentralised pattern. They fur-
ther characterise these patterns as structural (the first two), because they actually
change the structure of architecture; and behavioural, as they modify the behaviour
of the system.

C. Canal et al [80, 77] present a formalised framework for reconfiguring ar-
chitectures for cases in which components were designed without reconfiguration
capabilities. Labelled transition systems (LTSs) are used to model the components’
behaviour, where labels represent their features/actions; and mappings of these la-
bels establish the connections between components. The framework supports the
application of reconfigurations without the need for halting the system. For this,
they describe variants of reconfigurations as patterns of their application with a no-
tion of contract-awareness. Those patterns include history-aware reconfigurations,
which takes into account the history of actions performed until the reconfiguration
was required; future-aware reconfigurations, which requires that the arrived configu-
ration allows for the same operations enabled in the initial allowed; property-aware
reconfigurations, where the strong imposition of future operations are relaxed by the
requirement that only operational-based properties, and not all, are kept after re-
configuration; one-way reconfigurations, which blend both history- and future-aware
reconfigurations; and finally, full-reconfigurability, which allows to move back and
forth between configurations, restricting, however, some of their behavioural aspects.
Moreover, the authors prove several properties of these reconfiguration patterns and
provide algorithms for checking if reconfigurations satisfy the particular contract-
aware properties in the patterns.

5.1.3 Coordination-targeting approaches

The following list presents some of the state-of-the-art works, which explore archi-
tectural reconfigurations from the coordination level.

G. Papadopoulos and F. Arbab [215, 216] were among the first researchers to
introduce reconfiguration in the context of coordination models and languages. In
particular, they show how control- and event-driven coordination languages can
be used to achieve dynamic configuration of software architectures. For this, they
use Manifold, a control- and event-driven coordination language, which provides
a number of features including composition and separation of (computation from
configuration) concerns. Manifold promotes, thereof, the topological definition of a

81

Architectural reconfiguration of interacting services

system by channeling components via their external behaviour (i.e., their published
interface). The approach resorts to the notion of events raised by components to
enact (among other activities) reconfigurations. Reconfigurations are defined by
the explicit rearrangement of connections between components. This is comparable
to some reconfigurations practiced in the context of dynamic architectures as seen
previously (e.g., the removal/update of components), but with a focus particularly
set on the coordination layer. The authors’ claim is, in fact, corroborated. How-
ever, notwithstanding the possibility of defining reconfiguration criteria based on
the observable behaviour of components, which is highlighted as a major advantage
to other models, it comes in its disfavour the entanglement of reconfiguration and
coordination logic.

D. Clarke [91, 92] proposes a basic logic for reasoning about connector recon-
figurations in the context of the Reo coordination language. The author motivates
his work by claiming that the reconfiguration of an architecture can be as simple as
reconfiguring its underlaying coordination layer, but that there are no means avail-
able for reasoning about such reconfigurations. To overcame this hiatus, he first
introduces an axiomatisation of connector construction on the Reo coordination
model [90], enabling the discussion of connector equivalence and structural recon-
figuration; then he presents a semantics for Reo, that considers reconfigurations,
and introduce a logic, together with a model checking algorithm, for inspecting
properties of the system before and after reconfigurations. In particular, for the
axiomatisation of constructors, D. Clarke assumes a formalised Reo connector as a
set of channels and a set of node constructions (based on channel ends), and defines
the semantics of the usual Reo operations (join, split, hide and forget) upon this
structure. A connector reconfiguration is the sequential application of these oper-
ations to the connector. The logic introduced in this work expands computation
tree logic (CTL) by adding new modalities to express reconfiguration changes in a
connector. Such a modal logic is interpreted over a graph where, essentially, nodes
are configurations of a connector with their respective semantics given as constraint
automata (CA); and edges represent reconfigurations Formulas of this logic are ex-
pressed in terms of paths and states of CA for the current connector; the special
reconfiguration transition will enforce the evaluation of the formulas over the CA of
the reconfigured connector. This enables the possibility of both checking interesting
(behavioural) properties of the connectors before and after reconfigurations and, of
course, inspecting reconfiguration invariants.

C. Krause et al [166, 171] develop the topic of connector reconfigurations via
high-level replacement systems, also in the context of the Reo coordination model.

82

5.1. Architectural reconfigurations

These systems are a powerful generalisation of algebraic graph-rewriting techniques
to cope with high-level structures from, e.g., labelled graphs to Petri nets. This
work, mainly reported in C. Krause’s Ph.D. thesis [170], explores graph grammars
to model and analyse coordination-based reconfigurations. In this approach, Reo
connectors (and architectures, in general) are described by means of typed hyper-
graphs, where vertices are nodes of the connectors and (typed hyper-) edges are
communication channels and components. Expectedly, reconfigurations are spec-
ified as graph productions (i.e., rewriting rules), adhering to the double pushout
approach [113, 98]. The authors claim three main advantages by following this path
on graph rewriting: (i) the rewriting rules describe complex reconfigurations that
are applied in an atomic step, rather than in a sequence of low-level operations; (ii)
these rules are applied globally, wherever the left-hand side of each rule matches the
source connector; and (iii) by using positive or negative conditions associated to
rewriting rules, it is possible to define in which specific situations the architecture
should be changed. For the analysis of reconfigurations, the authors take advantage
of critical pair analysis, resorting to the AGG tool [241], which requires a model
translation into an AGG compatible model. This analysis statically checks whether
the application of one rule impairs the application of another. Additionally, they use
the Henshin tool [21] to generate, from the defined reconfiguration rules, a labelled
graph whose vertices are the possible connector configurations and edges are labelled
with the applied reconfiguration rule. This enables model checking for state invari-
ants expressed in object constraint language (OCL), qualitative properties expressed
in modal µ-calculus formulas, and probabilistic properties taking advantage of the
PRISM tool. For the last one, the authors consider to add positive real numbers to
the reconfiguration rules, describing the rate at which the rules are applied per unit
of time. In an endeavour to tackle dynamic reconfigurations, the authors also pro-
pose a methodology to this end, deriving an engine of reconfigurations that is able
to apply reconfigurations while a system is running. It does so by interrupting the
acceptance of input/output (IO) requests in the coordinator ports, creating pending
requests; then, after safely applying the necessary reconfiguration rules, the engine
reactivates the coordinator ports and the pending requests may be served. The
proposed approach for defining reconfiguration rules and their application over con-
nectors is integrated in the extensible coordination tools (ECT) plugin for Eclipse [17]
as a proof-of-concept. The dynamic reconfiguration approach, in turn, is developed
as the ReoLive web-service.

Based on the previous work, C. Krause et al [165] devised an approach for trig-
gering connector reconfigurations based on context-dependency and data-flow. For

83

Architectural reconfiguration of interacting services

this, the authors take advantage of the Reo colouring semantics [93] to observe the
flow of data within connectors and to enrich the graph-rewriting rules by anno-
tating them with suitable patterns of the colours (from the colouring semantics).
This extension to the way reconfigurations are designed enable reconfigurations to
be applied non when the rewriting rules match the structure of the connector, but
when it matches simultaneously the structure and the current state of execution of a
connector. This kind of pattern matching is more restrictive than the previous one,
but equips the system with dynamic self-adaptation capabilities: there is no need for
an external entity to enact reconfigurations, since these are automatically executed
whenever the rewriting rules match the semantics and structure of the connector.

Still in the context of C. Krause’s Ph.D., C. Krause et al [164] explore recon-
figurations in the context of distributed networks of Reo connectors. In this work,
the premise is that besides components, also the coordination layer is distributed,
i.e., the underlying sub-connectors are not in the same logical or physical location.
Moreover, such connectors are regarded as black-boxes that can only communicate
and connect to each other through their published interfaces, with the particularity
of knowing in which ways they can be reconfigured. Because of such distribution and
the inherently absence of a global knowledge about the network, the authors pro-
pose that reconfigurations are triggered locally in the context of one sub-connector,
creating, then, an asynchronous cascade of reconfigurations through the whole net-
work. In particular, the connector where the reconfiguration is triggered, publishes a
reconfiguration request on its published interfaces, to its neighbours, which will pass
the message. Reconfigurations in each sub-connector are enacted bottom-up, taking
into account that they know their reconfiguration rules. The authors further include
a roll-back mechanism to undo a complete reconfiguration when one sub-connector
fails to complete its evolution. This maintains the atomicity of reconfigurations as
in the non-distributed approach.

M. Bozga et al [55] introduce Dy-BIP as an extension to the BIP [35, 34] coordina-
tion model by adding features for specification and analysis of dynamic architectures.
For a brief reference to BIP, please see Section 3.4. Concretely, Dy-BIP introduces
notions of interaction constraints and history variables, and associates them to each
transition of the automaton of each component. Interaction constraints are defined
as boolean operations on (global) port names, and history variables are used to
track communication between components at each state. The latter is claimed to
reduce the state space of each component. For the former, the authors provide a
set of high-level (causal, acceptance and filter) constraint constructs that hide logic
related details. The reconfiguration strategy associated to this model is based on

84

5.2. Languages for reconfiguration

the on-the-fly composition of components by the centralised Dy-BIP engine. In prac-
tice, a global behavioural model is defined as usually by the product of the atomic
components. However, it is only during execution that transitions are defined. At
each state, the engine picks a single transition, based on a global constraint built
from the individual interaction constraints available on the current state of each
atomic component. Then, each component atomically executes the transition that
validates the global constraint, while other transitions are disregarded. This re-
configuration strategy clearly addresses the coordination layer of component-based
systems by facing its evolution when some actions/ports of the atomic components
are not available. In addition, it is compositional and equipped with a clear se-
mantics. The on-the-fly approach is claimed to be very efficient when systems grow
bigger. For small systems, though, the time required for the on-the-fly computation
of interactions is outperformed by its static counterpart.

5.2 Languages for reconfiguration

In the previous section, several works were reviewed addressing reconfiguration of
software architectures. However, in order to analyse and apply reconfigurations in
runtime, it is required that they are expressed somehow. This is usually made resort-
ing to textual approaches, following either structured standards, like the extensible
markup language (XML), or tailor-made specifications, most notably, in the context
of ADLs. In this section, the most prominent works in these categories are reviewed.

5.2.1 Languages for architecture description

ADLs were initially proposed as formalisms to describe the static structure of soft-
ware architectures. Not surprisingly, the main concepts involved, e.g., compo-
nent, connector or configuration, are regarded as first-class citizens in these lan-
guages [188]. Different ADLs come equipped with different features to tackle differ-
ent aspects of computation within the area of component-based or, more recently,
service-oriented systems. One of the main handicaps of several of these languages is
their inability to provide means to describe and analyse runtime changes, whether
structural or behavioural.

Wright and dynamic Wright

Wright [9, 7], takes the notions of component, connector and configuration as the
main concepts in its specification. A component is a computational entity equipped

85

Architectural reconfiguration of interacting services

with an interface (i.e., a set of input and output ports) and a computation (i.e.,
a behaviour specification). A connector defines the communication/interaction be-
tween components; its specification is divided into a set of roles (i.e., the interface of
the connector that defines the behaviour expected from the components connected
to it) and the glue (i.e., the behaviour of the connector). A configuration defines the
whole structure of a system architecture. It embodies instances of components and
connectors and specifies, via attachments, how component ports attach to connector
roles. Furthermore, Wright uses communicating sequential processes (CSP) [149] for
specifying the behaviour of the roles and the glue of connectors, and computation
of basic components. However, since Wright is hierarchical, configurations may be
used instead of CSP to define the computation part of a (more complex) component.

By itself, Wright is not able to support architectural reconfiguration. However,
dynamic Wright [8] fills that hole by introducing a notion of control events as part
of the component’s behaviour, defining states where the system can be changed
and triggering reconfigurations. Reconfigurations are described in a variant of CSP
extended with the actions new, del, attach and detach for manipulating the topology
of the architecture. The use of CSP to specify these reconfigurations limits, though,
the architectures to a specific number of possible configurations, which shall be
known at design time. Moreover, this approach requires that the reconfiguration
controller knows the components in the architecture, since the triggering events is
component-specific. In this context, changing a component to another could result
in deprecating some reconfigurations, if the new component defines different events.

Darwin

Darwin [180, 181] is a ⇡-calculus [191] based ADL. Darwin assumes component and
binding as the main concepts in the architectures it describes. A component is a
computational structure with an interface defined by the services it requires (input
ports) and the services it provides (output ports). Components can be either basic or
composite. The latter are defined by interconnecting instances of basic components
and other composite components. The interconnection is made through bindings,
which associate the names of provided services of one component with the names
of required services of another. The system architecture is, in itself, specified as a
composite component.

Darwin enables the description of dynamic architectures by providing two mech-
anisms: lazy instantiation and direct dynamic instantiation. Lazy instantiation is
concerned with the enforced delay in instantiating a component until some user
attempts to access its provided services. This, in practice, fixes the (possible) re-

86

5.2. Languages for reconfiguration

configurations at design time, and therefore it does not allow for incrementing the
architecture with new components and bindings. In turn, direct dynamic instan-
tiation allows for specification of architectures that may evolve in arbitrary ways,
depending, for instance, on the input data at runtime. Such evolution considers the
creation of new instances of components that were not predicted at runtime and
also of their bindings.

ACME and Plastik

ACME [126, 128], is a format for describing architectures that is easy to read, write
and integrate with tools for architectural exploitation. ACME supports four aspects
of architecture:(i) structure, built on top of a core ontology of usual architectural
concepts (e.g., components, connectors, systems, ports, roles, among others); (ii) se-
mantics, defined as properties of the several architectural elements; (iii) constraints,
expressed in Aramani [195], a language based on first-order predicative logic and fi-
nally (iv) styles, defined through the concept of family.

However, ACME does not provide constructs to express reconfigurations. To
overcome this, Plastik [36] was introduced as a reflective framework to express and
enable reconfigurations in runtime. It takes ACME as the basic language to describe
the architecture and maps that description to a reflective component model that
allows for dynamic change. It supports reconfigurations by introducing language
constructs for conditional triggering of reconfigurations; deconstruction (detach and
remove) of architectural elements; expressing runtime dependencies; and finally dy-
namic attachment of component ports to connector roles.

xADL 2.0

xADL 2.0 [106] is proposed as a highly-extensible ADL based on XML. It supports
not only design time and runtime modelling of software architectures, but also the
management of configurations. The latter is responsible for the dynamic evolution
of the architecture by supporting the definition of options, variants and versions (of
architectural elements).

Options define optional elements of the architecture. Each optional architectural
element is equipped with a guard condition that is evaluated on architectural instan-
tiation. If the condition holds, then the associated elements are instantiated with
the architecture. Variants enable the specification of architectural elements that can
vary on architectural instantiation. This introduces a new type of element that can
have multiple (structural or behavioural) facets, among which one is picked. Again,
(mutually-exclusive) conditional guards are associated to each facet; its evaluation

87

Architectural reconfiguration of interacting services

to true determines which facet is instantiated with the architecture. Finally, ver-
sions allow for the definition of a graph of versions of architectural elements, which
enables their runtime replacement/upgrade.

5.2.2 Languages for reflective adaptations

Recent, approaches to architectural reconfiguration suggest the use of reflective mod-
els of running systems, instead of ADL-based static scripts. This makes a new cat-
egory of languages to emerge, that allow for modelling system reflections. These
languages provide specific constructs for architecture evolution via reconfiguration.

The K-Component model

J. Dowling and V. Cahill [112] present the K-Component meta-model. It is a reflective
model for realising dynamic software architectures. Such realisation is made through
a reification of the base architecture into a configuration graph. In this graph rep-
resentation, nodes are interfaces labelled with component instances and edges are
connectors labelled with connector properties, notably their reconfigurable proper-
ties. In this approach, the authors free the architects from using ADLs to specify
the architectural meta-model, and generate it automatically from the (C++ source
code of the) components and connectors implementation. All the concepts usually
present in ADLs are scattered in several C++ idioms. Dynamic reconfigurations are
realised by adaptation contracts. The latter are series of conditional graph trans-
formation rules (based on the double pushout approach) that represent, in fact,
system architectural constraints. Adaptation contracts are specified in the adapta-
tion contract description language, which includes conditional rules that trigger the
associated reconfigurations when specific adaptation events occur.

PiLar

PiLar [102, 103] was born as the counterpart language of a reflective framework for
dynamic reconfiguration of software architectures. The language provides constructs
for specifying both structural aspects of the architecture as well as its dynamic evo-
lution. From the structural point of view, the component is the only architectural
notion with relevance. A component is essentially described by its interface (so
called avatar) or, additionally, by its internal configuration, i.e., a set of component
instances interconnected via attachments (forming a composite component). Con-
nectors are not part of the PiLar lexicon; rather connections between components
are seen either as simple direct links, or yet another component with interface and

88

5.2. Languages for reconfiguration

behaviour. On the dynamic perspective, the language allows for the definition of
interaction constraints, reconfigurations and reflection. Interaction constraints are
expressed in the ⇡-calculus process algebra. To enable reconfigurations, a set of
constructs is provided for addition, deletion, hiding and aliasing of not only compo-
nents, but also ports and their connections. The support to reflection is guaranteed
by the specification of reifications. A reification defines causal links between base-
and meta-components, where meta-components control, by reflection, the base ones.
Reflective and dynamic constructs may be used together, enabling the envisaged
evolution of a system.

FPath and FScript

FPath and FScript [107] were introduced as languages to specifically support dynamic
reconfiguration of Fractal architectures [64, 175]. Fractal is a hierarchical component
model that allows for implementing, deploying, and managing complex component-
based software systems. It provides powerful, yet low-level features for dynamic
reconfiguration by supporting reflection. Thereof, introspective and interceptive
features allow for both discovering the structure of the application and modifying
it, respectively. FPath and FScript are proposed as high-level substitutes of the
Fractal intrinsic dynamic management capabilities. The languages, being specific
to the Fractal component model, are focused on the direct manipulation of the
relevant concepts. This ensures a great degree of reliability when it comes to dynamic
manipulation of a system’s internal structure.

In particular, FPath is a domain-specific language (DSL) for querying Fractal
architectures represented as FPath graphs. In this graph representation, nodes are
components, their interfaces and attributes; and (directed) edges connect compo-
nents with other components or their interfaces or attributes, and are labelled with
ontological relationships, named axis. FPath expressions are sequences of axis (fol-
lowing a notation similar to XPath [238]) that allow the navigation in the structure
of the application. FScript allows for the definition of dynamic reconfigurations of
Fractal architectures. It is focused only on the manipulation of architectural elements
by means of sequences of functions or actions. It embodies the FPath language to
access the relevant architectural elements (from within functions) and uses actions
to describe complex structural modifications. These changes are performed by the
application of primitive actions for adding or removing components, binding and un-
binding interfaces of client and servers, starting and stoping components, changing
names, setting new values for component attributes, among others. FScript ensures
reliable dynamic reconfigurations by enclosing actions and functions with atomicity,

89

Architectural reconfiguration of interacting services

consistency, isolation and durability (ACID) transactional support.

5.3 Self-adaptation

Self-adaptive software systems are known to respond at run time to changes detected
either internally or externally, in an attempt to keep meeting their own functional
requirements and agreed levels of quality of service (QoS) [210, 129]. This entails
the need for some degree of introspection. Self-adaptive systems should be able to
know their internal compositions and attributes, execution environment, require-
ments and reference performance levels. But above all, they should be able to
observe changes in these elements. Such observations, suitably processed (e.g., by
comparison to reference levels assigned to measurable variables) are responsible for
triggering adaptations.

The process from acquiring information about changes and consequently enacting
adaptations, is known as the control or feedback loop. This is a concept with origin
in control theory, and adopted in several other areas like autonomic computing,
robotics or artificial intelligence [202, 131]. The implementation of such a process,
typically involves four well defined components: monitor, analyser, planner and
executer. The MAPE-K model [160, 153] is the reference model for such process. Self-
adaptive software systems realise this model by (i) monitoring the environment and
probing the system’s attributes; (ii) analysing the data collected to infer situations in
need for adaptation; (iii) deciding the adaptation strategy; and finally, (iv) enacting
reconfigurations to enforce the system’s adaptation into acceptable (non disruptive)
configurations [111, 62, 249].

5.3.1 Approaches

Literature presents different approaches to implement feedback loops. In general,
the approaches agree on external, reusable and component-based feedback loop im-
plementations, rather than on internal, monolithic, and intertwined implementa-
tions [232, 152, 87, 254]. Commonly, the feedback loop is implemented as a system
controlling a base one, and thus is usually referred to as the managing system. The
base system is the managed system.

The existing approaches for self-adaptation can be regarded over a centralised or
a decentralised perspective. In the sequel, some representatives of these approaches
are reviewed.

90

5.3. Self-adaptation

Centralised approaches

Centralised approaches for self-adaptation are characterised by the adoption of a
single feedback loop to manage all the system concerns. These approaches differ
from one another, though, in the way the systems are modelled or adaptations are
realised.

A. Agrawal et al [3] and T. Fischer et al [121] use UML along with graph trans-
formation techniques to define the adaptation of systems. Performance analysis is
not natural, but checking behavioural and structural properties becomes facilitated
from the use of constraint languages like OCL.

D. Garlan et al [127] present Rainbow one of the most acclaimed frameworks for
self-adaptation. It models the system architecture as an abstract graph of computa-
tional elements. That model is available at runtime as an active asset of the feedback
loop. It endows the loop with accessible knowledge about the system behaviour and
enables the verification of properties. Operators, invariants and constraints are used
for the definition of adaptation strategies.

M. Litoiu et al [176] propose an adaptation strategy to guarantee web services
quality. In particular, they propose a control loop implementation that is based on
a model of the web services. Moreover, a robust estimator is used to keep the QoS
values in accordance to the system goals.

Parra et al [217], implement a strategy for adapting service-oriented architecture
(SOA) systems based on the dynamic software product lines paradigm. Features of
the product family, defined in a suitable set of assets, represent the overall architec-
ture of the system. Dynamic adaptation relies on context-aware assets. These define
alternative architectures and the conditions for their existence. A straightforward
decision algorithm uses data obtained by a context manager to check conditions
within the assets before choosing and applying the adaptation.

R. Calinescu et al [76, 75, 74] present a framework for the adaptation of software
systems, where system components are modelled as Markov chains. The framework
performs component analysis via quantitative model checking in PRISM. The results
obtained from the analysis are employed for dynamically adjusting the system to
its objectives and the changes in the environment. Moreover, a notion of policies is
devised to define either constraints to which the system should agree or measures of
success that it must optimise. Adaptations are made on the configurable parameters
of the system that realise such policies.

A. van Hoorn [150] present SLAstic, a framework for architectural adaptation of
distributed systems. The main objective of the framework is to make system run-
ning with efficient resource allocation, while maintaining the service quality initially

91

Architectural reconfiguration of interacting services

agreed. The framework counts on a middleware and a controller part. SLAstic mid-
dleware is incorporated in the software system. It performs convenient adaptations
to minimise system resource utilisation. Concretely, SLAstic middleware is able to
perform changes by allocating and deallocating execution nodes; migrate software
components between environments; and (un)balance load at the level of the compo-
nents. The SLAstic controller is an implementation of MAPE-K feedback loop. It is
responsible for observing, analysing and enacting adaptations.

Based on SLAstic, R. von Massow et al [185] put the Palladio component model [38]
to the service of reconfigurations. The authors introduce SLAstic.SIM as a perfor-
mance simulator to study the impact of reconfiguration in the performance of a
system. It is used as well to evaluate adaptation strategies and tactics based on
realistic workloads, in the context of the SLAstic control loop.

M. Becker et al [37] formalise an approach for the design of self-adaptive systems
based on simulation of a specific model of a system. Simulations are performed to
gradually find a suitable point to trigger adaptations and consequently to fulfil
system requirements. This is done for a range of possible (static) contexts and
through multiple design iterations.

Recently, the MUSIC project [140, 122] was presented as a framework for model
driven development of (component- and service-based) adaptable mobile applica-
tions, in the context of ubiquitous computing. It relies on models for both the
context and the application architecture. Annotations of adaptation capabilities
and contextual dependencies map both models. The framework instantiates the
MAPE-K architecture. It uses a reasoner to search the set of possible configurations
for the optimal solution in the current context. When an adaptation is required, a
reconfiguration script is derived and executed.

Decentralised approaches

Decentralised approaches are characterised by the use of several feedback loops
(or several of its components) to control a system (typically complex and dis-
tributed) [255]. Decentralising control-components imply costs of coordination, but
it realises self-adaptive systems in a more natural, robust and stable way, yielding
better adaptation solutions [250]. Approaches in this perspective typically rely on
artificial intelligence mechanisms and similar ones that soak aspects from nature
and real-life dynamics.

J. Kephart and W. Walsh [161] proposes a unified framework for autonomic com-
puting based on policies brought from artificial intelligence, namely rational agents.
Rational agents reify a sort of MAPE-K model, by perceiving and acting upon its

92

5.3. Self-adaptation

changing environment. The proposed policies are used to evolve a state-based sys-
tem, by taking it from a state into another. Three different sorts of policies are
proposed: actions, goals and utility functions. Actions define a concrete change in
the system, based on if-then expressions. Goals define sets of desired states to which
the system shall evolve autonomously when certain conditions are met. Utility func-
tions define objectives and rank states by their utility at each moment. These poli-
cies express strategies of how the system decides and enacts adaptations. They can
be used interchangeably in different components of a system, in an approximation
to a decentralised decision making system. The authors highlight, however, that a
relationship between the several policies have to be consistent with the coordination
between the components they make autonomous.

B. Caprarescu and D. Petcu [81] take inspiration from natural adaptive sys-
tems to propose a robust feedback loop for computational systems. In particular,
they resort to multi-agent technology and swarm intelligence to define decentralised
feedback loops that mimic ant colonies. The use of multiple feedback loop agents
enables robustness. When one agent fails, the others may continue by organising
themselves. Adaptation decisions are based on a shared repository of ranked policies
(as addressed above [161]). At a time, only one agent is allowed to apply changes,
though; an election algorithm based on policy priorities and agent communication
is used for this.

F. André et al [10] propose SAFDIS, a framework for adaptation of distributed
service-based applications, that is fully decentralised. SAFDIS defines feedback loops
as independent applications, external to the system which they control. SAFDIS
works as a composition of multiple autonomous instances realising the MAPE-K
model. Each such instance is responsible for adapting the associated component of
the distributed managed application. Although actuating individually, the analysers
of each loop cooperate via coordination and negotiation. This becomes necessary in
order to obtain decisions based on the overall system information, rather than only
on the local part of the system that each loop controls.

V. Cardellini et al [82] propose MOSES as a methodology for supporting QoS-
driven adaptation of service-oriented systems. In essence, it is intended to act as a
service broker providing the best selection and binding of services and coordination
patterns (via adaptation). The optimal solutions are found per user request, for a
suitable description of the system architecture and its non-functional requirements.
A set of distributed monitors collect data about QoS of regionally distributed pools
of services, that are candidates for the managed system. The remaining tasks of
the MAPE-K reference model that it follows, analyses, decisions and execution, are

93

Architectural reconfiguration of interacting services

made on a centralised approach.
V. Nallur and R. Bahsoon [201] present an approach for decentralised self-

adaptation by blending principles of economics with computing. Concretely, the au-
thors focus on a market-oriented programming strategy to define adaptation strate-
gies. This involves the existence of several market places where seller services offer
their QoS attributes for some cost, and buyer applications bid for services with a
desired QoS and the price they are willing to pay for such service. The existence of
several markets makes the approach decentralised. Several decider agents have to
work in a distributed way for a suitable solution. When more than one seller fulfils
the requirements of the buyer, the decider agents associated to the buyer rank the
sellers by computing an aggregation of QoS values offered by each one.

5.3.2 Adaptation specification

With the crescent interest in self-adaptive systems, and the several proposals for the
implementation of feedback loops, it became necessary to systematise the definition
of adaptation logic. Languages to that end are only a few, as they started to emerge
only in the past couple of years.

B. Cheng et al [88] propose Stitch as a language to specify adaptation strategies
in the context of Rainbow [127], the well-known framework for architecture-based
self-adaptation. Stitch directly springs from tasks usually performed by architects
and system administrators in order to repair architectures. The language is based
on three main concepts: operators, tactics and strategies. Operators are primitive
commands for managing configurations. Tactics embed operators in reconfiguration
actions. They define conditions for their applicability, and effects to check whether
the reconfiguration yielded the expected results. Strategies define adaptation pro-
cesses as decision trees (with default case) constructed from conditions and tactics.
Tactics are triggered upon the successful evaluation of such conditions. The latter
are formulas, built from functional and non-functional properties of the system. De-
lays are assumed as a time-window for reconfigurations to take effect as they occur
asynchronously. Upon these delays, the reconfiguration may either be successful or
not. On failure, exception treatment is provided by Stitch that includes, as last
resort, the explicit means for halting the adaptation strategy.

N. Huber et al [151] propose the S/T/A domain-specific modelling language to
describe runtime adaptation processes on top of QoS models of component-based
system architectures [52, 38, 137, 134]. S/T/A is based on three concepts: actions,
tactics and strategies. Actions are the atomic elements of the language that confer
change to the configuration of the underlying architecture. These are just refer-

94

5.3. Self-adaptation

ences to adaptation points specified and realised in the concrete system QoS model.
Tactics describe how actions are applied to take the system into a desired configura-
tion. Concretely, each tactic defines a control flow that drives the adaptation plan.
Conditions are used to influence the tactic application or the path to follow in the
described flow. Finally, strategies combine tactics in a weighted fashion. Strategies
are used to trigger adaptations based on events raised when, e.g., objectives (asso-
ciated to the strategies) are violated. Objectives are predicates over QoS properties
of the system that realise the overall goals of the system.

95

Chapter 6

Modelling Reconfigurations

To improve is to change; to be perfect is to
change often.

– Winston Churchill

In this chapter. A model for coordination-based architectural reconfigurations
is formalised. In particular, notions of coordination and reconfiguration patterns
are introduced. These notions are the foundations of a framework for architectural
reconfiguration of interacting services — henceforth referred to as aris (extending
to the title of this thesis), for easier reference — detailed and exploited in this
second part of this dissertation. The patterns are regarded from both a static and
a dynamic perspective. Moreover, their quantitative extension is studied to meet
QoS-related concerns.

Parts of this chapter’s content was previously published, by the author, in:

- Nuno Oliveira and Luís S. Barbosa. “On the reconfiguration of software connectors”. In: Proceedings of the
28th Annual ACM Symposium on Applied Computing. Vol. 2. SAC ’13. Coimbra, Portugal: ACM, Mar.
2013, pp. 1885–1892.

- Nuno Oliveira and Luís S. Barbosa. “Reconfiguration Mechanisms for Service Coordination”. In: Web Services
and Formal Methods. Ed. by Maurice H. ter Beek and Niels Lohmann. Vol. 7843. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2013, pp. 134–149.

6.1 Coordination patterns

The coordination layer of an architecture is the focal point of the aris framework
proposed in this dissertation. The coordination layer constrains service interaction in
an (exogenously) orchestrated software system, by imposing communication policies.
Policies are captured in coordination structures, defining how data and control is

97

Architectural reconfiguration of interacting services

shared between services. Altogether, coordination structures and policies encode
architectural solutions for coordination problems.

Coordination problems are recurrent in software composition. For instance, se-
quential or parallel activity, joining and merging activities, communication with
acknowledgements, priority execution, among others, are some of these problems.
Concrete solutions for them may be varied, but they usually follow an abstract
pattern with basic semantics and properties associated.

In the context of this work, these are referred to as coordination patterns. Con-
crete (exogenous-) coordination formalisms, like Reo or BIP, could be used to define
such structures. However, the intention of a coordination pattern is to be (as much as
possible) independent of such a concrete model. Not in the perspective of proposing
yet another coordination formalism, but rather to regard it as an abstract recipient
for a concrete model, upon which reconfigurations (and properties) can be studied
in an independent framework.

A coordination pattern is formally defined as an abstract graph of communication
primitives. Communication primitives are the indissociable part of a coordination
pattern, defining a basic coordination policy. In the sequel, they are referred to as
channels. Although borrowing that name from Reo, the notion is taken here in a
looser way. For instance, one assumes that a channel may have two or more ends.

Edges in the coordination pattern graph are labelled with both a unique iden-
tifier and a type. The type associates a semantics to the channel, concretising its
operational behaviour. Formally,

Definition 6.1 (Channel). Let E be a set of channel ends, I a set of unique iden-
tifiers and T a set of channel types. A channel is a tuple

c = hS, i, t,Ki

where i 2 I, t 2 T , and S,K ✓ E , such that S \ K = ;, are the sets of source and
sink ends, respectively.

For illustration purposes, the set of types considered in the sequel is borrowed
from Reo, T = {sync, lossy, drain, fifoe, fifof , . . .} (c.f., Figure 2.1), unless stated oth-
erwise.

Example 6.1 An instance sc of a sync channel is written as h{a}, sc, sync, {b}i. Similarly,

an instance sd of a drain channel is given by h{{c}, {d}}, sd, drain, ;i. z

Notation

⇡i(c) selects the ith component of a tuple c.

98

6.1. Coordination patterns

Nodes in a coordination pattern represent interaction points. The latter are
locations where channels synchronise their interfaces (ends) for interaction with
other patterns or external components. When these locations are composed of more
than one end, the latter are said to be co-located.

Definition 6.2 (Coordination pattern). A coordination pattern is a pair

⇢ = hC⇢,N⇢i

where C⇢ is a set of channels, and N⇢ is a partition on the union of all ends of all
channels in C⇢, such that,

1. channel identifiers are unique:

8c1,c22C⇢ . ⇡2(c1) = ⇡2(c2) ! c1 = c2

2. the number of channels sharing a node never exceeds the number of co-located
ends in it:

8n2N⇢
. |n| ≥ |{c 2 C⇢| n \ (⇡1(c) [⇡4(c)) 6= ;}|

One uses 0⇢ = h;, ;i to deonote the empty coordination pattern. In addition,
sets N and P refer to the domain of nodes and coordination patterns, respectively.

A number of operations are considered to access specific parts of a coordination
pattern. Thus,

I(⇢) = {i 2 N⇢| 9c2C⇢ . i \ ⇡1(c) 6= ; ^ in(i, ⇢)},

where in(x, ⇢) = 8c2C⇢ . x \ ⇡4(c) = ; and

O(⇢) = {o 2 N⇢| 9c2C⇢ . o \ ⇡4(c) 6= ; ^ out(o, ⇢)},

where out(x, ⇢) = 8c2C⇢ . x \ ⇡1(c) = ;, are used to retrieve, respectively, the set of
source and sink nodes (i.e., the IO interface) of a coordination pattern ⇢. Operation
IO(⇢) = I(⇢) [O(⇢) retrieves the whole interface.

Notation

– 2f (C) = {f(e)| e 2 C} denotes the application of a function f to the elements
of a set C.
– theS denotes the unique element of a singleton set S.
– (φ ! e1, e2) is conditional expression (read as return e1 if φ holds, e2 other-
wise).

99

Architectural reconfiguration of interacting services

I⇢ = 2⇡2(C⇢)

retrieves the set of channel identifiers in a coordination pattern ⇢.

Ech
⇢ = let (c = the{c0 2 C⇢| ⇡2(c

0) = ch}) in ⇡1(c) [⇡4(c)

computes the set of ends of a channel (uniquely) identified by ch in the context of
a coordination pattern ⇢. Finally,

Nch
⇢ = {n 2 N⇢| E

ch
⇢ \ n 6= ;}

retrieves the nodes of the coordination pattern ⇢ in which the ends of channel ch
participate.

In addition,
◆hS, i, t,Ki = h{hS, i, t,Ki}, {S,K}i

is used to convert a single channel hS, i, t,Ki into a coordination pattern.

Notation

ab will refer to a node {a, b}. Accordingly a set of nodes {{c}, {d}} will be denoted
by {c, d}.

Example 6.2 Consider a slightly modified version of the Sequencer connector in Fig-
ure 2.1. Its corresponding coordination pattern is as shown in Figure 6.1.

⇢s =

*

8

<

:

h{a}, s1, sync, {c}i h{d}, s2, sync, {o1}i,
h{e}, x, fifoe, {f}i, h{g}, s3, sync, {o2}i
h{h}, s4, sync, {b}i

9

=

;

,

{a, o1, o2, b, cde, fgh, }

+

a b

o1 o2

cde fgh

x

Figure 6.1: The Sequencer coordination pattern.

One can access the parts of ⇢s using its specific operations. For instance, the set of

nodes N⇢ = {a, o1, o2, cde, fg}. The input and output ports are, respectively, I(⇢) = {a}

and O(⇢) = {o1, o2, b}. In addition I⇢ = {s1, s2, s3, s4, x}, Es1
⇢ = {a, c} and Ns1

⇢ = {a, cde}.

z

In the sequel a visual, Reo-like representation of coordination patterns (as in
Figure 2.1) will be adopted. To increase readability channel identifiers are only
added to the visual representation when needed.

100

6.2. Reconfigurations

6.2 Reconfigurations

In an exogenous coordination framework, the focus of reconfigurations is the set
of coordination patterns themselves, instead of the plugged-in components, which
are considered external services. Therefore, any change to the original structure
of a coordination pattern qualifies as a reconfiguration. These changes are driven
by the sequential application of a number of parametric primitive reconfiguration
operations which manipulate the basic elements of a coordination pattern. The set
of all reconfigurations is denoted, henceforth, as R.

6.2.1 Primitive reconfiguration operations

Primitive reconfiguration operations change atomically the basic structure of a co-
ordination pattern, namely, its nodes and channels. The following five primitive
operations are considered:

Prim = {const⇢, par⇢, joinP , splitp, removech| ⇢ 2 P , P ✓ N , p 2 N , ch 2 I}

Additionally, it is also assumed an identity operation, denoted 1r. The sub-
scripts associated to each primitive operation are their expected arguments. Clearly,
Prim ✓ R. The application of a primitive reconfiguration r to a coordination pat-
tern ⇢ yields a new coordination pattern suitably modified.

Notation
⇢ � r denotes the application of reconfiguration r to coordination pattern ⇢.

The semantics of � is defined below for each primitive reconfiguration.
The most trivial reconfiguration is the constant one, along which a new coordi-

nation pattern replaces the original one. Formally:

Definition 6.3 (const). Let ⇢1, ⇢2 2 P. Then,

⇢1 � const⇢2 = ⇢2

The par operation sets the original coordination pattern in parallel with the
one given as a parameter. This operation does not create any connection between
the two coordination patterns. It assumes, without loss of generality, that ends
(consequently, nodes) and channel identifiers in both patterns are disjoint.

Definition 6.4 (par). Let ⇢1, ⇢2 2 P. Then,

⇢1 � par⇢2 = hC⇢1 [C⇢2 ,N⇢1 [N⇢2i

101

Architectural reconfiguration of interacting services

The join operation performs connections in the coordination pattern by merging
a set of nodes into a single one.

Definition 6.5 (join). Let ⇢ 2 P, and N ✓ N . Then

⇢ � joinN = hC⇢, (N ✓ N⇢ ! {
[

N} [(N⇢ \N), N⇢)i

Example 6.3 Consider ⇢ = h{h{a}, sc, sync, {b}i, h{c, d}, sd, drain, ;i}, {a, b, c, d}i and
use the join primitive to connect nodes b and c. The relevant operation is ⇢ � join{b,c}.
Since {b, c} ✓ {a, b, c, d} = ;, this entails computing

1.
S

{b, c} = bc and

2. N⇢ \ {b, c} = {a, d}.

Performing the union of points 1 and 2, it is obtained {a, d, bc}. Therefore,

⇢ � join{b,c} = h{h{a}, sc, sync, {b}i, h{c, d}, sd, drain, ;i}, {a, d, bc}i. z

The split primitive reconfiguration is dual to join. It breaks connections within
a coordination pattern by separating all channel ends co-located on a given node.

