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Abstract

Continuous evolution towards very large, heterogeneous, highly dynamic
computing systems entails the need for sound and flexible approaches to
deal with system modification and re-engineering. The approach proposed
in this paper combines an analysis stage, to identify concrete patterns of in-
teraction in legacy code, with an iterative re-engineering process at a higher
level of abstraction. Both stages are supported by the tools CoordPat and
Archery, respectively. Bi-directional model transformations connecting code
level and design level architectural models are ask defined. The approach is
demonstrated in a (fragment of a) case study.

Keywords: software architecture, coordination patterns, re-engineering

1. Introduction

Legacy software has to be maintained, improved, replaced, adapted and
regularly assessed for quality, which brings their re-engineering to the top of
concerns of the working software architect. This is not, however, an easy task.
On the one hand a systems’ architecture relies more and more on non trivial
coordination logic for combining autonomous services and components, often
running on different platforms. On the other hand, often such a coordination
layer is strongly weaved within the application at the source code level.

The CoordInspector tool [1, 2] was a first attempt to address this problem
by systematically inspecting code in order to isolate the coordination threads
from the computational layer. This is done in a semi-automatic way through
the combination of generalised slicing techniques and graph manipulation.

Such a stage of architectural discovery constitutes a necessary, but not
sufficient step in a re-engineering process. Actually, experience has shown
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that

• recovering an architectural model from code would be much more effec-
tive if driven by some notion of pattern encoding typical interactions;

• in any case, the low level model produced through slicing and code
analysis, needs to be mapped to a more structural one, to precisely
abstract and identify components and connectors and enable their re-
engineering.

This paper, combining previous research on both program understanding
and software architecture, addresses the challenge as follows:

• First of all it introduces a notion of a coordination pattern directly
extracted from the program dependency graph of the legacy system, as
well as a language, CoordL, to describe such patterns. A collection of
coordination patterns constitutes a low level architectural description in
terms of execution threads and interaction points. Its main purpose is
to act as a template to inspect code and represent its coordination layer.
CoordPat, a pattern search facility based on this idea, was combined
with CoordInspector to enhance the tool support for the technique.

• Then a systematic method is proposed to translate such patterns into
a high-level architectural model in Archery [3] which provides a proper
setting for studying and simulating architectural changes. This itera-
tive process is illustrated in 1 through the loop arrow from the Archery
model.

• Finally, a reverse translation method is proposed to transform the new
architectural model back to a collection of coordination patterns which
guides the re-implementation process.

Figure 1 sums up the proposed approach for architectural re-engineering.
The combination of CoordPat and Archery equips the architect with suit-
able tool-support for recovering architectural decisions, reconstructing an
architectural model, and analysing the impact of different possible modifi-
cations. Since the two frameworks work at different abstraction levels, (the
first providing abstractions over dependency graphs; the second entailing a
components-and-connectors view of architectural organisation), ‘translations’
A and C in Figure 1 are central to the proposed method. Their application
is illustrated in detail through an example, extracted from a real case study.
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Figure 1: An approach to architectural re-engineering.

A main motivation for this work is the problem of quality assessment and
re-engineering of Open Source Software (OSS) as discussed in [4]. Availabil-
ity of code makes OSS particularly suited to application of backward analysis
and program understanding techniques [5]. Often architectural decisions are
only partially documented in OSS due to the pay-as-you-go documentation
style and the distributed and heterogeneous nature of its development. Ar-
chitectural re-engineering plays nevertheless a main role in OSS maintenance
and evolution: it is particularly critical to endow OSS communities with
techniques and tools to identify and to control architectural drift, i.e., the
accumulation of architectural inconsistencies resulting from successive code
modifications, that may affect different quality attributes of the system.

The paper is organised as follows: section 2 describes the approach and
the example we use to illustrate it; sections 3 and 4 introduce, respectively,
CoordPat and Archery, the two main methods/tools in this process; section 5
describes the systematic translations of CoordL to Archery models and back;
section 6 illustrates the approach through a detailed example; finally, section
7 reports on related work and concludes.

2. An approach to architectural re-engineering

The approach proposed in this paper for architectural re-engineering of
legacy code is depicted in Figure 1. As explained above, it resorts to the
combination of a tool for extracting coordination patterns from source code
(CoordPat) and a high level architectural description language (Archery) plus
a guide to map patterns back and forth between these two levels.