Definition 6.6 (split). Let ⇢ 2 P and n 2 N . Then,

⇢ � splitn = hC⇢, (n 2 N⇢ ! 2sing n [(N⇢ \ {n}), N⇢)i

where sing(x) = {x}.

Example 6.4 Let ⇢ stand for the coordination pattern obtained in Example 6.3. Ap-
plying the ⇢ � splitbc primitive makes it possible to retrieve the initial pattern of that
example. Since bc 2 {a, d, bc}, compute

1. 2sing bc = {b, c} and

2. N⇢1 \ {bc} = {a, d}.

Therefore,

⇢ � splitbc = h{h{a}, sc, sync, {b}i, h{c, d}, sd, drain, ;i}, {a, b, c, d}i. z

Finally, the remove operation removes a channel from a coordination pattern and
updates the nodes in which the channel synchronises its ends.

102

6.2. Reconfigurations

Definition 6.7 (remove). Let ⇢ 2 P and ch 2 I⇢. Then,

⇢ � removech = let c = the{e 2 C⇢| ⇡2(e) = ch})

N = (2
minus

Ech
⇢ N⇢) \ {;}

in hC⇢ \ {c}, Ni

where minusE(X) = X \ E.

Example 6.5 Consider again the coordination pattern ⇢ obtained in Example 6.3, but
extended with a fifoe linking channels sc and sd:

⇢ = h{h{a}, sc, sync, {b}i, h{e}, q, fifoe, {f}i, h{c, d}, sd, drain, ;i}{a, be, fc, d}i

The pattern obtained in Example 6.4 can now be achieved by applying ⇢ � removeq.
Compute

1. c = h{e}, q, fifoe, {f}i

2. N = (2minus{e,f} {a, be, fc, d}) \ {;} = {a, b, c, d}.

Putting it all together,

⇢ = h{h{a}, sc, sync, {b}i, h{c, d}, sd, drain, ;i}, {a, b, c, d}i. z

The following results characterise the effect of primitive reconfiguration opera-
tions. Lemma 6.1 shows that the set P of coordination patterns is closed under the
application of these primitives. Lemma 6.2 identifies contexts which are unaffected
by reconfigurations.

Lemma 6.1. The set P of coordination patterns is closed under the application of
reconfigurations in Prim.

Proof. Let ⇢, ⇢0 2 P , N ✓ N ; n 2 N , ch 2 I and r 2 Prim. For each primitive
reconfiguration let us check the properties in Definition 6.2. Thus,

• for ⇢ � const⇢0 , all properties hold since ⇢ and ⇢0 are assumed to be well-formed.

• For ⇢ � par⇢0 , the resulting pattern is the component-wise union of ⇢ and ⇢0,
which are assumed to be disjoint. Therefore, since ⇢ and ⇢0 are well-formed
and union does not change their specification, well-formedness is preserved.

• For ⇢ � joinN , all the nodes in N are merged together. Property 1 is preserved
because ⇢ is well formed and no channels are added to it. Property 2 also holds

103

Architectural reconfiguration of interacting services

because each node in N preserves the inequality. By merging these nodes into
one, the inequality still remains, because the nodes are disjoint partitions of
channel ends.

• For ⇢ � splitn, all the channel ends co-located in n are separated into simple
nodes. Property 1 is preserved because ⇢ is well formed and no channels are
added to it. Property 2 is also preserved because, ends being unique, the
separation of node n results in |n| nodes, each of which is formed by a single
channel end naturally associated to a single channel.

• As a result of ⇢ � removech the channel identified by ch is removed and its ends
are removed from the nodes to which it was previously connected. Properties
1 and 2 are preserved because no channel is added to the well-formed pattern
⇢. Property 2 is also preserved. Because ⇢ is well-formed, then each node n to
which ch is connected preserves the inequality. By removing ends of ch from
n it is obtained either |n| = 0, in this case the node is removed from ⇢; or
|n| > 0, meaning that a number k of channels share ends in n. Then, either
each of these channels contribute with one end to n, yielding n = k; or they
contribute with more than one end to n, yielding n ≥ k.

Lemma 6.2. Let ⇢, ⇢0 2 P; P ✓ N ; p 2 N and ch 2 I. The following properties,
stated as strict equalities between coordination patterns, hold:

⇢ � const⇢0 = ⇢ if ⇢ = ⇢0 (6.1)

⇢ � joinP = ⇢ if P \N⇢ 6= ; (6.2)

⇢ � splitp = ⇢ if p 62 N⇢ (6.3)

⇢ � removech = ⇢ if 8c2I⇢⇡2(c) 6= ch (6.4)

Proof. The lemma guarantees that reconfiguration operations that do not affect
elements of the coordination pattern have no effect. All of them come easily from
the definitions. For (6.4), note that if 8c2I⇢⇡2(c) 6= ch then {e 2 C⇢| ⇡2(e) 6= ch} = ;,
Ech
⇢ = ; and 2minus;(N⇢) \ {;} = N⇢ Therefore, ⇢ � removech = hC⇢,N⇢i = ⇢.

6.2.2 Composing reconfigurations

In most cases, the application of a single primitive reconfiguration is not enough.
Single steps, however, can be combined to yield broader transformations of the

104

6.2. Reconfigurations

coordination pattern. This sub-section discusses the sequential composition of re-
configurations.

Definition 6.8 (Sequential Compositions). Let ⇢ 2 P and r1, r2 2 R. The applica-
tion of r1 followed by r2 is given by

⇢ � {r1 ; r2} = (⇢ � r1) � r2

Lemma 6.3. The set P of coordination patterns is closed for sequential composition.

Proof. The proof is by induction on the structure of reconfigurations. The base
case, of primitive reconfigurations, is already proved in lemma 6.1. Consider now ⇢ �

{r1; r2}, and assume, without loss of generality that r2 is a primitive reconfiguration.
If not, r2 can always be rewritten as sequence of reconfigurations r01, r02, · · · , such that
its last element is a primitive reconfiguration. By induction hypothesis ⇢ � r1 is in
P . Then conclude by lemma 6.1, for r2 primitive.

Lemma 6.4. Let ⇢, ⇢1, ⇢2 2 P, {n}, N,N1, N2 2 N . Then,

⇢ � const⇢1 = ⇢1 (6.5)

⇢ � par⇢1 = ⇢1 � par⇢ (6.6)

⇢ � {par⇢1 ; par⇢2} = ⇢ � par⇢1�par
⇢2

(6.7)

⇢ � {joinN1
; joinN2

} = ⇢ � joinN1[N2
(6.8)

⇢ � {joinN ; splitn} = ⇢ if
[

N = n ^ 8p2N · |p| = 1 (6.9)

⇢ � {splitn; joinN} = ⇢ if
[

N = n (6.10)

⇢ � {par◆hS,i,t,Ki; removei} = ⇢ (6.11)

Proof. Property (6.5) is an immediate consequence of the definition of const. Laws
(6.6) and (6.7) are proved in a similar way resorting to the commutativity and
associativity of set union, respectively. Thus,

⇢ � par⇢1

= { definition of par }

hC⇢ [C⇢1 ,N⇢ [N⇢1i

= { [commutative }

hC⇢1 [C⇢,N⇢1 [N⇢i

= { definition of par }

hC⇢1 ,N⇢1i � parhC⇢,N⇢i

105

Architectural reconfiguration of interacting services

= { projections }

⇢1 � par⇢

For (6.7),

⇢ � {par⇢1 ; par⇢2}

= { definition of sequential composition }

(⇢ � par⇢1) � par⇢2

= { definition of par }

hC⇢ [C⇢1 [C⇢2 ,N⇢ [N⇢1 [N⇢2i

= { [associative, definition of par }

hC⇢,N⇢i � parhC⇢1[C⇢2 ,N⇢1[N⇢2 i

= { definition of par }

hC⇢,N⇢i � parhC⇢1 ,N⇢1 i�parhC⇢2 ,N⇢2 i

= { projections }

⇢ � par⇢1�par
⇢2

For the laws, involving join and split, attention is restricted to the cases in which
the reconfiguration actually changes the pattern (i.e., in the then-cases of the con-
ditional definition in both operators). The other cases are trivial. Thus, for (6.8),

⇢ � {joinN1
; joinN2

}

= { definition of sequential composition }

(⇢ � joinN1
) � joinN2

= { definition of join (then-case) applied twice }

hC⇢, {
[

N2} [({
[

N1} [(N⇢ \N1)) \N2i

= { property of [}

hC⇢, {
[

(N1 [N2)} [((N⇢ \N1) \N2)i

= { property of \ }

hC⇢, {
[

(N1 [N2)} [(N⇢ \N1 [N2)i

= { definition of join (then-case) }

⇢ � joinN1[N2

106

6.2. Reconfigurations

For (6.9)

⇢ � {joinN ; splitn}

= { definition of sequential composition }

(⇢ � joinN) � splitn

= { definition of join (then-case) }

hC⇢, {
[

N} [(N⇢ \N)i � splitn

= { definition of split (then-case) }

hC⇢, 2
singn [({

[

N} [(N⇢ \N)) \ {n}i

= { assumption:
S

N = n }

hC⇢, 2
singn [(N⇢ \N)i

= { assumption of 8p2N · |p| = 1 }

hC⇢, N [(N⇢ \N)i

= { projections }

⇢

For (6.10),

⇢ � {splitn; joinN}

= { definition of sequential composition }

(⇢ � splitn) � joinN

= { definition of split (then-case) }

hC⇢, 2
singn [(N⇢ \ {n})i � joinN

= { assumption:
S

N = n (which implies 2singn = N) }

hC⇢, N [(N⇢ \ {n})i � joinN

= { definition of join (then-case) }

hC⇢, {
[

N} [(N [(N⇢ \ {n})) \Ni

= {
S

N = n }

hC⇢,N⇢i

= { projections }

⇢

107

Architectural reconfiguration of interacting services

For (6.11),

⇢ � {par◆hS,i,t,Ki; removei}

= { definition of sequential composition }

(⇢ � par◆hS,i,t,Ki) � removei

= { definition of ◆ }

(⇢ � parh{hS,i,t,Ki},{S,K}i) � removei

= { definition of par }

hC⇢ [{hS, i, t,Ki},N⇢ [{S,K}i � removei

= { definition of remove }

hC⇢ \ {hS, i, t,Ki}, 2minusS[KN⇢ [{S,K}i

= { sets S and K are new nodes, i.e., not present in N⇢ }

hC⇢,N⇢i

= { projections }

⇢

6.2.3 Reconfiguration patterns

Via composition, one may express ‘big step’ reconfigurations that are able to affect
significant parts of a connector (rather than just a node or a channel). These
constitute what one will be referred to as reconfiguration patterns. The word pattern
is employed here to emphasise their generic nature and reusability.

The following paragraphs present a set of six reconfiguration patterns, first in-
troduced in [204]. This set is not restricted to the six patterns, though. More can be
found and tailored to cover the specific needs of systems. The six patterns defined
next had shown to be useful in practice, making possible a plethora of reconfigura-
tions of several distinct coordination patterns, only by changing their parameters.

To the left of each pattern definition, it is presented an abstract visual rep-
resentation of the pattern behaviour. Each such picture shall be read from left
(the original configuration) to right (what results after applying the reconfiguration).
Black dots represent nodes, arrows and lines stand for channels, cloud-shapes stand
for any internal structure of a coordination pattern and dashed lines represent node
bindings.

Let ⇢ 2 P be the coordination pattern to which each reconfiguration pattern is

108

6.2. Reconfigurations

applied.

Remove

Pattern removeP(Cs) removes a set of channel identifiers Cs ✓ I⇢ from ⇢, by suc-
cessively applying the primitive remove operation. Formally,

⇢ � removeP(Cs) = rS(⇢, Cs)

where

rS(⇢, ;) = ⇢

rS(⇢, {c} [C) = rS(⇢ � removec, C)

Overlap

Pattern overlapP(⇢r, X) connects a new coordination pattern ⇢r 2 P to ⇢, by joining
specific in X ✓ N⇢ ⇥N⇢r . Each pair in X indicates which nodes from ⇢ and ⇢r are
to be joined. Formally,

⇢ � overlapP(⇢r, X) = rO(⇢ � par⇢r , X)

where

rO(⇢, ;) = ⇢

rO(⇢, {y} [Y) = rO(⇢ � join{⇡1(y),⇡2(y)}, Y)

Example 6.6 Consider the Sequencer connector as depicted in Figure 6.1. Suppose
that a company uses this protocol to coordinate the sequential execution of two services
coupled to ports o1 and o2. For some reason there was a need to restrict the second service
to execute only on completion of the first. A possible solution is to let the first service to
acknowledge its finishing status, and automatically allow the second service to execute. If
⇢s is the Sequencer coordination pattern one may propose the following reconfiguration:
rwaiting = ⇢s � overlapP(i1 i2 , {(fgh, i2)}).

This yields the WaitingSequencer coordination pattern presented in Figure 6.2 (a).

Naturally, the first service should now be connected to port i1 for status acknowledgement.

z

Insert

Pattern insertP(⇢r, n,mi,mo) places ⇢ side by side with a given ⇢r 2 P , and splits
n 2 N⇢ to make room for ⇢r to be inserted. Connections are then re-built as follows:
all the output ports produced by the split operation are joined with mi 2 I(⇢r).

109

Architectural reconfiguration of interacting services

Dually, the input ports produced by the split operation are joined with mo 2 O(⇢r).
Formally,

⇢ � insertP(⇢r, n,mi,mo) =

let ⇢1 = ⇢ � par⇢r

⇢2 = ⇢1 � splitn

Isp = I(⇢2) \ I(⇢1)

Osp = O(⇢2) \O(⇢1)

in (⇢2 � joinOsp[{mi}) � joinIsp[{mo}

Example 6.7 Consider the same situation as in Example 6.6. A different solution is
to let the first service to acknowledge its termination and the protocol to memorise it.
Reconfiguration

rproactive = ⇢s � insertP(

i1

i2i3 o

sd
y , fgh, i2i3, o)

does the job, yielding the ProActiveWaitingSequencer coordination pattern depicted in Fig-

ure 6.2 (b). z

Replace

Pattern replaceP(⇢r, X, Cs) replaces a sub-structure of ⇢ by removing the old struc-
ture composed of the channels in set Cs ✓ I⇢ and overlapping ⇢r via information in
set X ✓ N⇢ ⇥N⇢r . Formally,

⇢ � replaceP(⇢r, X, Cs) =

(⇢ � removeP(Cs)) � overlapP(⇢r, X))

Example 6.8 Consider again the Sequencer coordination pattern. Suppose that the
services connected to ports o1 and o2 can fail for long periods of time, possibly leading
to deadlocks. A possible solution to prevent deadlocks is to avoid enforcing services to
answer. Replacing the sync channels that provide ports o1 and o2 by lossy, as encoded in
reconfiguration:

rweak = ⇢s � replaceP(
i1 o1

i2 o2

s5

s6 , {(cde, i1), (fgh, i2)}, {s2, s3})

channels solves the problem. This produces the WeakSequencer depicted in Figure 6.2 (c).

z

110

6.2. Reconfigurations

a b

i1o1 o2

cde fhi2gx

(a)

a
b

i1
o1 o2

cde fi2i3 ogh

x y
sd

(b)

a b

o1 o2

ci1e fi2h

s5

x

s6
s4

(c)

Figure 6.2: Reconfigurations of the Sequencer coordination pattern: (a) the
WaitingSequencer, (b) the ProActiveWaitingSequencer and (c) the
WeakSequencer coordination patterns.

Implode

Pattern implodeP(Cs) collapses a sub-structure of ⇢ composed of the channels in
Cs ✓ I⇢. The resulting ports are joined together into an updated node. Formally,

⇢ � implodeP(Cs) = let ⇢1 = ⇢ � removeP(Cs)

in ⇢1 � joinN⇢1\N⇢

Example 6.9 Consider again the Sequencer coordination pattern. Suppose now that

the company desires that the services connected to ports o1 and o2 execute simultaneously.

An immediate solution is to parallelise their execution. Reconfiguration: rparallel = ⇢s �

implodeP({x}) solves the problem. This produces the counterpart coordination pattern of

the Replicator connector depicted in Figure 2.1 (with the obvious node names). z

Move

Pattern moveP(ch, e, n) moves the end of a channel ch 2 I⇢ from node e to node
n 2 N⇢. Formally,

⇢ � moveP(ch, e, n) =

let e0 = Nch
⇢ \ {e}

⇢1 = ⇢ � splite

E = Nch
⇢1

Isp = I(⇢1) \ I(⇢)

Osp = O(⇢1) \O(⇢)

in (⇢1 � join(Isp[Osp)\E) � join(E\{e0})[{n}

Example 6.10 This example uses the Sequencer coordination pattern in order to explain,
step by step, the moveP reconfiguration pattern. Consider the reconfiguration rskept =

111

Architectural reconfiguration of interacting services

⇢s � moveP(x, cde, a), that takes the channel identified by x with an end in node cde to be
moved to node a. The first step is to obtain the node where the other end of channel x is:
e0 = Nx

⇢s \ {cde} = fgh. Then reconfiguration splitcde is applied to the Sequencer pattern,
yielding ⇢1 as depicted in Figure 6.3 (1). Now, the three sets of nodes E, Isp and Osp are
computed:

E = Nx
⇢1

= {e, fgh};

Isp = I(⇢1) \ I(⇢) = {a, e, d} \ {a} = {e, d};

Osp = O(⇢1) \O(⇢) = {c, o1, o2} \ {o1, o2} = {c}.

Finally, two join reconfigurations are applied with arguments (Isp [Osp) \E = {c, d} and

(E\{fgh})[{a} = {a, e}, respectively. Their effects are depicted in Figure 6.3 (2) and (3).

The final coordination pattern is ⇢skept . z

a b

o1
o2

c

d

e fghx

⇢1 = ⇢s � splitcde

(1)

a b

o1 o2

cd e fghx

⇢2 = ⇢1 � join{c,d}

(2)

ae b

o1 o2

cd fgh

x

⇢skept
= ⇢2 � join{a,e}

(3)

Figure 6.3: Step-by-step example of moveP reconfiguration.

In spite of the apparently complex definition of some of these reconfiguration pat-
terns, they all arise as sequential applications of primitive reconfigurations. Lemma 6.5
makes this observation precise.

Lemma 6.5. Each reconfiguration pattern arises as product of a sequence of prim-
itive reconfigurations.

Proof.

• An inductive argument establishes the result for removeP(C):

- Base case: C = ;. By definition, ⇢ � removeP(;) = rS(⇢, ;) = ⇢.

- Inductive case: C 6= ;. Let C = {c} [C 0. Assume that rS(⇢, C 0) =

⇢ � r, where r is a sequence of remove reconfiguration primitives. By
definition, ⇢ � removeP(C) = rS(⇢, C) = rS(⇢ � removec, {c} [C 0).
Using the hypothesis we obtain (⇢ � removec) � r, which is equal to
⇢ � {removec ; r}. Therefore, the pattern may be expressed as a sequence
of remove primitives.

112

6.2. Reconfigurations

• For pattern overlapP(⇢r, X) the proof is also by induction (over set X):

- Base case: X = ;. By definition, overlapP(⇢r, ;) = sO(⇢ � par⇢r , ;) =

⇢ � par⇢r .

- Inductive case: X 6= ;. Let X = {x}[X 0. Assume, as induction hypoth-
esis, that rO(⇢, X 0) = ⇢ � r, where r is a sequence of reconfiguration
primitives. By definition, ⇢ � overlapP(⇢r, X) = rO(⇢ � par⇢r , {x}[X

0),
and yet, it is equivalent to rO(((⇢ � par⇢r) � join{⇡1(x),⇡2(x)}), X

0). Us-
ing the hypothesis we get ((⇢ � par⇢r) � join{⇡1(x),⇡2(x)}) � r.This is
equivalent to

⇢ � {par⇢r ; join{⇡1(x),⇡2(x)} ; r}

which encodes the overlapP pattern as a sequence of reconfiguration prim-
itives.

• For pattern insertP(⇢r, n,mi,mo) the result comes directly from the definition.
Let Isp = I((⇢ � par⇢r) � splitn) \ I(⇢ � par⇢r) and Osp = O((⇢ � par⇢r) �

splitn) \O(⇢ � par⇢r). Then,

⇢ �insertP(⇢r, n,mi,mo)

= (((⇢ � par⇢r) � splitn) � joinOsp[{mi}) � joinIsp[{mo})

= ⇢ � {par⇢r ; splitn ; joinOsp[{mi} ; joinIsp[{mo}}

• The proof for replaceP(⇢r, X, C) is also a consequence of its definition and
the fact that this Lemma holds for both removeP and overlapP. Therefore,
assuming r1 = removeP(C) and r2 = overlapP(⇢r, X), with r1 and r2 sequences
of primitive reconfigurations, one gets

⇢ �replaceP(⇢r, X, C)

= (⇢ � removeP(C)) � overlapP(⇢, X)

= (⇢ � r1) � r2

= ⇢ � {r1 ; r2}

• For implodeP(C) the proof is similar to the previous one. Assume that r =

removeP(C), where r is a sequence of reconfiguration primitives, because this
lemma holds for removeP. Let ⇢1 = ⇢ � removeP(C) Therefore,

⇢ �implodeP(C)

= (⇢ � removeP(C)) � joinN⇢1\N⇢

113

Architectural reconfiguration of interacting services

= (⇢ � r) � joinN⇢1\N⇢

= ⇢ � {r ; joinN⇢1\N⇢
}

• Finally, for moveP(ch, e, n) let e0 = Nch
⇢ \{e}, ⇢1 = ⇢ � splite; Isp = I(⇢1)\I(⇢));

Osp = O(⇢1) \O(⇢)) and E = Nch
⇢1

. Then,

⇢ �moveP(ch, e, n)

= (⇢1 � join(Isp[Osp)\E) � join(E\{e0})[{n}

= ⇢ � {splite ; join(Isp[Osp)\E ; join(E\{e0})[{n}}.

6.3 Supporting dynamic reconfigurations via con-

sistent state transfer

The application of reconfigurations to the architecture of a software system at run-
time is a non-trivial problem, because a reconfiguration has to be transparently
applied, while the exact system execution state in which such a reconfiguration is
required (henceforth referred to as the interrupted state), is hardly known a priori.

Concretely, difficulties arise due to the fact that the system has to change its
internal configuration without disruption during and after reconfigurations. This
entails (i) the fast application of reconfigurations; (ii) the atomic application of
reconfigurations with roll-back mechanisms triggered when such application fails;
(iii) resuming the execution of the system in a state that is consistent (as much as
possible) with the interrupted state; and (iv) keeping the system in line with its
functional and non-functional requirements.

In the static perspective, the interrupted state is, usually, either ignored or always
assumed to be the initial one. After reconfigurations, the system is again in its initial
state. Ensuring system consistency on the static perspective of reconfigurations is
not a challenge. It must be taken seriously, though, when dynamism enters the
equation. Consistently transferring system state is the de facto question addressed
in this section.

6.3.1 Symbolic states

Coordination patterns essentially provide a structural (static) dimension of the mod-
elled system. In order to have a behavioural and dynamic perspective, one has to

114

6.3. Supporting dynamic reconfigurations via consistent state transfer

consider a concrete behaviour associated to the channels of the coordination pattern.
In concrete, this is achieved by assuming a concrete semantic model that, in turn,
underpins a coordination model. As stated before, Reo is chosen in this thesis to
type the edges of coordination patterns. For this section, a slightly modified version
of CA (actually port automata (PA) [171], which is as CA, but with all guards as-
sumed to be true) is the semantic model used to endow coordination pattern with
semantics.

The approach for consistent state transfer proposed here requires semantic mod-
els based on automata. Moreover, it takes a notion of symbolic state that must
enrich the traditional semantic model considered. Symbolic state annotations are
generated by the following grammar S:

s 3 & | ¬s | s ^ s,

where & is an atomic symbolic state. An atomic symbolic state refers to the name
of a coordination pattern channel to which data is assigned. In the concrete case of
Reo, these identifiers refer to the edges typed with a fifo channel (either empty or
full), as this is the only stateful channel in the subset of Reo channels considered in
T .

Note that, although the notation is borrowed logic, the meaning is entirely differ-
ent. Actually, ¬& means that the channel identified by & has no data assigned (and
therefore can be omitted from the formula) and &1 ^ &2 means that both channels
have data in the context of the pattern. Moreover, it is asserted that

• ¬&1 ^ &1 = ¬&1

• ¬(&1 ^ &2) = ¬&1 ^ ¬&2.

Additionally, consider ?⇢ to express that there is no data in any internal state of a
coordination pattern ⇢ and >⇢ for its dual. Subscripts may be omitted when clear
from the context.

Consider now the modification of PA to cope with symbolic states, denoted hence-
forth as PA& .

Notation

[[⇢]]M is used, henceforth, to refer to the behaviour of a coordination pattern ⇢

under the semantic model M.

Definition 6.9 (Symbolic Port Automata). A symbolic port automaton A& is an
automaton (Q,P,!, q0), where Q ✓ S is a set of symbolic states, P is a set of ports,
q0 2 Q is the initial state, and !✓ Q⇥ 2P ⇥Q is a transition relation.

115

Architectural reconfiguration of interacting services

Auxiliary operation IS([[⇢]]PA&
) is used to obtain the initial state of the symbolic

port automaton associated to ⇢ 2 P , with the particular case IS([[0⇢]]PA&
) = ?⇢.

6.3.2 State transfer

The state transfer operation is defined as follows.

Definition 6.10 (State Transfer). Let ⇢ be a coordination pattern, Sr 2 S the sym-
bolic interrupted state in reconfiguration r = {r0; r1; . . . ; rn} (for each ri 2 Prim).
The state transfer operation for ⇢ � r at state Sr, denoted by }

⇢
Sr

, is inductively
defined as }

⇢
Sr0

^}
⇢
S{r1,...,rn}

, where for each ri:

}
⇢
Sri

=

8

>

>

>

>

<

>

>

>

>

:

IS([[⇢0]]PA&
) if ri = const⇢0

Spar
⇢0
^ IS([[⇢0]]PA&

)

Sremovec ^ ¬c if c 2 I⇢ ^ ⇡3(c) = fifo

Sri otherwise

This can be generalised as follows. Assume a reconfiguration r; a (possibly
empty) coordination pattern ⇢in formed either by (i) all patterns introduced by par

primitives in r or (ii) the pattern introduced by the last const primitive and all
patterns introduced by the sequent par primitives in r; a coordination pattern ⇢out

as the result of applying r to ⇢; and finally R(⇢, ⇢out) as the set of stateful channel
names removed during the reconfiguration. Then,

Sr ^ IS([[⇢in]]PA&
) ^ ¬

^

R(⇢, ⇢out)

is the generalisation of }⇢
Sr

. The obtained state from this operation is referred to as
the resuming state.

There are situations, though, in which it is not possible to find a suitable resum-
ing state on the new configuration. When such is the case, the usual approach is to
start the execution of the reconfigured system from its initial state. This symbolic-
based approach is more comprehensive on this aspect: it automatically delivers the
state that best approximates the desired one in an attempt of minimising data loss.

Example 6.11 Let ⇢proactive stand for the ProActiveWaitingSequencer coordination
pattern shown in Figure 6.2. Consider that it is the model of a coordination activity in
some software system. The PA& underlying ⇢proactive is shown (replicated) in the first row
of Figure 6.4.

For some reason the system is required to evolve into a normal Sequencer coordination
pattern. Let ⇢s refer to it. The [[⇢s]]PA&

is represented (replicated) in the third row of

116

6.3. Supporting dynamic reconfigurations via consistent state transfer

�

�

������

��
��
��

��
��
��

����

���
���
���

���
�

⊥

⊤

�

������

������

⊥

�����⊥
������⊥�����⊥

������

�

�

������

��
��
��

��
��
��

����

���
���
���

���
�

⊥

⊤

�

������

������

⊥

�������
������⊥������
������

�

�

������

��
��
��

��
��
��

����

���
���
���

���
�

⊥

⊤

�

������

������

⊥

�������
������⊥����⊥

������

�

�

������

��
��
��

��
��
��

����

���
���
���

���
�

⊥

⊤

�

������

������

⊥

������⊤
������⊥������
������

Figure 6.4: Example of dynamic reconfigurations and state transfer.

Figure 6.4. Such evolution is achieved by applying reconfiguration r = implodeP({sd, y})

to the running system.

On a dynamic setting, reconfiguration can occur at any point in time. Consequently, the
system execution can be interrupted in any of the four possible dashed states in Figure 6.4,
first row.

The tables in between the automata present values for Sr, the state interrupted for
application of the reconfiguration r; I, the initial state of the structure added to the
pattern; and R, the conjunction of the identifiers of stateful channels (fifo channels in this
case) removed from the original pattern. These are the necessary ingredients to apply the
general state transfer operation in order to obtain the desired resuming states (double-
circled states in the third row of Figure 6.4).

Recall that r = {removeP({sd, y}); join{f,g}}. Therefore, the only stateful channel
removed is exactly identified by y. From here, R =

V

R(⇢proactive, ⇢s) = y, and no patterns
are added to the original pattern: I = IS([[0⇢]]PA&

) = ?0⇢
.

Let’s discuss the four situations depicted in Figure 6.4, from left to right, in more detail.
In the first situation the reconfiguration is applied when the pattern is in its initial state.
In this case it is ?, meaning that no data is assigned to stateful channels of the pattern.
The resuming state is trivially ? in the new configuration. In the second situation the
reconfiguration is applied when the system is in symbolic state x. Hence, the resuming
state is x ^ ?0⇢

^ ¬y = x.

In the third situation the (desired) resuming state would be y. But, since y is removed

during reconfiguration, the best approximated resuming state is the initial ? = y^?0⇢
^¬y.

In this case, data is hopelessly lost. For the same reason, in the fourth case, the interrupted

state can not be resumed as is. However, in this case, the best approximated state is

x = > ^?0⇢
^ ¬y, where > in this case is x ^ y. z

117

Architectural reconfiguration of interacting services

6.4 Reconfigurations on the stochastic setting

This section considers coordination patterns with stochastic behaviour, deployed in
environments (independent of the coordination patterns) that also present stochastic
information. Reconfigurations are revisited under these settings.

6.4.1 Stochastic coordination patterns

Recall that a coordination pattern is a graph of channels, where channels are en-
tities for data transmission and nodes are locations for data synchronisation and
interaction with other patterns or external services. Each channel is further defined
by its ends, an identifier and a type conceding it a specific behaviour.

The incorporation of stochastic information into coordination patterns necessar-
ily requires a revision of the channel model. In particular, delays for both reading
and writing data to the ends of a channel and processing data between these ends
should be considered. This leads to a notion of stochastic coordination pattern,
formalising an abstract model of the component-based one informally developed for
stochastic Reo in Section 4.3.1. In this way, stochastic Reo can type the edges of a
stochastic coordination pattern as much as Reo does for plain coordination patterns.

For keeping consistency with the exposed in Section 4.3.1, the delays are con-
sidered to be non-negative real values. They define stochastic values describing the
probability of a certain stochastic variable. Concretely, a delay is a rate associated
to an exponential distribution that models the time mediating the occurrence of two
consecutive events.

Definition 6.11 (Stochastic channel). A stochastic channel is a tuple

csto = hSsto, i, t,Ksto,Fi,

where i 2 I, t 2 T , Ssto,Ksto ✓ E ⇥ R+ such that 2⇡1(Ssto) \ 2⇡1(Ksto) = ;, and
F ✓ 2E ⇥ R+.

Informally, each element in Ssto defines a source end of the channel with a delay
for writing data into the channel. Dually, elements of Ksto define the sink ends of
the channel with their delay for reading data from the channel. F defines a set
of flows, where its first component describes which ends are involved in the data
transmission and the second component describes the time required to transmit
data between those ends.

Example 6.12 Consider a lossy channel as depicted in Figure 2.1. One possible stochastic

118

6.4. Reconfigurations on the stochastic setting

instance of this channel may be

lsto = h{ha, 1000i}, l1, lossy, {hb, 500i}, {h{a, b}, 450i, h{a}, 600i}i.

This means that channel lsto is able to write 1000 requests into end a, and to read 500

requests into end b. Moreover, it is able to transmit 450 request between ends a and b and

it may lose data at a rate of 6001. z

As expected, infinite many instances of a stochastic channel are possible. For
clarity, though, it will be assumed that each instance has different end names.

The definition for a stochastic coordination pattern does not deviate much from
the plain one. It remains a pair with a set of channels and a set of nodes. Formally,

Definition 6.12 (Stochastic coordination pattern). A stochastic coordination pat-
tern is a pair

⇢ = hCsto
⇢ ,N sto

⇢ i

where Csto
⇢ is a set of stochastic channels and N sto

⇢ is a partition on the union of all
ends of all channels in Csto

⇢ , this is, generically, N sto = 2E⇥R+.

The invariant properties of a coordination pattern are still required in its stochas-
tic version. The operations associated to channels and coordination patterns for
accessing their components suffer the obvious lift to the stochastic version. Denote
by Psto the set of all stochastic coordination patterns.

Each node will now delay the flow of data. This is so because it must enqueue
and dequeue data from and to the channels it synchronises. These delays are, of
course, related to the write and read delays associated to each end composing the
node.

Definition 6.13 (Node delays). Let ⇢ 2 Psto and n 2 N sto
⇢ . The enqueue and

dequeue delays associated to n, denoted nenq and ndeq are given, respectively, by the
following functions:

genqn =

P

e2n

(

⇡2(e) if out(⇡1(e), ⇢)

0 otherwise
|{e 2 n| out(⇡1(e), ⇢)}|

and
gdeqn = min({⇡2(e)| e 2 n ^ in({⇡1(e)}, ⇢)})

Function genq
n computes the average rate from the rates of all sink ends co-located

in n; gdeq
n computes the minimum rate from the rates of all source ends co-located in

1All these values are read as the possible maximum per unit of time, whatever the time unit is.

119

Architectural reconfiguration of interacting services

n. The choice of these functions are in respect to the usual behaviour of nodes in Reo.
Merger nodes take just one of its inputs, therefore, the average rate associated to
these inputs provides the right tool to define the average delay that the node should
take to enqueue data. Replicator nodes replicate data to all channels, therefore the
average delay that the node should take to dequeue data is given by the highest
average delay of the end co-located in the node, which is given by the smallest rate
in the set of rates.

Clearly, these rates define just an approximation to the real stochastic process
that arises from the composition of the exponential distributions. In any case, other
functions may be used to obtain similar rates. These functions become a parameter
in the definition of a stochastic coordination pattern.

Example 6.13 A stochastic instance ⇢stos of a Sequencer coordination pattern (with
g
enq
n and g

deq
n functions associated to each n 2 N sto

⇢stos
) may be defined as follows:

⇢stos =

*

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

*

{ha, 1000i}, s1, sync, {hc, 955i},

{h{a, c}, 100i}

+

,

*

{hd, 1000i}, s2, sync, {ho1, 1000i},

{h{d, o1}, 150i}

+

,

*

{he, 900i}, x, fifoe, {hf, 800i},

{h{e}, 90i, h{f}, 80i}

+

,

*

{hg, 1000i}, s3, sync, {ho2, 1000i},

{h{g, o2}, 150i}

+

,

*

{hh, 1000i}, s4, sync, {hb, 955i},

{h{h, b}, 100i}

+

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

,

{a, o1, o2, b, cde, fgh}2

+

Now, one can compute the delays associated to the nodes. For instance, cdeenq = 955

and cdedeq = 900; in turn, fgh
enq

= 800 and fgh
deq

= 1000. z

In order to completely define the stochastic model for coordination patterns it
is still missing the stochastic information about the environment. This information
is considered, however, independent of the coordination pattern. In this context, a
notion of stochastic environment is introduced as a map Env : N 7! R+.

Each entry of Env is then a key-value pair, where the key is a node corresponding
to a port of a stochastic coordination pattern to which the environment may be
connected; and the value is a positive real value defining the rate at which the
environment issues requests to the associated port. In practice, each element of Env
may correspond, for instance, to a service.

The connection of a stochastic coordination pattern ⇢ to an environment Env

is regarded as the deployment of that pattern and the composite is denoted ⇢ΔEnv .
Deployment appears emphasised to denote that it does not necessarily mean the
dynamic installation and activation of a coordination pattern in an execution envi-

2In order not to burden notation, the stochastic version of nodes is denoted the as before.

120

6.4. Reconfigurations on the stochastic setting

ronment. Rather it is just a conceptual notion that enables both static and dynamic
analysis of a system performance.

When deployed, all ports of the stochastic pattern should have a corresponding
port on the environment. The environment may, however, define more ports besides
those of the stochastic coordination pattern.

Example 6.14 Consider the stochastic Sequencer coordination pattern presented in
Example 6.13. A possible environment for this pattern is, for instance,

Env =

8

>

>

>

>

<

>

>

>

>

:

a 7! 50,

b 7! 50,

o1 7! 30

o2 7! 25

9

>

>

>

>

=

>

>

>

>

;

z

6.4.2 Reconfigurations revisited

Since the essential structure of a stochastic coordination pattern does not change
from its plain version, the definition of each primitive reconfiguration operation also
remains the same. This is true for the coordination pattern alone. However, in the
stochastic setting, reconfigurations are also applied upon the deployed coordination
pattern, i.e., the environment also enters the equation. In this section, one will
investigate how each primitive reconfiguration deal with the environment.

Environment reconfiguration

Specific environment operations are assumed to exist that manipulate such an entity.
These operations follow generic patterns as advocated in the literature [211, 133,
148]. In this case, two such operations are assumed.

Definition 6.14 (Environment manipulation). Let Env : N 7! R+ be an environ-
ment, n 2 N and γ 2 R+. The following operations are associated to the environ-
ment:

• addEnvn,γ defines Env(n) = γ, if n 62 dom(Env);

• delEnvn removes n from dom(Env), if n 2 dom(Env);

• updEnvn,γ updates Env(n) to γ, if n 2 dom(Env).

If the environment is regarded as a set of associated services with their stochas-
tic values, then these operations represent the addition, removal and replacement of

121

Architectural reconfiguration of interacting services

services to an architecture. When the environment is associated to some coordina-
tion pattern, the add and upd operations perform attachments between the ports of
the services and the coordination pattern (if the pattern defines such ports) while
the del operation removes attachments between these ports.

Coordination patterns reconfiguration

In the stochastic setting, reconfigurations are applied over patterns deployed in an
environment. So, reconfigurations in Prim are revisited as follows.

Reconfigurations const and par are trivial. The former replaces the original co-
ordination pattern and the environment by the given arguments; the latter performs
the component-wise union of both coordination patterns and environments. Recall
that each stochastic instance of a coordination pattern assumes different names for
channel identifiers and ends.

const. Let ⇢, ⇢0 2 Psto and Env, Env0 be two environment definitions. Then,

⇢ΔEnv � const⇢0
ΔEnv0

= ⇢0
ΔEnv0

par. Let ⇢, ⇢0 2 Psto and Env, Env0 be two environment definitions. Then,

⇢ΔEnv � par⇢0
ΔEnv0

= (⇢ � par⇢0)ΔEnv[Env0

The join primitive operation performs connections in the coordination pattern
via a given set of nodes into a single one, as before, and changes the environment
by removing from it all the ports that were part of the original coordination pattern
interface.

join. Let ⇢ 2 Psto, Env be an environment definition and N ✓ N sto. Then,

⇢ΔEnv � joinN = (⇢ � joinN)ΔEnv0

where Env0 = delEnv⇡1(n)
, for all n 2 N .

The split reconfiguration is also as before with respect to the coordination pattern
structure. It changes the environment, however, by adding new connections to
dummy services that issue infinite many requests per unit of time. The rate of these
services may be then updated via ups environment operation.

122

6.5. Summary

split. Let ⇢ 2 Psto, Env be an environment definitions and n 2 N sto. Then,

⇢ΔEnv � splitn = (⇢ � splitn)ΔEnv0

where Env0 = addEnv{e},1, for all e 2 2⇡1n.
Finally, the remove primitive operation also performs as before in regards to the

coordination pattern. It changes the environment in two ways: first it removes all
connections to elements of the original interface that are not part of the coordination
pattern interface; and second, it adds connections to the new ports as much as split
does.

remove. Let ⇢ 2 Psto, Env be an environment definitions and c 2 I⇢. Then,

⇢0 = ⇢ΔEnv � removec = (⇢ � removec)ΔEnv0

where Env0 = addEnv
00

{e},1, for all e 2 2⇡1(IO(⇢0) \ IO(⇢)) and Env00 = delEnv{e} , for all
e 2 2⇡1(IO(⇢) \ (IO(⇢) \ IO(⇢0))).

6.5 Summary

This chapter introduced aris, a framework for architectural reconfiguration of inter-
acting services. aris targets reconfigurations at the coordination level rather than
at the level of the individual components. It is based on two foundational notions:
coordination and reconfiguration patterns.

Coordination patterns define the coordination layer of a system. A coordina-
tion pattern is formally defined as an abstract graph of communication primitives,
referred to as channels. Edges of the graph are, then, channels labelled with a
unique identifier and a type. The type incorporates a coordination policy (i.e., the
behaviour) into a channel. Each channel has two or more ends which originate
the nodes of the graph. The nodes of the coordination pattern graph represent,
thus, locations for interaction of channels, other coordination patterns, or external
components.

A reconfiguration is taken as any change made to the structure of a coordination
pattern. Five primitive reconfiguration operations were considered to guide such
changes. Relevant properties about these operations were discussed.

Reconfigurations were also studied in the dynamic setting, where the concern of
preservation of system consistency on state transfer was addressed. To deal with
this, a state transfer approach based on a symbolic view of states was presented.

123

Architectural reconfiguration of interacting services

Finally, coordination patterns were extended to embody stochastic information.
To this end, the structure of channels suffer a small change. Channel ends were en-
riched with a stochastic value that describes delays in reading/writing data from/to
the channel. In turn, channels were enriched with stochastic values describing the
delays in processing data between ends. The stochastic values in the channel ends
were used to define delays for enqueueing and dequeueing data in the coordination
pattern nodes. However, the overall structure of a coordination pattern remains the
same. This is desirable since the basic reconfiguration operational behaviour does
not need to change. In order to complete the whole stochastic model, a notion of
environment (as a map from coordination pattern ports to service request delays)
was introduced. This led to a conceptual notion of coordination pattern deployment,
which joins both pattern and environment in a unique reconfigurable structure. The
primitive reconfiguration operations were revisited in this new setting.

124

Chapter 7

Reasoning about reconfigurations

Comparison is the death of joy.

– Mark Twain

In this chapter. Three criteria for reasoning about reconfigurations are investi-
gated. Their objective is to provide means to rule out configurations and recon-
figurations that, for instance, fail to preserve some system invariant property. One
criterium focuses on a behaviour perspective; the other is complementary and ad-
dresses structural concerns. It aims at enabling the working software architect to
compare reconfigurations and choose among them. To help on this, a taxonomy is
introduced for classifying reconfigurations.

Part of this chapter’s content was previously published, by the author, in:

- Nuno Oliveira and Luís S. Barbosa. “On the reconfiguration of software connectors”. In: Proceedings of the
28th Annual ACM Symposium on Applied Computing. Vol. 2. SAC ’13. Coimbra, Portugal: ACM, Mar.
2013, pp. 1885–1892.

7.1 Behavioural reasoning

The objective of this chapter is to discuss how to compare and classify reconfigu-
rations. This comparison can be done in terms of the behaviour enforced on the
coordination patterns to which the reconfigurations are applied to. So, it is intended
to compare the behaviour of coordination patterns before and after a reconfiguration.

As reported before (in Section 6.3), in order to obtain a behavioural semantics
for coordination patterns, one has to consider a concrete semantic model associated
to the types of the channels, which must be compositional. Finally, suitable notions

125

Architectural reconfiguration of interacting services

of similarity and bisimilarity are needed. These must be studied in the context of
the semantic models considered.

For illustration purposes, automata-based semantic models will be considered
here, concretely, CA and Reo automaton (RA) (c.f., Chapter 2). The choice of these
two models is due to the fact that they are popular in Reo, and provide the required
characteristics just mentioned. Clearly, the IMCReo model presented in the first part
of this dissertation could also be chosen: it is compositional and comparison notions
are equally studied. The reason to take two models, instead of just one, is to show
that the reasoning approach is independent of the fixed semantic model.

7.1.1 Comparing reconfigurations

Recall that [[⇢]]M stands for the semantics of the coordination pattern ⇢ 2 P in the
semantic model M. Moreover, assume ⇠ and � to represent the bisimilarity and
similarity relations in model M, respectively.

Reconfigurations can be compared for their effect when applied to any coordina-
tion pattern. But, P is uncountable. Therefore, it is hard to find any two interesting
reconfigurations that produce the same effect when applied to any ⇢ 2 P . Only the
identity reconfiguration 1r or the const primitive (with a suitable argument) would
cater for such behaviour.

More interesting is to compare reconfigurations with respect to their application
to a specific coordination pattern.

Definition 7.1. Let ⇢ 2 P, r1, r2 be reconfigurations and M a semantic model.
Then,

(r1 $M r2)⇢ i↵ [[⇢ � r1]]M ⇠ [[⇢ � r2]]M

(r1 4M r2)⇢ i↵ [[⇢ � r1]]M � [[⇢ � r2]]M

Example 7.1 Consider again the Sequencer coordination pattern in Figure 6.1. Sup-
pose that a new requirement enforces a strict dependence between services. In particular,
suppose that the second service (connected to port o2) is launched with the output of the
first service, and that such an output is memorised whenever the second service is not
ready to consume it. Reconfiguration

rdependent = insertP(

i1i3

i2 o
kl

y , fgh, i2, o)

126

7.1. Behavioural reasoning

which is akin to rproactive (see Example 6.7), meets the envisaged requirement. Figure 7.1
presents the resulting pattern, which will be referred to as the ProActiveDependentSequencer.
The corresponding RA semantic model is exactly the same of the coordination pattern ob-

a b

i1i3
o1 o2

cde fi2 kl ogh

x y

ee fxe

fxfyefy

ao1|ao1

abo2|bo2
o1bo2|bo2

o2ao1|ao1
bao1|ao1

i1i3bo2|bo2

i 1
i 3
|i 1
i 3

ao
1
bo
2
|a
o 1
bo
2

Figure 7.1: The ProActiveDependentSequencer pattern and corresponding Reo automa-
ton.

tained through application of rproactive, i.e., the ProActiveWaitingSequencer. So, although
both patterns are slightly different, they exhibit a bisimilar behaviour (up to port names),
expressed in the Reo automata model. Therefore,

(rproactive $RA rdependent)⇢s

Using constraint automata as a semantic model, however, bisimilarity fails. Figure 7.2

shows the constraint automata for each case. The difference (highlighted in the dashed

transition) is that in the ProActiveWaitingSequencer, data on the buffer y comes from buffer

x; while in the ProActiveDependentSequencer data on buffer y comes from node i1i3. z

This example highlights that the same reconfiguration may yield different com-
parison results when assessed over two different semantic models. It is the job of the
architect to choose the semantics that better fulfils the objectives of the comparison.

At this moment, the attentive reader will conclude that the proposed comparisons
do not deliver any insight about the relation between the compared reconfigurations
and the original coordination pattern. Questions like do these reconfigurations pre-
serve the original behaviour? or do they change that behaviour? cannot be answered
this way. In order to obtain an answer for these questions, fine grained variants of
both $ and 4 are needed. Such granularity is achieved by introducing an extra
comparison dimension as follows; for $ one may consider whether

(r1 =l M r2)⇢ i↵ (1r $M r1 $M r2)⇢ (7.1)

(r1 =" M r2)⇢ i↵ (1r 4M r1 $M r2)⇢ (7.2)

(r1 =# M r2)⇢ i↵ (r1 $M r2 4M 1r)⇢; (7.3)

127

Architectural reconfiguration of interacting services

ee fxe

fxfyefy

{a, o1}
do1 = dx = da

{
b,
o
2
}

d
o
2
=

d
b
=

d
y

{a, o1}
do1 = dx = da

{
b,
o
2
}

d
o
2
=

d
b
=

d
y

{i
1
}
dy
=
dx

{a
, o
1
, b
, o
2
}

do
1
=
dx

=
da
^

d b
=
do
2
=
dy

[[ProActiveWaitingSequencer]]CA

ee fxe

fxfyefy

{a, o1}
do1 = dx = da

{
o
2
}

d
o
2
=

d
b
=

d
y

{a, o1}
do1 = dx = da

{
b,
o
2
}

d
o
2
=

d
b
=

d
y

{i
1
i 3
}
dy
=
d i 1

i 3

{a
, o
1
, b
, o
2
}

do
1
=
dx

=
da
^

do
2
=
d b
=
dy

[[ProActiveDependentSequencer]]CA

Figure 7.2: CA semantics for the ProActiveWaitingSequencer (left) and the
ProActiveDependentSequencer (right).

Similarly, for 4,

(r1 4" M r2)⇢ i↵ (1r 4M r1 4M r2)⇢ (7.4)

(r1 4! M r2)⇢ i↵ (r1 4M 1r 4M r2)⇢ (7.5)

(r1 4# M r2)⇢ i↵ (r1 4M r2 4M 1r)⇢. (7.6)

This more fine-grained comparison allows to link the compared reconfigurations
and their effect to the original coordination pattern. For instance, the three com-
parisons of $ highlight that the reconfigurations preserve the original behaviour
(Equation 7.1); the reconfigurations change the original behaviour by adding new
behaviour (Equation 7.2) and the reconfigurations change the original behaviour by
removing part of it (Equation 7.3). The reading is similar for 4.

Example 7.2 Consider once again the Sequencer coordination pattern in Figure 6.1.
Suppose that the results delivered by the second service are just a complement to those
offered by the first. In this situation, whenever the second service fails, the system may
proceed normally, disregarding port o2. This requirement is met by applying the following
reconfiguration:

rquasiweak = ⇢s � replaceP(i o2 , {(fgh, i)}, {s3})

which is actually part of the reconfiguration rweak discussed in Example 6.8. The resulting
coordination pattern (referred to as QuasiWeakSequencer) is a variant of the WeakSequencer.
Their structure and semantic models are depicted in Figure 7.3.

In spite of their similarity, it is possible to see that the upper transition of the automata

for the WeakSequencer has an extra guard expressing that data may be lost on the first lossy

128

7.1. Behavioural reasoning

a b

o1 o2

cde fihx

The QuasiWeakSequencer

a b

o1 o2

ci1e fi2h

s5

x

s6
s4

The WeakSequencer

e fx

{a, o1} do1 = da ^ dx = da

{b} db = dx

{b, o2} do2 = db = dx

[[QuasiWeakSequencer]]CA

e fx

{a} dx = da

{a, o1} do1 = da ^ dx = da

{b} db = dx

{b, o2} do2 = db = dx

[[WeakSequencer]]CA

e fx

ao1|ao1

bo2|bo2

bo2|b

[[QuasiWeakSequencer]]RA

e fx

ao1|ao1

ao1|a

bo2|bo2

bo2|b

[[WeakSequencer]]RA

Figure 7.3: The QuasiWeakSequencer and the WeakSequencer semantics.

channel. Therefore, for M 2 {CA,RA}, [[QuasiWeakSequencer]]M � [[WeakSequencer]]M.

Thus, (rquasiweak 4 rweak)⇢s . But one may be more pretentious here: both patterns

simulate the Sequencer, leading to (1r 4M rquasiweak 4M rweak)⇢s , this is, in a fine

grained comparison (rquasiweak 4" rweak)⇢s . z

7.1.2 A behavioural classification of reconfigurations

It is possible to propose a classification of reconfigurations with respect to a coordina-
tion pattern and a semantic model. Such a classification categorises the behavioural
effects of reconfigurations when applied to specific coordination patterns. Figure 7.4
presents a possible taxonomy.

Consider ⇢ 2 P , r a reconfiguration and M any semantic model.

• r is beh-unobtrusive when it preserves the original behaviour of ⇢. Formally,
(1r $M r)⇢.

• r is beh-obtrusive when it changes the original behaviour of ⇢, while preserving
part of it. Formally, (1r 4M r)⇢ _ (r 4M 1r)⇢.

129

Architectural reconfiguration of interacting services

������������������
�����������������

������������������
���������������

��������������

�������������
���������������

�������������
���������������

Figure 7.4: A taxonomy for classifying the (behavioural) effects produced by the ap-
plication of reconfigurations.

• r is beh-expansive when it adds new behaviour to the original one. Formally,
(1r 4M r)⇢.

• r is beh-contractive when the original behaviour is partially removed. Formally,
(r 4M 1r)⇢.

• r is beh-disruptive when it is neither unobtrusive nor obtrusive. The application
of r does not preserve any of the original behaviour.

The classes above are disjoint, in the sense that no reconfiguration is, for in-
stance, simultaneously beh-expansive and beh-unobtrusive, or beh-contractive and
beh-disruptive.

The remaining classes are also disjoint among themselves, but may overlap with
the ones above. In fact, the remaining classes provide a different perspective of
behavioural classification. They classify reconfigurations based on a comparison of
the number of states before and after reconfigurations. Informally,

• r is state-conservative when it conserves the number of states from the original
coordination pattern;

• r is state-variable when it changes the number of states in comparison to the
original coordination pattern;

• r is state-augmentative when it augments the number of states;

• r is state-diminishing when it diminishes the number of states.

Example 7.3 It is now possible to classify all the reconfigurations, considered in the pre-
vious examples, for the Sequencer pattern with respect to either the CA or the RA semantic

130

7.2. Structural reasoning

models. The rproactive and the rdependent reconfigurations are disruptive, while the rweak

and the rquasiweak are beh-expansive. In turn, rskept is an beh-unobtrusive reconfiguration.

Additionally, rproactive and rdependent are also state-augmentative. In turn, rweak, rskept
and rquasiweak are state-conservative. z

The classification of reconfigurations may play an important role in practice.
For instance, two simple observations are that expansive reconfigurations are not
state-diminuitive and contractive reconfigurations are not state-augmentative. More
interesting is the possibility of reasoning about reconfigurations as a class, instead
of individually. In this context, properties may be defined that remain invariant for
all the class elements.

7.2 Structural reasoning

In the previous section it was discussed that the effect of a reconfiguration can be
measured through behavioural changes entailed by its application.

There is, however, another perspective whose focus is placed on the intercon-
nection structure, with no reference to the emerging behaviour. In this case, the
effects of a reconfiguration can be measured by the structural changes induced from
its application. Structural changes are observed from the analysis of structural or
syntactic properties. Examples of such properties are:

i) every fifoe channel from a node n is connected to at least a lossy channel or

ii) node i is a connector’s output node.

One may then require that a reconfiguration preserves such properties. This will
lead to a different family of relations to compare reconfigurations. What should be
remarked is the fact that such relations are independent of the underlying semantic
model and, in a broader sense, not committed to the use of a specific coordination
modelling language. This section introduces a hybrid logic to express and reason
about these properties.

7.2.1 A hybrid logic

Modal logic provides the standard way of expressing properties over the graph-like
structure underlying coordination patterns. Each coordination pattern ⇢ gives rise
to a transition system G⇢ over nodes in N and labelled by connector types in T ,
such that m t n if data may flow from node m to node n through a connector of
type t in ⇢. Formally,

131

Architectural reconfiguration of interacting services

Definition 7.2. Given a coordination pattern ⇢ = hC⇢,N⇢i, its may-flow graph G⇢

is a labelled transition structure over N⇢, labelled by channel types, and given by

[

hS,i,t,Ki2C⇢,S,K6=;

{hm, t, ni| m,n 2 N⇢ ^ m \ S 6= ; ^ n \ K 6= ;} (7.7)

The set of nodes in G⇢ is denoted by Gnds
⇢ .

Clearly, Gnds
⇢ ✓ N⇢. A similar transition could be defined labelled by connector

identifiers in I or even by pairs in T ⇥ I, both cases giving rise to deterministic
transition systems. The logic below is independent of whatever labels are chosen for
representing specific views of the connector structure.

Often, however, structural properties are to be formulated relatively to a par-
ticular node in the pattern. An example is given by property ii) stated in the
beginning of this section. In general, one may require, for instance, that all the
channels incident in a specific node and their interconnections remain unchanged
under a reconfiguration. This justifies the choice of hybrid logic [47] to express such
properties.

Recall (from Chapter 2) that hybrid logic adds to a modal language the ability
to name, or to explicitly refer, to specific states of the underlying Kripke structure.
This is done through the introduction of propositional symbols of a new sort, called
nominals, each of which is true at exactly one possible state. The sentences are then
enriched in two directions. On the one hand, nominals are used as simple sentences
holding exclusively in the state they name. On the other hand, explicit reference to
states is provided by a satisfaction operator @ such that @iφ asserts the validity of
φ at the state named i.

Structural properties of coordination patterns will be expressed in a variant of
hybrid propositional logic, called HpE , where modalities are indexed by channel
types in T , or, more generally, by subsets of T . The logic is interpreted over G⇢,
for each coordination pattern ⇢. Each node n in Gnds

⇢ is endowed with a model
of a propositional logic pE defined over channel ends in E and the usual Boolean
connectives:

p, p0 3 e | ¬p | p ^ p0

where e 2 E . The satisfaction relation is as follows

n |=pE e iff e 2 n

n |=pE ¬p iff n 6|=pE p

n |=pE p ^ p0 iff n |=pE p ^ n |=pE p0

132

7.2. Structural reasoning

On top of pE a hybrid language is defined as follows:

φ,φ0 3 p | i | ¬φ | φ ^ φ0 | [K]φ | [[K]]φ | @iφ

where p is a sentence of pE , K ✓ T , and i 2 Nom for a set Nom of nominals.
Constants true and false, as well as the usual Boolean connectives, are defined by
abbreviation. For simplicity, in modalities ‘−’ stands for the whole set T , and [−t],
with t 2 T , stands for T \ {t}.

Modality [K] quantifies universally over the edges of G⇢ labelled by channel types
in K; its dual hKi = ¬[K]¬ provides an existential quantification. Modalities hKi

and [K] express properties of outgoing connections from the node in which they
are evaluated, in a coordination pattern. Dually, modalities hhKii and [[K]] express
properties of incoming connections. Finally, the satisfaction operator @ redirects
the formula evaluation to the context of a specific node. Nominals make possible to
express proprieties local to a specific node.

A semantic model, M, for this language is a pair hG⇢, σ : Nom ! Ni, where ⇢ is
a coordination pattern, and σ assigns to each nominal a node in G⇢. The satisfaction
relation, given a model M = hG⇢, σi and a node n, is defined as follows:

M, n |= p iff n |=pE p

M, n |= ¬φ iff M, n 6|= φ

M, n |= φ ^ φ0 iff M, n |= φ and M, n |= φ0

M, n |= i iff σ(i) = n

M, n |= @iφ iff M, σ(i) |= φ

M, n |= [K]φ iff 8m2{p| hn,t,pi 2G⇢ ^ t2K} . M,m |= φ

M, n |= [[K]]φ iff 8m2{p| hp,t,ni 2G⇢ ^ t2K} . M,m |= φ

The satisfaction relation |= lifts, as usual, to (global) satisfiability by quantifying
over all the nodes in the model. this is, φ is globally satisfied in M (M |= φ) if it is
satisfied at all nodes in M.

Example 7.4 Consider the following properties:

• Property i) stated above is expressed as

@n[fifoe]hlossyitrue.

133

Architectural reconfiguration of interacting services

• Property ii), expressed as
@i[−]false,

uses [−]false to state the absence of outgoing channels from the node referred by
nominal i.

• All outgoing channels from i are lossy:

@i(h−itrue ^ [−lossy]false).

• Absence of a loop formed by a sync followed by a lossy channel at i:

i ! ¬hsyncihlossyii.

Notice that the absence of loops, and in general, irreflexivity of a binary relation is
not expressible in classical modal logic [56].

• All output nodes are accessible through a sync channel but never through a fifoe

channel:
[−]false ! (hhsyncii true ^ [[fifoe]]false) z

Properties expressed inHpE can be verified, after a translation to classical propo-
sitional hybrid logic in the HyloRes [20] system. The translation involves a restriction
of propositional symbols to nominals and an encoding of the backward modalities
hhKii and [[K]].

7.2.2 Bisimulation for HpE

The notion of bisimulation for HpE-models provides the essential tool to compare
coordination patterns from a structural point of view (in a way similar to what was
done in the behavioural perspective). Formally, let M = hG⇢, σi and M0 = hG⇢0 , σ

0i,
defined over the same set Nom of nominals and the same set of channel ends E .
Then,

Definition 7.3. A bisimulation for HpE-models is a binary relation R ✓ Gnds
⇢ ⇥Gnds

⇢0

such that

i) for any i 2 Nom and nRn0, σ(i) = n i↵ σ0(i) = n0

ii) for any i 2 Nom, σ(i)Rσ0(i)

iii) if nRn0, nodes n and n0 are elementary equivalent, i.e.,

8p2pE n |=pE p i↵ n0 |=pE p

134

7.2. Structural reasoning

iv) (zig) for any t 2 T , if nRn0 and hn, t,mi 2 G⇢, then there exists a node m0

such that hn0, t,m0i 2 G⇢0 and mRm0

v) (zag) for any t 2 T , if nRn0 and hn0, t,m0i 2 G⇢, then there exists a node m
such that hn, t,mi 2 G⇢ and mRm0

Lemma 7.1. The union and the relational composition of two bisimulations are still
bisimulations.

Proof.
Union. Let R = R1 [R2, where both R1, R2 are bisimulations. Clearly, any two
nodes n, n0 related by R also satisfy nR1n

0 or nR2n
0. Therefore, clauses i), ii) and

iii) of Definition 7.3 hold. For clause iv) consider a connection hn, c,mi. If nR1n
0

(respectively, nR2n
0) there is a nodem0 such that hn0, c,m0i andmR1m

0 (respectively,
mR2m

0), which, in either case, entails mRm0. Clause v) is proved similarly.
Composition. Consider two (composable) bisimulations R1, R2 and suppose nR2 ·

R1n
0, for nodes n, n0. Clauses i), ii) and iii) of Definion 7.3 hold for R2 ·R1 because

they also hold individually for R1 and R2; for clause iii) note that the elementary
equivalence used in its statement is an equivalence relation. For clause iv), suppose
nR2 · R1n

0, for nodes n, n0. By definition of relational composition, there is a node
p such that nR1p and pR2n

0. Suppose there is a connection hn, c,mi; then, R1

being a bisimulation, there exists a node p0 and a connection hp, c, p0i, with mR1p
0.

Connection hp, c, p0i and the fact that pR2n
0 for R2 a bisimulation, on the other

hand, entails the existence of a node m0 such that there is a connection hn0, c,m0i

and p0R2m
0. Thus mR2 ·R1m

0, as wanted. Clause v) is proved similarly.

Definition 7.4. Given two models, M = hG⇢, σi and M0 = hG⇢0 , σ
0i, and two nodes

n 2 Gnds
⇢ and n0 2 Gnds

⇢0 . Nodes n, n0 are bisimilar, denoted by n ⌦ n0, iff there is
a relation R which is a bisimulation over M,M0 and also over M◦,M0◦, such that
nRn0, where M◦ is a model identical to M but defined over the relational converse
of G⇢.

This extra requirement for R in the definition above comes from the presence of
a backwards modality [[K]] to reason about incoming connections. Now, clearly,

Lemma 7.2. Let U ✓ P. Relation ⌦ is an equivalence relation over the set of
nodes of all patterns in U .

Proof. It is immediate to show that the identity relation is a bisimulation, and so
is the relational converse of a bisimulation (if n⌦ n0 is witnessed by a bisimulation

135

Architectural reconfiguration of interacting services

R ✓ Gnds
⇢ ⇥ Gnds

⇢0 , for ⇢, ⇢0 2 U , then n0 ⌦ n is witnessed by R◦ ✓ Gnds
⇢0 ⇥ Gnds

⇢).
Transitivity, on the other hand, comes from the fact that the relational composition
of bisimulations is also a bisimulation, as proved in the second part of Lemma 7.1.

The usual connection between bisimilarity and modal satisfaction also holds as
shown in the following.

Lemma 7.3. Given two models, M = hG⇢, σi and M0 = hG⇢0 , σ
0i, and two nodes

n 2 Gnds
⇢ and n0 2 Gnds

⇢0 , such that n⌦ n0, then

M, n |= Φ () M0, n0 |= Φ

for every formula Φ 2 HpE .

Proof. The proof proceeds by induction on the formulas’ structure.

i) Φ = p. Let M, n |= p which, by definition of |=, is equivalent to n |=pE p. Nodes
n and n0 are elementary equivalent because n ⌦ n0, which entails n0 |=pE p.
Therefore, M0, n0 |= p.

ii) Φ = φ ^ . Let M, n |= φ^ which, by definition of |=, is equivalent to M, n |=

φ and M, n |= . By induction hypothesis M0, n0 |= φ and M0, n0 |= ,
which entails M0, n0 |= φ ^ . The argument is similar for Φ = ¬φ (and, in
general, for the derived Boolean connectives).

iii) Φ = i. Let M, n |= i which, by definition of |=, is equivalent to σ(i) = n. Then
σ0(i) = n0 because n⌦ n0, which entails M0, n0 |= i.

iv) Φ = @iφ. Let M, n |= @iφ which, by definition of |=, is equivalent to M, σ(i) |=

φ. By definition of bisimulation σ(j) ⌦ σ0(j), for any nominal j. This
combined with the induction hypothesis yields M0, σ0(i) |= φ. Therefore,
M0, n0 |= @iφ.

v) Φ = [K]φ. Let M, n |= [K]φ which, by definition of |=, is equivalent to

8m2{p| hn,c,pi 2G⇢ ^ c2K} . M,m |= φ.

Assume that n ⌦ n0 is witnessed by a relation R, and for each m above,
consider the connection hn, c,mi. As R is a bisimulation for M,M0, by clause
iv) in Definition 7.3, there is a node m0 in a connection hn0, c,m0i and mRm0.
By hypothesis M,m |= φ and then, by induction hypothesis, M 0,m0 |= φ.
Therefore, 8m02{p0| hn0,c,p0i 2G⇢ ^ c2K} . M

0,m0 |= φ which entails M0, n0 |= [K]φ.
Clause v) in Definition 7.3 gives the converse implication.

136

7.2. Structural reasoning

v) Φ = [[K]]φ. The argument is similar to the one used in iv) with R being a bisim-
ulation for M◦,M0◦

The converse of this result also holds whenever G⇢ is image finite. Being image
finite means that the number of incident connections in a node, for all nodes in G⇢,
is finite. Notice that this is always the case, for any ⇢ 2 P , as coordination patterns
are typically composed of a finite number of connectors.

Lemma 7.4. Consider two models, M = hG⇢, σi and M0 = hG⇢0 , σ
0i, and two nodes

n 2 Gnds
⇢ and n0 2 Gnds

⇢0 , such that M, n |= Φ () M0, n0 |= Φ, for every formula
Φ 2 HpE . Then n⌦ n0.

Proof. Let us show that

Z = {(n, n0) 2 Gnds
⇢ ⇥ Gnds

⇢0 | 8φ2HpE · M, n |= φ () M0, n0 |= φ}

is a bisimulation over M,M0 and M◦,M0◦. The atomic conditions, in clauses i), ii)
and iii) of Definition 7.3 trivially hold. Consider, now clause iv) (the (zig) condition).
Let nZn0 and assume there is a connection hn, c,mi.

Both G⇢ and G⇢0 are, by construction, image finite, which makes S = {p0| hn0, c, p0i}

finite. It cannot be empty, however, because in such a case M 0, n0 |= ¬hcitrue and,
by definition of Z, M,n |= ¬hcitrue which is inconsistent with the existence of
connection hn, c,mi assumed above.

To obtain a contradiction, suppose that there is no node m0 2 Gnds
⇢0 such that

mZm0 and is part of a connection hn0, c,m0i. Therefore, for every v 2 S, there is a
formula v such that M,m |= v and M0, v 6|= v. Consider now the conjunction

 =
^

v2S0

 v

of all of these formulas. Then, on the one hand, M, n |= hci , but, on the other,
M0, n0 6|= hci . This, however, contradicts nZn0. The (zag) condition, clause v) in
Definition 7.3 is shown in a similar way.

This proves that relation Z is a bisimulation over G⇢ and G⇢0 . A similar argument
shows that it is also a bisimulation for their relational converses, which are also image
finite.

Combining both lemmas entails a Hennessy-Milner like result: modal equivalence
in HpE and bisimilarity coincide for models constructed from coordination patterns
according to Definition 7.2. Note the result is valid in general for image finite models.

137

Architectural reconfiguration of interacting services

Theorem 7.1. Consider two models M = hG⇢, σi and M0 = hG⇢0 , σ
0i, and two nodes

n, n0 in Gnds
⇢ and Gnds

⇢0 , respectively. Then,

n⌦ n0 iff 8Φ inHpE M, n |= Φ () M0, n0 |= Φ

Proof. Corollary of lemmas 7.3 and 7.4 above.

7.2.3 Expressing ‘long scope’ properties

HpE can be extended to allow for modalities which take the form of regular expres-
sions over the labels of G⇢, for any ⇢ 2 P . Technically this is a particular case of
the extension of a modal logic with fixed points as in the µ-calculus [167]. This is
particularly useful to express long scope properties, such as

i) A channel of type t is accessible from a node referred to by i

ii) All input ports lead to an output port via, at least, one fifoe channel

Consider, thus, the following syntax for modalities:

⌫ 3 ✏ | t | ⌫.⌫ | ⌫ + ⌫ | ⌫⇤ | ⌫+

where ✏ is the empty word, t 2 T , ‘.’ denotes concatenation, ‘+’ choice and ⌫⇤

and ⌫+ the Kleene and transitive closures. The intuitive semantics is given below (a
precise rendering requires the introduction of fixed points). Note that the modalities
referring to incoming connections are defined dually.

Definition 7.5. Let ⌫ ,⌫1 and ⌫2 be modalities and φ a formula. The following
define the semantics of the modalities extension:

• h✏iφ = φ = [✏]φ • h⌫1.⌫2iφ = h⌫1ih⌫2iφ

• [⌫1.⌫2]φ = [⌫1][⌫2]φ • h⌫1 + ⌫2iφ = h⌫1iφ _ h⌫2iφ

• [⌫1 + ⌫2]φ = [⌫1]φ _ [⌫2]φ • h⌫⇤iφ = φ _ h⌫iφ _ h⌫ih⌫iφ _ . . .

• [⌫⇤]φ = φ _ [⌫]φ _ [⌫][⌫]φ _ . . . • h⌫+iφ = h⌫iφ _ h⌫ih⌫iφ _ . . .

• [⌫+]φ = [⌫]φ _ [⌫][⌫]φ _ . . .

Example 7.5 With this extension it is now possible to express the properties above as
follows:

i) @ih−⇤.titrue

ii) [[−]]false ! h−⇤.fifoe.−
⇤i[−]false z

138

7.2. Structural reasoning

7.2.4 Comparing reconfigurations

As mentioned above, with a structural bisimulation notion, one is able to compare
reconfigurations in a way similar to what have been done from the behavioural
point of view. However, equipped with a language to express structural properties
of coordination patterns, one can define a different criterium for comparing recon-
figurations. This entails a notion of invariant properties that shall be preserved by
reconfigurations. The ability to preserve (or not) these invariants will guide the
comparison of reconfigurations.

Notation

idX defines the identity function on set X, i.e., for all x 2 X idX(x) = x.

In the remaining of this section, the set of nominals in each model M = hG⇢σi

will be identified with the set N⇢ of nodes in pattern ⇢. This makes σ = idN⇢
,

without loss of generality.

Definition 7.6 (Structural Invariant). A structural property φ is invariant for a
reconfiguration r in a model M = hG⇢, idN⇢

i iff it is preserved by r. Formally,

hG⇢, idN⇢
i |= φ ! hG⇢�r, idN⇢�r

i |= φ

In practice, however, reconfigurations entail a sort of displacement of the struc-
tural relationships in the coordination pattern. This means they often remain valid
but at a different node in the pattern. A typical situation is illustrated in Exam-
ple 7.6.

Example 7.6 Consider the coordination pattern in Figure 7.5.a). Clearly, at node cde it
is true that, after a connection made through a sync channel, all the others are established
by lossy channels, i.e., @cde hsynci(h−itrue ^ [−lossy]false).

Consider now that an insertP reconfiguration is applied at node cde. In a first step, node

cde is split because of the application of the split elementary reconfiguration (Figure 7.5.b).

Then a new structure is linked to the nodes resulting from this operation (Figure 7.5.c). In

both steps, however, the property is still valid for nodes e and moe, respectively. With re-

spect to the example in Figure 7.5.c, this is expressed as @moe hsynci(h−itrue^[−lossy]false).

z

This example motivates a generalisation of Definition 7.6.

Definition 7.7. Let ⌧ be a surjection on nominals. A structural property φ is
invariant for a reconfiguration r, up to a name translation ⌧ iff

hG⇢, idN⇢
i |= φ) hG⇢�r, idN⇢�ri |= φ[⌧]

139

Architectural reconfiguration of interacting services

(a)
a

b cde fgh

i

j

(b)
a

b

c

d

e

fgh

i

j

a

b
cdmi

moe
fgh

i

j

(c)

Figure 7.5: Example of a displaced invariant.

where φ[⌧] stands for φ with all occurrences of a nominal i replaced by ⌧(i).

Notation

[x1 7! y1, . . . , xn 7! yn] denotes a function mapping nodes xi to yi; it behaves as
the identity for all other cases.

Back to Example 7.6, if hG⇢, σi |= , then hG⇢�r, σi |= [cde 7! moe] for r the
relevant reconfiguration.

From these notions of structural invariant, one is able to define what does it
mean to two reconfigurations be structural equivalent.

Definition 7.8 (Structural Equivalence). Given a model M = hG⇢, idN⇢
i, reconfig-

urations r1 and r2, a set of formulas Φ, and two surjections ⌧ and ⌧ 0 it is said that
r1 and r2 are structurally equivalent with respect to Φ, written r1 ⌘

M
Φ
r2, iff

hG⇢�r1 , idN⇢�r1
i |= φ[⌧] () hG⇢�r2 , idN⇢�r2

i |= φ[⌧ 0]

for every φ 2 Φ.

Informally, if two reconfigurations preserve the same set of invariant properties,
they are said structurally equivalent. Consequently, one can derive a weak version
of this equivalence notion that allows for finer comparisons of reconfigurations.

Definition 7.9 (Structural Weak Equivalence). Given a model M = hG⇢, idN⇢
i,

reconfigurations r1 and r2, a set of formulas Φ, and two surjections ⌧ and ⌧ 0 it is
said that r1 is structurally weaker than r2 with respect to Φ, written r1

M
Φ
r2, iff

hG⇢�r1 , idN⇢�r1
i |= φ[⌧]) hG⇢�r2 , idN⇢�r2

i |= φ[⌧ 0]

for some φ 2 Φ.

140

7.2. Structural reasoning

This implies that r1 preserves formulas in a set Φ1, and r2 preserves formulas in
a set Φ2, such that Φ1 ✓ Φ2 ✓ Φ. In this situation, r1 preserves less structure
than r2, therefore it can be said less conservative with respect to structure. This
inequality may even be quantified by taking the difference between the number of
formulas preserved by each reconfiguration. Regarding it over this perspective, a
natural order of reconfigurations would arise.

Example 7.7 Let M = hG⇢s , idN⇢s
i. Consider Φ as a set composed of the following

three invariant formulas:

φ1 @a[−
+]b – node a connects to node b, via one or more channels;

φ2 @a[−
⇤.fifo]true – data transmission is made asynchronously;

φ3 @o1 [−]false ^@o2 [−]false – nodes o1 and o2 are output ports.

and recall reconfigurations rproactive, rweak and rdependent presented in previous sections
as well as their resulting patterns when applied to the Sequencer (Figures 6.2, and 7.1,
respectively) .

Clearly, the three reconfigurations preserve φ2 and φ3; and reconfiguration rdependent

does not preserve φ1, but the others do. From this simple reasoning, one conclude that

• rproactive ⌘
M
Φ

rweak

• rdependent
M
Φ

rproactive

• rdependent
M
Φ

rweak z

Recall Example 7.1. In that example it was concluded that rdependent and rproactive
were semantically equivalent. The same observation does not hold in this structural
point of view, at least for the set of formulas considered in Example 7.7. These
two reasoning perspectives are complementary to one another, providing different
insights about reconfigurations.

7.2.5 A structural classification of reconfigurations

Similarly to the behavioural perspective, one can derive a classification of reconfigu-
rations with respect to this structural vision. Such a classification takes into account
a specific model M = hG⇢, idN⇢

i, and a set of formulas Φ. Figure 7.6 presents the
corresponding taxonomy.

Informally, a reconfiguration r is said to be:

• str-compatible when it preserves all formulas in Φ.
Formally, 8φ2Φ · hG⇢�r, idN⇢�r

i |= φ.

141

Architectural reconfiguration of interacting services

���������������������
��������������

���������������������
����������������

������������
��������������

Figure 7.6: A taxonomy for classifying the (structural) effects produced by the appli-
cation of reconfigurations.

• str-variable when it preserves formulas in Φ that also hold in the original
coordination pattern.

• str-conservative when it preserves all formulas in Φ that also hold in the orig-
inal coordination pattern.
Formally, 1r ⌘

M
Φ
r.

• str-less-conservative when it preserves less formulas in Φ than those holding
on the original coordination pattern.
Formally, r M

Φ
1r.

• str-more-conservative when it preserves more formulas in Φ than those holding
on the original coordination pattern.
Formally, 1r

M
Φ
r.

• str-disruptive when it does not preserve any formula in Φ.
Formally, 8φ2Φ · hG⇢�r, idN⇢�r

i 6|= φ.

Using the hybrid logic to define formulas that specifically target the structure
of coordination pattern concern, one can go further and add new classification di-
mensions to this taxonomy. For instance, one can define a set of properties that
talk about the interface of a coordination pattern. Then, one is able to classify
reconfigurations that, for instance, lead coordination patterns with different inter-
face when compared to its original version. These may provide a deeper insight to
reconfigurations, allowing architects to directly choosing among a set of them.

7.3 The stochastic case

In this section the focus is set on the stochastic version of coordination patterns
and their reconfigurations. Reasoning about the structure of these patterns remains

142

7.3. The stochastic case

as in the non stochastic case. In some sense, the same applies to the behavioural
reasoning perspective. However, for this dimension, a different sort of semantics has
to be chosen in order to take full advantage of the richer set of information present
in stochastic coordination patterns.

Earlier, in Chapter 4, it was introduced a stochastic semantic model, DIMCReo,
that can now be adopted. DIMCReo was initially thought for (a component-based
view of) stochastic Reo. Therefore, in order to use DIMCReo as a semantic model
for stochastic coordination patterns, the channels of the latter must be typed with
Reo channel names. The models underlying DIMCReo and stochastic coordination
patterns match, because of the separation enforced upon channels, nodes and en-
vironment. Notwithstanding this match, a translation between the two entities is
required. In Appendix A, Algorithm A.2 shows how this conversion is obtained.
Note that IMCReo could, as well, be used for this matter. However, the models un-
derlying IMCReo (which is stochastic Reo) and stochastic coordination patterns have
several mismatches. Anyway, Algorithm A.2 shows how similar translation could be
obtained.