The example chosen to illustrate the approach is part of a real case study
on software integration described in [2]. It concerns a service to control the
updating of user profiles and information common to a number of components
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of a company’s information system. In its original formulation the context is
that of a company offering professional training through e-learning courses.
The information system comprises the following three main components: an
Enterprise Resource Planner (ERP) for controlling expenses and profits; a
Customer Relationship Management (CRM) for managing both general and
customer-focused course campaigns; and a Training Server (TS) for managing
the courses. These components worked almost independently, all information
being shared by a set of scripts executed manually, which gave rise to frequent
synchronisation problems. The decision to perform a global architectural
analysis and reconstruction was pushed by a sudden growth in the company
market share and the need for introducing a web portal for on-line sales.

CoordPat is first applied in the re-engineering process. The tool aims at
uncovering, registering and classifying architectural decisions often left un-
documented and hardwired in the source code. It implements a rigorous
method [6] to extract the architectural layer which captures the system be-
haviour with respect to its network of interactions. This is often referred
to as the coordination layer, a term borrowed from research on coordination
models and languages [7] which emerged in the nineties to exploit the full
potential of parallel systems, concurrency and cooperation of heterogeneous,
loosely-coupled components.

The extraction stage combines suitable slicing techniques to build a family
of dependency graphs by pruning a system dependency graph [8] first derived
from source code. After the extraction stage, the tool exploits such graphs
to identify and combine instances of coordination patterns and then recon-
struct the original specification of the system coordination layer. CoordPat
maintains an incrementally-built repository of patterns to guide the analysis
process.

CoordPat coordination patterns are described in CoordL, a graph-based
language with both a textual and a graphical representation. The later is
almost self-explanatory. A base node is represented by a circle, a fork is
represented by a triangle, a join by an inverted triangle, while a thread trigger
is represented by a square. A greyed square is used for pattern instances.
Edges are depicted by labelled, full arrows. Dashed arrows are used for
connecting failed-synchronization nodes that come out of thread triggers.
Consider, for example, the specification in Figure 2. It reproduces one of the
coordination patterns recovered from the original system, which describes the
user-updating service, that originates calls to user-read, -create and -update
operations, offered by each of the three main components (CRM, ERP and
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Figure 2: A CoordL coordination pattern extracted from the original system.

TS). The fragment which includes nodes labeled as f2, 3, 4, 5, 6 and j2, is
depicted in Figure 3 and will be identified as P1 in the sequel. It executes
the same task in two different components: node f2 launches threads x and z
that work with component ERP and with component TS. Each thread checks
whether the information exists and creates it otherwise. Loops in nodes 4
and 6 represent iterations of creation attempts in case of failures. Node j2
joins back both threads into a single one. A detailed description of CoordL
is provided in section 3.
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Figure 3: The P1 fragment.

Archery [9, 3] is an architecture description language that emphasises sys-
tems’ behavioural features and the relevant interaction protocols. The basic
specification concept is that of an architectural pattern, which comprises a
set of architectural elements (namely, connectors and components) specified
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by their behaviours and interfaces (set of ports). An architecture describes a
particular configuration that instances of elements may assume and a set of
attachments linking their ports or as a set of renamings making such ports
externally visible. Both patterns and elements act as types for behaviours
expected from instances, which are kept and referenced through typed vari-
ables. The language supports hierarchical composition.

The semantics of Archery is given by translation to a process algebra –
mCRL2 [10]. The language also supports a reconfiguration layer whose se-
mantics is given by bigraphical reactive systems [11]; that layer, however,
falls out of the scope of this paper. Process algebra [12], broadly defined
as the study of the behaviour of parallel or distributed systems by algebraic
means [13], provides a suitable conceptual framework not only to describe
software architectures, but also to reason about them either equationally (on
top of well studied notions of behavioural equivalence), or through formula-
tion and verification of behavioural requirements expressed in an associated
modal logic. Moreover, it supports compositional reasoning and abstraction
with respect to internal activity. The use of process algebra as an architec-
tural description language is further explored in reference [14]. The mCRL2
notation is supported by a toolset [15] enabling simulation, visualisation,
behavioural reduction and verification.