Having such a semantic model associated with stochastic coordination patterns,
it is now possible to reason from a behavioural perspective about their reconfigu-
rations. DIMCReo provides the necessary comparison mechanisms to that end. But
in possession of stochastic information, it makes sense to reason about reconfigu-
rations up to an even different perspective: the quantitative one. In that setting
one can compare reconfigurations by the quantitative effects they have upon the
coordination patterns.

7.3.1 Quantitative reasoning

In a stochastic setting, the effects of reconfigurations can be measured by the quan-
titative implications of their application. To this end, one has to concretely define
what are the relevant dimensions that characterise the quantitative behaviour of
the subject system. Then, one may require that reconfigurations preserve the per-
formance for those dimensions or, for instance, that such a performance does not
deviate (above or below) from some fixed quantifiable threshold. These dimensions
are, as expected, related to QoS [187].

Constraint semirings (c-semirings for short) [46, 108] provide the natural way of
algebraically model the structure of QoS dimensions.

Definition 7.10 (C-semiring). An algebraic structure hV,⊕,⌦, 0,1i is a c-semiring
for V a set where 0, 1 2 V and ⊕ and ⌦ are binary operations over V satisfying:

143

Architectural reconfiguration of interacting services

• ⊕ is commutative, associative, idempotent, 0 is its unit element and 1 is the
absorbing element.

• ⌦ is commutative, associative, distributes over ⊕, 1 is its unit element and 0
is its absorbing element.

Intuitively, ⊕ and ⌦ define a choice and a combination operations, respectively.
A c-semiring further defines a partial order over V as v1 V v2 () v1 ⊕ v2 = v2,
for v1, v2 2 V , meaning (informally) that v2 is better than v1.

This partial order is essential for comparing QoS dimension values. In fact, for
the reasoning approach proposed in this section, one is not interested in defining how
the QoS dimension value is computed from the structure of the coordination pattern.
Instead, such a value is obtained via pre-established formulas that use the results
from the quantitative analysis of the underlying performance model (expressed in
DIMCReo, in this case).

With this definition, one is able to express whatever QoS dimensions are relevant
for characterising the performance of a system. Usual performance dimensions are:

• hR+,max,min, 0,+1i, e.g., throughput (generating a partial order R+);

• hR+,min,max,+1, 0i, e.g., latency, response-time or mean-time-to-fail (gen-
erating a partial order ≥R+);

• h[0, 1],max, ·, 0, 1i, e.g., throughput-rate or availability (generating a partial
order [0,1]);

• h[0, 1],min,max, 1, 0i, e.g., loss-rate or blocking-rate (generating a partial order
≥[0,1]).

In the sequel, ⌦ will denote a set of QoS dimensions, and the carrier of the
c-semiring associated to dimension ! 2 ⌦ will be denoted by V!.

Of course, the quantitative analysis of the QoS dimensions in a set ⌦ associated
to a stochastic coordination pattern is made taking into account an environment.
In turn, the comparison of reconfigurations will have to consider the original co-
ordination pattern, a fixed environment (or at least, an environment that remains
compatible with the original coordination pattern) and the dimensions. Conse-
quently, a model for quantitative reasoning S is a pair h⇢ΔEnv ,⌦i, where the first
component is a stochastic coordination pattern deployed in an environment Env,
and the second is the set of relevant dimensions for ⇢.

Now, one defines how two reconfigurations are quantitatively compared with
respect to a suitable quantitive reasoning model.

144

7.3. The stochastic case

Definition 7.11 (Quantitative Equivalence). Let S = h⇢ΔEnv ,⌦i, be a quantitive
reasoning model and r1, r2 be two reconfigurations. Then

r1 ⌘S r2 () vr1 =V!
vr2 ,

for all ! 2 ⌦ and vr1 , vr2 2 V! corresponding to the values of dimension ! evaluated
after reconfigurations r1 and r2, respectively.

Similarly,

Definition 7.12 (Quantitative Weak Equivalence). Let S = h⇢ΔEnv ,⌦i, be a quan-
titive reasoning model and r1, r2 be two reconfigurations. Then,

r1 S r2 () vr1 V!
vr2 ,

for all ! 2 ⌦ and vr1 , vr2 2 V! corresponding to the values of dimension ! evaluated
after reconfigurations r1 and r2, respectively.

In this case, reconfiguration r1 is quantitatively weaker than r2 as it consistently
presents worse performance for each QoS dimension considered for the coordination
pattern.

Example 7.8 Consider the stochastic Sequencer pattern ⇢stos in Example 6.13 with its
stochastic values associated, and the environment Env defined as in Example 6.14.

Now consider reconfigurations rweak and rquasiweak in Examples 6.8 and 7.2, respec-
tively. The stochastic coordination patterns introduced by these reconfigurations have the
following stochastic information:

⇢stow =

*

8

>

>

>

>

<

>

>

>

>

:

*

{hi1, 1000i}, s5, sync, {ho1, 1000i},

{h{i1, o1}, 150i, h{i1}, 175i}

+

,

*

{hi2, 1000i}, s6, sync, {h02, 1000i},

{h{i2, o2}, 150i, h{i2}, 175i}

+

9

>

>

>

>

=

>

>

>

>

;

,

{i1, i2, i3, o2}

+

⇢stoqw =

*

(*

{hi, 1000i}, s6, lossy, {ho2, 1000i},

{h{i, o}, 150i, h{i}, 175i}

+

,

)

,

{i, o}

+

Finally, consider that the QoS characterising ⇢stos is defined as ⌦⇢stos
= {LT,TP,Blk},

where LT is latency1, TP is the throughput2 and Blk is the blocking percentage3. These
dimensions present partial orders ≥R+ , R+ and ≥[0,1], respectively.

The values for these dimensions are obtained after quantitative analysis of each coor-
dination pattern with appropriate tools (c.f., Chapter 9). Table 7.1 shows these values.

1Latency is regarded here as the time (in seconds) needed for one request to be processed, i.e.,
flowing from port a to port b.

2Throughput is regarded here as the number of request accepted in a second by port b.
3Blocking percentage is the percentage of time in which the system is blocked

145

Architectural reconfiguration of interacting services

Table 7.1: Values for Latency, Throughput and Blocking quality dimensions

⇢sto
sΔEnv ⇢sto

qwΔEnv ⇢sto
wΔEnv

LT 0.083 0.070 0.057
TP 12.048 14.286 17.544
Blk 0.759 0.714 0.649

One can now compare the two reconfigurations in the context of S = h⇢sto
sΔEnv ,⌦⇢stos

i:

0.070 LT 0.057; 14.286 TP 17.544 and 0.714 Blk 0.649. Therefore, rquasiweak S rweak.

z

In many practical situations, however, one may be interested in a more loose
definition of quantitative equivalence for reconfigurations. This is because, often,
even though the reconfiguration change the value of some QoS dimensions, it still
guarantees the agreed quality of the system. This presupposes the existence of
some acceptable threshold that will define an interval of values in which each QoS
dimension should be valued.

Definition 7.13 (Quantitatively Bounded Reconfigurations). Let S = h⇢ΔEnv ,⌦i,
be a quantitive reasoning model and r1, r2 be two reconfigurations. Consider now a
threshold t! 2 V!, for each ! 2 ⌦. Then,

r1[⌘]Sr2 () vr1 =
t!
V!
vr2 ,

for all ! 2 ⌦, vr1 , vr2 2 V! corresponding to the values of dimension ! evaluated
after reconfigurations r1 and r2, respectively; and =t!

V!
the equality in V! up to t!,

defined as, for x, y 2 V!

x =t!
V!
y () x ≥V!

t ^ y ≥V!
t.

Moreover, in the stochastic perspective it makes sense that reconfigurations re-
place parts of some coordination pattern with the objective of improving perfor-
mance without changing neither its structure nor its behaviour. New versions of
channels may be created that are more efficient or performative. In the presence
of a catalogue of channels presenting different QoS guarantees, architects may de-
cide whether to apply reconfigurations or not based on the overall objectives for the
system.

Example 7.9 Consider Example 7.8 again and assume the objective of improving
the Sequencer pattern to present LT below 0.070, TP above 14.000 and Blk below 0.700.

146

7.3. The stochastic case

Reconfiguration

rimprove = ⇢stosΔEnv � replaceP(ei fi
xi

, {(fgh, fi), (cde, ei)}, {x})

replaces the buffered channel x with a similar one xi able to write to/read from its queue

100 times more requests per second. It applies an improvement of all QoS dimensions

to values similar to those obtained by applying reconfiguration rquasiweak. In this case,

rquasiweak[⌘]Srimprove. z

7.3.2 A quantitative classification of reconfigurations

As before, one can now derive a classification of reconfigurations with respect to their
quantitative effects on the original coordination patterns. In the quantitative setting
this classification has to consider a quantitative reasoning model S = h⇢ΔEnv ,⌦i.
Figure 7.7 presents the corresponding taxonomy.

������������

������������
�����������
�������������

�������������

��������������

Figure 7.7: A taxonomy for classifying the (quantitative) effects produced by the ap-
plication of reconfigurations.

The informal definition of each concept in the presented taxonomy is shown in
the following list. The prefix qos is added to each concept to avoid name clashing.
A reconfiguration r is said

• qos-bounding when it preserves the QoS performance up to some considered
thresholds. Formally, 1r[⌘]Sr.

• qos-constant when it is equivalent to the identity reconfiguration. Formally,
1r ⌘S r.

• qos-dimming when it preserves the QoS performance up to considered thresh-
olds, but all values of each QoS dimension are below the original ones. For-
mally, 1r[⌘]Sr ^ r S 1r.

147

Architectural reconfiguration of interacting services

• qos-improving when it augments the performance of each QoS dimension. For-
mally, 1r[⌘]Sr ^ 1r S r.

• qos-distorting when the performance of some QoS dimension is not preserved
by r. Formally, 9!2⌦ ·vr <V!

v, for v, vr 2 V! the values associated to ! before
and after reconfiguration r, respectively.

• qos-weakening when r does not preserve the performance of any QoS dimen-
sion. Formally, r S 1r.

Example 7.10 Reconfigurations in Examples 7.8 and 7.9 are qos-improving with respect

to the quantitative reasoning model considered therein. z

Again, one may relate these concepts with those from the previous reasoning
perspectives. New concepts will rise that allow software architects to sharpen their
choices when designing reconfigurations. For instance, one may be interested in
finding reconfigurations that improve QoS while maintaining all behavioural aspects
of the original coordination patterns. For instance, concept “improvement” can
be crafted for that matter. It may, then, be defined that a reconfiguration is an
“improvement” when it is simultaneously qos-improving and beh-unobtrusive.

A complete ontology of reconfigurations can now be defined, assuming these
three sets of taxonomic concepts as its foundation.

7.4 Summary

This chapter introduced three dimensions for reasoning about reconfigurations of
interacting services with focus on coordination aspects: behavioural, structural and
QoS.

For behavioural reasoning it is required that a specific semantic model is asso-
ciated to the coordination pattern. The semantic model is required to be composi-
tional and to provide suitable comparison mechanisms like the notions of similarity
and bisimilarity. Reconfigurations are compared by the effects produced on the
behaviour of the coordination patterns. Several granularity levels of behavioural
comparison are introduced.

For structural reasoning no fixed behavioural semantic model is required. The
coordination pattern itself defines a graph upon which structural properties may be
investigated. In this perspective, comparison of reconfigurations are made via the
preservation of such structural properties after their application. These properties

148

7.4. Summary

are expressed in a specific hybrid logic tailored for that matter. The underlying
Kripke structure was defined with a data-may-flow flavour, but other approaches
may have been adopted without changing the overall reasoning mechanisms.

For stochastic reasoning, the stochastic version of coordination patterns are in
order, as well as the definition of a deployment environment. One could reason about
reconfiguration applied to stochastic coordination patterns over the two previous
perspectives. Comparing reconfigurations in this perspective amounts to comparing
the pairs QoS dimension-value obtained upon applying reconfigurations.

The three perspectives were introduced with different approaches for comparing
and classifying reconfigurations. One is done by simulatoin/bisimulation verifica-
tion; other is by the preservation of key invariant properties; and the other is by
quantitatively comparing performance. The more generic one is the reasoning by
preservation of properties. Structural perspective does it, but one could also de-
fine properties upon the semantic models on both the behavioural and stochastic
perspectives.

Finally, each reasoning perspective allows for the derivation of a taxonomy to
classify reconfigurations. This classification is done after comparing the application
of any reconfiguration and the identity reconfiguration over the same coordination
pattern. The organisation of reconfigurations upon these taxonomies defines starting
point for a suitable ontology as depicted in Figure 7.8.

149

Architectural reconfiguration of interacting services

�
�
�
�
�
�
��
�
�
�
�
��
�

�
�
�
�
�
��
�
�

�
���
�
��
��

�
�
�

�
�
�
��
��
�
���
�

�
�
���
��

�
��
�
�
�
�
���

�
�
�
��
��
�
���
�

�
�
���
��

�
�
�
���
�
�
�
�
�

��
�
�
�
�
�
�

�
�
�
�

��
�
�
�
�
�
�

�
�
�
�

��
�
�
�
�
�
�

�
�
�
�

��
�
�
�
�
�
�
��
�

��
��

�
�
�
��

�
�
�
�
�

�
��
�
�
�
��

�
�
�
��
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�

���
�
�
����

�
�
�
�
��
�

�
��
��

�
�
�
�
�
�
�
�
��
�

��
��

���
�
�
�����

�
�

�
�
�
�
�
�
�
�
��
�

�
�
�
�
�
�
��
�

�
��
��

�
��
��
��
�
��
�

�
��
��

�
�
�
�
�
�
��
���
�

�
��
��

�
�
���
�
��

�
��
��

�
�
�
�
�
��
�
���
�

�
�
�
�

�
�
�
���
�
���
�

�
�
�
�

�
��
��
�
���
�

�
�
�
�

�
�
���
�
��
�

�
�
�
�

�
�
�
�
���
�
��
�

��
��

��
��

��
��

�
��
�
�
��
�
�
��
��

�
�
����

���
�

�
��
�
�
��
�
�

�
�
�
�
��
�
�

�
��
�
�
��
�
��
�
�

�
�
�
�

�
�
�
�
�
�
��
�

��
��

��
��

��
�
�
�
�
�

�
�
�
�

��
��

��
��

��
��

��
��

�
�
�
�
�
�
��

�
�
�
�
�
���
�

�
��
�
�
��
�
�

�
�
�
�
�
���
�

�
��
��
��
�
�
�

�
�
�
�
�
���
�

�
�
�
�
�
�
�

�
�
�
�
�
���
�

�
��
�
�
�
��
�

�
�
��
�

��
��
�
�
�
��

�
�
�
�
�
�
��
�

�
�
�
�
���
�
�
��
�

�
�
�
�
�
��
�

�
�
���

�
�
�
�

�
��
��
�����

�

�
�
�
�

�
�
�
�
�
�
��
�

�
�
�
�

��
�
��
�
��
�

�
�
�
�

�
��
�
��
�

�
�
�
�

�
�
�
�
��
��
�

�
�
�
�

�
�
�
�
�
��
�

��
��

�
��
�
�
��
�
�
��
��

�
��
�
�
��
�
�

�
�
���

��
��

�
�
�
�
��
�

��
��
�
�
�
��
���

��
��

��
��

�
��
�
�
��
�
�

�
�
�
��
�
��
��
��
�
�
��
�
�

�
�
�
��
�
�
�
�

��
��

�
�
�
�
��
�
��

�
��
�
�
��
�
��
�
�
�

��
��

�
�
�
�
��
�
��

�
��
�
�
��
�
���
�
�

�
���

�
��
��
�
���
�

�
�����

�
�
�

�
�
�
�
�
��
�
���
�

�
���

�
�
�
�
�
��
�
���
�

�
���

�
�
���
�
��

�
���

�
�
�
�
�
���
��

��
��
�
��

�
�
�
�
�
�
��
�

�
��
�
�
��
�
�
��
��

��
��

��
��

�
��
�
�
��
�
�

�
�
�
�

��
�� �
��
�
�
��
�
�

�
�����

�
��
�
�
�

��
��

�
��
�
�
��
�
�

��
�
�

�
����

�
��
�

�
�
�
�
�
��
�
���
�

�
��
�
�
��
�
�

�
�
��

��
��

��
��

�
�
�
�
��
�
��

�
��
�
�
��
�
��
�
�

�
��
�
�
�
��

�
���
�
��
��
�

�
��
�
�

�
�
���
�
�
�
���

F
igu

re
7.8:

A
n

ontology
base

for
reconfigurations.

D
ifferent

colouring
patterns

are
used

for
visually

separating
the

fam
ilies

of
concepts

in
the

three
reasoning

perspectives.

150

Chapter 8

Self-adaptation of Architectures

It is neither the strongest nor the most
intelligent who will survive, but the one most
adaptable to change.

– Charles Darwin

In this chapter. An approach for self-adaptation of interacting services is proposed.
It combines the basics of autonomic computing, namely the concept of feedback
loop, with aris, as one possible practical application of the latter. In particular,
it is discussed how the elements studied in aris define suitable mechanisms for
the construction of (i) a model that lays down reconfiguration strategies and (ii)

the main components for decision making within the feedback loop. A simple but
effective approach for triggering reconfigurations is introduced. Finally, an attempt
of porting the proposed self-adaptation solution into the cloud context is briefly
discussed as a step towards delivering adaptation as a service.

Part of this chapter’s content was previously published, by the author, in:

- Nuno Oliveira and Luís S. Barbosa. “A self-adaptation strategy for service-based architectures”. In: Pro-
ceedings of the 8th Brazilian Symposium on Software Components, Architectures and Reuse. Vol. 2. SB-
CARS’2014. Distinguished with Best Paper Award. Maceió, Alagoas, Brasil: SBC – Brazilian Computer
Society, Sept. 2014, pp. 44–53.

8.1 A self-adaptation approach

The dynamic evolution of the context where software systems are deployed usually
induces both degradation of QoS levels and faults in meeting expected functional
requirements. These quality drops and faults usually lead system performance to
unsatisfactory levels. In order to continue delivering their services at a previously

151

Architectural reconfiguration of interacting services

agreed level, these systems have to dynamically adapt to the new context. But to
perform such an adaptation, the system has to know itself as well as its surrounding
context. Self-adaptive systems present exactly these abilities.

Self-adaptive systems are often distributed, component-based systems with highly
demanding requirements. Differently to others, they present a subsystem (usually
referred to as the managing system) that monitors both context and internals and
uses that information to decide the need for and to enact reconfigurations at run-
time. Of course, reconfigurations must be planned in advance, so that the system is
able to know which one to choose for a given set of contextual attributes.

In this sense, the self-adaptation strategy proposed here is organised around two
main phases, built on top of aris. One phase is offline and concerns the planning
of possible reconfigurations by the software architect. It is assumed that reconfig-
urations can be planned in advance provided that a number of relevant contextual
attributes are identified and translated into measurable variables. Indeed, suitable
ranges of values for those attributes may help to plan (at design time) configura-
tions that will, most likely, drive the system into stable, well-behaved states. The
other phase is online and focuses on the autonomous selection (based on triggering
mechanisms) of such planed reconfigurations to adapt a running system as part of
a monitoring feedback loop.

The following sections propose a semi-formal account of the overall strategy.

8.1.1 The offline phase: planning reconfigurations

This phase is solely devoted to the preparation of the adaptation assets that, in the
online phase, will be autonomously used. In the sequel, the set of all assets will be
denoted as A.

The first asset to be produced is a faithful model of the system architecture. This
model comes under the form of stochastic coordination patterns. It is regarded as
an abstract reflection of the system upon which performance analyses, simulations
and property verifications are to be realised.

The second asset is concerned with the system (functional and non-functional)
requirements. These are encoded into verifiable properties targeting concerns like
behaviour, structure, QoS, among others. This set of properties, denoted henceforth
as Prop, is actually logically divided into five parts including functional (FUN), non-
functional (QoS), system generic (SYS), environment specific (ENV) and ontological
(ONT) properties. The last set of properties is related with the ontology of recon-
figurations. Properties in that set are formed by concepts (regarded as propositions
of classic propositional logic), and are to be validated over the reconfigurations that

152

8.1. A self-adaptation approach

are possibly applied on the system (not over the system itself).
Upon such properties, the architects shall define the system’s adaptation logic

by means of constraints. Formally,

Definition 8.1 (Constraint). Given a property p 2 Prop, which takes values in a
domain Dp, the constraint associated to p is a predicate p ✓ Dp. If vp is the current
value of p, then the associated constraint p holds if p(vp).

The current value, vp, of a property p (i.e., the value resulting from evaluating
p) is denoted by p itself.

Example 8.1 The following items represent valid constraints:

• holdFUN.p, holds when property FUN.p is valid.

• ≥0.9
QoS.q, holds when the current value of QoS.q is greater or equal than the fixed

reference value 0.9, i.e., QoS.q ≥ 0.9.

• minSSYS.c, holds when the current value of SYS.c is the minimum in a given set of
values S.

z

The set of all possible constraints is denoted by ⌅. Constraints and their utility
are further addressed in Section 8.2. A suitable set of constraints constitutes the
third adaptation asset.

The final asset from this phase is concerned with preparing (modelling and
analysing) reconfigurations. The architects plan them by taking into account both
the system requirements and possible ranges of values for the attributes that char-
acterise its environment. From this planning results a set of possible configurations
and reconfigurations with a dependency relation between them. Such a dependency
relation is captured by a reconfiguration transition system (RTS). Formally,

Definition 8.2 (Reconfiguration Transition System). A RTS is a tuple (C,!, ki),
where C ✓ Psto ⇥ 2⌅ ⇥ 2A is a set of configuration states, ki 2 C is the initial
configuration state and !✓ C ⇥R⇥ C is a symetric transition relation.

A RTS is, in essence, a labelled transition system. Transitions from each state

are labelled with the reconfigurations that can be applied to the stochastic coordi-
nation pattern associated to . States represent valid configurations of the deployed
systems. Each state is actually composed of a coordination pattern; a set of state-
specific constraints, which enable finer decisions (details further in Section 8.2);
and a set of necessary assets for the analysis e.g., PRISM specifications, that are
obtained after conversion of the stochastic coordination pattern into IMCReo (c.f.,

153

Architectural reconfiguration of interacting services

Algorithms A.1 or A.2). Doing the latter in this phase improves the efficiency of
the online phase as conversions into IMCReo and (quantitative analysis) tool-specific
formats is costly.

8.1.2 The online phase: the feedback loop

The online phase consists of a monitor feedback loop (which springs from traditional
MAPE-K approaches [160, 153]) built on top of aris. Figure 8.1 depicts its main
elements.

������

������� ��������

������
�����

����

������
��������

����
�������� ����������

������

�
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�

��
�
�
�
�
�
�
��
���
�

����

�

����

�

����

�
���

�������������������������������

�������� �������

�������

�������
����������

��������������
���������

�������������
��������������

�������

�������������������� ����������������������
���� ������������������������

Figure 8.1: Feedback loop based on a reconfiguration transition system.

This is referred to as a feedback loop based on a RTS, because the transition
system of reconfigurations is a first-class entity in this approach. Globally, the
implementation of this feedback loop approach requires: (i) a RTS; (ii) a model of
the deployed system; (iii) a mapper, which maps concrete connections to services to
the logical ports of the model; (iv) the instant observations (measures) of the system
properties; (v) a pool of candidate configurations (and their analysable assets); (vi)
the mechanisms in aris for reasoning about the possible reconfigurations; (vii) the
properties of interest of the system and (viii) the tools for quantitative analysis of
the configuration analysable assets.

Two invariants assert that (a) the current state (i.e., the current configuration)
of a RTS always points to the current configuration model of the system architec-

154

8.1. A self-adaptation approach

ture and (b) the pool of candidate configurations only contains models obtained by
applying to the original model a valid reconfiguration script.

In the sequel it is detailed how the three main components (monitor, planner
and executor) work together to achieve adaptability.

Monitoring

The monitor component aggregates data from the deployment environment and the
system itself. Probes are assumed to collect different sorts of data, depending on
the variables that drive the adaptation. Latency, throughput, bandwidth, number
of clients, number of servers or type of connection (e.g., wifi, bluetooth, GSM) are
typical variables. The monitor uses the information from the mapper to associate
raw data from the system to the model, which is then used as-is by the planner
component (specifically, the analyser sub-component). Figure 8.2 shows a UML
sequence diagram which describes the interaction between these elements.

����������� ���������� �������������

�������������

������������

����������

�����������

����������

��������������

���

Figure 8.2: Sequence diagram for the Monitor component.

Planning

The planner is made out of two components: the analyser and the decider, that work
together to plan (if necessary) the most adequate adaptation to the given context.
These components rely aris to formally verify the functional and non-functional
properties of the architecture. Figure 8.3 shows the sequence diagram for such a
component. Therein, FPChecker and NFPChecker entities refer, respectively, to
interfaces for the suitable functional and non-functional property analysing tools.

In a first step the decider uses the RTS for picking all the configurations reachable
from the current state. This action creates a pool of candidate configurations along
with their pre-compiled analysable assets. In a second step, the analyser reduces the
pool by discarding configurations that fail to meet the required functional properties.

155

Architectural reconfiguration of interacting services

���������� ��������������������� ������������ ��������� ������������ ����������

����

������������

���

����������������

����

����������

���������

����

�����������

��������������

���

���������������������

�������������

����

��������������

���

����������������������

����
�����������������

�����������������
�������

���

������

��������������

�������������������������

��������������������

����������������������

���

������

����������

����������������

������

���������������
�������

���

���������������������

Figure 8.3: Sequence diagram for the Planner component.

These two steps are performed only once each time an adaptation occurs, or every
time the functional properties of the system change.

Then, on a periodic basis, the analyser incorporates this data into the analysable
assets of each configuration in the pool. This is used to check for non-functional
properties of the current configuration. Whenever non-functional properties fail, a
reconfiguration is triggered. At this moment, the decider is responsible for choosing
a suitable configuration (and associated reconfiguration operation) from the pool
to embody the adaptation step. This choice, which is part of what is called the

156

8.2. Triggering of reconfigurations

triggering of a reconfiguration, is made based on the results of the (qualitative and
quantitative) analyses performed.

Execution

The executor component (whose sequence diagram is depicted in Figure 8.4) receives
the reconfiguration selected and applies it to the running system. In particular, it

���������� ������������� ������������ ������������ ���������

���

���������������������

���������������

��

������

���������������������������

���

������������

������������������ ����������������

������������������

��������������������

�����������

��������

��������

Figure 8.4: Sequence diagram for the Executor component.

computes the resuming state (as introduced in Section 6.3) and translates it, along
with the selected reconfiguration, into an executable reconfiguration script to be
applied over the system. This is done resorting to a Reconfiguror entity. A Reflector
entity, awaits for the system to reach a quiescent state; when such a state is attained,
it makes the system reflect the changes by applying the reconfiguration script.

Concurrently, a sequence of updates are made: the system model is substituted
by the selected configuration; the state of the RTS is updated accordingly, to meet
the first feedback loop invariant; and finally, the candidate configurations in the
pool are substituted by new candidates, computed in the new system’s state by the
decider component (c.f., Figure 8.3).

8.2 Triggering of reconfigurations

Usually, a reconfiguration of a system is enacted whenever a non-functional property
fails, violating the service level agreement (SLA) contract. However, this vision is
not always enough since the company owning the adaptable system may have other

157

Architectural reconfiguration of interacting services

objectives besides providing the performance stated in the SLA. For instance, dimin-
ishing the financial costs of the system or agreeing to new functional requirements
may constitute part of these objectives.

Actually, in the approach proposed here, the adaptation triggering is lead by
a propositional logic formula, where propositions are constraints, validated against
the current system configuration. These triggers, referred to as trigger constraints,
establish both the objectives of the company w.r.t. the system and, consequently,
the adaptation rationale.

Example 8.2 For instance, holdFUN.p^ ≥0.9
QoS.q ^minSSYS.c defines a trigger constraint that

enacts an adaptation when functional property p does not hold in the current configuration,

the measure for the non-functional property q is not above 0.9 or system specific property

c is not the minimum (when compared to the same property of candidate configurations).

z

The property prefixes may be omitted when the properties’ provenance is clear
from the context.

Once a trigger constraint is violated, the adaptation is unavoidable. But choosing
a suitable new configuration is a complex task. It may even be non-deterministic
or lead the system to an (infinite) chain of reconfigurations. To avoid this, it is
necessary to define a base strategy to direct the choice of such configurations. A
notion of filter is introduced for this.

Definition 8.3 (Filter). Let c11 , . . . , c1n , c21 , . . . , c2m , . . . , ck1 , . . . , ckl 2 ⌅. A filter
is a vector of vectors hhc11 , . . . , c1ni, hc21 , . . . , c2mi, . . . , hck1 , . . . , cklii, where only the
first element is mandatory.

Notation

c11 , . . . , c1n | . . . |ck1 , . . . , ckm is used to separate the several elements of a filter.

A filter is used to discard, in sequence, candidate configurations that do not
verify the constraint property.

Example 8.3 Consider the filter

holdONT.beh-unobtrusive, >
105
QoS.throghput,maxCQoS.availability

The application of this filter discards, in a first step, all the configurations reached after

application of reconfigurations that are not beh-unobtrusive; then, in a second step, it dis-

cards from the remaining candidate configurations those that do not deliver non-functional

158

8.3. Adaptation as a Service

property throughput above value 105 and; finally, in a third step, it takes (from the re-

maining configurations, represented by set C) the one that delivers the maximum value

for property availability. z

However, in some situations the filter may either discard all configurations or
more than one configuration may prevail. In these cases it is possible to add optional
filters to be used whenever the previous filters do not find a suitable configuration.

Example 8.4 Consider the following filter

>105
QoS.throughput,maxCQoS.availability | >95

QoS.throughput,minCSYS.cost

In case no configuration is able to deliver a value above 105 for property throughput or

the second constraint will pick more than a one configuration with a maximum value for

property availability, then the optional filter (the one after ‘|’) is applied to all the pool of

configurations and it will discard those that do not deliver a value above 95 for property

throughput and it will pick the one presenting the lower cost for the system. z

More optional filter elements may be added to prevent that none or more than one
configuration remain. If even though, still multiple configurations prevail, the default
is to select the first in a ranking that contemplates the results for a prioritisation
of requirements. However, for an even finer and controlled selection of suitable
configuration, it is allowed the specification of constraints in each state of the RTS
(c.f., Definition 8.2). These act as specific pre-conditions to the inclusion of the
corresponding configuration in the pool of candidates.

8.3 Adaptation as a Service

The self-adaptation strategy approach proposed above can be reused in different
systems since only its central pieces (properties, constraints, filters and the RTS)
are system-dependent. This assures the expected separation of concerns between
managed and managing systems [255]. Such a separation is not a novelty. Most of
the similar self-adaptation approaches promote it [127]; and the MAPE-K reference
model almost obliges it. However, notwithstanding the separation of concerns, man-
aged and managing systems are usually running in the same physical environment.
This makes the adaptable system to decrease its performance, since the feedback
loop allocates part of the available resources for its own use.

The essential solution for such a problem is to physically separate both entities.
This entails the need for companies to acquire more processing and storage power

159

Architectural reconfiguration of interacting services

as well as to be willing to manage such extra resources with all the costs associated.
A smoother solution is to rent virtual machines from a cloud service, and deploy
therein the feedback loop system. On the one hand, this eases management, but on
the other hand it requires an extra effort in order to set the whole system up.

In order to avoid these problems, a new strategy towards delivering adaptation
as a service (AaaS) is proposed next.

8.3.1 Architecture and main workflow

The essential components of the feedback loop proposed in Section 8.1 (monitor,
analyser, decider and executor) are loosely coupled entities with a specific behaviour.
Regarding them as services is therefore natural. With this in mind, one proposes
to refactor the self-adaptation strategy so that the essential parts of the feedback
loop are deployed in the cloud for immediate usage. The expected result is that the
common computational activities for adaptation (e.g., analysing data for perceiving
the need for adaptation or deciding which reconfiguration to chose among a set
of possible ones) are transparent to (and not developed by) the users. Figure 8.5
presents an overview of the expected global architecture, along with traces of the
main workflow for both users and the adaptation service. In the next paragraphs,
the adaptation service will be referred to as AaaS, and the hosting cloud as AaaS
cloud.

Into the AaaS cloud

With effect, all the tasks that are known to be time and resource consuming are en-
capsulated as services. In particular, it is assumed the existence of online versions of
well-established analysis tools (e.g., CADP, PRISM, IMCA, HyLoRes, among others)
that make available, through public interfaces, services of which AaaS will be client.
Moreover, the tools associated to aris are also assumed to be available as services
in a dedicated cloud environment. These two sets of services are expected to release
most of the workload from the feedback loop.

The feedback loop constitutes the core of the AaaS. In this context, it is made
more comprehensive by supporting multiple monitoring and decider components, in
an attempt of decentralising the feedback loop [255, 250, 10, 201]. This comes with
the price of extra coordination and synchronisation efforts. But it is essential. For
instance, instead of having a single filter-based strategy to decide reconfigurations,
one can have several others, including one that uses artificial intelligence techniques
(e.g., case-based reasoning) to make such a decision. The results of all decider

160

8.3. Adaptation as a Service

���
��������

���
�������

���
������

��������
������������
���������

���
�������

������
��

�

����������

�

�����������

�

���

�

������

���������

! ! ! !

"

��������
�������

���
��

�������

���
��

�������

���

�������������������
��������������

��������
����������

��������
����������

���

��������������

����������
������

���������
��������

�����

����
����

�����
�������

���

�
�
�
�
�
�
�
��
�
��

���������������
��������

������

��������
������

�������������

��������

�
��
�
�
�
�

��
�
�
�
�
�
�
��
���
�

���������
��������������

����������

!

����������

���������������������

����������������������
��������

! ����������������������

" ������������

��������
������

��
�
��
�
��

��
�
��
�
��

! !

!

Figure 8.5: Adaptation as a Service architecture overview.

161

Architectural reconfiguration of interacting services

components have to be coordinated, somehow.
AaaS is able to track more than one single system. The cloud support for multi-

tenancy and the service-orientation of the approach allow AaaS to deliver the same
adaptation service with the same expected quality to several systems. For this, each
tracked system is given a space in a storage centre, where, for instance, the RTS and
the current pool of configurations are placed.

AaaS remains loyal to the coordination-centred vision for reconfigurations, though.
Although there must be a main coordination entity for a distributed system, there
can be several sub-coordination entities distributed in several nodes of the same
system that are themselves tracked by AaaS. Again, this is based on the theories for
feedback loop decentralisation discussed by D. Weyns et al. [255, 250], and conse-
quently, requires a distributed notion of coordination-targeted reconfigurations [164],
which is out of the scope of this thesis.

In the remaining of this section, the offline and online phases of this cloud based
approach for system adaptation are exploited.

The offline phase

In this phase the architects have to prepare the assets (as suitable files) that make
adaptation possible. This includes the system properties, that translate functional
and non functional requirements; the constraints, that define the system goals for
adaptation; the filters, that define the main strategy for deciding the reconfiguration
to lead the system into a desired configuration; and finally the RTS that lays down
a consistent path of adaptation.

The production of the RTS is a complex and time-consuming task. To help the
architects accomplishing it, the reconfiguration services assumed can be used. The
analysis tools to fine tuning thresholds and other measures are also assumed to be
used from the available services. In the end, the RTS is expected to be delivered
as a comprehensive set of files written in languages suitable for the definition of
coordination patterns and reconfiguration scripts (c.f., Sections 9.1 and 9.2). To-
gether with the other assets, all these files have to be uploaded to the AaaS cloud
through the configuration interface as depicted in Figure 8.5. Once uploaded, the
RTS files are transformed into a RTS model and all the associated assets (e.g., the
final PRISM files) of each state are conveniently generated and stored in the storage
centre.

The configuration interface is expected to guide the architect through all the
configuration of an instance of AaaS. Besides the upload of the required files, the
architect is also able to choose, for instance, which analysis tool(s) shall be used to

162

8.3. Adaptation as a Service

verify the properties of the system or which strategy(ies) shall be applied to decide
the reconfigurations to apply when needed.

In addition, the architect is responsible for coupling monitors to its systems that
are able to ship data to the AaaS cloud every time a (relevant) change occur either in
the environment or in the internals of the system. Also, the architect has to define a
local mapper component that contributes a reflection model of the managed system.
A local executor component, actually an AaaS off-the-shelf component, has also to
be attached to the system. The usefulness of these extra components is exploited
next.

The online phase

When the configuration is over and the architect decides to explicitly enable AaaS
to manage the system, the online phase begins.

As expected, monitors send data to the AaaS cloud, which is synchronised and
merged therein. A monitor merger service is assumed to merge the monitored data
and send it to the analyser service. The latter behaves exactly as before. The
particularity is that it now evokes services for the necessary quantitative analysis.
It is still responsible for triggering the need for a reconfiguration by analysis of the
user-uploaded constraints.

When an adaptation is triggered, the decider (or deciders) starts the necessary
analysis to plan a new adaptation. Depending on the user’s configuration, one or
more decision strategies may be associated to the managed system. Each strategy
is different. For instance, the filter-based strategy uses the analysis services to
analyse the configurations in the pool, which are send as a unique workload. A
strategy adopting case-based reasoning mechanisms would delegate its tasks into
services to that end, but will rely on a knowledge centre to define its decision, as
depicted in Figure 8.5. The decider service is also responsible for updating the pool
of configurations, as explained in Section 8.1.

Upon decision, the chosen reconfiguration is passed to the executor. The executor
translates the reconfiguration into a script able to concretely apply the changes to
the managed system. This script is passed to the local executor component. The
latter uses the reconfiguration services to compute the resuming state, and when
the system enters a quiescent state, applies the changes via the mapper component.

The option for having a local executor component dues to the fact that the AaaS
is not aware of the internal state of the systems it manages. Thus, interrupted and
resuming states have to be computed locally. This is also necessary because such
states have to be computed in the instant before the changes are applied to the

163

Architectural reconfiguration of interacting services

system, so that the managed system consistently resumes its production.

8.3.2 Discussion

The AaaS approach has potential to bring several benefits when compared to other
approaches. It promotes a clear (physical) separation between the managed system
and its feedback loop. It allows architects and developers to focus on the design
and development of the system and, consequently, frees them from dealing with the
always complex implementation of feedback loop components. It eases the evolution
of legacy static systems into self-adaptable ones. It allows for more comprehensive
and robust decisions, by enabling the combination of several strategies. It enables the
decentralisation of the feedback loop, augmenting the dependability of the system
as a whole.

AaaS would be a one-size-fits-all approach for adaptation. This can be seen as
a drawback, but in fact the approach is highly configurable in order to support the
demands of their tenant systems. In fact, the adaptation logic is mainly delivered by
the architects in the uploaded analysable assets. AaaS essentially performs intense
computations in order to deliver decisions based on such assets. The adaptation
logic is not static. At any time the company may change its goals or the system
requirements; the architects may update the RTS to cope with new system configu-
rations. This entails the need for re-uploading new asset files. The AaaS is expected
to reconfigure its behaviour to conform to these changes immediately. Moreover,
the customisation of AaaS behaviour (e.g., which deciding strategies to use) can be
performed at any time, as well.

8.4 Summary

This chapter introduced an approach for self-adaptation of software architectures.
It is essentially a demonstration of a practical application of aris.

The approach is organised in two phases. The first phase is offline and is con-
cerned with the preparation of assets that are to be used during the second phase. A
relevant asset produced in this phase is the so called RTS, a transition system of re-
configurations. Each state is a configuration of the system that copes with a defined
set of conditions; transitions are labelled with reconfiguration scripts. The second
phase is online (i.e., at runtime) and is concerned with the actual monitoring of the
adaptable system and the inspection of the need for adaptation. This phase is in line
with the concept of feedback loop, as proposed in autonomic computing or control

164

8.4. Summary

theory. It follows the MAPE-K approach closely. However, the main components of
that approach (analyser and planner) are built on top of aris.

Particular attention was given to reconfiguration triggering. It was defined a
simple, yet effective, way of deciding when should the system adapt itself. Further-
more, a notion of filter was devised that allows for the definition of a strategy for
choosing the right reconfiguration for the current context.

Finally this approach was refactored in order to be ported into a cloud context.
This was proposed as an attempt of delivering adaptation as a service.

165

Part III

Tool support and case study

Chapter 9

Tool Support

Man is a tool-using animal. Without tools he
is nothing, with tools he is all.

– Thomas Carlyle

In this chapter. Tool support is introduced to the aris framework. In particular,
the CooPLa language is introduced for modelling coordination patterns, whether
they present stochastic features or not. Its companion language, ReCooPLa, is also
introduced, for modelling reconfigurations. These languages and associated tools
(e.g., compilers and processors) are bundled in an integrated development environ-
ment (IDE), referred to as CooPLa Editor.

Part of this chapter’s content was previously published, by the author, in:

- Flávio Rodrigues, Nuno Oliveira, and Luís S. Barbosa. “ReCooPLa: a DSL for Coordination-based Reconfig-
uration of Software Architectures”. In: 3rd Symposium on Languages, Applications and Technologies. Ed. by
Maria J. V. Pereira, José P. Leal, and Alberto Simões. Vol. 38. OpenAccess Series in Informatics (OASIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, June 2014, pp. 61–76.

9.1 CooPLa

CooPLa (standing for Coordination Patterns Language) is a lightweight domain-
specific language (DSL) for modelling coordination patterns, as formally introduced
in Chapter 6. It was thought for software architects, as a tool for designing the
coordination layer of a system. The language has roots on the Reo formalism and,
as a byproduct, allows for specifying Reo circuits. It is not intended, though, to be
another Reo-specific notation like CARML or RSL [27, 162].

CooPLa allows for defining the graph structure underlying coordination patterns,
by connecting edges, which are instances of channels. In the sequel, the details of

169

Architectural reconfiguration of interacting services

CooPLa are exploited. For a detailed account of its syntax, the grammar is presented
in Appendix B.

9.1.1 Channels

In CooPLa, a channel is specified as a structure with input and output ports and a
well defined behaviour. Ports are defined on the channel signature (which resembles
the signature of a function in traditional programming languages), and are position-
ally grouped as input and output ports. The behaviour is defined in the body of
the channel, by a set of rules defining how data flows within the channel. Such rules
are specified taking into account the stimuli received on the channel ports and the
internal configuration of the channel.

Internal specificities

Channels may present different flavours. CooPLa enables the definition of channels
with (i) a clock, to impose delays in a normal data flow; construct @T is used for
that end, where T is the delay; (ii) a datatype pattern-based condition, to decide
data flow based on the matching result; cond=<...> is the corresponding construct;
and finally (iii) an internal structure (e.g., a buffer), to store data in asynchronous
communications; this is expressed with construct ⇠N, where N is either a variable
or a (comma-separated) list of variables, that define the dimension of the structure.
Whenever a channel is specified with an internal structure, it is required that both a
state and a set of state observers are defined in its body. The state is a name refering
to the structure and state observers are predicates over it. The latter are used to
check relevant properties of the channel internal structure (and are implemented in
an external programming language).

Behaviour

The behaviour of a CooPLa channel is specified as a set of flow rules of the form
R->f, where R is a subset of ports of the channel or internal state observers (possibly
negated with !); and f is a flow as explained below. The meaning of each rule is
that flow f occurs whenever there are input/output (IO) requests at the ports in R

and the associated state observers hold.
A flow is defined by the construct flow p1 to p2, where p1 and p2 are ports of

the channel or NULL (a special port where data is lost or automatically produced).
In structured channels, p1 and p2 may refer to the name of the channel internal
structure. This construct defines that data flows from p1 to p2. Furthermore,

170

9.1. CooPLa

flows may occur atomically-synchronised or datatype-conditioned. Construct f1|f2
is used to express atomic synchronisation between flows f1 and f2. Construct
cond ? f1 : f2 is used to trigger flow f1 if there is a match between pattern cond

and the data, or f2, otherwise. Such conditioned flow is employed, e.g., when a
channel filters data based on a datatype pattern.

Inheritance

CooPLa supports simple inheritance for channels. Construct extends b is appended
to the signature of a channel that is to extend a channel b. In this context, a
new channel may extend a basic one through the addition/redefinition of flows.
When internal specificities are inherited, these are, however, not changed. Internal
structure reference name and state observers remain the same as defined in the
base channel. A requirement for inheritance is that the new channel presents equal
interface and similar internal specificities.

Example 9.1 Figure 9.1 shows how well-known channels in Reo can be defined in CooPLa.

1 channel sync (a : b) {
2 a , b −> flow a to b ;
3 }
4

5 channel l o s s y (a : b) extends sync {
6 a , ! b −> flow a to NULL ;
7 }
8

9 channel f i f o ⇠N(a : b) {
10 s t a t e : bu f f e r ; ob s e rve r s : E, F ;
11 a , ! F −> flow a to bu f f e r ;
12 !E, b −> flow bu f f e r to b ;
13 }
14

15 channel dra in (a , b :) {
16 a , b −> flow a to NULL
17 |
18 flow b to NULL ;
19 }

1 channel s h i f t F i f o⇠N(a : b)
2 extends f i f o {
3 a , F −> flow bu f f e r to NULL
4 |
5 flow a to bu f f e r ;
6 }
7

8

9 channel f i l t e r (a : b : c=<_,_>) {
10 a , b −> c ?
11 flow a to b
12 :
13 flow a to NULL;
14 }
15

16

17 channel timed@T (a : b) {
18 a , b −> flow a to@T b ;
19 }

Figure 9.1: CooPLa description of some Reo channels.

The sync channel is seen as a structure with input port a and output port b. Whenever
there are IO requests pending at both ports simultaneously, data flows from a to b.

The lossy channel extends sync with an extra flow: whenever there is a write (input)
request at port a and no read (output) request at port b (notice the use of ‘ !’ to convey
negation), data is lost (i.e., it flows from a to NULL).

The fifo channel is a structure with input port a, output port b, a state named buffer

with dimension N and observers E and F (specified in an external programming language)
that check whether buffer is (E)empty and (F)ull, respectively. The behaviour of this

171

Architectural reconfiguration of interacting services

channel is defined taking into account the pending requests at the ports as well as the
configuration of its internal structure.

The drain channel expects simultaneous stimuli at its two input ports; whenever this
clause is fulfilled, data flows atomically synchronised (notice the use of construct ‘|’) from
each of these ports to NULL, being lost.

The shiftFifo channel inherits from the fifo channel. Notice that interface is equal
and it also defines an internal structure, but it does not redefine the reference name and
the observers for such structure. Behaviourally, it defines a new flow rule expressing that
whenever there is an input stimulus at port a and the buffer is full, a datum in buffer

is lost and the datum in a flows to buffer.
The filter channel presents a signature added of a datatype pattern c that matches

data of sort pair (with components of any sort). This pattern is used in the definition of
its flow rule. The latter expresses that whenever there are pending requests at both ports
of the channel, if the sort of the data to be written matches pattern c, then data flows
from a to b; otherwise it is lost.

1 channel rout e r (a : b , c) {
2 a , b , ! c −> flow a to b ;
3 a , c , ! b −> flow a to c ;
4 a , b , c −> flow a to b ;
5 a , b , c −> flow a to c ;
6 }

Figure 9.2: CooPLa description of the router channel.

The timed channel is defined with a clock. Such clock imposes a delay T on the flow
of data from ports a to b, whenever there are IO stimuli on the channel interface.

But not all channels in CooPLa have exactly two ports. In order to faithfully cope with
the formal definition of channels (Definition 6.1), no upper bound is set to the number of
ports that a CooPLa channel may present; the lower bound is two, though.

Figure 9.2 shows the router channel. It is presented as a structure with one input

port and two output ports. Notice also the existence of two flow rules that are triggered

whenever there are pending requests at all the channel ports. This explicitly expresses

nondeterministic behaviour of the channel. Consequently, data will flow nondeterministi-

cally from port a to either port b or port c. This is an example of where CooPLa deviates

from the typical notion of channel as in the Reo formalism. z

9.1.2 Patterns

In CooPLa, a pattern is the main construct of a coordination pattern. A pattern is
specified by its interface and a body of interconnections. Similarly to channels, the

172

9.1. CooPLa

ports are defined in a signature, and positionally grouped as input and output ports.
The body of interconnections is where the desired coordination graph is obtained,
in two stages: the channel instantiation and the connection configuration.

Channel instantiation

CooPLa takes the reserved word use as the delimiter for the beginning of the first
stage in coordination patterns construction. In this stage, all the elements to be
connected in the pattern are instantiated (i.e., declared). Such elements may be
instances of channels or other patterns. The latter enables the reutilisation and
creation of complex coordination structures.

An element may be seen as a variable in traditional programming languages. Its
instantiation takes the full signature of the channel (or pattern) to define its type.
The full signature is required in order to concretely define both logic names to refer
to ports of the channels (or patterns) and the dimensions for channel internal speci-
ficities like clocks or structures. For channels that define a structure it is mandatory
to specify which state observer holds at its initial configuration.

Connection configuration

The reserved word in delimits the beginning of the second stage in coordination
patterns construction. In this stage, the graph of elements is assembled according
to the concrete definition of the pattern interface.

The concrete definition of the pattern interface is expressed as a set of assign-
ments of elements’ ports to the names of the pattern ports. The port of an element
is accessed via the ‘.’ (dot) construct as in el.p. Here, el is the name of an instance
and p is the logic name of a port of that instance, both as defined in the instantiation
stage.

The assembling of the coordination graph is done through the join construct.
This construct takes a fresh name and a set of element ports (accessed via the
dot construct) and performs the connection of the elements in a single graph node
which is renamed to the provided fresh name. Although this is the typical connection
operation, CooPLa also supports the creation of special nodes with the xor construct.
This construct takes a fresh name, a set of output ports and a set of input ports and
creates a node with the specific semantic overload of an exclusive or data router. In
practice, this is a shorthand for defining a channel or pattern with such a behaviour
(e.g., router channel in Figure 9.2) and connect its ports to the ports of other

173

Architectural reconfiguration of interacting services

channels.

Example 9.2 Consider the Sequencer coordination pattern depicted in Figure 6.1. Fig-
ure 9.3 shows how that coordination pattern is implemented in CooPLa.

1 pattern Sequencer (a : o1 , o2 , b) {
2 use :
3 sync (i : o) as s1 , s2 , s3 , s4 ;
4 (E) f i f o ⇠1(i : o) as x ;
5 in :
6 a = s1 . i ;
7 o1 = s2 . o ;
8 o2 = s3 . o ;
9 b = s4 . o ;

10 join [s1 . o , s2 . i , x . i] as cde ;
11 join [x . o , s3 . i , s4 . i] as fgh ;
12 }

Figure 9.3: CooPLa specification of the Sequencer.
z

As expected, both CooPLa channels and patterns have a specific mapping to
channels and coordination patterns as defined in Chapter 6. It is worth to point
out the relation between CooPLa channel names and the types in the formal repre-
sentation of channels. Indeed, as explained in the beginning of this section, CooPLa
provides the essential type system associated to the edges of a coordination graph.
Another relevant aspect is that the join construct of CooPLa defines the desired
partition of all channel ends into nodes of the coordination pattern.

9.1.3 Stochastic extension

CooPLa is extended with mechanisms for supporting coordination structures that
present stochastic behaviour. A limitation is the assumption that such stochastic
behaviour is always modelled by exponential distributions. Since the only param-
eter of interest for such probability distributions is their rate (i.e., the number of
independent events occurring per unit of time), then, this is the only value that
CooPLa requires to be specified along with patterns and channels.

In this context, two event sets are considered: request production and data
processing. Request production rates are associated to the ports of coordination
patterns and essentially model the environment; data processing rates are associated
to both the channels (i.e., to their specific flows) and the nodes of coordination
patterns.

Since channels and patterns can be used in the context of other patterns, these
rates shall not be bounded to their definitions. Rather, CooPLa introduces the
notion of stochastic labels and stochastic instances of patterns.

174

9.1. CooPLa

Stochastic labels

Stochastic labels are just a syntactic annotation appended to the end of each flow
rule in the body of a channel. Construct #L, where each L is a unique identifier
within the channel, provides the relevant mechanism to later associate processing
rates to the flows.

Figure 9.4 shows how the sync and the fifo CooPLa channels coded in Figure 9.1
are extended with stochastic labels in their flow rules.

1 channel sync (a : b) {
2 a , b −> flow a to b #proc ;
3 }

1 channel f i f o ⇠N(a : b) {
2 s t a t e : bu f f e r ; ob s e rve r s : E, F ;
3 a , ! F −> flow a to bu f f e r #inB ;
4 !E, b −> flow bu f f e r to b #Bout ;
5 }

Figure 9.4: Channels added of stochastic labels

Inheritance in CooPLa is still compatible with stochastic labels. Channels that
inherit from a channel specified with stochastic labels will also inherit such labels.
Unlike what happens to internal structure reference name and state observers, the
stochastic labels associated to a specific flow may be renamed. This is valid as long
as the new names are unique in the context of the channel.

Ports and internal nodes of CooPLa patterns are overloaded with the same role
played by stochastic labels in channels.

Note that no stochastic information is directly associated to the channel ends;
rather, it is added to the nodes (representing the approximated rates for enqueueing
and dequeueing data).

Stochastic instances

Stochastic instances are instances of coordination patterns that specify concrete
values for the rates associated to the environment request production and data
processing within channels and nodes.

Request production rates are associated to the interface names of the pattern.
The data processing rates are associated to both the channels (stochastic labels)
and the pattern internal node names. The information associated to the latter is
twofold as it considers the rates of enqueueing and dequeueing data to and from a
channel end.

The association of the rates is defined as a typical assignment, where the tradi-

175

Architectural reconfiguration of interacting services

tional symbol = is replaced by @.

Example 9.3 Figure 9.5 shows how the stochastic instance of the Sequencer coordi-
nation pattern (c.f., Figure 6.13) is specified in CooPLa. This example, covers all its the
relevant syntactic aspects. The construct stochastic defines these structures and requires
a pattern to be referenced (to specify the type of instance being created) and the name of
the instance provided as a unique identifier (line 13). Finally, the list of rates is specified.

1 stochastic Sequencer {
2 a @ 50 . 0 ;
3 o1 @ 30 . 0 ;
4 o2 @ 25 . 0 ;
5 b @ 50 . 0 ;
6 s1#proc @ 100 . 0 ;
7 s2#proc @ 150 . 0 ;
8 s3#proc @ 150 . 0 ;
9 x#inB @ 90 . 0 ;

10 x#Bout @ 80 . 0 ;
11 cde @ (955 . 0 , 900 . 0) ;
12 fgh @ (800 . 0 , 1000 .0) ;
13 } s seq

Figure 9.5: Stochastic instance sseq of the Sequencer coordination pattern.

z

The stochastic labels of channels are accessed using the # construct applied
to the channel name (as used in the context of the coordination pattern being
instantiated). The rates for internal nodes are provided as pairs of float values,
where first and second components refer, respectively, to enqueueing (reading to
node) and dequeueing (writing to channel) events.

A stochastic instance can only be defined if all the channels constituting the
corresponding pattern provide stochastic labels. Moreover, a stochastic instance is
only correctly defined if rates are assigned to all the interface ports of the pattern and
to all the stochastic labels of the constituting channels. Defining rates for internal
nodes is optional.

9.2 ReCooPLa

ReCooPLa (standing for Reconfiguration of Coordination Patterns Language) is a
DSL for modelling reconfiguration patterns, as formally introduced in Chapter 6.
This language is the necessary companion of CooPLa to completely establish the
bridge between theory and practice, in the context of this Ph.D. work. ReCooPLa
and associated tools were designed and implemented in collaboration with Flávio
Rodrigues, in the context of his M.Sc. thesis [227].

176

9.2. ReCooPLa

The objective of ReCooPLa is the specification of structural changes on the graph
underlying the coordination patterns. It does so based on a small set of constructs
designed with an imperative programming paradigm flavour. The full grammar of
ReCooPLa is delivered in Appendix C. A comprehensive operational semantics for
the language constructs was reported in Rodrigues’ thesis [227, 228].

9.2.1 Reconfigurations

In ReCooPLa, a reconfiguration is specified similarly to a function in traditional
programming languages. It is composed of a signature and a body, and it is always
applied to, and always returns, a coordination pattern (henceforth, referred to as
the target coordination pattern).

The signature is where the relevant arguments for the reconfiguration are ex-
pressed, optionally, grouped by datatype. Dtatypes in ReCooPLa are limited to:
Channel, a reference to a channel structure as defined in CooPLa; Pattern, a ref-
erence to a pattern structure as defined in CooPLa; Name, an identifier referencing
either a channel identifier or the ends of a channel; Node, an identifier referring
to a set of names referencing channel ends; XOR, a particular case of Node with at
least one input channel end and no less than two output channel ends; and finally,
Set<T>, Pair<T> and Triple<T>, a set, a pair and a triple of elements of the generic
datatype T, respectively.

The body of a reconfiguration is a list of instructions. These instructions are
limited to variable declaration, assignments, an iterative control structure and the
application of reconfigurations. Declarations and assignments are used to prepare
arguments for reconfiguration calls and are expressed as in traditional programming
languages. The control structure, with construct forall(T e : s){b}, allows for
iterating over elements e in set s of datatype T in the body b of the control structure
(which is as the body of a reconfiguration). Finally, the application of a reconfig-
uration is the only instruction that performs changes to the target coordination
patterns; construct p @ r is used to this end, where r is the name of a reconfigu-
ration (either primitive or previously defined) and p is a reference to a variable of
type Pattern. The latter can be omitted. When such is the case, r is applied to
the target coordination pattern.

Primitive reconfigurations

ReCooPLa includes a set of primitive reconfigurations corresponding to those intro-
duced in Chapter 6. They are built-in operations that act uniquely as operands of

177

Architectural reconfiguration of interacting services

the @ construct. Table 9.1 defines the signatures of each primitive aligned with their
corresponding formal names.

Table 9.1: Primitive reconfigurations and their counterpart formal names

aris ReCooPLa
1r id()

const⇢ const(Pattern p)
par⇢ par(Pattern p)
joinN join(Set<Node> N)
splitn split(Node n)

removec remove(Name c)

Operations

Besides the @ operator, ReCooPLa provides a fixed set of operations specific for
each datatype. This is essential for expressions that prepare arguments for the
reconfiguration applications.

Node, XOR and Name are regarded as primitive datatypes, and in ReCooPLa they
have no specific operations associated. Contrarily, the Set<T> datatype counts with
the typical set operations: + (union), & (intersection) and - (subtraction). Pair<T>,
Triple<T>, Pattern and Channel are regarded as structured datatypes. As such,
ReCooPLa provides the .f operator to access to the elements of their structure.
Here, f is either a field or an operation provided by these structures. In particular,
f can be one of the following list:

• in, to retrieve the set of input ports from Pattern and Channel variables.
Optionally, in(i), for i a 0-based integer index, can be used to retrieve a
specific port;

• out, to retrieve the set of output ports from Pattern and Channel variables.
The optional index is also supported;

• name, to retrieve the name of a Channel variable;

• nodes, to retrieve all interface and internal nodes of a Pattern variable;

• names, to retrieve all channel identifiers associated to a Pattern variable; and

• fst, snd and trd are, respectively, to access the first, second and third pro-
jection of Pair<T> and Triple<T> variables. With trd being only available
for the Triple<T> datatype.

178

9.2. ReCooPLa

In addition, constructors for sets, pairs and triples are defined (respectively) as
S(e1,...), P(e1,e2) and T(e1,e2,e3), where each ei is an element of datatype
T. Finally, operator p # c is associated to the Pattern datatype, and is used to
directly access the Channel c from Pattern p.

Example 9.4 Figure 9.6 presents the ReCooPLa implementation of the OverlapP recon-
figuration.

1 reconfiguration OverlapP (Pattern p ; Set<Pair<Node>> X) {
2 @ par (p) ;
3 f o ra l l (Pair<Node> n : X) {
4 Node n1 , n2 ;
5 n1 = n . f s t ;
6 n2 = n . snd ;
7 Set<Node> E = S(n1 , n2) ;
8 @ join (E) ;
9 }

10 }

Figure 9.6: ReCooPLa implementation of the OverlapP reconfiguration.

The implementation is self-explanatory. It uses the @ construct (line 2) to apply the

par(p) primitive reconfiguration to the target coordination pattern, where p is passed as

an argument. Then it iterates over the elements of the second argument (line 3) and

stores the first and second components of each such element into Node variables. The set

construct is used (line 7) to instantiate a set E with these nodes. Finally, the join(E)

primitive is applied directly to the target coordination pattern. z

More examples of reconfiguration patterns are provided in Appendix C. In fact,
it lists the ReCooPLa implementation of all reconfiguration patterns introduced in
Section 6.2.3.

9.2.2 Application of reconfigurations

In order to specify the actual application of reconfigurations onto coordination pat-
terns, ReCooPLa introduces the special construct main.

The main can be executed in three different ways. One is by importing stochastic
instances of patterns specified in CooPLa files. The other is by freshly instantiating
them as argument of the main, the third is by creating them in the body of the main.
The concrete program goes inside the body of the main construct. It is, as usually, a
list of instructions, which are however, limited to declarations with initialisation (of
new instances via application of a reconfiguration to another instance) and isolated

179

Architectural reconfiguration of interacting services

application of reconfigurations (which only change the target coordination pattern
instance).

Example 9.5 Assume that ReCooPLa code in Figure 9.6 is stored in a file named
overlap.rcpla and the CooPLa code in Figures 9.3 and 9.5 exist in a file named seq.cpla

and is, actually, deployed. Consider now the existence of another file named ext.cpla

containing a CooPLa pattern as in Figure 9.7 (left).

In order to extend the Sequencer coordination pattern to cope with three services
in sequence (rather than two), a reconfiguration to its structure has to be performed.
Figure 9.7 (right) presents the complete ReCooPLa program that is able to enact such a
change.

1 pattern Extension (a : b)
2 {
3 use :
4 (E) f i f o ⇠1(i : o) as f 2 ;
5 sync (i : o) as s2 ;
6 in :
7 a = f2 . i ;
8 b = s2 . o ;
9 join [f 2 . o , s2 . i] as i j ;

10 }

1 import seq . cp la ;
2 import ext . cp la ;
3 import over lap . r cp l a ;
4 main [Extension sext] {
5 Sequencer3 seq3 =
6 s s eq @ overlapP (
7 sext ,
8 S(P(s s eq#f1 . out (0) , s ext . in (0)))
9) ;

10 }

Figure 9.7: Reconfiguration script (left) for updating the Sequencer pattern with an
extension (left).

Lines 1 to 3 import the necessary files. In line 4 the main structure is declared with a

fresh instance sext of type Extension. Line 5 declares a new coordination pattern that will

store the result of the sequent lines. In line 6, the sseq instance is applied the overlapP

reconfiguration. Line 7 refers to the stochastic instance sext that is going to extend sseq.

Finally, line 8 defines a set of pairs of nodes using the relevant operations to obtain the

actual nodes that are to be glued together. z

9.3 The CooPLa Editor

The CooPLa Editor is a plugin for Eclipse available from coopla.di.uminho.pt.
It supports prototyping and analyses of software coordination code and associated
reconfigurations. It integrates environments for edition of CooPLa and ReCooPLa
specifications. Additional tools (added as plugins to the editor) transform sources
of these languages into assets accepted by model checkers and other tools used for
qualitative and quantitative/probabilistic analysis.

The CooPLa Editor may be regarded as an interface for a toolchain for the analysis

180

9.3. The CooPLa Editor

of coordination code and their reconfigurations. Figure 9.8 shows how it integrates
with external tools for that matter.

���������

�������������

����������

�������� �������

������

�������������

����������

���������

������

����

����

�����

��������

����

����

���

���

����

����

�������

�����������
���

��������������
������

��������

�����������������
����������

�����

�����

������

�����

�����

�����

����

�������

��������

�����

����

����

����

Figure 9.8: A toolchain for the CooPLa Editor.

The CooPLa Editor is presented in a shadowed-box. Each element inside it rep-
resents one of its internal plugins. Some of these communicate with the exterior
and are responsible for the integration with the third-party tools. Each arrow in
the chain identifies the type of the files passing from one tool to another. For in-
stance, interface with the CADP tool is made via .aut files, while with extensible
coordination tools (ECT) it is made via .reo extensible markup language (XML)
files.

In the remainder of this section, the CooPLa Editor, its basic features and the
internal plugins are discussed.

9.3.1 Editor Overview

As an Eclipse plugin, the CooPLa Editor presents a well known graphical user in-
terface (GUI). The elements of the interface are organised according to a specific
perspective. Figure 9.9 identifies the five main parts.

The zone identified with (1) corresponds to the package explorer where the
CooPLa projects (its folders and files) are presented in a usual tree-like structure;
part (2) is the specialised editor for CooPLa and ReCooPLa languages; part (3)

presents a visualisation of the coordination pattern being edited in part (2); part
(4) displays the errors occurring in both CooPLa and ReCooPLa sentences edited in
part (2); finally, part (5) displays an outline of the CooPLa patterns and channels,
identifying their internals.

A number of specific features are associated to this.

181

Architectural reconfiguration of interacting services

� � �

��

Figure 9.9: The CooPLa Editor interface

Syntax highlighting

Different colours and text styles
highlight specific lexical ele-
ments of both CooPLa and Re-
CooPLa languages. As usual in
other code editors, the syntax

colouring is automatically made, taking advantage of lexical analysers associated
to the language. This is a feature associated to the specialised editors of both
languages.

Error marking

Syntactic and semantic errors
are clearly pointed out in the
editor with annotations and
markers. The errors are
checked and identified while
editing the code. This happens
every time the user stops writ-
ing for some milliseconds. Ro-

bust and fast AnTLR-based parsing and customized semantic analysis underpin this

182

9.3. The CooPLa Editor

feature. It is a feature associated to the specialised editors of both CooPLa and
ReCooPLa languages.

Intellisense

This features delivers syntac-
tic and semantic suggestions for
the code being written. Con-
textual analysis is performed so

that suggestions are correct and code completion is enabled for a fast writing of
coordination patterns. Such feature is triggered either whenever the user types a ‘.’
or whenever a combination of keys (control + space) is pushed. It is present only in
the specialised editor for CooPLa.

Outline

This feature shows an ab-
stract structural representation
of channels and coordination
patterns written in CooPLa. It
also offers a direct access to
each syntactic element of these
two entities. In particular, to
channels, patterns, input and

output ports, channel observers or nodes. This feature is brought by a specific
CooPLa fuzzy parser that ensures the (possibly partial) creation of the outline model
even though the specification is neither complete nor correct.

Visualisation

This feature delivers a graph-
based visualisation of coordina-
tion patterns. The graph is
built during code edition, in
a fast and non-intrusive way.

Like in the outline feature, a fuzzy parser is employed here for the construction
of the (possibly partial) model behind the graph. The default representation is
tree-like, but nodes may be moved around to obtain senseless representations. The

183

Architectural reconfiguration of interacting services

visualisation highlights input and output nodes in green and red colours, respec-
tively.

9.3.2 IMCREOtool

IMCREOTool is an internal plugin of the CooPLa editor. It allows for the trans-
formation of stochastic instances of CooPLa coordination patterns into a variety of
output formats. These formats are mostly related to quantitative analysis, but other
formats, e.g., for visualisation, may be obtained. Figure 9.8 shows some of these
possible formats.

Tool workflow

This tool works upon an implementation of the DIMCReo model discussed in Chap-
ter 4. This model is, of course, obtained from a stochastic instance of some coordi-
nation pattern specified in CooPLa. Algorithms in Appendix A are applied to realise
the model transformation. Figure 9.10 magnifies the button in the CooPLa Editor
toolbar that triggers this process.

Figure 9.10: IMCREOTool triggering button.

By pushing that button a three-page wizard pops up. Figure 9.11 presents these
three pages (in order from left to right).

In the first page, the user is asked to select which stochastic instance (if any
exists in the current active CooPLa file) is to be one to converted into a DIMCReo

model. The second page presents the stochastic information associated to nodes of
the chosen instance and its deployment environment. At this moment, the values
may be changed/reviewed. The node information is labelled with RD (i.e., reading or
enqueuing to the node) and WR (i.e., writing to the channel or dequeueing from the
node). By setting the node values to zero, makes the tool ignore the node stochastic
information. Moreover, the user may chose whether or not the coordination pattern
is deployed.

184

9.3. The CooPLa Editor

Figure 9.11: IMCREOTool wizard pages.

Finally, in the third page, a wisp of output and tool options is presented. Therein,
the user is asked to select an output file name and location, as well as the output
format(s) to generate. If the PRISM option is selected, the user must make sure
that CADP is installed and that paths to CADP directory and binaries are set in the
Eclipse preferences for the CooPLa Editor.

The latter is a must because the PRISM model checker does not accept interactive
Markov chains (IMCs). Therefore, it is necessary to convert the DIMCReo model into
continuous-time Markov chains (CTMCs). Such a transformation takes a DIMCReo

model where all interactive transitions were made internal. This model is then
passed to the reductor CADP tool for both minimisation via a weak trace equivalence
relation and determinisation. In the end, the resultant CTMC model is converted,
within IMCREOTool, into a PRISM file.

All this work is, as expected, hidden from the user. However, a command line
interface (CLI) version of the IMCREOTool exists1 that delegates all this chaining to
the user.

1http://reo.project.cwi.nl/reo/wiki/ImcReo

185

Architectural reconfiguration of interacting services

Output working labels

In order to ease the use of the output formats of IMCREOTool within other tools,
meaningful labels are added to the transitions of the DIMCReo (whenever the format
allows). This is the case of output formats for CADP or PRISM, for instance. The
use of these labels is due to the transformation of the DIMCReo states into abstract
numbered states of the output formats. Without these labels, the users would not
be able to understand the generated models, since a direct mapping rarely exists
between DIMCReo and such models. Actually, the labels go further and create a
mapping that shorten the gap between the CooPLa design and the final output
format.

All the labels agree to the following syntax: <ENT>_<NAME>_<ACT>_<PORTS>.
Where <ENT> is the entity (environment, channel or node) active in the transition
with that label. It may expand to one of the fixed names shows in Table 9.2. <NAME>

Table 9.2: Working label values and meaning.

Value Meaning

ENT

ENV Environment
MREP Merger-replicator node
XOR Exclusive router node
SYNC sync channel
LOSSY lossy channel
DRAIN drain channel
FIFO1e fifoe channel

· · · · · ·

Value Meaning

ACT

TRs Transmission success
TRl Transmission lost
ARR Request arrival/produced
RD Node read/enqueue data
WR Node write/dequeue data

is the name of the entity. If it is a channel, then it corresponds to the name given to
that channel instance in the CooPLa design. If it is a node or environment, then this
name corresponds to the concatenation of all channel ends co-located in the node or
environment. <ACT> is the action performed by the entity. For instance, it may be
a data transmission, a data arrival, a data enqueueing or dequeueing among others.
Table 9.2 specify the associated names to each considered action. Finally, <PORTS>
correspond to the set of ports associated to the entity and involved in the action.
Depending on the output format, they may appear either as the concatenation of
the co-located channel ends, or as a list of such ends.

Furthermore, these labels may be added of the corresponding rate, which is
associated to the transition in the DIMCReo model.

Figure 9.12 shows two small excerpts of how these labels appear in the context
of the .aut and .sm formats for CADP and PRISM tools, respectively.

186

9.3. The CooPLa Editor

1 (0 , "ENV_ls_i_ARR_[l s_ i] ; r a t e 1 . 0" , 20)
2 (8 , "LOSSY_ls_TRl_ [l s_ i] ; r a t e 1 . 0" , 1)
3 (4 , "MREP_ls_ofe_i_RD_[ls_o] ; r a t e 1 . 0" , 5)
4 . . .

1[ENV_ls_i_ARR__ls_i_] s=0 −> 1.0 : (s ’=11) ;
2[LOSSY_ls_TRl__ls_i_] s=2 −> 1.0 : (s ’=5) ;
3[MREP_ls_ofe_i_RD__ls_o_] s=4 −> 1.0 : (s ’=2) ;
4. . .

Figure 9.12: Working labels for CADP (left) and PRISM (right).

9.3.3 Reconfiguration engine

The reconfiguration engine enables the application of reconfigurations written in
ReCooPLa upon CooPLa coordination patterns. The reconfiguration engine was
discussed in detail as a M.Sc. project [227]. As such, only an overview of it is
provided in the following paragraphs.

In the context of the CooPLa Editor, the reconfiguration engine is activated by
clicking the button magnified in Figure 9.13. Its activation only occurs if the content
of the active specialised editor consists of a ReCooPLa sentence with a main recon-
figuration. As discussed before, it is this reconfiguration that will lead the whole
process.

Figure 9.13: Reconfiguration engine triggering button.

The process follows, then, in a sequence of steps. First, the CooPLa processor
transforms the imported coordination patterns into an internal model that realises
the coordination pattern model introduced in Chapter 6. Afterwards, the the Re-
CooPLa processor translates each reconfiguration referred in the main into a Java
source file. The main reconfiguration is translated into a main Java program. These
translations are supported by a formal translation schema [228, 227]. The generated
sources are compiled in runtime and the output class files are added to the running
Java virtual machine (JVM) via reflection mechanisms. After these steps, it is ob-
tained a Java program, which is ready to be executed. The reconfiguration engine
is responsible for calling the main method of that program (again via reflection) in
order to apply the changes onto the coordination pattern models. In the end, the
obtained coordination patterns are converted back into CooPLa specifications that
can be saved for later usage.

Figure 9.14 shows the moment right after the application of a reconfiguration
along with its result. The generated patterns are shown in a view similar to that of

187

Architectural reconfiguration of interacting services

the visualisation of coordination patterns during their edition in CooPLa. At this
moment the user is asked whether the generated patterns shall be saved into CooPLa
files.

Figure 9.14: The application of a reconfiguration.

The saved coordination patterns may be the subject of yet another reconfigura-
tion, creating a cyclic application of the engine. Also, these patterns can be exported
into external tools for further analyses or other applications.

9.3.4 Importer and exporter

The importer and exporter plugins of the CooPLa Editor are limited to importing
Reo XML files and exporting both ECT and Vereofy compatible files. More formats
can be added in the future. Figure 9.15 shows where these two features are placed
in the context of the editor.

Figure 9.15: The importing and exporting features.

In the following, the process of importing and exporting these formats is briefly
presented.

188

9.3. The CooPLa Editor

Vereofy RSL

Exporting Vereofy (i.e., RSL) files is made via source-to-source transformation. The
input is a CooPLa file. Only the coordination patterns therein are translated. Chan-
nels are assumed built-in in the Vereofy processor implementation. Consequently,
they are imported to the generated file. Figure 9.16 shows the CooPLa coordination
pattern (left) and the generated RSL circuit (right).

Figure 9.16: Exported coordination pattern to Vereofy notation.

Reo XML

For (importing/exporting) Reo XML files the process is more involving. It is not
based on source-to-source transformation. Instead, it has the intermediate step
of converting the contents of the files (whether they are Reo XML to import or
CooPLa to export) into the concrete model of coordination pattern (as introduced
in Chapter 6), which allows for more straightforward conversion algorithms.

Although limited to a specific set of basic Reo channels, this feature enhances
the productivity with both ECT and CooPLa Editor. In particular, they complement
each other. For instance, ECT is adequate for an easier design of coordination pat-
terns enabling animation for behaviour verification; the CooPLa editor improves the
application of reconfiguration and delivers a robust basis for quantitative analysis.

Figure 9.17 shows a chain of steps on how these tools can work together. In this
particular case, the CooPLa editor is being used as an external tool for applying a
reconfiguration to a Reo circuit.

In the ECT, a Sequencer coordination pattern is modelled. Then, it is imported
to the CooPLa Editor. Another coordination pattern, named synchroniser, is designed
and imported to the reconfiguration written in ReCooPLa. The applied reconfigu-
ration changes the original Sequencer coordination pattern into what was named
ParallelSynch, which activates services in parallel and synchronises their responses.

189

Architectural reconfiguration of interacting services

��
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
��

F
igu

re
9.17:

U
sing

the
EC

T
and

the
C
ooP

La
Editor

together.

190

9.4. Summary

Finally, the obtained pattern is exported into Reo XML, resulting in a reusable Reo
circuit in the context of ECT.

9.4 Summary

This chapter introduced tool support for aris, based on an Eclipse plugin referred
to as the CooPLa Editor.

The CooPLa Editor provides features for (i) the design of both coordination
patterns and reconfigurations; (ii) the application of these reconfigurations upon
the coordination patterns; and (iii) transformation of these elements into formats
acceptable by multi-purpose external tools.

For item (i), two DSLs were presented: CooPLa and ReCooPLa. The former
enables the design of the coordination layer of a system by coordination patterns.
It allows for the definition of channels, patterns, and their stochastic instances. The
latter is tailored to the design of reconfigurations of coordination patterns.

For (ii), a reconfiguration engine was devised. It converts ReCooPLa reconfig-
urations into Java files, compiles them and, via reflection, imports the generated
class files into the JVM running the CooPLa Editor. Again by reflection, reconfigu-
rations are applied upon coordination patterns that were imported into the original
ReCooPLa script. The obtained coordination patterns may be saved for later use
within the CooPLa Editor.

Finally, for (iii), a set of transformation mechanisms was developed. The IM-
CREOTool is an internal plugin of the CooPLa Editor that implements the DIMCReo

model (c.f., Chapter 4). It takes CooPLa specifications, converts them into the
formal model of coordination patterns (c.f., Chapter 6) and, upon such a model,
generates a DIMCReo model. From this model, several output formats are possible.
This enables the interface of the CooPLa Editor with other tools. In particular with
tools for quantitative analysis like PRISM or CADP.

191

Chapter 10

Case Study: towards an adaptable
system

Nothing endures but change.

– Heraclitus

In this chapter. A case study is presented as a proof-of-concept of the adaptation
approach introduced in Chapter 8. In particular, it deals with the design of an
adaptable version of a static system. This entails the application of aris, as well as
the use of its supporting tools. The runtime behaviour of the system is conducted
by a simulator. PRISM is in charge of analysing the performance of the the system
possible configurations, modelled in DIMCReo.

This is an hypothetic situation in the context of the real-world Access Society’s
Knowledge (ASK) system. Although hypothetic, the study is made based on real
data obtained from the company’s logs.

Parts of this chapter’s content was previously published, by the author, in:

- Nuno Oliveira and Luís S. Barbosa. “A self-adaptation strategy for service-based architectures”. In: Pro-
ceedings of the 8th Brazilian Symposium on Software Components, Architectures and Reuse. Vol. 2. SB-
CARS’2014. Distinguished with Best Paper Award. Maceió, Alagoas, Brasil: SBC – Brazilian Computer
Society, Sept. 2014, pp. 44–53.

10.1 The ASK system

The ASK system is an industrial solution from the Dutch company Almende. It
is a communication software that facilitates mediation between service consumers
their providers. For instance, it may mediate a company in need for a temporary

193

Architectural reconfiguration of interacting services

worker and an available person whose profile matches such request. Matching mech-
anisms are used to mediate the interveners, which take into account the needs of
the consumers and the profiles of the providers.