1 pattern WSPattern()
2 element WService()
3 act rec, snd;
4 proc Do() = rec.snd.Do();
5 interface in xor rec; out xor snd;
6 element WSCaller()
7 act rs, nt, snd, rec;
8 proc Do() = rs.rec.snd.nt.Do();
9 interface in xor rs,rec; out xor nt,snd;

10 end
11 ws : WSPattern = architecture WSPattern()
12 instances
13 c1 : WSCaller = WSCaller(); c2 : WSCaller = WSCaller();
14 s : WService = WService();
15 attachments
16 from c1.snd to s.rec; from c2.snd to s.rec;
17 from s.snd to c1.rec; from s.snd to c2.rec;
18 interface
19 c1.rs as rs1; c1.nt as nt1; c2.rs as rs2; c2.nt as nt2;
20 end;
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Listing 1: A pattern and an architecture example in Archery.

The language has an algebraic and a textual notation. While the former
allows for the manipulation of models in a more succinct way, the latter in-
cludes common keywords from the software architecture domain, and aims
at resulting more familiar to software engineers. Listing 1 shows an example
architectural pattern expressed in the textual notation. It prescribes config-
urations arranged by instances of web services and their callers. Archery is
described in section 4.

Equipped with these two tools, the re-engineering process proposed here,
and illustrated in detail in section 6, comprises the following stages, as shown
in Figure 1:

1. The architect uses CoordPat to extract the coordination model. This,
expressed in the form of dependency graphs, allows the architect to
study the network of interactions and to detect coordination patterns.
It also provides enough information to spot problems and improvement
opportunities, and to locate the source code associated to them.

2. The architect translates the model into Archery. He obtains a speci-
fication closer to the components-and-connectors view typically found
in classical descriptions of software architecture.

3. Archery enables a richer description of the underlying system, and the
architect exploits it by adding detail to the model. In particular, this
provides a flexible setting to address problems and improvement op-
portunities, by inspecting the associated source code and modifying
the model accordingly. The architect modifies the model to address
detected issues, and studies the impact of the changes. He performs
this study assisted by tools and records the relationships holding be-
tween the original and the modified models.

4. The architect translates the model back to CoordPat which guides the
system re-implementation. Note that CoordPat can be used again on
the re-engineered implementation and the whole process iterated if
needed.

3. Architectural reconstruction with CoordPat

CoordPat is a tool for reverse architectural analysis, providing a system-
atic way to identify coordination patterns in source code. As explained in
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the Introduction, it is built on top of CoordInspector [1]. The latter provides
mechanisms for building and slicing over several sorts of program graphs to
identify in the source code all threads concerned with inter-component inter-
action and coordination. CoordPat adds an engine to define, store, update
and identify specific patterns in source code relevant to the coordination
layer of the system under analysis. It uses the CoordL language to specify
coordination patterns and provides utilities for pattern discovery, editing and
visual rendering. A pattern repository is integrated in the tool to support
all these features and to be dynamically populated by the users. The next
sub-section introduces the notion of a coordination pattern used in the tool.
It underlies the CoordL language which is discussed afterwards.

3.1. Specifying coordination patterns

A coordination pattern is an abstraction over a program dependency
graph G [6]. Conceptually, it is a graph defined over a set N of nodes,
which abstracts program statements or activities, and a set of thread iden-
tifiers Thr which label the flow connections between nodes. Edges, on their
turn, represent possible paths in the original, underlying graph G.

Nodes are divided into base nodes, and control nodes which are specific
to patterns to abstract control of execution threads. The latter arise from
combinators fork and join discussed below. Each base node n is associated
to a unique control thread tpnq. Similarly, edges in a pattern, which abstract
paths in the underlying graph, are labelled with thread names, making ex-
plicit the control thread to which the path belongs.

Attached to this graph structure is an interface composed of two, not
necessarily disjoint sets of nodes. One set represents input points in the
pattern, to where external connections, with origin in other pattern instances,
may be plugged in. The other represents output points, from where new edges
may be defined to other pattern instances. This is known in the literature
as a graph with interface [16]. Formally,

Definition 1. A pattern is a tuple

p “ xN, in, out, T y

where N is the set of nodes, subsets in, out Ď N correspond to the pattern’s
input and output interfaces, respectively, and T Ď N ˆ Thr ˆ N is a direct
graph, often given as a family of binary relations indexed by thread references
Thr.
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A pattern is subject to an invariant that prevents any edge departing or
arriving at a base node to be labelled with different atomic thread identifiers;
the node cannot be part of two different threads. Thus,

n is a base node ñ pn
x
ÝÑ n1 _ n1

x
ÝÑ nq ñ tpnq “ x (1)