The business goals of the ASK system are to deliver the best consumer-provider
match within the lower time possible. On top of this, Almende desires to achieve
such goals while keeping the entailing costs low.

10.1.1 The architecture

The architecture of the ASK system is modular (c.f., Figure 10.1). It is based on
three high-level components: a web front-end, a database, and a contact engine.
The web front-end serves as the interface between the consumers/providers and the
system. The database stores typical system data, along with specific data for the
improvement of the matching algorithm. The contact engine is where the main
business is processed: matches are computed and the interveners are set in contact.
For this, the contact engine consists of the following four components.

�������������

��������

��������������

��������� ��������

�����������������
�
�
�
�
�
��
�

Figure 10.1: The architecture of ASK.

The Reception collects the users’ re-
quests and converts them into tasks. The
Executer takes each task and determines
the best providers/consumers to serve a re-
quest. It is also responsible for defining
how the matched entities should communi-
cate. The Resource Manager establishes the
connection between the matched entities.
The Scheduler schedules requests stored in
the database, taking into account time con-
straints associated to them.

Both Reception and Executer are further
specialised with components, services and queueing mechanisms. The most typi-
cal workflow within ASK reports their interaction. It starts with either the user
issuing requests or the triggering of request by the scheduler. These requests are
sent to the Reception where a HostessTask (HT) subcomponent converts them into
tasks. Such tasks are enqueued into a Task-Queue (TQ). Whenever possible, a Han-
dleRequestTask (HRT) subcomponent dequeues these tasks, generating new requests
to the Executer component. Within the Executer, requests are also enqueued into
an Execution-Queue (EQ). A HandleRequestExecution (HRE) service performs the
matching between consumer and provider for each request in the EQ. The result (a
connection between consumer and provider) is sent to the Resource Manager. Fi-

194

10.1. The ASK system

nally, the Resource Manager will deal with the physical contact between the matched
entities.

10.1.2 The static performance on a dynamic environment

From the logs and previous analyses [198], the Executer component was identified
as the responsible for undesired bottlenecks in the system performance.

In the current ASK configuration, the server running the HRE service is not
dedicated to it, dealing with several other different processes. Its task of finding
and establishing the best consumer-provider connection is time and resource (mainly
memory) consuming. For this reason, there is a top limit of 20 HRE service instances
able to run concurrently in that server. In average, each instance of the HRE service
takes 0.703s to produce an output (i.e., accepts aprox. 1.422 requests per second);
meaning that the server is potentially able to deal with roughly 28.440 requests per
second. The EQ queue runs on a different server and is able to enqueue and dequeue
at a rate of 10000 jobs per second.

Figure 10.2 shows the simple model of the Executer component with associated
stochastic information. In this figure it was assumed a mean time interval between
requests arriving to this component of 0.063s. This is, of course, just illustrative.
The real value will vary since the number of requests also vary with time.

���

��
������

������

��������

�

�

��

������������������������

��
������������������

�

�

�����������

�

� ���
������������

Figure 10.2: The Executer component model with stochastic information.

In concrete, from years of experience, logs and monitored data, the ASK team
has learnt that during the night period there is, usually, a drop of user requests, and
that after lunch time until mid-afternoon, such demand reaches a peak. Table 10.1
depicts that variation for non-uniform time intervals of a day. The request per
second in each cell are an average.

Table 10.1: Requests to the ASK system during a day

hours (interval) 0-8 8-12 12-14 14-17 17-24
requests (per second) 0.125 12.420 8.321 30.460 12.260

195

Architectural reconfiguration of interacting services

Moreover, it was found that roughly every six months there is a slight down time
on the server where the HRE web-service is hosted. Therefore, the rate of failure is
about 6.43 ⇥ 10−8 per second1. Another important observation was that the mean
time to recover from a failure was of about 10s.

In these situations, a fixed architecture and a fixed number of resources may con-
tribute to undesired financial losses for the company. In this sense, the case study
here reported centres attentions on the Executer component. Dynamic adaptation
for this component will be planned and analysed. It is, in particular, an attempt
to dynamically maximise the company’s objectives. This is achieved by both con-
tracting the right amount of system resources and defining the most appropriate
behaviour for the right contextual settings.

Henceforth, Adaptable-ASK will be used to refer to the adaptable version of the
ASK system.

10.2 Planning adaptations

In this case study, the approach for architectural self-adaptation introduced in Chap-
ter 8 is followed. In particular, recall what is involved in the offline phase: the system
is designed, possible reconfigurations are organised into a reconfiguration transition
system (RTS) and the main adaptation logic is settled by the definition of constraints
and filters. This section reports precisely on the construction of these assets in the
context of the Adaptable-ASK.

10.2.1 Adaptable-ASK design

The design of the Adaptable-ASK (which is reduced to the design of the Executer
component) is reported here in two parts. The first is concerned with requirements
modelling. The second dives into the construction of both a model of the system’s
coordination and a RTS.

Requirements and properties

The properties and requirements for the system have to be set clearly upfront before
its design. The ASK team defends that two requirements must remain invariant
during all adaptation process. One is that “there must always be a queueing system
in between the entry port of the component and the HRE service”. The other is

1The mean time between failure quality of service (QoS) attribute of the server is consequently
set to 15552000s = (360 ⇤ 24 ⇤ 60 ⇤ 60)/2.

196

10.2. Planning adaptations

that “requests must not be lost during interaction”. These two requirements can be
translated into properties of the HpE logic. Let Nomi and Nomo be sets of nominals
referring to input and output ports in the coordination patterns. Then, for each
in 2 Nomi and out 2 Nomo,

φ1 : @in[−
⇤.fifo.−⇤]out

φ2 : @in(h−⇤itrue ^ [−⇤.lossy−⇤]false)

are formula schemes that represent the two requirements, respectively. Note that
the first conjunct in φ2 captures the fact that the expected interaction involves at
least one channel.

As expected, these properties must also remain valid for all the envisaged con-
figurations that the system may present under adaptation. Along with this, the
company requires that the main behaviour of each system’s configuration is also
preserved. This brings to discussion properties of the reconfigurations that will be
part of the RTS. In particular, this enforces these reconfigurations to be either beh-
unobtrusive or beh-expansive (with regard to behaviour) and either str-compatible
or str-conservative (concerning the structure).

Besides behavioural and structural properties, it is mandatory the identification
of QoS dimensions of interest for the system. In this case study, only the dimension
h[0, 1],i, referring to throughput ratio (TR), is considered. The throughput ratio
measures the ratio between the effective throughput and the maximum throughput
possible. From its formal definition it should be understood that a higher ratio is
desired for the system’s performance. A desired value for this QoS dimension is
analysed in the following sections.

The cost of the system’s configurations is also an important indicator in what
concerns adaptation. As such, this is also considered as a global system property.
Moreover, a constraint associated to this indicator is that its pecuniary value must
always be the minimum possible, formally (SYS.cost,min,true).

Table 10.2 summarises the properties of the Adaptable-ASK (and envisaged re-
configurations). Some of them must remain unchanged during the system life-time
(unless their stakeholders decide otherwise); others must conform to system’s con-
straints (which are addressed later in this section).

Table 10.2: Adaptable-ASK properties.

FUN QoS SYS ONT ENV
• φ1 TR cost • beh-unobtrusive _ beh-expansive –
• φ2 • str-compatible _ str-conservative

197

Architectural reconfiguration of interacting services

Stochastic model and reconfigurations

The original model for coordination of the components within the Executer com-
ponent is easily extracted from its current implementation (c.f., Figure 10.2). In
particular, the EQ may be represented as a fifo channel. The coordination pattern
composed of one such channel is enough to represent the whole component. The
HRE service will be assumed connected to the output port of that coordination
pattern. This is to cope with the vision of exogenous coordination. It will solely
make part of the environment; as such, only its processing time is of interest for
stochastic modelling purposes.

Considering this original coordination pattern, the properties above and the aver-
age fluctuation of user requests in Table 10.1, it was possible to define configurations
that would, most likely, overcome the reported changes on the environment. Fig-
ure 10.3 shows the configurations obtained (in the context of the CooPLa Editor) for
the adaptation strategy of the Adaptable-ASK.

� ����

� ����

�

����

����

�

����

����

�

�

�

�

Figure 10.3: Configurations for the Adaptable-ASK system.

Configuration is the original coordination pattern resorting to one queue; it
has a cost per hour of e0.47. Configuration À is a scaled in version of , where
more memory was added to the original queue; it has a cost per hour of e0.54.
Configuration Ã is a scaled out version of , where a second HRE server (with same
performance) is added in such a way that both servers, connected to hre1 and hre2,
process different tasks in parallel; this configuration has a cost per hour of e0.67.
Finally, configuration Õ is a scaled in and out version of , where more memory
and a second server are added in such a way that both servers, connected to hre1

198

10.2. Planning adaptations

and hre2, execute in parallel; it has a cost per hour of e0.74.
Figure 10.4 complements these configurations with the respective reconfigura-

tions. Altogether, they compose the RTS for Adaptable-ASK. To enhance readabil-
ity, the backward reconfigurations were omitted.

�

�

�

�

��

��

��

��

Figure 10.4: RTS for the Adaptable-ASK system.

Note that the four configurations preserve the functional properties when con-
sidering Nomi = {a} and Nomo = {hre1} (for configurations and À) or Nomo =

{hre1, hre2} (otherwise). The same happens for the reconfigurations. All of them
meet the ONT properties. The backward reconfigurations are mandatory and as-
sumed by default; there is, therefore, no need for them cope with this family of
properties.

10.2.2 Analysis of RTS configurations

In a simple analysis, it is possible to see how each configuration performs against
the variability of the environment. In order to achieve this, the IMCREOTool plugin
is used for generating suitable analysable assets from the CooPLa specifications that
compose the RTS. In this case study, PRISM is the target quantitative model checker
for that analysis. Figure 10.5 shows a fragment of the PRISM module generated for
the scaled out CooPLa coordination pattern.

The QoS dimension of interest for Adaptable-ASK, the throughput ratio, can be
expressed in PRISM using the notion of rewards as follows: R{"runs"}=? [S] / T.
Here, runs is a reward structure that assigns the value 1 to each transition that
transmits data to hre1 (and hre2); and T is a variable representing the user requests.
Table 10.3 summarises the obtained steady-state values for this property at the
precise average rate of user requests expected at each hour interval.

199

Architectural reconfiguration of interacting services

Figure 10.5: The PRISM model for the scaled out coordination pattern.

Table 10.3: Steady-state throughput ratio analysis for RTS configurations.

hours (interval) 0-8 8-12 12-14 14-17 17-24
requests (per second) 0.125 12.420 8.321 30.460 12.260

 Original NFS 0.999 0.950 0.981 0.721 0.951
FS 0.661 0.008 0.012 0.003 0.008

À Scaled In NFS 0.999 0.978 0.994 0.769 0.979
FS 0.702 0.008 0.012 0.003 0.008

Ã Scaled Out NFS 0.999 0.996 0.998 0.944 0.996
FS 0.999 0.951 0.982 0.722 0.952

Õ Scaled In and Out NFS 0.999 0.998 0.999 0.970 0.998
FS 0.999 0.978 0.994 0.770 0.979

200

10.2. Planning adaptations

Non-faulty server (NFS) and faulty-server (FS) marks say respect to experiments
where, first, the server connected to port hre1 is always available and, second, it is
constantly failing (accepting one request in each 10s). In both cases, the server on
port hre2 (when present) is always up. The graphs in Figure 10.6 provide a similar
view, but this time it is presented an evolution of the TR property depending on

�������� ��������� ���������� ������������������ � � �

Figure 10.6: Performance analysis of the throughput ratio property for the several
configurations. Without faulty server (above) with faulty server (below).

the number of user requests. The graph on the top shows the evolution of TR for
the servers without failures; the one in the bottom shows the that evolution for the
presence of a faulty server, in the conditions explained before.

As expected, the scaled out and scaled in and out configurations perform signif-
icantly better than the others. In the FS situation, these two perform similarly to
the original and scaled in configurations when servers do not fail. Note that the
vertical scale in the two graphs is different in order to visually accommodate the
discrepancy of results in the FS situation.

10.2.3 Objectives, constraints and filters

Adding resources like servers and memory to the system is costly as it can be seen by
the presented cost per hour of each configuration. Assuming that these resources are
paid-per-use as in a cloud environment, it is essential to spend only the minimum
required time on the proposed configurations. But delivering a service only with

201

Architectural reconfiguration of interacting services

minimum costs in mind is not advantageous, since the obvious slowness of the system
will alienate its customers. This brings the need for defining a suitable service level
agreement (SLA) for the Adaptable-ASK. As such, the Adaptable-ASK team defined
that an optimal value for the TR QoS dimension would be somewhere above 0.970.
In the remainder of this chapter, 0.970 is referred to as the TR threshold, or t for
short). This being fixed, one can now define a suitable trigger constraint for the
system in hand.

≥t
TR ^minPcost

This imposes that adaptations will be raised in one of the following situations:

1. the current system configuration presents a throughput ratio value below the
threshold t;

2. there is a configuration (in the pool of possible configurations, represented by
P) that is cheaper;

3. both 1. and 2. occur simultaneously.

In order to finish the offline phase, it is still necessary to define filters that
will lead the decision making in case of an adaptation being required. Table 10.4
associates the most suitable configuration to each hour interval, considering multiple
adaptation objectives, defined by possible filters.

Table 10.4: Predicted configurations for filters.

0-8 8-12 12-14 14-17 17-24
minPcost

maxPTR Õ Õ Õ Õ

NFS – ≥t
TR,minPcost À Õ À

FS – ≥t
TR,minPcost Ã Õ Ã – Õ

NFS – ≥t
TR,minPcost | maxPTR À Õ À

FS – ≥t
TR,minPcost | maxPTR Ã Õ Ã Õ Õ

The top two rows are concerned with the selection of candidate configurations
filtering, exclusively, by minimum cost and maximum TR value, respectively. As
expected, these filters define adaptation strategies that make the system practically
static. The top one reduces company costs, but will as well reduce the TR values;
the second row augments TR value (augmenting customer satisfaction), however,
costs are higher.

The third row presents a filter that selects, in a first step, the configurations
delivering a TR value above the threshold, and then selects the one with minimum
cost. For the NFS situation, the selected configurations are balanced and, thus,

202

10.3. Runtime situation

the adaptation is more in line with the company objectives. For the FS situation,
however, there is no configuration able to deliver a TR above the desired threshold
in the interval where the user requests reach its peak (i.e., 14-17). In this case, the
system would not reconfigure itself. If for some reason the configuration at that
moment is or À, then the system would perform low (see Figure 10.6, bottom
graph) for a while, increasing the losses for the company.

Contrariwise, the fourth row extends the previous filter by adding an optional
filter that selects the configuration delivering the maximum TR value, when the
first filter is not able to propose a configuration. In this way, it is now possible to
have a suitable configuration for the case where servers are down or when the users
demand is higher. Moreover, this filter provides a well-balanced and mainly low cost
adaptation strategy. For this reason, this filter is the one that best fits and ensures
the Adaptable-ASK objectives.

10.3 Runtime situation

At runtime, however, the environment changes are more unpredictable. Therefore,
the previous analysis and the defined adaptation strategy are only a basis of what
should be perfected at runtime. In any case, the more accurately the analysis in the
offline phase is, the better the results in the online phase will be.

Since the dynamic part of the adaptation methodology proposed in Chapter 8 is
not currently implemented, simulation was used instead.Concretely, the simulation
consisted on one day in the system execution. It was assumed that servers do not
fail in this period. The user requests for the simulation were obtained from traces
of the system, such that the average in each part is the one in Table 10.1.

The results of this simulation are shown in Figure 10.7. Performance was evalu-
ated per minute. Each evaluation considered the current request rate and the four
configurations: the active one and the three candidates. The obvious exception is
when the active configuration is À or Ã, for which the candidates are only con-
figurations and Õ

2. Actually, by configuration here one means PRISM modules
generated in the offline phase for the four coordination patterns that essentially
define the configuration.

From the top graph in Figure 10.7, the first need for adaptation occurred at
minute 480. For the first 8 hours of the day, the system has shown a good perfor-
mance in configuration . Then, in the first minutes of the 8th hour of execution,

2Remember that inverse reconfigurations are omitted in the RTS of Figure 10.4 but assumed
to exist.

203

Architectural reconfiguration of interacting services

�� � ��

Figure 10.7: Performance of Adaptable-ASK. A twenty-four-hour span (top) and a
specific half-hour span (below).

the system adapts until stabilised for the amount of requests. However, from minute
720 until minute 840 the system is constantly adapting itself. Three hours later, at
minute 1020, the system adapts again for some times until stabilise for the rest of
the day.

The bottom graph of Figure 10.7 was zoomed-in in a zone that spans for 20
minutes before entering the peak of requests (at minute 840) and 10 minutes during
it. Before entering the peak zone, the system is able to deal with the requests
in its original configuration: . Note that the second adaptation to configuration
 is enacted not because the system is performing below the TR threshold, but
because there is a cheaper configuration that delivers similar performance. This is
the intended behaviour ensured by the constraint previously defined.

When the users’ requests augment significantly, the system performs considerably
below the TR threshold. As a consequence, the system adapts itself to configuration
Õ. In the subsequent minutes there are no adaptations even though the system per-
forms roughly below the threshold for TR. This is because (i) there are no selectable
configurations after filtering and (ii), the alternative filter (TR,max,true) defined for
the adaptation strategy keeps deciding (in each evaluation) that configuration Õ is
the best one for the current environment.

204

10.4. Summary

In this simulation, during 24 hours the system adapted 48 times, with a mean
time to adapt of 1800s (i.e., 30 minutes). This seems to be a reasonable value,
however it may be misleading. In fact, note that the system only adapts itself
in, roughly, three parts of the day. The most critical one being from minute 720
to minute 840, where 75% of adaptations occur. This result in a local mean time
between adaptations of 200s, or roughly 3.3 minutes). This augments the time spent
in reconfigurations (for simplicity assumed to be instantaneous), which consequently
decrease the productivity of the system.

Such a situation can be mitigated by increasing the complexity of the adaptation
algorithm. In particular, on the analysis and decision moments. For instance,
instead of choosing a configuration based on its performance on the current rate of
requests, one could use the history of requests (or at least the last n rates) to predict
the next one, and elaborate the decision based on the system performance for such
prediction. Also, one could resort to a notion of hysteresis to gracefully stabilise the
system. For instance, one could delay the next adaptation for some time or until
a cheaper configuration does not ensure a TR value above some threshold strictly
greater than 0.970. The latter would improve performance and, in the long run,
decrease the costs (that may be associated to reconfigurations).

10.4 Summary

In this chapter a case study was developed. It focused on the enhancement of a static
software system towards a dynamic, self-adaptive, version. The whole process fol-
lowed the self-adaptation strategy introduced in Chapter 8 as a concrete application
of the aris framework.

The subject system was Almende’s ASK, a system for mediation facilitation, with
particular focus on temporary work. Previous analysis made to this system pointed
out performance bottlenecks. A dynamic version of this system would, most likely,
improve such performance faults. With effect, this study showed that by making
the system dynamic, able to adapt itself in response to the environment changes,
it is possible to maintain the performance above a predefined level, while keeping
entailed costs low.

The self-adaptive system (Adaptable-ASK) was designed by taking into account
the notions of coordination patterns, and coordination-targeting reconfigurations.
These notions are central to aris, as advocated in this thesis. Moreover, the stochas-
tic modelling of the system by stochastic coordination patterns, led the workflow
into the practical application of the IMCReo and DIMCReo quantitative models. In

205

Architectural reconfiguration of interacting services

particular, these models were translated with the IMCREOTool plugin (from the
CooPLa Editor) into PRISM-compatible modules.

Consequently, in the online phase of the self-adaptation approach, PRISM was
used to obtain the necessary performance analysis of the system. This was incorpo-
rated in a simulation for one day of the Adaptable-ASK system execution. Taking
into account constraints and filters defined during analysis, it was possible to see
that the approach is effective in adapting when it most needs.

During analysis of the adaptation results, the observations were twofold. On
the one hand, the system kept its performance roughly always above an acceptable
threshold. On the other hand, the system went through several reconfigurations
before stabilising when abrupt changes in the environment occurred. Clearly, the
algorithm used was simplistic. It used only constraints and filters to report the need
for adaptations and decide which reconfigurations shall be applied.

Moreover, some simplifications concerning reconfigurations were assumed that
may threaten the validity of the simulation. For instance, reconfigurations were
assumed to be applied immediately after a need for adaptation is reported. In real
world, one may require that reconfigurations occur only in quiescent states of the
system. Also, their application was assumed instantaneous. Again, in a real-world
situation, any change to a system would require time to take effect.

206

Chapter 11

Conclusion

He who is not contented with what he has,
would not be contented with what he would
like to have.

– Socrates

In this chapter. Conclusions about this thesis are drawn. A journey never ends
without a reflection on its good and bad aspects; on the lessons learned from it;
on the achievements. . . This is precisely what this chapter is about. Concretely, it
starts with a retrospective on the main contributions of the thesis. Then, it looks
back to the state of the art and discusses how the underlying research area(s) was
(were) pushed forward with the work reported in this document. Finally, research
challenges left open, or opened meanwhile, are discussed and presented as future
work.

11.1 Retrospective

The need for highly available and dependable software has exponentially increased
over the last decade. Distributed systems with flexible architectures became, for
that reason, the rule underlying these systems; service-oriented architectures (SOAs)
became the de facto approach for their development. The SOA architectural style
promotes the construction of large-scale systems by the composition of reusable
loosely-coupled computational entities named services. Such composition, realised
by the coordination of services according to their public interfaces, defines, in a
broad sense, the overall behaviour of SOA systems.

Deployed in environments where change is the rule rather than the exception,

207

Architectural reconfiguration of interacting services

these systems have to be resilient in order to maintain their behaviour and perfor-
mance. This entails, of course, the ability to adapt to change. In particular, this may
be achieved by reconfiguring the internal architecture; the coordination between the
interacting services.

The focus of this thesis was architectural reconfiguration of interacting services.
Special light was shed upon the modelling and analysis of reconfigurations that
focus on a system’s coordination layer, targeting three different concerns of systems:
behaviour, structure and stochastic performance. A formal perspective was taken,
pushing forward the current state of formal methods for the correct design and
development of reconfigurable systems.

The quantitative analysis of software systems is a non-trivial task. Despite sev-
eral stochastic formal models have been proposed for such analysis, they mostly
target the modelling of a system as a whole. Few are the approaches that allow
for deriving the quantitative model of a system from its compounding parts; those
catering for composition usually do not cover coordination-specific features like syn-
chronisation, mutual exclusion, non-determinism or context-dependency.

The above problem was tackled in Part I of this thesis. It was proposed a stochas-
tic model — IMCReo— based on interactive Markov chains (IMCs) that captures the
desired semantics of the stochastic Reo formalism. IMCReo inherits composition from
IMCs and extends them by incorporating intended properties of the stochastic Reo
coordination model e.g., context-dependency, identity element or atomicity. IMCReo

suffers of state-space explosion, though. This is more evident when three or more
channel ends compose a node; in this case, IMCReo refactors such a node into sev-
eral others so that it always composes two ends per node. To avoid this undesired
issue, IMCReo was redesigned into a different perspective — the DIMCReo. DIMCReo

preserves the properties of IMCReo, while regarding each stochastic Reo channel as
four interacting components (environment writer, environment reader, channel and
node), each one with a lower state-space model. This improves the practical use
of the model: composition is achieved modularly, and only considers environment
information in the last composition step (referred to as the deployment). Although
the deployed model may have the same state-space explosion as in IMCReo, the model
obtained upon each previous composition step is notably smaller. As a byproduct,
this approach defines a more realistic model for exogenous stochastic coordination,
which stochastic Reo is unable to offer because of the undesired coupling of the
environment information.

Moreover, since IMC formalism is behind IMCReo and DIMCReo, typical measures
obtained from IMC analysis become available for the study of coordination scenar-

208

11.1. Retrospective

ios expressed in stochastic Reo. In the same perspective, tool support for IMC
(e.g., CADP [125], PRISM [173], and IMCA [139]) can be made available to support
analysis. With effect, as discussed in Chapter 9, the CooPLa Editor delivers the IM-
CREOTool plugin that enables a toolchain for qualitative and quantitative analysis
of coordination models.

Part II of the thesis introduces a framework for architectural reconfiguration
targeting the coordination layer of a system. It was named aris (expanding to the
title of this thesis, for an easier reference). aris is twofold: on the one hand it tackles
the modelling of a system by its coordination aspects; on the other hand, it allows
for reasoning about reconfigurations upon the three axes: behaviour, structure and
stochastic performance.

Concretely, the modelling part of aris defines notions of coordination and re-
configuration patterns. A coordination pattern was formally defined as an abstract
graph of channels. Edges are typed channels, uniquely identified and with two or
more ends. The type of the channel confers concrete behaviour to the coordina-
tion pattern. It must define a specific coordination policy expressed in terms of a
concrete coordination model like Reo or BIP. Reconfigurations were defined based
on five primitive operations. These operations were proved to cope with invariant
properties of coordination patterns. Moreover, they are compositional in the sense
that they can be combined (in sequence) to yield complex and reusable reconfigura-
tions. The dynamic setting was also considered, where consistency on state transfer
upon reconfiguration is the de facto question. An approach to deal with this was
addressed. It considers a symbolic view of states of the automata-based semantic
model of the coordination pattern (which is composed from the semantic models
underlying the type of each channel).

Both coordination and reconfiguration patterns were additionally discussed from
a stochastic perspective. In this view, stochastic delays for data reading/writing
and processing were associated to channel ends and to the channels themselves,
respectively. Following an approach similar to that considered for DIMCReo, the
deployment environment of the (stochastic) coordination patterns was considered
as an independent entity issuing requests, with some delay, to the ports of the
patterns. Reconfigurations are, as before, applied to these stochastic patterns.

The reasoning part of aris introduced the necessary mechanisms to analyse,
compare and classify reconfigurations in terms of the three dimensions: behaviour,
structure and stochastic performance. Reasoning from a behavioural perspective
requires the association of a semantic model to the coordination patterns. Reconfig-
urations are then studied from the comparison of the resulting coordination patterns

209

Architectural reconfiguration of interacting services

or the changes inflicted upon the original coordination pattern. The comparisons
of these patterns are made considering the simulation and bisimulation relations
defined for the chosen semantic model. Reasoning from a structural perspective
do not require the fixation of any semantic model. The graph of a coordination
pattern already provides the necessary structure upon which (structural) properties
may be investigated. A suitable hybrid logic — HpE — was devised for the direct
formulation of these properties. In this perspective, reasoning about reconfigura-
tions is made by considering the preservation of (invariant) formulas of HpE after
application of reconfigurations. Additionally, a notion of bisimulation to compare
the structure of the coordination patterns was defined and an Hennessy-Milner-like
result proved. Finally, reasoning on a performance perspective entailed the associa-
tion of a quantitative semantic model to coordination patterns, for which DIMCReo

was chosen. Its use demanded for the definition of a notion of quality of service
(QoS) for coordination patterns. DIMCReo is used to obtain the concrete values for
each QoS dimension defined. Ther, reasoning about reconfigurations is made upon
the comparison of the values of these dimensions for the obtained patterns or the
changes produced in these values comparing with an original coordination pattern.

From the three reasoning perspectives, a classification of reconfigurations was
created, and a taxonomy defined for each perspective. The concepts in these tax-
onomies, and the relation with other more generic concepts, allowed for the defini-
tion of a (base) ontology of reconfigurations. This ontology may grow by considering
either other reasoning perspectives; the relation between concepts of the different
perspectives; or the relation of these concepts with other concerns of reconfigurations
e.g., state transfer, transparency, among others.

In the end of Part II of this thesis, an application of aris was presented. In
essence it is the integration of the framework features and mechanisms in the con-
text of a self-adaptation approach. The approach is based, as many others, in the
MAPE-K (monitor, analyser, planner, executer and knowledge) feedback loop refer-
ence model from autonomic computing and control theory. The particularity of the
approach is the use of a transition system of coordination-based reconfigurations —
the reconfiguration transition system (RTS) — to drive most of the analyses and
decisions. Of course, analysis is based on property verification by taking advantage
of HpE logic or IMCReo-based tool support. For decisions, a simple yet effective
approach based on tailored notions of trigger constraints and filters are used. The
overall approach was further refactored in an attempt to deliver adaptation as a
service.

Part III of the thesis was concerned with tool support and illustration of the

210

11.2. Related work discussion

aris framework. Tool support is provided as an Eclipse plugin editor — the CooPLa
Editor — that serves as an interface for several external tools. The CooPLa Editor
provides two domain-specific languages (DSLs): CooPLa and ReCooPLa. The former
is targeted on modelling coordination patterns with or without stochastic informa-
tion; the latter allows for the design of reconfigurations to be applied upon the
CooPLa patterns. The editor also provides multiple plugins that enable a toolchain
for coordination modelling, reconfiguration, quantitative analysis, among others.
In particular, the IMCREOTool plugin creates DIMCReo models from the CooPLa
stochastic instances and is able to export these models into established quantitative
analysis tools e.g., PRISM, CADP or IMCA among others. The reconfiguration en-
gine takes both CooPLa and ReCooPLa specifications and generate simulations of the
application of ReCooPLa reconfigurations upon the CooPLa patterns. Moreover, the
CooPLa Editor is able to export CooPLa patterns as both Vereofy circuits, enabling
their behavioural analysis, and Reo, enabling a more comprehensive set of possibili-
ties ranging from animation to simulation and interfacing with other external tools.
One of these tools may be again the CooPLa Editor, which is also able to import Reo
specification into CooPLa patterns.

Finally, a case study was conducted to show the applicability of aris and how the
tool support is able to give a hand to the working software architect. The case study
was an hypothetical situation based on real-world data from a real-world system —
the Access Society’s Knowledge (ASK) system. It entailed the transformation of a
static version of ASK into a dynamic, self-adaptive one.

The work developed in this thesis fits in the area of architectural reconfiguration
of software systems. Only a small part of it was tackled: the reconfiguration of
the coordination layer of SOA systems. It was objective of this work to formalise a
framework for modelling reconfigurations on that layer, and analyse them over three
concerns, considered of uttermost importance. It is believed that such a framework
may contribute to the correct construction of SOA systems with a strong emphasis
on performance requirements, which, in particular, seek on dynamic reconfigurations
the way to keep such requirements above predefined values.

11.2 Related work discussion

In this section, the state of the art presented in Chapters 3 and 5 is revisited. A
comparison between its most relevant entries and the work reported in this document
is made.

211

Architectural reconfiguration of interacting services

11.2.1 Models for performance evaluation

The contribution of this thesis for research on performance evaluation is the intro-
duction of the IMCReo semantic model. IMCReo is, in fact, a concrete instance of the
IMC formalism, with necessary extensions to support coordination-specific features.
As such, it deviates from stochastic models, like stochastic process algebras (SPAs),
stochastic Petri nets (SPNs), stochastic automata networks (SANs), queueing net-
works, or even other Markovian models, in the obvious ways.

IMCReo focus on providing a quantitative semantics for stochastic Reo. Not sur-
prisingly, the relevant related works are those accomplished within the Reo commu-
nity.

The continuous-time constraint automata (CCA) [30] model attempts to provide
the necessary stochastic semantic model for Reo. It closely follows the IMC formal-
ism, but it is, in fact, a direct descendant of constraint automata (CA). Like IMCReo,
it is compositional, but it does not capture the context-dependency and it is not
consistent in the sense that it does not provide a unique model for each Reo channel.
Also, as it is a pre-stochastic Reo model, it obviously does not capture the correct
semantics of stochastic Reo.

Another attempt was the quantitative intensional automata (QIA) model [16]. It
was introduced as an operational semantic model for stochastic Reo. It was one of
the first models to capture context-dependency. However, it is a non-compositional
model [198, 16]. Also, it has no direct tools for its quantitative analysis; a conver-
sion into continuous-time Markov chain (CTMC) is necessary to that end. IMCReo

can directly use CADP tools due to its IMC inheritance. For using it with PRISM
tool, however, a conversion has to be performed, which is done with techniques al-
ready associated to IMC like determinisation. This spares the need for tailor-made
algorithms as those introduced for QIA.

Similarly, stochastic Reo automata (SRA) [199, 198, 200] also arose as an opera-
tional semantics for stochastic Reo. Contrarily to the other models for Reo, including
IMCReo itself, SRA is a compact, low state-space model. Like IMCReo, it is composi-
tional and captures context-dependency. It falls behind IMCReo, however, due to the
lack of tool support. As for the QIA model, translations into CTMC were devised,
enabling the use of such stochastic model for computing performance of stochastic
Reo. But CTMC are not compositional and therefore any change to the stochastic
Reo model would entail the computation of the SRA and its derived CTMC models
again. A conversion of SRA into IMC was also attempted, but it was concluded that
IMCs were not suitable to capture stochastic Reo semantics [200]. IMCReo proved
precisely the opposite.

212

11.2. Related work discussion

The introduction of DIMCReo comes with the byproduct of improving (by clearly
separating concerns) stochastic Reo. This approach differs, thus, from those men-
tioned above, as the model is more in line with real-world scenarios. Moreover, it
still preserves the same properties of IMCReo, but enables faster compositions, due
to its two-phase composition operation.

Although on a different coordination formalism, SBIP [40] plays a role similar
to that of stochastic Reo. It has a specific stochastic semantics associated that is
based on transitions systems. This semantics is compositional and captures both
stochastic and non-deterministic behaviours. Specific tool support is made available
via algorithms for statistical model checking. An advantage of this model as com-
pared to IMCReo, is the ability to support various probabilistic distributions, rather
than only exponential ones.

IMCReo, its tools within the CooPLa Editor and its external interfacing tools,
define a specific framework for performance evaluation. It is focused on the co-
ordination layer and therefore it substantially differs from other approaches like
CB-SPE, ROBOCOP, KLAPPER or Palladio. In particular, these approaches target
specific component models and rely on high-level languages for the description of
components and their stochastic information. In the CooPLa Editor approach, this
information is expressed in the CooPLa DSL, and it is limited to processing delays.
The strategy for performance evaluation is achieved by the translation of the system
model into some stochastic model, where queueing networks are mostly preferred.
In the CooPLa Editor, the system model (as represented by its coordination layer)
is translated into DIMCReo from which performance is computed.

11.2.2 Software reconfiguration

The contribution of this thesis for research on software reconfiguration was con-
cretised in the development of aris, the framework discussed along Part II of this
document. aris allows for modelling coordination patterns and reconfigurations
both in stochastic and non-stochastic settings, and for reasoning about these enti-
ties from three different perspectives. The focus of aris is the reconfiguration of
the coordination structure of a system, which is known to deliver its overall be-
haviour, in the context of service-oriented computing (SOC). As such, this approach
for reconfigurations differs from traditional ones that target components (not the
interaction between them) and define high-level patterns for adding, updating or
removing such elements [211, 133, 148, 197, 182, 225, 77].

In aris, coordination patterns are modelled as graphs, and reconfigurations are
composed operations able to change these structures. This deviates, in several as-

213

Architectural reconfiguration of interacting services

pects, from the algebraic and categorical approaches referred in the state of the
art. It is by no means a better or a worst approach; only different, with pros and
contras. Categorical approaches take full advantage of graph grammars and graph
transformation as a mathematically sound framework for dealing with reconfigu-
rations. aris is a methodological approach. In graph grammars, reconfigurations
are presented as rewriting rules able to change the architectural graph via pattern
matching (i.e., in a functional/declarative perspective); in this thesis, reconfigura-
tion are concrete operations with a precise behaviour defined over the structure of
the coordination pattern graph (i.e., in an imperative perspective). This reveals
low-level operations applied in a single location of the architecture, while rewriting
rules are high-level, and able for application wherever they match the architectural
structure. But the latter are neither reusable nor compositional operations, while
the former are naturally both.

aris falls somehow behind in what concerns reconfiguration reasoning tech-
niques. The graph transformation approaches are provided with a comprehensive
set of tools and techniques to that end. Critical pair analysis, dynamic reconfigu-
ration verification, state space analysis or invariant properties checking are relevant
examples and only a few. From the literature, however, there are no works reporting
on how reconfigurations can be compared or classified in that setting.

The work of C. Krause [170] is a relevant state-of-the-art attempt for coordination-
based reconfigurations that takes advantage of graph transformations. In general,
Krause’s approach differs from this thesis’s work on the aspects stated above. But,
the author goes further and derives strategies to both triggering reconfigurations
based on context-dependency and data-flow, and applying reconfigurations when
the coordination layer of a system is distributed, which were not addressed inhere.
Moreover, C. Krause proposes a methodology for applying reconfigurations in dy-
namic settings. In his approach, input/output (IO) requests in the coordinator ports,
are interrupted, creating pending requests. After safely applying the necessary re-
configuration rules, the engine reactivates the coordinator ports and the pending
requests are served. For state transfer he assumes the existence of projections of
a global semantic model in the semantic models of all the channels in a connector;
from there he proposes to restore states of the channels that are not changed and
assume the initial states of the created ones. In aris, dynamic reconfigurations
are assumed to occur when the system is in a quiescent state. The state transfer
is computed via a formalised symbolic approach. Moreover, C. Krause’s approach
does not consider reconfigurations in the stochastic setting, while this thesis does.
In fact, it focus on such information to derive triggers for reconfigurations.

214

11.2. Related work discussion

Also D. Clarke [92] has reported work in reconfigurations of coordination struc-
tures. In his work, the author defines a model for Reo connectors, proposes an
axiomatisation for their construction, and a logic to reason about system properties
before and after the application of reconfigurations. This work shares similarities
with aris. First, the models for Reo connectors and coordination patterns are very
similar. The latter differ in the fact that channels may have more than two ends, and
its independence from the coordination model. Second, reconfigurations are defined
as low-level operations for adding channels and joining, splitting, hiding and forget-
ting nodes. By only targeting nodes, the underlying connector becomes complex,
requiring extra garbage collection features to reduce its size. In aris, reconfigura-
tions are defined from five primitives that target the direct manipulation of channels,
nodes and coordination patterns structures as a whole, while keeping their atomicity
and the underlying structure with only the essential pieces. Both approaches define
a logic for reasoning about the reconfigurations. They are different in spirit, though.
D. Clarke’s is a modal logic expanding computation tree logic (CTL) with a specific
modality for reconfigurations. Formulas of this logic are verified upon a structure
where edges represent a reconfiguration operation and nodes are Reo connectors
with a semantic model expressed via CA. Only behavioural properties can be veri-
fied, though. In aris, a hybrid logic is used. Its formulas are verified over the graph
structure of a coordination pattern, and express properties about structural aspects
of such entities. In aris, however, two more perspectives to reason about reconfigu-
rations were presented, allowing for the definition of a comprehensive classification
method for such operations. Concerning dynamic reconfigurations, in specific to
state transfer, D. Clarke presents a solution based on the inductive computation of
possible resuming states from the application of each primitive reconfiguration. Op-
positely, the symbolic approach proposed in aris uniquely identifies the resuming
state.

Dy-BIP [55] is another state-of-the-art approach for architectural reconfigurations
targeting the coordination layer of a system. The approach for reconfiguration is
completely different from the one followed in aris, therefore a concrete comparison
is difficult. The concept of reconfiguration is not defined in Dy-BIP, actually. It is
related with computation of a global semantic model on-the-fly, during execution
and based on global system constraints. While this reduces the state space of the
underlying semantic model, it precludes the verification of global properties. The
dynamic evolution of the system to suitable configurations may be provoked when
some actions/ports of the atomic components are not available; however no work
was found in the literature that connects Dy-BIP with SBIP (or other stochastic

215

Architectural reconfiguration of interacting services

model) for stochastic based evolution of a system.