This invariant means that if two base nodes m,n are connected then
tpmq “ tpnq. The simplest pattern is the single node

p “ xtnu, tnu, tnu,Hy (2)

Patterns can be aggregated by juxtaposition and connected by drawing
new edges from a node in a pattern’s output interface into a node in the
input interface of the another one. Moreover, two input nodes of a pattern
can be forced to join into a new node so as to provide a common entry point
to two different paths in the pattern. Alternatively, this operation can be
regarded as the fork of an input thread. Dually, nodes in the output interface
can also be joined together, capturing the join of different threads coming
out of the pattern. In the sequel we give a formal definition to each of these
operations.

The aggregated pattern p1 b p2, with pi “ xNi, ini, outi, Tiy for i P t1, 2u,
is given by

p1 b p2 “ xN1 YN2, in1 Y in2, out1 Y out2, T1 Y T2y. (3)

In the sequel let p “ xN, in, out, T y. The link operator establishes a
connection between two nodes (with the same thread reference) in a pattern
interface. Formally,

ppq èi
j“

#

xN, inztiu, outztju, T Y tj
tpiq
ÝÝÑ iuy ð i P in, j P out, tpiq “ tpjq

p ð otherwise

(4)

The remaining pattern combinators are intended to glue together two
nodes in the input (respectively, output) interface. The first combinator is
fork : two input nodes are made internal and replaced in the input interface by
a single node, say f , which acquires the thread reference from the combinators
first (or upper) argument. Because f must be a base node itself, a control
node f is added as depicted in Figure 4. Formally,

f / a
b ppq “ xN Y tf, fu, tfu Y inzta, bu, out,

T Y tf
tpaq
ÝÝÑ f, f

tpaq
ÝÝÑ a, f

tpbq
ÝÝÑ buy (5)
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Figure 4: Fork, join and trigger.

where f is a fresh node identifier. Let x be the thread associated to a and
f , and y the thread associated to b. Note that, at a later stage, a node n can
be linked to f to represent the forking of thread x into itself and y.

The combinator dual to fork is join: two output nodes are made internal
and replaced in the output interface by a special node which, again, acquires
the thread reference from the combinator (or upper) argument, as depicted
in Figure 4. Formally,

ppq a
b & f “ xN Y tf, fu, in, tfu Y outzta, bu,

T Y ta
tpaq
ÝÝÑ f, b

tpbq
ÝÝÑ f, f

tpaq
ÝÝÑ fuy (6)

The last pattern combinator is the thread trigger ppq ab

& / i
j. It acts like

a join, joining two output nodes a and b and acquiring its thread reference
from the ‘upper’ argument. Unlike join, however, it provides two new nodes,
both labelled with the same thread reference. The ‘upper’ node, f , repre-
sents a synchronization of both threads (after execution of the statements
abstracted in a and b), just as a normal join node. The ‘lower’ node, g, how-
ever, represents absence of synchronization: control goes from a to j without
previous synchronization with b in its thread. Graphically, any connection
from this node is depicted as a dashed line. Formally, the combinator effect
on the pattern design is given by

ppq ab

& / f
g “ xN Y tf, g, fu, in, tf, gu Y outzta, bu,

T Y ta
tpaq
ÝÝÑ f, b

tpbq
ÝÝÑ f, f

tpaq
ÝÝÑ f, f

tpaq
ÝÝÑ guy (7)
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Without loss of generality, combinators link, join and thread trigger may
have, instead of a single node, a list L of nodes as possible sources for their
incoming connections.

With these combinators the fragment P1 of the coordination pattern
shown in Figure 3, and described in section 2, can be specified as follows:

P1 “ f2 / 3
5

`

p3b 4q è4
t3,4u b p5b 6q è6

t5,6u

˘

t3,4u
t5,6u & j2 (8)

A number of structural properties of these combinators are trivial to
prove. For example, for – denoting graph isomorphism,

Lemma 1.

p1 b p2 – p2 b p1 (9)

pp1 b p2q b p3 – p1 b pp2 b p3q (10)

pp èi
jq è

l
k – pp è

l
kq è

i
j (11)

Proof. All results are immediate by unfolding the definition of both combina-
tors. The first two come from commutativity and associativity of set union.
For the last one, note that in both cases the input and output interfaces are

the same and so is the transition structure (T Y tj
tpiq
ÝÝÑ i, k

tplq
ÝÝÑ luq.