11.3 Future work and research directions

Several research isuues arose along the development of this thesis. Some are ex-
pected to extend the techniques proposed in aris; others may lead to new and
independent research topics. In the following paragraphs, some of these topics are
briefly discussed.

Partitioned stochastic analysis

IMCReo and DIMCReo models still present some drawbacks. One of them is the
number of states of the final (deployed) models. For analysis purposes this may
become undesirable as the coordination patterns grow and/or become more complex.
Although PRISM and CADP [186] are known to accept models with millions of states,
there is always a limit imposed by e.g., memory issues of the machine running these
tools. For this reason, a proposed future work is to explore recent work on Reo [157],
which introduces a notion of connector partitions for distributing connector schemes
over multiple machines. IMCReo and DIMCReo models may benefit from such research
in order to be partitioned and analysed separately. The following research questions
arise:

• how can one correctly compose the values obtained from the separated analysis
of each partition?

• how will the analysis in these partitions cope with features like context-dependency
or nondeterminism, if these features depend on a global view of the coordina-
tion model?

Queueing networks for stochastic coordination modelling

Queueing networks are a possible solution to improve both readability and scalability
of approaches, based on transition systems, for stochastic analysis. Using queueing
networks to model the coordination layer of a system may be a suitable substitute
to IMCReo or DIMCReo. However, despite of this formalism being compositional and
the amount of related research, e.g., on finite capacity queues [32, 31, 213] or on
lossy queues [163], it is not immediate how could they model, compositionally, a
coordination structure. Actually,

216

11.3. Future work and research directions

• Is it really possible to obtain a queueing network model that enables analysis
of stochastic channel-based coordination?

• How can context-dependency, synchronisation or atomicity features of coordi-
nation formalisms be correctly captured in such a model?

Failure model for quantitative analysis

Both IMCReo and DIMCReo consider processing delays for channels, environment
and nodes. They always assume, however, that these components never fail. For
instance, channels always transmit data from an end to another. For sure, lossy

channels may lose data, but this is due to its dependency on the context. In this
sense, a failure model for IMCReo and DIMCReo is in order for more realistically
representing system coordination. A simple approach would be to add a failure
state to each entity. At least, two Markovian transitions would also be necessary:
one with a delay for failure and another with a delay to recover. This would raise,
of course, some interesting questions:

• How can such a failure model be added while keeping the state-space dimension
low?

• How would such model influence coordination features like context-dependency?

• Is it possible to define a failure model that is able to conveniently and consis-
tently restore the execution state?

Reconfigurations with costs

In this work, reconfigurations were assumed to be applied both immediately and
without any cost or failure. These may be acceptable simplifications to the prob-
lem, but it does not completely meet the reality. An extension to the model of
reconfiguration proposed in this thesis would be in order. A suitable notion of costs
for reconfiguration could consider, for instance, delays in their application, probabil-
ities to fail, energy costs, degradation or improvement on system QoS values, among
others. This raises, for instance, the following research topics:

• How exactly a quantitative relation between the system and its reconfigurations
may be established?

• In which way could these costs be used to improve decisions within self-adaptation
strategies?

• How could these costs be used to compare and classify reconfigurations?

217

Architectural reconfiguration of interacting services

Families of coordination patterns

In software product lines, software systems are built from a set of common features.
These features are selected with based on target markets and their specific objectives.
Constraints exist that determine how features relate to each other, and, ultimately,
define which features may pertain to a system. Reconfigurations are closely related
to this research topic. For instance, at any time, a company that acquired a basic
system may require to evolve into a premium version of it that offers extra features.
Such a change may definitely entail a reconfiguration of the company system.

With this in mind, one may think of porting these concepts into coordination
patterns and their reconfigurations. A notion of family of coordination patterns
would, for example, bind the possible reconfigurations associated with respect to
some criterium. Behavioural, structural and quantitative properties or ontology-
based classifications could play a determinant role for this matter. Typical questions
are:

• What would characterise a family of coordination patterns?

• How would families of coordination patterns be compared and related by the
reconfigurations that may be applied to more than one family?

Relating behaviour and structural perspectives

An interesting question that was not addressed in this work was how can the be-
havioural and structural perspectives, considered in this thesis, be related? One per-
spective resorts to a semantic model associated to the coordination pattern graph;
the other uses the graph itself. One compares coordination patterns and reconfigu-
rations using bisimulation and simulation relations; the other uses an hybrid logic
for the same objective. Hidden between these perspectives may lie an Hennessy-
Milner-like result relating modal equivalence in HpE and bisimilarity in a specific
(could it be whichever?) semantic model chosen for coordination patterns. This
would be an interesting result to connect these apparently unrelated perspectives.

Self-adaptation approach development

Last, but certainly not least, an obvious work for further research is the development
of a platform for self-adaptation of SOA systems, following the approach proposed
in this thesis. This would entail the development of the MAPE-K modules and,
additionally, deliver a specification language for the definition of triggers and filters.
One solution for the latter would be to extend ReCooPLa DSL with such capabilities.

218

11.3. Future work and research directions

Moreover, the step into the cloud environment for delivering adaptation as a service
would be a promising work, full of interesting challenges.

* * *

Certainly, many more questions were raised and left open for further research.
This is, for sure, what leverages Science. The contribution of this thesis is, no
doubt, a tiny little bump in the Knowldege boundary line. Answering to the opened
research questions would, over time, reestablish that round, smooth surface.

219

Appendix A

Deriving IMCReo from Stochatic
Coordination Patterns

This appendix presents algorithms for the conversion of stochastic coordination pat-
tern into IMCReo (Algorithm A.1) and into DIMCReo (Algorithm A.2). Therein,
functions to access the obvious components of tuple-defined datatypes are assumed.

Algorithm A.1: Converting stochastic coordination pattern into IMCReo.
1 datatype State : R⇥ T ⇥Q

2 datatype Trans : Mark R+ ⇥ State | Inter {E}⇥ State

3 datatype IMCReo : State 7! Trans

4 datatype End : E ⇥ R+

5 datatype F low : {{E}⇥ R+}
6 datatype Channel : {End}⇥ I ⇥ T ⇥ {End}⇥ {Flow}
7 datatype CoordPat : {Channel}⇥ {{End}}
8 datatype Env : {End} 7! R+

9

10 input : CoordPat ⇢ , Env env

11 output : IMCReo

12 begin
13 imcs {} ;
14 foreach c in channe l s (⇢)
15 imc IMCReo(type(c))
16 foreach st in keys (imc)
17 foreach t in imc [st]
18 i f cons t ruc t (t) = Mark

19 i f R(s t a t e (t)) 6= R(st) ^ R(s t a t e (t))\ R(st)2 keys (env)
20 r a t e (t) env [R(s t a t e (t))\R(st)]
21 else
22 i f T(s t a t e (t)) 6= T(s t) ^ T(st)\T(s t a t e (t))2 map(⇡1 , f l ows (c))
23 r a t e (t) = the{γ 2 f | f 2 f low (c) ^ ⇡1(f) = T(st)\T(s t a t e (t))}
24 end
25 end
26 end
27 end
28 end
29 imcs imcs [{imc}
30 end
31 return compose (imcs)
32 end

In a nutshell, Algorithm A.1 creates an IMCReo for each channel in the given
stochastic coordination pattern. It does so by using an IMCReo template generated
via function IMCReo(. . .), for each channel type. The rates in transitions of such
template, rates are, of course, incorrect. By inspecting the information in the (origin
and target) states of each transition in the template, one is able to decide which ports

221

Architectural reconfiguration of interacting services

are requesting IO operations or transmitting data. Based on these ports, either from
the environment or from the channel flows, the correct stochastic value is retrieved
and associated to that transition. Finally the concretised templates are composed
to deliver the combined IMCReo.

Algorithm A.2 assumes the datatypes presented in Algorithm A.1, and (re)defines
two of its own.

Algorithm A.2: Converting stochastic coordination pattern into DIMCReo.
1 datatype State : R⇥ T ⇥⇥E ⇥D ⇥Q

2 datatype DIMCReo : State 7! Trans

3

4 input : CoordPat ⇢ , Env env

5 output : DIMCReo

6 begin
7 dimcs {}
8 envs {}
9

10 foreach c in channe l s (⇢)
11 dimc DIMCReo(type (c))
12 foreach st in keys (dimc)
13 foreach t in dimc [st]
14 i f cons t ruc t (t) = Mark

15 i f T(s t a t e (t)) 6= T(s t) ^ T(st)\T(s t a t e (t))2 map(⇡1 , f l ows (c))
16 r a t e (t) = the{γ 2 f | f 2 f l ow (c) ^ ⇡1(f) = T(st)\T(s t a t e (t))}
17 end
18 end
19 end
20 end
21 dimcs dimcs [dimc

22 end
23

24 foreach nd in nodes (⇢)
25 dimcs dimcs [DIMCReo(nd, g

enq
nd

, g
deq
nd

)
26 end
27

28 foreach hnd, rti in keys (env)
29 envs envs [DIMCReo(nd, rt)
30 end
31

32 return deploy (compose (dimcs) , envs)
33 end

In summary, Algorithm A.2 creates a DIMCReo for each channel and node in the
given stochastic coordination pattern, and to each entry in the environment. Over-
loaded function DIMCReo(. . .) is used to obtain the template DIMCReo of each such
entity, provided that are suitable parameters. In the case of nodes and environment
entries, the function is assumed to generate the templates with the correct rates,
since these are given in the parameters. In the end, nodes and channels are com-
posed together; the resulting DIMCReo is then deployed in the generated DIMCReo

environment.

222

Appendix B

CooPLa Grammar

In this appendix, the full concrete grammar for the CooPLa language is given in
extended Backus-Naur form (eBNF). In order to increase its readability, the grammar
was divided into four logical parts: Listing B.1 presents the main grammar that glues
the principal structures; Listing B.2, B.3 and B.4 present the specific grammar for
such structures: channels, patterns and stochastic instances (respectively).

By convention, capital letter words refer to typical regular expressions.

Listing B.1: CooPLa main grammar
1 coopla ! import⇤ element ⇤
2 element ! channel_def
3 | pattern_def
4 | s t o cha s t i c_de f
5 import ! ’ import ’ FILE_PATH ’ ; ’

Listing B.2: CooPLa channels grammar
1 channel_def ! ’ channel ’ channel_sig ext ens i on ? ’{ ’ channel_body ’} ’
2 channel_sig ! ID dimensions ? ’ (’ por t s ? ’ : ’ po r t s ? (’ : ’ ID ’= ’ cond i t i on) ? ’) ’
3 dimensions ! ’@’ (ID | INT)
4 | ’⇠ ’ (ID | INT) (’ , ’ (ID | INT)) ⇤
5 por t s ! ID (’ , ’ ID) ⇤
6 cond i t i on ! ’< ’ ID (’ , ’ ID) ⇤ ’> ’
7 ex tens i on ! ’ extends ’ ID
8 channel_body ! s tate_def ? (f low_def ’ ; ’)+
9 s tate_def ! ’ s ta te ’ ’ : ’ ID ’ ; ’ ’ observer s ’ ’ : ’ ID (’ , ’ ID) ⇤ ’ ; ’

10 f low_def ! r eque s t s ’−>’ flow_type
11 r eque s t s ! r eque s t (’ , ’ r eque s t) ⇤
12 r eque s t ! ’ ! ’ ? ID
13 f low_type ! normal_flow (’ | ’ normal_flow) ?
14 | ID ’? ’ flow_type : flow_type
15 normal_flow ! ’ f low ’ (ID | ’NULL’) ’ to ’ ’@’ ? (ID | ’NULL’)

Listing B.3: CooPLa coordination patterns grammar
1 pattern_def ! ’ pattern ’ pattern_s ignature ’{ ’ pattern_body ’} ’
2 pattern_s ignature ! ID ’ (’ por t s ? ’ : ’ po r t s ? ’) ’
3 pattern_body ! ’ use ’ ’ : ’ pattern_dec l s ’ in ’ ’ : ’ pattern_comps
4 pattern_dec l s ! (r e f e r en c e_s i g ’ as ’ ID (’ , ’ ID) ⇤ ’ ; ’)+
5 r e f e r en c e_s i g ! (’ (’ ID ’) ’) ? channel_sig
6 pattern_comps ! (po r t_de f i n i t i on ’ ; ’)+ (jo in_operat ion ’ ; ’)+
7 po r t_de f i n i t i on ! ID ’= ’ (p_acc | jo in_operat ion)
8 p_acc ! ID ’ . ’ ID
9 j o in_operat ion ! ’ j o in ’ po r t_acce s s_ l i s t ’ as ’ ID

10 | ’ xor ’ po r t_acce s s_l i s t2 ’ as ’ ID
11 por t_acce s s_ l i s t ! ’ [’ p_acc (’ , ’ p_acc) ⇤ ’] ’
12 por t_acce s s_ l i s t2 ! ’ [’ p_acc+ ’ : ’ p_acc ’ , ’ p_acc (’ , ’ p_acc) ⇤ ’] ’

223

Architectural reconfiguration of interacting services

Listing B.4: CooPLa stochastic instances grammar
1 s t o cha s t i c_de f ! ’ s t o cha s t i c ’ ID ’@’ s t o c h a s t i c_ l i s t ID
2 s t o c h a s t i c_ l i s t ! ’ { ’ stoch_elem+ ’} ’
3 stoch_elem ! ID (’# ’ ID) ? ’= ’ stoch_val ’ ; ’
4 stoch_val ! FLOAT
5 | ’ (’ FLOAT ’ , ’ FLOAT ’) ’

224

Appendix C

ReCooPLa Grammar

In this appendix, the concrete grammar for the ReCooPLa language is given in eBNF.
Additionally, the ReCooPLa implementation of the set of reconfiguration patterns
introduced in Chapter 6 is presented.

C.1 The Grammar
In order to increase the readability of the ReCooPLa grammar, it was divided into
three parts: Listing C.1 presents the main grammar that glues the principal parts:
reconfigurations and their application presented in Listing C.2 and C.3, respectively.
By convention, capital letter words refer to typical regular expressions.

Listing C.1: ReCooPLa main grammar
1 r e coop la ! import⇤ content
2 import ! ’ import ’ FILE_PATH ’ ; ’
3 content ! reconf_def main_def?

Listing C.2: ReCooPLa reconfiguration grammar
1 reconf_def ! ’ r e c on f i gu r a t i on ’ ID ’ (’ args_def ’) ’ b lock
2 args_def ! arg_def (’ , ’ arg_def) ⇤
3 arg_def ! datatype l i s t_ i d s
4 datatype ! ’ Pattern ’ | ’ Channel ’ | ’Name’ | ’Node ’ | ’XOR’
5 | other_type ’< ’ datatype ’> ’
6 other_type ! ’ Set ’ | ’ Pair ’ | ’ Tr ip le ’
7 l i s t_ i d s ! ID (’ , ’ ID) ⇤
8 block ! ’ { ’ i n s t r u c t i o n+ ’} ’
9 i n s t r u c t i o n ! (de c l | a s s i gn | apply | f o r) ’ ; ’

10 dec l ! datatype var_def (’ , ’ var_def) ⇤
11 var_def ! ID | a s s i gn
12 a s s i gn ! ID ’= ’ a s s i g n e r
13 a s s i g n e r ! expr | apply
14 apply ! ID? ’@’ r e c_ca l l
15 r e c_ca l l ! (’ j o in ’ | ’ s p l i t ’ | ’ par ’ | ’ remove ’ | ’ const ’ | ’ id ’ | ID) op_args
16 op_args ! ’ (’ a rgs ? ’) ’
17 args ! expr (’ , ’ expr) ⇤
18 f o r ! ’ f o r a l l ’ ’ (’ datatype ID ’ : ’ ID ’) ’ b lock
19 expr ! f a c t o r ((’+ ’ | ’& ’ | ’− ’) f a c t o r) ?
20 f a c t o r ! ID | oper | cons
21 oper ! ID (’# ’ ID) ? ’ . ’ a t t_ca l l
22 cons ! (’S ’ | ’P’ | ’T’) op_args
23 a t t_ca l l ! (’ in ’ | ’ out ’) (’ (’ INT ’) ’) ?
24 | ’name ’ | ’ nodes ’ | ’ names ’ | ’ f a t ’ | ’ and ’ | ’ trd ’

225

Architectural reconfiguration of interacting services

Listing C.3: ReCooPLa application grammar
1 main_def ! ’main ’ ’ [’ m_args? ’] ’ m_block
2 m_args ! m_decl (’ ; ’ m_decl) ⇤
3 m_decl ! ID id s
4 i d s ! ID (’ , ’ ID) ⇤
5 m_block ! ’ { ’ m_instr+ ’} ’
6 m_instr ! (m_assign | m_apply) ’ ; ’
7 m_assig ! ID id s ’= ’ m_apply
8 m_apply ! ID ’@’ r e c_ca l l

C.2 Reconfiguration Patterns in ReCooPLa

The following presents the ReCooPLa implementation of the reconfiguration patterns
introduced in Section 6.2.3.

removeP

(Cs)

1 reconfiguration removeP (Set<Name> Cs) {
2 f o ra l l (Name n : Cs) {
3 @ remove(n) ;
4 }
5 }

overlapP

(⇢, X)

1 reconfiguration overlapP (Pattern p ; Set<Pair<Node>> X) {
2 @ par (p) ;
3 f o ra l l (Pair<Node> n : X) {
4 Node n1 , n2 ;
5 n1 = n . f s t ;
6 n2 = n . snd ;
7 Set<Node> E = S(n1 , n2) ;
8 @ join (E) ;
9 }

10 }

insertP

(⇢, n,mi,mo)

1 reconfiguration i n s e r tP (Pattern p ; Node n , mi ,mo) {
2 Pattern p1 = @ par (p) ;
3 Pattern p2 = @ sp l i t (n) ;
4 Set<Node> Isp = p2 . in − p1 . in ;
5 Set<Node> Osp = p2 . out − p1 . out ;
6 Set<Node> Ospmi = Osp + S(mi) ;
7 Set<Node> Ispmo = Isp + S(mo) ;
8 @ join (Ospmi) ;
9 @ join (Ispmo) ;

10 }

replaceP

(⇢, X, Cs)

1 reconfiguration rep laceP (
2 Pattern p ; Set<Pair<Node>> X; Set<Name> Cs) {
3 @ removeP (Cs) ;
4 @ overlapP (p ,X) ;
5 }

implodeP

(Cs)

1 reconfiguration implodeP (Set<Name> Cs) {
2 Pattern p = @ id () ;
3 Pattern p1 = @ removeP (Cs) ;
4 Set<Node> Nds = p1 . nodes − p . nodes ;
5 @ join (Nds) ;
6 }

226

C.2. Reconfiguration Patterns in ReCooPLa

moveP

(ch, e, n)

1 reconfiguration moveP(Name ch ; Node e , n) {
2 Pattern p = @ id () ;
3 Set<Node> x = p#ch . in + p#ch . out ;
4 x = x − S(e) ;
5 Pattern p1 = @ sp l i t (e) ;
6 Set<Node> E = p1#ch . in + p1#ch . out ;
7 Set<Node> Isp = p1 . in − p . in ;
8 Set<Node> Osp = p1 . out − p . out ;
9 Set<Node> IOsp = Isp + Osp

10 Set<Node> E2 = E − S(x) ;
11 Set<Node> IOspE = IOsp − E;
12 Set<Node> E2n = E2 + S(n) ;
13 @ join (IOspE) ;
14 @ join (E2n) ;
15 }

227

References

[1] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski,
and Alistair P. Barros. “Workflow Patterns”. In: Distributed and Parallel
Databases 14.1 (July 1, 2003), pp. 5–51.

[2] Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar Nier-
strasz. “PICCOLA—a Small Composition Language”. In: Formal Methods
for Distributed Processing. Ed. by Howard Bowman and John Derrick. New
York, NY, USA: Cambridge University Press, 2001, pp. 403–426.

[3] Aditya Agrawal, Gabor Karsai, and Feng Shi. “A UML-based graph transfor-
mation approach for implementing domain-specific model transformations”.
In: International Journal on Software and Systems Modeling (2003), pp. 1–
19.

[4] Jonathan Aldrich, Craig Chambers, and David Notkin. “Architectural Rea-
soning in ArchJava”. In: Object-Oriented Programming (ECOOP 2002). Ed.
by Boris Magnusson. Vol. 2374. Lecture Notes in Computer Science. Berlin
Heidelberg: Springer, 2002, pp. 334–367.

[5] Jonathan Aldrich, Craig Chambers, and David Notkin. “ArchJava: connect-
ing software architecture to implementation”. In: Proceedings of the 24th In-
ternational Conference on Software Engineering. ICSE 2002. New York, NY,
USA: ACM, 2002, pp. 187–197.

[6] Luca de Alfaro and Thomas A. Henzinger. “Interface Automata”. In: ACM
SIGSOFT Software Engineering Notes 26.5 (Sept. 2001), pp. 109–120.

[7] Robert Allen. “A Formal Approach to Software Architecture”. PhD thesis.
Carnegie Mellon, School of Computer Science, Jan. 1997.

[8] Robert Allen, Rémi Douence, and David Garlan. “Specifying and Analyzing
Dynamic Software Architectures”. In: Configurations 1382 (1998), pp. 1–15.

[9] Robert Allen and David Garlan. “Formalizing Architectural Connection”. In:
Proceedings of the 16th International Conference on Software Engineering.
ICSE 1994. Los Alamitos, CA, USA: IEEE Computer Society Press, 1994,
pp. 71–80.

[10] Françoise André, Erwan Daubert, and Guillaume Gauvrit. “Distribution and
self-adaptation of a framework for dynamic adaptation of services”. In: The
Sixth Inte,national Conference on Internet and Web Applications and Ser-
vices. ICIW 2011. Red Hook, NY, USA: IARIA, Mar. 2011, pp. 16–21.

229

Architectural reconfiguration of interacting services

[11] Farhad Arbab. “What Do You Mean, Coordination?” In: Bulletin of the Dutch
Association for Theoretical Computer Science (NVTI). Mar. 1998, pp. 11–22.

[12] Farhad Arbab. “Coordination of Mobile Components”. In: Electronic Notes
in Theoretical Computer Science 54 (Aug. 2001), pp. 1–16.

[13] Farhad Arbab. “Abstract Behavior Types: A Foundation Model for Com-
ponents and Their Composition”. In: Formal Methods for Components and
Objects. Ed. by Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf,
and Willem-Paul de Roever. Vol. 2852. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2003. Chap. 2, pp. 33–70.

[14] Farhad Arbab. “Reo: a channel-based coordination model for component com-
position”. In: Mathematical Structures in Computer Science 14.3 (June 2004),
pp. 329–366.

[15] Farhad Arbab. Composition by Interaction. Tech. rep. Leiden University,
Oct. 28, 2005.

[16] Farhad Arbab, Tom Chothia, Rob van der Mei, Sun Meng, YoungJoo Moon,
and Chrétien Verhoef. “From Coordination to Stochastic Models of QoS”.
In: Coordination Models and Languages. Ed. by John Field and Vasco Vas-
concelos. Vol. 5521. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2009. Chap. 14, pp. 268–287.

[17] Farhad Arbab, Christian Krause, Ziyan Maraikar, Young-Joo Moon, and José
Proença. “Modeling, Testing and Executing Reo Connectors with the Eclipse
Coordination Tools”. In: proceedings of the International Workshop on Formal
Aspects of Component Software. FACS 2008. Salamanca, Spain, Sept. 2008.

[18] Farhad Arbab and Farhad Mavaddat. “Coordination through Channel Com-
position”. In: Coordination Models and Languages. Ed. by Farhad Arbab and
Carolyn Talcott. Vol. 2315. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, Mar. 14, 2002. Chap. 6, pp. 275–297.

[19] Farhad Arbab and Jan Rutten. “A Coinductive Calculus of Component Con-
nectors”. In: Recent Trends in Algebraic Development Techniques. Ed. by
Martin Wirsing, Dirk Pattinson, and Rolf Hennicker. Vol. 2755. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2003. Chap. 2, pp. 34–55.

[20] Carlos Areces and Juan Heguiabehere. “HyLoRes 1.0: Direct Resolution for
Hybrid Logics”. In: Automated Deduction. CADE-18. Ed. by Andrei Voronkov.
Vol. 2392. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2002, pp. 156–160.

[21] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. “Henshin: Advanced Concepts and Tools for In-Place
EMF Model Transformations”. In: Model Driven Engineering Languages and
Systems. Ed. by DorinaC Petriu, Nicolas Rouquette, and Øystein Haugen.
Vol. 6394. Lecture Notes in Computer Science. Berlin Heidelberg: Springer,
2010, pp. 121–135.

230

C.2. Reconfiguration Patterns in ReCooPLa

[22] Juan C. Augusto. “Ambient Intelligence: Basic Concepts and Applications”.
In: Software and Data Technologies. Ed. by Joaquim Filipe, Boris Shishkov,
and Markus Helfert. Vol. 10. Communications in Computer and Information
Science. Berlin, Heidelberg: Springer, 2008, pp. 16–26.

[23] Juan C. Augusto. “Past, Present and Future of Ambient Intelligence and
Smart Environments”. In: Agents and Artificial Intelligence. Ed. by Joaquim
Filipe, Ana Fred, and Bernadette Sharp. Vol. 67. Communications in Com-
puter and Information Science. Berlin, Heidelberg: Springer, 2010, pp. 3–15.

[24] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. “Model-
checking continuous-time Markov chains”. In: Transactions on Computational
Logic 1 (July 2000), pp. 162–170.

[25] Jos C. M. Baeten. “A brief history of process algebra”. In: Theoretical Com-
puter Science 335.2-3 (May 23, 2005), pp. 131–146.

[26] Elham Bafrooi. “Specification and Implementation of Workflow Control Pat-
terns In Reo”. M.Sc. thesis. Waterloo, Ontario, Canada: University of Water-
loo, 2006.

[27] Christel Baier, Tobias Blechmann, Joachim Klein, and Sascha Klüppelholz.
“A Uniform Framework for Modeling and Verifying Components and Con-
nectors”. In: Coordination Models and Languages. Ed. by John Field and
Vasco T. Vasconcelos. Vol. 5521. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2009. Chap. 13, pp. 247–267.

[28] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost P. Katoen.
“Model-Checking Algorithms for Continuous-Time Markov Chains”. In: IEEE
Transactions on Software Engineering 29.6 (2003), pp. 524–541.

[29] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M. Rutten.
“Modeling component connectors in Reo by constraint automata”. In: Science
of Computer Programming 61.2 (2006), pp. 75–113.

[30] Christel Baier and Verena Wolf. “Stochastic reasoning about channel-based
component connectors”. In: Coordination Models and Languages. Vol. 4038.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 1–
15.

[31] Simonetta Balsamo, Vittoria de Nitto Personè, and Paola Inverardi. “A Re-
view on Queueing Network Models with Finite Capacity Queues for Software
Architectures Performance Prediction”. In: Performance Evaluation 51.2-4
(Feb. 2003), pp. 269–288.

[32] Simonetta Balsamo and Vittoria de Nitto Personè. “A survey of product
form queueing networks with blocking and their equivalences”. In: Annals of
Operations Research 48.1 (1994), pp. 31–61.

[33] Luciano Baresi, Reiko Heckel, Sebastian Thöne, and Dániel Varró. “Model-
ing and Analysis of Architectural Styles Based on Graph Transformation”.
In: Proceedings of the 6th ICSE Workshop on Component-Based Software
Engineering: Automated Reasoning and Prediction. CBSE 2003. May 2003,
pp. 67–72.

231

Architectural reconfiguration of interacting services

[34] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad
Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. “Rigorous Component-Based
System Design Using the BIP Framework”. In: IEEE Software 28.3 (May
2011), pp. 41–48.

[35] Ananda Basu, Marius Bozga, and Joseph Sifakis. “Modeling Heterogeneous
Real-time Components in BIP”. In: Proceedings of the Fourth IEEE Inter-
national Conference on Software Engineering and Formal Methods. SEFM
2006. Washington, DC, USA: IEEE Computer Society, 2006, pp. 3–12.

[36] Thais Batista, Ackbar Joolia, and Geoff Coulson. “Managing Dynamic Re-
configuration in Component-Based Systems”. In: Software Architecture. Ed.
by Ron Morrison and Flavio Oquendo. Vol. 3527. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2005. Chap. 1, pp. 1–17.

[37] Matthias Becker, Markus Luckey, and Steffen Becker. “Performance Analysis
of Self-adaptive Systems for Requirements Validation at Design-time”. In:
Proceedings of the 9th international ACM Sigsoft conference on Quality of
software architectures. QoSA 2013. New York, NY, USA: ACM, 2013, pp. 43–
52.

[38] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio Component
Model for Model-driven Performance Prediction”. In: Journal of Systems and
Software 82.1 (Jan. 2009), pp. 3–22.

[39] Maurice ter Beek, Antonio Bucchiarone, and Stefania Gnesi. “Dynamic Soft-
ware Architecture Development: Towards an Automated Process”. In: Pro-
ceedings of the 35th Euromicro Conference on Software Engineering and Ad-
vanced Applications. SEAA 2009. IEEE, Aug. 2009, pp. 105–108.

[40] Saddek Bensalem, Marius Bozga, Benoit Delahaye, Cyrille Jegourel, Axel
Legay, and Ayoub Nouri. “Statistical Model Checking QoS Properties of Sys-
tems with SBIP”. In: Leveraging Applications of Formal Methods, Verification
and Validation. Technologies for Mastering Change. Ed. by Tiziana Mar-
garia and Bernhard Steffen. Vol. 7609. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 327–341.

[41] Albert Benveniste, Claude Jard, Ajay Kattepur, Sidney Rosario, and John
A. Thywissen. “QoS-aware management of monotonic service orchestrations”.
In: Formal Methods in System Design 44.1 (2014), pp. 1–43.

[42] Jan A. Bergstra and Jan W. Klop. “ACP⌧ a universal axiom system for
process specification”. In: Algebraic Methods: Theory, Tools and Applications.
Ed. by Martin Wirsing and Jan A. Bergstra. Vol. 394. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 1989, pp. 445–463.

[43] Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. “Architecting
Families of Software Systems with Process Algebras”. In: ACM Transactions
on Software Engineering and Methodology 11.4 (Oct. 2002), pp. 386–426.

[44] Marco Bernardo and Roberto Gorrieri. “Extended Markovian Process Al-
gebra”. In: Concurrency Theory. CONCUR’96. Vol. 1119. Lecture Notes in
Computer Science. Springer, 1996, pp. 315–330.

232

C.2. Reconfiguration Patterns in ReCooPLa

[45] Antonia Bertolino and Raffaela Mirandola. “CB-SPE Tool: Putting Component-
Based Performance Engineering into Practice”. In: Component-Based Soft-
ware Engineering. Ed. by Ivica Crnkovic, JudithA Stafford, HeinzW Schmidt,
and Kurt Wallnau. Vol. 3054. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2004, pp. 233–248.

[46] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. “Semiring-based con-
straint satisfaction and optimization”. In: Journal of the ACM 44.2 (1997),
pp. 201–236.

[47] Patrick Blackburn. “Representation, Reasoning, and Relational Structures: a
Hybrid Logic Manifesto”. In: Logic Journal of IGPL 8.3 (2000), pp. 339–365.

[48] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press,
Sept. 30, 2002.

[49] Patrick Blackburn and Jerry Seligman. “Hybrid Languages”. In: Journal of
Logic, Language and Information 4.3 (1995), pp. 251–272.

[50] Tobias Blechmann and Christel Baier. “Checking Equivalence for Reo Net-
works”. In: Electronic Notes in Theoretical Computer Science 215 (June 2008),
pp. 209–226.

[52] Egor Bondarev, Michel Chaudron, and Peter With. “A Process for Resolving
Performance Trade-Offs in Component-Based Architectures”. In: Component-
Based Software Engineering. Ed. by Ian Gorton, George T. Heineman, Ivica
Crnković, Heinz W. Schmidt, Judith A. Stafford, Clemens Szyperski, and
Kurt Wallnau. Vol. 4063. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2006, pp. 254–269.

[53] Egor Bondarev, Johan Muskens, Peter de With, Michel Chaudron, and Jo-
han Lukkien. “Predicting real-time properties of component assemblies: a
scenario-simulation approach”. In: Proceedings of the 30th Euromicro Con-
ference. Aug. 2004, pp. 40–47.

[54] Marcello M. Bonsangue, Dave Clarke, and Alexandra Silva. “A model of
context-dependent component connectors”. In: Science of Computer Program-
ming 77.6 (June 17, 2012), pp. 685–706.

[55] Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis. “Mod-
eling Dynamic Architectures Using Dy-BIP”. In: Software Composition. Ed.
by Thomas Gschwind, Flavio De Paoli, Volker Gruhn, and Matthias Book.
Vol. 7306. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2012, pp. 1–16.

[56] Torben Braüner. Hybrid Logic and its Proof-Theory. 2011th ed. Applied Logic
Series. Springer, Nov. 30, 2010.

[57] Torben Braüner and Valeria de Paiva. “Intuitionistic hybrid logic”. In: Journal
of Applied Logic 4.3 (2006), pp. 231–255.

[58] Mario Bravetti. “Revisiting Interactive Markov Chains”. In: Electronic Notes
in Theoretical Computer Science 68.5 (May 2003), pp. 65–84.

233

Architectural reconfiguration of interacting services

[59] Mario Bravetti, Cinzia Di Giusto, Jorge A. Pérez, and Gianluigi Zavattaro.
“Adaptable processes”. In: Logical Methods in Computer Science 8.4 (Nov.
2012), pp. 1–71.

[60] Mario Bravetti, Cinzia Giusto, Jorge A. Pérez, and Gianluigi Zavattaro. “To-
wards the Verification of Adaptable Processes”. In: Leveraging Applications
of Formal Methods, Verification and Validation. Technologies for Mastering
Change. Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 7609. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 269–283.

[61] Lothar Breuer and Dieter Baum. An Introduction to Queueing Theory and
Matrix-Analytic Method. 2005th ed. Springer, Nov. 7, 2005.

[62] Yuriy Brun, Giovanna M. Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. “Engi-
neering Self-Adaptive Systems Through Feedback Loops”. In: Software Engi-
neering for Self-Adaptive Systems. Ed. by Betty H. Cheng, Rogério de Lemos,
Holger Giese, Paola Inverardi, and Jeff Magee. Vol. 5525. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 48–70.

[63] Dario Bruneo, Salvatore Distefano, Francesco Longo, and Marco Scarpa.
“Stochastic Evaluation of QoS in Service-Based Systems”. In: IEEE Transac-
tions on Parallel and Distributed Systems 24.10 (Oct. 2013), pp. 2090–2099.

[64] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean
B. Stefani. “The FRACTAL Component Model and Its Support in Java:
Experiences with Auto-adaptive and Reconfigurable Systems”. In: Software:
Practice and Experience 36.11-12 (Sept. 2006), pp. 1257–1284.

[65] Roberto Bruni, Antonio Bucchiarone, Stefania Gnesi, Dan Hirsch, and Al-
berto Lluch Lafuente. “Graph-Based Design and Analysis of Dynamic Soft-
ware Architectures Concurrency, Graphs and Models”. In: Concurrency, Graphs
and Models. Ed. by Pierpaolo Degano, Rocco Nicola, and José Meseguer.
Vol. 5065. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2008. Chap. 4, pp. 37–56.

[66] Roberto Bruni, Antonio Bucchiarone, Stefania Gnesi, and Hernán Melgratti.
“Modelling Dynamic Software Architectures using Typed Graph Grammars”.
In: Electron. Notes Theor. Comput. Sci. 213.1 (May 5, 2008), pp. 39–53.

[67] Roberto Bruni, Howard Foster, Alberto L. Lafuente, Ugo Montanari, and
Emilio Tuosto. “A Formal Support to Business and Architectural Design
for Service Oriented Systems”. In: Rigorous software engineering for service-
oriented systems. Ed. by Martin Wirsing and Matthias Hölzl. Berlin, Heidel-
berg: Springer, 2011, pp. 133–152.

[68] Roberto Bruni, Alberto L. Lafuente, and Ugo Montanari. “Hierarchical De-
sign Rewriting with Maude”. In: Electronic Notes in Theoretical Computer
Science 238.3 (June 29, 2009), pp. 45–62.

234

C.2. Reconfiguration Patterns in ReCooPLa

[69] Roberto Bruni, Alberto L. Lafuente, Ugo Montanari, and Emilio Tuosto.
“Service Oriented Architectural Design”. In: Trustworthy Global Computing.
Ed. by Gilles Barthe and Cédric Fournet. Vol. 4912. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2008, pp. 186–203.

[70] Antonio Bucchiarone. “Dynamic Software Architectures for Global Comput-
ing Systems”. PhD thesis. Lucca, Italy: IMT Institute for Advanced Studies,
Lucca, 2008.

[71] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi
Zavattaro. “Choreography and Orchestration: A Synergic Approach for Sys-
tem Design”. In: Service-Oriented Computing. ICSOC 2005. Ed. by Boualem
Benatallah, Fabio Casati, and Paolo Traverso. Vol. 3826. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2005. Chap. 18, pp. 228–
240.

[72] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud Com-
puting Principles and Paradigms. Wiley Publishing, 2011.

[73] Rajkumar Buyya, Chee S. Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. “Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility”. In: Future Generation
Computer Systems 25.6 (June 2009), pp. 599–616.

[74] Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Miran-
dola. “Self-adaptive Software Needs Quantitative Verification at Runtime”.
In: Communications of the ACM 55.9 (Sept. 2012), pp. 69–77.

[75] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola,
and Giordano Tamburrelli. “Dynamic QoS Management and Optimization
in Service-Based Systems”. In: IEEE Transactions on Software Engineering
37.3 (May 2011), pp. 387–409.

[76] Radu Calinescu and Marta Kwiatkowska. “Using Quantitative Analysis to
Implement Autonomic IT Systems”. In: Proceedings of the 31st International
Conference on Software Engineering. ICSE 2009. Vancouver, BC, Canada:
IEEE Computer Society, May 2009, pp. 100–110.

[77] Carlos Canal, Javier Cámara, and Gwen Salaün. “Structural reconfiguration
of systems under behavioral adaptation”. In: Science of Computer Program-
ming 78.1 (Nov. 2012), pp. 46–64.

[78] Carlos Canal, Ernesto Pimentel, and José M. Troya. “Specification and Re-
finement of Dynamic Software Architectures”. In: Proceedings of the TC2
First Working IFIP Conference on Software Architecture. WICSA 1999. De-
venter, The Netherlands: Kluwer, B.V., 1999, pp. 107–126.

[79] Carlos Canal, Ernesto Pimentel, and José M. Troya. “Compatibility and in-
heritance in software architectures”. In: Science of Computer Programming
41.2 (Oct. 2001), pp. 105–138.

235

Architectural reconfiguration of interacting services

[80] Antonio Cansado, Carlos Canal, Gwen Salaün, and Javier Cubo. “A For-
mal Framework for Structural Reconfiguration of Components under Be-
havioural Adaptation”. In: Electronic Notes in Theoretical Computer Science
263 (June 3, 2010), pp. 95–110.

[81] Bogdan A. Caprarescu and Dana Petcu. “A Self-Organizing Feedback Loop
for Autonomic Computing”. In: Proceedings of Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns. COMPUTATIONWORLD
2009. IEEE, Nov. 2009, pp. 126–131.

[82] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Iannucci,
Francesco Lo Presti, and Raffaela Mirandola. “MOSES: A Framework for QoS
Driven Runtime Adaptation of Service-Oriented Systems”. In: IEEE Trans-
actions on Software Engineering 38.5 (2012), pp. 1138–1159.

[83] Nicholas Carriero and David Gelernter. “Linda in context”. In: Communica-
tions of the ACM 32.4 (Apr. 1989), pp. 444–458.

[86] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. “Proba-
bilistic Weighted Automata”. In: Concurrency Theory. CONCUR 2009. Ed.
by Mario Bravetti and Gianluigi Zavattaro. Vol. 5710. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2009, pp. 244–258.

[87] Betty H. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff
Magee. “Software Engineering for Self-Adaptive Systems: A Research Roadmap”.
In: Software Engineering for Self-Adaptive Systems. Vol. 5525. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 1–26.

[88] Shang-Wen Cheng and David Garlan. “Stitch: A language for architecture-
based self-adaptation”. In: Journal of Systems and Software 85.12 (Mar.
2012), pp. 2860–2875.

[89] Allan Clark, Stephen Gilmore, Jane Hillston, and Mirco Tribastone. “Stochas-
tic Process Algebras”. In: Formal Methods for Performance Evaluation. Ed.
by Marco Bernardo and Jane Hillston. Vol. 4486. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2007, pp. 132–179.

[90] Dave Clarke. Reasoning About Connector Reconfiguration I: Equivalence of
Constructions. Tech. rep. Amsterdam: CWI - Centrum voor Wiskunde en
Informatique, Feb. 2005.

[91] Dave Clarke. “Reasoning About Connector Reconfiguration II: Basic Recon-
figuration Logic”. In: Electronic Notes in Theoretical Computer Science 159
(May 24, 2006), pp. 61–77.

[92] Dave Clarke. “A Basic Logic for Reasoning about Connector Reconfigura-
tion”. In: Fundamenta Informaticae 82 (Feb. 2008), pp. 361–390.

[93] Dave Clarke, David Costa, and Farhad Arbab. “Connector Colouring I: Syn-
chronisation and Context Dependency”. In: Electronic Notes in Theoretical
Computer Science 154 (May 2006), pp. 101–119.

[94] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic”. In: Logic of
Programs, Workshop. London, UK: Springer, 1982, pp. 52–71.

236

C.2. Reconfiguration Patterns in ReCooPLa

[95] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[96] Alan Colman and Jun Han. “Coordination Systems in Role-Based Adap-
tive Software”. In: Coordination Models and Languages. Ed. by Jean-Marie
Jacquet and Gian P. Picco. Vol. 3454. Lecture Notes in Computer Science.
Berlin Heidelberg: Springer, 2005, pp. 63–78.

[97] Diane J. Cook, Juan C. Augusto, and Vikramaditya R. Jakkula. “Ambient
intelligence: Technologies, applications, and opportunities”. In: Pervasive and
Mobile Computing 5.4 (Aug. 15, 2009), pp. 277–298.

[98] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko
Heckel, and Michael Löwe. “Algebraic Approaches to Graph Transforma-
tion - Part I: Basic Concepts and Double Pushout Approach”. In: Handbook
of Graph Grammars and Computing by Graph Transformations, Volume 1:
Foundations. Ed. by Grzegorz Rozenberg. World Scientific, 1997, pp. 163–
246.

[99] Ângelo Costa, José C. Castillo, Paulo Novais, Antonio Fernández-Caballero,
and Ricardo Simões. “Sensor-driven agenda for intelligent home care of the
elderly”. In: Expert Systems with Applications 39.15 (Nov. 2012), pp. 12192–
12204.

[100] David Costa. “Formal Models for Component Connectors”. PhD thesis. Am-
sterdam: Vrije University, Oct. 2010.

[101] Juan C. Cruz and Stéphane Ducasse. “A Group Based Approach for Coordi-
nating Active Objects”. In: Coordinatio Languages and Models. Ed. by Paolo
Ciancarini and AlexanderL Wolf. Vol. 1594. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 1999, pp. 355–370.

[102] Carlos E. Cuesta, Pablo de la Fuente, Manuel Barrio-Solórzano, and Encar-
nación Beato. “Coordination in a Reflective Architecture Description Lan-
guage”. In: Coordination Models and Languages. Ed. by Farhad Arbab and
Carolyn Talcott. Vol. 2315. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2002, pp. 141–148.

[103] Carlos E. Cuesta, Pablo de la Fuente, Manuel Barrio-Solórzano, and Encar-
nación Beato. “An “abstract process” approach to algebraic dynamic archi-
tecture description”. In: The Journal of Logic and Algebraic Programming
63.2 (May 2005), pp. 177–214.

[104] F. Curbera, Y. Goland, J. Klein, and F. Leymann. Business Process Execu-
tion Language for Web-Services. Tech. rep. IBM, 2002.

[105] Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren.
“MoDeST — A Modelling and Description Language for Stochastic Timed
Systems”. In: Process Algebra and Probabilistic Methods. Performance Mod-
elling and Verification. Ed. by Luca de Alfaro and Stephen Gilmore. Vol. 2165.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2001, pp. 87–
104.

237

Architectural reconfiguration of interacting services

[106] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. “A Highly-
Extensible, XML-Based Architecture Description Language”. In: Proceedings
of the Working IEEE/IFIP Conference on Software Architecture. WICSA
2001. Washington, DC, USA: IEEE Computer Society, 2001.

[107] Pierre-Charles David, Thomas Ledoux, Marc Léger, and Thierry Coupaye.
“FPath and FScript: Language support for navigation and reliable reconfig-
uration of Fractal architectures”. In: Annals of Telecommunications 64.1-2
(Feb. 1, 2009), pp. 45–63.

[108] Rocco De Nicola, Gianluigi Ferrari, Ugo Montanari, Rosario Pugliese, and
Emilio Tuosto. “A Process Calculus for QoS-Aware Applications”. In: Coordi-
nation Models and Languages. Ed. by Jean-Marie Jacquet and Gian P. Picco.
Vol. 3454. Lecture Notes in Computer Science. Berlin Heidelberg: Springer,
2005, pp. 33–48.

[109] Pierpaolo Degano and Ugo Montanari. “A model for distributed systems
based on graph rewriting”. In: Journal of the ACM 34.2 (Apr. 1987), pp. 411–
449.

[110] Yuxin Deng and Matthew Hennessy. “On the semantics of Markov automata”.
In: Information and Computation 222 (Jan. 2013), pp. 139–168.

[111] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaïti, Erol
Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and
Franco Zambonelli. “A Survey of Autonomic Communications”. In: ACM
Transactions on Autonomous and Adaptive Systems 1.2 (Dec. 2006), pp. 223–
259.

[112] Jim Dowling and Vinny Cahill. “The K-Component Architecture Meta-Model
for Self-Adaptive Software”. In: Metalevel Architectures and Separation of
Crosscutting Concerns. Ed. by Akinori Yonezawa and Satoshi Matsuoka.
Vol. 2192. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
Oct. 5, 2001. Chap. 6, pp. 81–88.

[113] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. “Graph-Grammars:
An Algebraic Approach”. In: Proceedings of the 14th Annual Symposium on
Switching and Automata Theory. 1973, pp. 167–180.

[114] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. “On Probabilistic
Automata in Continuous Time”. In: Proceedings of the 25th Annual IEEE
Symposium on Logic in Computer Science. LICS 2010. IEEE, July 2010,
pp. 342–351.

[115] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte, Pål
Krogdahl, Min Luo, and Tony Newling. Patterns: Service-Oriented Architec-
ture and Web Services. 1st ed. IBM Redbooks, Apr. 2004.

[116] Thomas Erl. SOA Design Patterns. 1st ed. Prentice Hall PTR, Jan. 9, 2009.

[117] William Feller. An Introduction to Probability Theory and Its Applications.
3rd. Vol. 1. Wiley, Jan. 1, 1968.

238

C.2. Reconfiguration Patterns in ReCooPLa

[118] Paulo Fernandes, Brigitte Plateau, and William J. Stewart. “Efficient Descriptor-
vector Multiplications in Stochastic Automata Networks”. In: Journal of the
ACM 45.3 (May 1998), pp. 381–414.

[119] José L. Fiadeiro and Antónia Lopes. “CommUnity on the Move: Architec-
tures for Distribution and Mobility”. In: Formal Methods for Components and
Objects. Ed. by Frank S. Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem-Paul Roever. Vol. 3188. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2004, pp. 177–196.

[120] José L. Fiadeiro and Antónia Lopes. “A model for dynamic reconfiguration
in service-oriented architectures”. In: Software and Systems Modeling 12.2
(Feb. 19, 2013), pp. 349–367.

[121] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. “Story
Diagrams: A New Graph Rewrite Language Based on the Unified Modeling
Language and Java”. In: Theory and Application of Graph Transformations.
Ed. by Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg. Vol. 1764. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2000. Chap. 21, pp. 296–309.

[122] Jacqueline Floch, Cristina Frà, Rolf Fricke, Kurt Geihs, Michael Wagner,
Jorge L. Gallardo, Eduardo S. Cantero, Stephan Mehlhase, Nearchos Paspal-
lis, Hossein Rahnama, Pedro A. Ruiz, and Ulrich Scholz. “Playing MUSIC —
building context-aware and self-adaptive mobile applications”. In: Software:
Practice and Experience 43.3 (Mar. 1, 2013), pp. 359–388.

[124] Cédric Fournet and Georges Gonthier. “The Join Calculus: A Language for
Distributed Mobile Programming”. In: Applied Semantics. Ed. by Gilles Barthe,
Peter Dybjer, Luís Pinto, and João Saraiva. Vol. 2395. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2002, pp. 268–332.

[125] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. “CADP
2011: a toolbox for the construction and analysis of distributed processes”.
In: International Journal on Software Tools for Technology Transfer (2012),
pp. 1–19.

[126] David Garlan, Robert T. Monroe, and David Wile. “ACME: An Architecture
Description Interchange Language”. In: Proceedings of the 1997 conference of
the Centre for Advanced Studies on Collaborative research. CASCON 1997.
Toronto, Ontario, Nov. 1997, pp. 169–183.

[127] David Garlan, Shang-Wen Cheng, An C. Huang, Bradley Schmerl, and Pe-
ter Steenkiste. “Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure”. In: Computer 37.10 (Oct. 2004), pp. 46–54.

[128] David Garlan, Robert T. Monroe, and David Wile. “ACME: Architectural
Description of Component-Based Systems”. In: Foundations of Component-
Based Systems. Ed. by Gary T. Leavens and Murali Sitaraman. Cambridge
University Press, 2000, pp. 47–68.

239

Architectural reconfiguration of interacting services

[129] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. “Software Architecture-
Based Self-Adaptation”. In: Autonomic Computing and Networking. Ed. by
Yan Zhang, Laurence T. Yang, and Mieso K. Denko. US: Springer, 2009.
Chap. 2, pp. 31–55.

[130] David Garlan and Mary Shaw. “An Introduction to Software Architecture”.
In: Advances in Software Engineering and Knowledge Engineering. Ed. by
Vincenzo Ambriola, Genoveffa Tortora, and Shi K. Chang. Vol. 1. River Edge,
NJ, USA: World Scientific Publishing Company, 1993, pp. 1–39.

[131] Erann Gat. “Three-layer Architectures”. In: Artificial Intelligence and Mobile
Robots. Ed. by David Kortenkamp, R. Peter Bonasso, and Robin Murphy.
Cambridge, MA, USA: MIT Press, 1998, pp. 195–210.

[132] Jean Gelissen. Robocop: Robust open component based software architecture.
Nov. 2014. url: http://www.hitech-projects.com/euprojects/robocop/.

[133] Hassan Gomaa and Mohamed Hussein. “Software reconfiguration patterns for
dynamic evolution of software architectures”. In: Proceedings of the Fourth
Working IEEE/IFIP Conference on Software Architecture. WICSA 2004.
2004, pp. 79–88.

[134] Vincenzo Grassi, Raffaela Mirandola, and Enrico Randazzo. “Model-Driven
Assessment of QoS-Aware Self-Adaptation”. In: Software Engineering for Self-
Adaptive Systems. Ed. by Betty H. Cheng, Rogério de Lemos, Holger Giese,
Paola Inverardi, and Jeff Magee. Vol. 5525. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2009, pp. 201–222.

[135] Vincenzo Grassi, Raffaela Mirandola, Enrico Randazzo, and Antonino Sa-
betta. “KLAPER: An Intermediate Language for Model-Driven Predictive
Analysis of Performance and Reliability”. In: The Common Component Mod-
eling Example. Ed. by Andreas Rausch, Ralf Reussner, Raffaela Mirandola,
and František Plášil. Vol. 5153. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2008, pp. 327–356.

[136] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. “From Design to
Analysis Models: A Kernel Language for Performance and Reliability Anal-
ysis of Component-based Systems”. In: Proceedings of the 5th International
Workshop on Software and Performance. WOSP 2005. New York, NY, USA:
ACM, 2005, pp. 25–36.

[137] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. “A Model-driven
Approach to Performability Analysis of Dynamically Reconfigurable Component-
based Systems”. In: Proceedings of the 6th International Workshop on Soft-
ware and Performance. WOSP 2007. Buenes Aires, Argentina: ACM, 2007,
pp. 103–114.

[138] Orna Grumberg and Helmut Veith, eds. 25 Years of Model Checking: History,
Achievements, Perspectives. Berlin, Heidelberg: Springer, 2008.

240

C.2. Reconfiguration Patterns in ReCooPLa

[139] Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R. Neuhäuer.
“Quantitative Timed Analysis of Interactive Markov Chains”. In: NASA For-
mal Methods. Ed. by Alwyn E. Goodloe and Suzette Person. Vol. 7226. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 8–
23.

[140] Svein O. Hallsteinsen, Kurt Geihs, Nearchos Paspallis, Frank Eliassen, Geir
Horn, Jorge Lorenzo, Alessandro Mamelli, and George A. Papadopoulos. “A
development framework and methodology for self-adapting applications in
ubiquitous computing environments”. In: Journal of Systems and Software
85.12 (Dec. 2012), pp. 2840–2859.

[141] Moshe Haviv. Queues: A Course in Queueing Theory. Vol. 191. International
Series in Operations Research & Management Science. Berlin, Heidelberg:
Springer, June 3, 2013.

[142] Luke Herbert and Robin Sharp. “Using Stochastic Model Checking to Pro-
vision Complex Business Services”. In: Proceedings of the IEEE 14th Inter-
national Symposium on High-Assurance Systems Engineering. HASE 2012.
IEEE, Oct. 2012, pp. 98–105.

[143] Holger Hermanns. Interactive Markov Chains: The Quest for Quantified Qual-
ity. Vol. 2428. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2002.

[144] Holger Hermanns and Joost-Pieter Katoen. “The how and why of interactive
Markov chains”. In: Proceedings of the 8th international conference on For-
mal methods for components and objects. FMCO 2010. Berlin, Heidelberg:
Springer, 2010, pp. 311–337.

[145] Ulrich Herzog. “Formal Description, Time and Performance Analysis a Frame-
work”. In: Entwurf und Betrieb verteilter Systeme. Ed. by Theo Härder, Hart-
mut Wedekind, and Gerhard Zimmermann. Vol. 264. Informatik-Fachberichte.
Berlin, Heidelberg: Springer, 1990, pp. 172–190.

[146] Jane Hillston. A Compositional Approach to Performance Modelling. Cam-
bridge University Press, 1996.

[147] Dan Hirsch, Paola Inverardi, and Ugo Montanari. “Modeling Software Ar-
chitectures and Styles with Graph Grammars and Constraint Solving”. In:
Software Architecture. Ed. by Patrick Donohoe. Vol. 12. IFIP — The Inter-
national Federation for Information Processing. US: Springer, 1999, pp. 127–
143.

[148] Petr Hnětynka and František Plášil. “Dynamic Reconfiguration and Access
to Services in Hierarchical Component Models”. In: Component-Based Soft-
ware Engineering. Ed. by Ian Gorton, George T. Heineman, Ivica Crnković,
Heinz W. Schmidt, Judith A. Stafford, Clemens Szyperski, and Kurt Wallnau.
Vol. 4063. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2006. Chap. 27, pp. 352–359.

[149] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun. ACM
21.8 (Aug. 1978), pp. 666–677.

241

Architectural reconfiguration of interacting services

[150] André van Hoorn, Matthias Rohr, Asad Gul, and Wilhelm Hasselbring. “An
Adaptation Framework Enabling Resource-efficient Operation of Software
Systems”. In: Proceedings of the Warm Up Workshop for ACM/IEEE ICSE
2010. WUP 2009. New York, NY, USA: ACM, 2009, pp. 41–44.

[151] Nikolaus Huber, André van Hoorn, Anne Koziolek, Fabian Brosig, and Samuel
Kounev. “Modeling run-time adaptation at the system architecture level in
dynamic service-oriented environments”. In: Service Oriented Computing and
Applications 8.1 (Mar. 2014), pp. 73–89.

[152] Markus C. Huebscher and Julie A. McCann. “A Survey of Autonomic Computing—
Degrees, Models, and Applications”. In: ACM Computer Surveys 40.3 (Aug.
2008), pp. 1–28.

[153] IBM Corp. An architectural blueprint for autonomic computing. USA: IBM
Corp., Oct. 2004.

[154] Mamdouh H. Ibrhaim, Kerrie Holley, Nicolai M. Josuttis, Brenda Michelson,
Dave Thomas, and John Devadoss. “The future of SOA: what worked, what
didn’t, and where is it going from here?” In: Companion to the 22nd ACM
SIGPLAN conference on Object oriented programming systems and applica-
tions companion. OOPSLA 2007. New York, NY, USA: ACM, 2007, pp. 1034–
1038.

[155] Daniel Jackson. “Alloy: A Lightweight Object Modelling Notation”. In: ACM
Transactions on Software Engineering and Methodology 11.2 (Apr. 2002),
pp. 256–290.

[156] Sung-Shik T. Q. Jongmans and Farhad Arbab. “Overview of Thirty Semantic
Formalisms for Reo”. In: Scientific Annals of Computer Science 22.1 (2012),
pp. 201–251.

[157] Sung-Shik T. Q. Jongmans, Francesco Santini, and Farhad Arbab. “Partially-
Distributed Coordination with Reo”. In: 22nd Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing. PDP 2014.
IEEE, Feb. 2014, pp. 697–706.

[158] Nicolai M. Josuttis. SOA in Practice: The Art of Distributed System Design.
1st ed. O’Reilly Media, Aug. 31, 2007.

[159] Jaber Karimpour, Ayaz Isazadeh, and Habib Izadkhah. “Early performance
assessment in component-based software systems”. In: IET Software 7.2 (Apr.
2013), pp. 118–128.

[160] Jeffrey O. Kephart and David M. Chess. “The Vision of Autonomic Comput-
ing”. In: Computer 36.1 (Jan. 14, 2003), pp. 41–50.

[161] Jeffrey O. Kephart and William E. Walsh. “An artificial intelligence perspec-
tive on autonomic computing policies”. In: 5th IEEE International Workshop
on Policies for Distributed Systems and Networks. POLICY 2004. IEEE, June
2004, pp. 3–12.

[162] Sascha Klüppelholz. “Verification of Branching-Time and Alternating-Time
Properties for Exogenous Coordination Models”. PhD thesis. Dresden, Ger-
many: Technische Universität Dresden, Mar. 19, 2012.

242

C.2. Reconfiguration Patterns in ReCooPLa

[163] Hisashi Kobayashi and Brian L. Mark. “Generalized Loss Models and Queueing-
loss Networks”. In: International Transactions in Operational Research 9.1
(Jan. 1, 2002), pp. 97–112.

[164] Christian Koehler, Farhad Arbab, and Erik de Vink. “Reconfiguring Dis-
tributed Reo Connectors”. In: Recent Trends in Algebraic Development Tech-
niques. Ed. by Andrea Corradini and Ugo Montanari. Vol. 5486. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 221–235.

[165] Christian Koehler, David Costa, José Proença, and Farhad Arbab. “Recon-
figuration of Reo Connectors Triggered by Dataflow”. In: Proceedings of the
7th International Workshop on Graph Transformation and Visual Modeling
Techniques. GT-VMT’08. Vol. 10. Electronic Communications of the EASST.
2008, pp. 1–13.

[166] Christian Koehler, Alexander Lazovik, and Farhad Arbab. “Connector Rewrit-
ing with High-Level Replacement Systems”. In: Electronic Notes in Theoret-
ical Computer Science 194.4 (Apr. 2008), pp. 77–92.

[167] Dexter Kozen. “Results on the propositional µ-calculus”. In: Theoretical Com-
puter Science 27.3 (Jan. 1983), pp. 333–354.

[168] Heiko Koziolek. “Performance evaluation of component-based software sys-
tems: A survey”. In: Performance Evaluation 67.8 (Aug. 3, 2010), pp. 634–
658.

[169] Jeff Kramer and Jeff Magee. “Dynamic Configuration for Distributed Sys-
tems”. In: IEEE Transactions on Software Engineering 11.4 (1985), pp. 424–
436.

[170] Christian Krause. “Reconfigurable Component Connectors”. PhD thesis. Am-
sterdam, The Netherlands: Leiden University, 2011.

[171] Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab.
“Modeling dynamic reconfigurations in Reo using high-level replacement sys-
tems”. In: Science of Computer Programming 76.1 (2011), pp. 23–36.

[172] Marta Kwiatkowska, Gethin Norman, and David Parker. “Stochastic Model
Checking”. In: Formal Methods for the Design of Computer, Communica-
tion and Software Systems: Performance Evaluation (SFM’07). Ed. by Marco
Bernardo and Jane Hillston. Vol. 4486. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2007, pp. 220–270.

[173] Marta Kwiatkowska, Gethin Norman, and David Parker. “A Framework for
Verification of Software with Time and Probabilities”. In: Proceedings of the
8th International Conference on Formal Modelling and Analysis of Timed
Systems. FORMATS’10. Ed. by Krishnendu Chatterjee and Thomas A. Hen-
zinger. Vol. 6246. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2010, pp. 25–45.

[174] Martin Lange. “Model Checking for Hybrid Logic”. In: Journal of Logic, Lan-
guage and Information 18.4 (2009), pp. 465–491.

243

Architectural reconfiguration of interacting services

[175] Marc Léger, Thomas Ledoux, and Thierry Coupaye. “Reliable Dynamic Re-
configurations in the Fractal Component Model”. In: Proceedings of the 6th
International Workshop on Adaptive and Reflective Middleware. ARM 2007.
New York, NY, USA: ACM, 2007.

[176] Marin Litoiu, Mircea Mihaescu, Dan Ionescu, and Bogdan Solomon. “Scalable
Adaptive Web Services”. In: Proceedings of the 2nd international workshop on
Systems development in SOA environments. SDSOA 2008. New York, NY,
USA: ACM, Feb. 2008, pp. 47–52.

[177] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug
Bryan, and Walter Mann. “Specification and analysis of system architecture
using Rapide”. In: IEEE Transactions on Software Engineering 21.4 (Apr.
1995), pp. 336–354.

[178] David C. Luckham and James Vera. “An event-based architecture definition
language”. In: IEEE Transactions on Software Engineering 21.9 (Sept. 6,
1995), pp. 717–734.

[180] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. “Specify-
ing Distributed Software Architectures”. In: Proceedings of the 5th European
Software Engineering Conference. Ed. by Wilhelm Schäfer and Pere Botella.
Vol. 989. Lecture Notes in Computer Science. London, UK: Springer, 1995,
pp. 137–153.

[181] Jeff Magee and Jeff Kramer. “Dynamic structure in software architectures”.
In: Proceedings of the 4th ACM SIGSOFT symposium on Foundations of
software engineering. Vol. 21. SIGSOFT 1996. New York, NY, USA: ACM,
Nov. 1996, pp. 3–14.

[182] Michal Malohlava and Tomáš Bureš. “Language for reconfiguring runtime
infrastructure of component-based systems”. In: Proceedings of the Annual
Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science. MEMICS 2008. Znojmo, Czech Republic, Nov. 2008.

[183] Marco A. Marsan. “Stochastic Petri nets: An elementary introduction”. In:
Advances in Petri Nets 1989. Ed. by Grzegorz Rozenberg. Vol. 424. Lecture
Notes in Computer Science. Springer, 1990, pp. 1–29.

[184] Marco A. Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and
Giuliana Franceschinis. Modelling with Generalized Stochastic Petri Nets. 1st.
New York, NY, USA: John Wiley & Sons, Inc., 1994.

[185] Robert von Massow, André van Hoorn, and Wilhelm Hasselbring. “Perfor-
mance Simulation of Runtime Reconfigurable Component-Based Software Ar-
chitectures”. In: Software Architecture. Ed. by Ivica Crnkovic, Volker Gruhn,
and Matthias Book. Vol. 6903. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2011, pp. 43–58.

[186] Radu Mateescu and Wendelin Serwe. “Model checking and performance eval-
uation with CADP illustrated on shared-memory mutual exclusion protocols”.
In: Science of Computer Programming 78.7 (2013), pp. 843–861.

244

C.2. Reconfiguration Patterns in ReCooPLa

[187] E. Michael Maximilien and Munindar P. Singh. “A framework and ontology
for dynamic Web services selection”. In: IEEE Internet Computing 8.5 (Sept.
2004), pp. 84–93.

[188] Nenad Medvidovic and Richard N. Taylor. “A classification and comparison
framework for software architecture description languages”. In: IEEE Trans-
actions on Software Engineering 26.1 (Jan. 2000), pp. 70–93.

[189] Stephan Merz. “Model Checking: A Tutorial Overview”. In: Modeling and
Verification of Parallel Processes. Ed. by Franck Cassez, Claude Jard, Brigitte
Rozoy, and MarkDermot Ryan. Vol. 2067. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2001, pp. 3–38.

[190] Robin Milner. A Calculus of Communicating Systems. Vol. 92. Lecture Notes
in Computer Science. Springer, 1980.

[191] Robin Milner. Communicating and Mobile Systems: The ⇡-calculus. New
York, NY, USA: Cambridge University Press, 1999.

[192] Naftaly H. Minsky and Victoria Ungureanu. “Law-governed Interaction: A
Coordination and Control Mechanism for Heterogeneous Distributed Sys-
tems”. In: ACM Transactions on Software Engineering and Methodology 9.3
(July 2000), pp. 273–305.

[193] Jayadev Misra and William R. Cook. “Computation Orchestration: A Basis
for Wide-area Computing”. In: Software and Systems Modeling 6.1 (Mar.
2007), pp. 83–110.

[194] Michael K. Molloy. “On the Integration of Delay and Throughput Measures
in Distributed Processing Models”. PhD thesis. University of California, 1981.

[195] Robert T. Monroe and Armani Overview. Capturing Software Architecture
Design Expertise with Armani. Tech. rep. Pittsburgh, PA: Carnegie Mellon
University, Jan. 2001.

[196] Ugo Montanari and Francesca Rossi. “Graph Rewriting, Constraint Solv-
ing and Tiles for Coordinating Distributed Systems”. In: Applied Categorical
Structures 7.4 (1999), pp. 333–370.

[197] Francisco Moo-Mena and Khalil Drira. “Reconfiguration of Web Services Ar-
chitectures: A model-based approach”. In: Proceedings of the 12th IEEE Sym-
posium on Computers and Communications. ISCC 2007. IEEE, July 2007,
pp. 357–362.

[198] Young-Joo Moon. “Stochastic Models for Quality of Service of Component
Connectors”. PhD thesis. Universiteit Leiden, Oct. 2011.

[199] Young-Joo Moon, Alexandra Silva, Christian Krause, and Farhad Arbab.
“A Compositional Semantics for Stochastic Reo Connectors”. In: Proceedings
of the 9th International Workshop on the Foundations of Coordination Lan-
guages and Software Architectures. 2010, pp. 93–107.

[200] Young-Joo Moon, Alexandra Silva, Christian Krause, and Farhad Arbab.
“A compositional model to reason about end-to-end QoS in Stochastic Reo
connectors”. In: Science of Computer Programming 80 (Jan. 2014), pp. 3–24.

245

Architectural reconfiguration of interacting services

[201] Vivek Nallur and Rami Bahsoon. “A decentralized self-adaptation mecha-
nism for service-based applications in the cloud”. In: IEEE Transactions on
Software Engineering 39.5 (May 2013), pp. 591–612.

[202] Nils J. Nilsson. Principles of Artificial Intelligence. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1980.

[204] Nuno Oliveira and Luís S. Barbosa. “Reconfiguration Mechanisms for Service
Coordination”. In: Web Services and Formal Methods. Ed. by Maurice H. ter
Beek and Niels Lohmann. Vol. 7843. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2013, pp. 134–149.

[210] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimhigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and
Alexander L. Wolf. “An architecture-based approach to self-adaptive soft-
ware”. In: IEEE Intelligent Systems 14.3 (May 1999), pp. 54–62.

[211] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. “Architecture-
based runtime software evolution”. In: Proceedings of the 20th international
conference on Software engineering. ICSE 1998. Washington, DC, USA: IEEE
Computer Society, 1998, pp. 177–186.

[212] Peyman Oreizy and Richard N. Taylor. “On the role of software architec-
tures in runtime system reconfiguration”. In: Proceedings of the 4th Inter-
national Conference on Configurable Distributed Systems. Annapolis, MA,
USA: IEEE, May 1998, pp. 61–70.

[213] Carolina Osorio and Michel Bierlaire. “An analytic finite capacity queueing
network model capturing the propagation of congestion and blocking”. In:
European Journal of Operational Research 196.3 (Aug. 1, 2009), pp. 996–
1007.

[214] Jonathan Ozik and Michael North. “Modeling Endogenous Coordination Us-
ing a Dynamic Language”. In: Simulating Interacting Agents and Social Phe-
nomena. Ed. by Shu-Heng Chen, Claudio Cioffi-Revilla, Nigel Gilbert, Hajime
Kita, Takao Terano, Keiki Takadama, Claudio Cioffi-Revilla, and Guillaume
Deffuant. Vol. 7. Agent-Based Social Systems. Japan: Springer, 2010, pp. 265–
276.

[215] George A. Papadopoulos and Farhad Arbab. “Dynamic Reconfiguration in
Coordination Languages”. In: High Performance Computing and Networking.
Ed. by Marian Bubak, Hamideh Afsarmanesh, Bob Hertzberger, and Roy
Williams. Vol. 1823. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2000, pp. 197–206.

[216] George A. Papadopoulos and Farhad Arbab. “Configuration and dynamic
reconfiguration of components using the coordination paradigm”. In: Future
Generation Computer Systems 17.8 (June 2001), pp. 1023–1038.

[217] Carlos Parra, Xavier Blanc, and Laurence Duchien. “Context Awareness for
Dynamic Service-oriented Product Lines”. In: Proceedings of the 13th Interna-
tional Software Product Line Conference. SPLC 2009. Pittsburgh, PA, USA:
Carnegie Mellon University, 2009, pp. 131–140.

246

C.2. Reconfiguration Patterns in ReCooPLa

[221] Jim Pitman. Probability. Springer, June 1, 1999.

[222] František Plášil, Dušan Bálek, and Radovan Janeček. “SOFA/DCUP: archi-
tecture for component trading and dynamic updating”. In: Proceedings of
the 4th International Conference on Configurable Distributed Systems. CDS
1998. Washington, DC, USA: IEEE Computer Society, May 1998, pp. 43–51.

[223] Corrado Priami. “Stochastic ⇡-Calculus”. In: The Computer Journal 38.7
(1995), pp. 578–589.

[224] Jean P. Queille and Joseph Sifakis. “Specification and verification of concur-
rent systems in CESAR”. In: International Symposium on Programming. Ed.
by Mariangiola D. Ciancaglini and Ugo Montanari. Vol. 137. Lecture Notes
in Computer Science. Springer, 1982, pp. 337–351.

[225] Andres J. Ramirez and Betty H. Cheng. “Design Patterns for Developing
Dynamically Adaptive Systems”. In: Proceedings of the 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems. SEAMS
2010. New York, NY, USA: ACM, 2010, pp. 49–58.

[226] Shangping Ren, Yue Yu, Nianen Chen, Kevin Marth, Pierre-Etienne Poirot,
and Limin Shen. “Actors, Roles and Coordinators - A Coordination Model
for Open Distributed and Embedded Systems”. In: Coordination Models and
Languages. Ed. by Paolo Ciancarini and Herbert Wiklicky. Vol. 4038. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2006. Chap. 16,
pp. 247–265.

[227] Flávio Rodrigues. “An Engine for Coordination-based Architectural Recon-
figurations”. M.Sc. thesis. Braga, Portugal: Departamento de Informática,
Universidade do Minho, Dec. 2014.

[228] Flávio Rodrigues, Nuno Oliveira, and Luís S. Barbosa. “ReCooPLa: a DSL
for Coordination-based Reconfiguration of Software Architectures”. In: 3rd
Symposium on Languages, Applications and Technologies. Ed. by Maria J. V.
Pereira, José P. Leal, and Alberto Simões. Vol. 38. OpenAccess Series in In-
formatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, June 2014, pp. 61–76.

[230] Grzegorz Rozenberg, ed. Handbook of Graph Grammars and Computing by
Graph Transformation: Foundations. Vol. 1. River Edge, NJ, USA: World
Scientific Publishing Co., Inc., 1997.

[231] Nick Russell, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, and Na-
talya Mulyar. Workflow Control-Flow Patterns: A Revised View. Tech. rep.
BPMcenter.org, 2006.

[232] Mazeiar Salehie and Ladan Tahvildari. “Self-adaptive Software: Landscape
and Research Challenges”. In: ACM Transactions on Autonomous and Adap-
tive Systems 4.2 (May 2009), pp. 1–42.

[233] Alejandro Sanchez, Luís S. Barbosa, and Daniel Riesco. “A language for be-
havioural modelling of architectural patterns”. In: Proceedings of the Third
Workshop on Behavioural Modelling. BMFA 2011. New York, NY, USA:
ACM, 2011, pp. 17–24.

247

Architectural reconfiguration of interacting services

[234] Alejandro Sanchez, Luís S. Barbosa, and Daniel Riesco. “Bigraphical mod-
elling of architectural patterns”. In: Formal Aspects of Component Software.
FACS’2011. Ed. by Farhad Arbab and Peter C. Ölveczky. Vol. 7253. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 313–330.

[236] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Valerio
Schiavoni, and Jean-Bernard Stefani. “A Component-Based Middleware Plat-
form for Reconfigurable Service-Oriented Architectures”. In: Software: Prac-
tice and Experience 42.5 (2011), pp. 559–583.

[237] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[238] John Simpson. XPath and XPointer: Locating Content in XML Documents.
1st ed. O’Reilly Media, Aug. 10, 2002.

[239] Borja Sotomayor, Ruben S. Montero, Ignacio M. Llorente, and Ian T. Foster.
“Virtual Infrastructure Management in Private and Hybrid Clouds”. In: IEEE
Internet Computing 13.5 (Sept. 9, 2009), pp. 14–22.

[240] William J. Stewart, Karim Atif, and Brigitte Plateau. “The numerical solu-
tion of stochastic automata networks”. In: European Journal of Operational
Research 86.3 (Nov. 1995), pp. 503–525.

[241] Gabriele Taentzer. “AGG: A Graph Transformation Environment for Mod-
eling and Validation of Software”. In: Applications of Graph Transforma-
tions with Industrial Relevance. Ed. by John Pfaltz, Manfred Nagl, and Boris
Böhlen. Vol. 3062. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2004. Chap. 35, pp. 446–453.

[242] Carolyn L. Talcott. “Coordination Models Based on a Formal Model of Dis-
tributed Object Reflection”. In: Electronic Notes in Theoretical Computer
Science 150 (Mar. 2006), pp. 143–157.

[243] Richard N. Taylor, Nenad Medvidovic, and Peyman Oreizy. “Architectural
styles for runtime software adaptation”. In: Proceedings of the Joint Working
IEEE/IFIP Conference on Software Architecture & European Conference on
Software Architecture. WICSA/ECSA 2009. IEEE, Sept. 2009, pp. 171–180.

[244] Microsoft Team. Microsoft Application Architecture Guide (Patterns & Prac-
tices). Second Edition. Microsoft Press, Nov. 22, 2009.

[245] Wolfgang Thomas. “Computation tree logic and regular !-languages”. In:
Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency. Ed. by Jaco W. de Bakker, Willem P. de Roever, and Grzegorz
Rozenberg. Vol. 354. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 1989, pp. 690–713.

[246] Matthias Tichy and Benjamin Klöpper. “Planning Self-adaption with Graph
Transformations”. In: Applications of Graph Transformations with Industrial
Relevance. Ed. by Andy Schürr, Dániel Varró, and Gergely Varró. Vol. 7233.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 137–
152.

248

C.2. Reconfiguration Patterns in ReCooPLa

[247] Henk C. Tijms. A First Course in Stochastic Models. 2nd. Wiley, Apr. 18,
2003.

[248] Luis M. Vaquero, Luis R. Merino, Juan Caceres, and Maik Lindner. “A Break
in the Clouds: Towards a Cloud Definition”. In: ACM SIGCOMM Computer
Communication Review 39.1 (Dec. 2008), pp. 50–55.

[249] Norha M. Villegas Machado, Hausi A. Müller, and Gabriel Tamura Morim-
itsu. “On Designing Self-Adaptive Software Systems”. In: Sistemas & Telemática
9.18 (2011), pp. 29–51.

[250] Pieter Vromant, Danny Weyns, Sam Malek, and Jesper Andersson. “On In-
teracting Control Loops in Self-adaptive Systems”. In: Proceedings of the
6th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. SEAMS 2011. New York, NY, USA: ACM, 2011, pp. 202–
207.

[251] Michel A. Wermelinger. “Specification of Software Architecture Reconfigura-
tion”. PhD thesis. Lisboa, Portugal: Universidade Nova de Lisboa, 1999.

[252] Michel A. Wermelinger and José L. Fiadeiro. “Algebraic software architec-
ture reconfiguration”. In: Proceedings of the 7th European software engineer-
ing conference held jointly with the 7th ACM SIGSOFT international sym-
posium on Foundations of software engineering. ESEC/FSE 1999. London,
UK: Springer-Verlag, 1999, pp. 393–409.

[253] Michel A. Wermelinger, Antónia Lopes, and José L. Fiadeiro. “A Graph Based
Architectural (Re)Configuration Language”. In: Proceedings of the 8th Euro-
pean Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. Vol. 26.
ESEC/FSE 2001 5. New York, NY, USA: ACM, Sept. 2001, pp. 21–32.

[254] Danny Weyns, M. Usman Iftikhar, and Joakim Söderlund. “Do External
Feedback Loops Improve the Design of Self-adaptive Systems? A Controlled
Experiment”. In: Proceedings of the 8th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems. SEAMS 2013.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 3–12.

[255] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mi-
randola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese,
and Karl M. Göschka. “On Patterns for Decentralized Control in Self-Adaptive
Systems”. In: Software Engineering for Self-Adaptive Systems II. Ed. by Rogério
de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw. Vol. 7475. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 76–107.

[256] Yunni Xia, Yi Liu, Ji Liu, and Qingsheng Zhu. “Modeling and Performance
Evaluation of BPEL Processes: A Stochastic-Petri-Net-Based Approach”. In:
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans 42.2 (Mar. 2012), pp. 503–510.

[257] Uwe Zdun, Carsten Hentrich, and Wil M. P. van der Aalst. “A survey of
patterns for Service-Oriented Architectures”. In: International Journal of In-
ternet Protocol Technology 1 (May 2006), pp. 132–143.

249

Architectural reconfiguration of interacting services

[258] Lijun Zhang and Martin Neuhäuer. “Model Checking Interactive Markov
Chains”. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems. Ed. by Javier Esparza and Rupak Majumdar. Vol. 6015. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 53–68.

250