Patterns can also be ordered by the existence of a simulation relating the
underlying transition structures. Formally,

Definition 2. Two patterns p1 and p2 are similar, denoted by p1 Æ p2 iif
in1 Ď in2, out1 Ď out2 and there is a simulation of T1 into T2 relating each
node in in1 to the equally named node in in2. A relation R Ď T1 ˆ T2 is a
simulation iff, whenever xn,my P R,

n
x
ÝÑT1 n

1
ñ Dm1PN2 .m

x
ÝÑT2 m

1
^ xn1,m1

y P R

A simulation R whose converse is also a simulation is called a bisimu-
lation. Patterns p1 and p2 are said to be bisimilar, denoted by p1 « p2 iff
in1 “ in2, out1 “ out2, and there is a bisimulation over T1 and T2 relating
each node in in1 to the equally named node in in2.

The existence of a bisimulation between two patterns means they have
identical interfaces and exhibit the same transitional behaviour. In general,
similarity and bisimilarity provide a guide for comparing and classifying pat-
terns.
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Lemma 2. Let p1 « p2. Then,

p1 b p « p2 b p (12)

f / a
b pp1q « f / a

b pp2q (13)

pp1q
a
b & f « pp2q

a
b & f (14)

pp1q
a
b

& / f
g « pp2q

a
b

& / f
g (15)

Proof. The proof of (12) is trivial and in all cases equality of interfaces is
easy to check. For (13), let R be a bisimulation witnessing p1 « p2 . Consider
R1 “ R Y tpf, fq, pf, fqu. The unique transition from f in the first system,
labelled by tpaq, is matched by a unique, equally labelled transition in the
second, both to f . Form there in both cases there is a unique transition to
a, labelled by tpaq and to b, labelled by tpbq. By assumption pairs pa, aq and
pb, bq are already in R, which makes R1 a bisimulation as well. For (14), let
again R be a bisimulation witnessing p1 « p2. If tpa, aq, pb, bqu Ę R, R is
still a bisimulation for joined pattern. If not, add pairs pf, fq and pf, fq.
Transitions from a or b will match in both patterns, as well as the unique
transition from f to f . In both patterns, f is an output node with no further
transitions, which concludes the proof. The prove of (14) follows a similar
argument.

Bisimilarity is not, however, a congruence because it is not preserved by
the link operator.

3.2. CoordL – the language

Based on the notion of a coordination pattern, introduced above, the Co-
ordL language admits a textual and graphical notation as a concrete interface
to both the CoordPat tool and the working software architect.

A pattern definition in CoordL follows the template in Listing 2. Note
that each pattern has an identifier (pattern id) and a set of input/output
ports as its interface. The later is declared inside a ()-block, with a bar ‘|’
separating the in ports and, in the right-hand-side, the out ports. The union
of these sets must not be empty, but are not required to be disjoint.

1 pattern id (p1 , p2 | p1 , p3 ) { [DECLARATIONS] [PATTERN GRAPH] }

Listing 2: Pattern declaration.

The {}-block has two parts. The first one is reserved for declaring nodes,
basically selecting information (such as the corresponding code fragment,
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type of interaction or calling discipline) from the underlying dependency
graph G. The second part specifies the pattern graph structure. Before
proceeding, the reader may want to inspect, in Listing 3, the CoordL code
corresponding to coordination pattern P1 (see Figure 2).

1 P1 pattern ( f 2 | j 2 ) {
2 node 3 ,4 ,5 ,6 = { s t ==”.. .” && ct==webserv i ce &&
3 cm==async && cr==consummer } ;
4 f o rk f2 ; j o i n j2 ; root f 2 ;
5 { f 2 ´(x , z ) >́ (5 , 3) } @[ | 5 , 3 ]
6 { 5´x´>6, 5´x >́j2 , 6´x´>6, 6´x >́j2 ,
7 3´z´>4, 3´z >́j2 , 4´z´>4, 4´z >́j 2 } @ [5 , 3 | 6 , 4 ] }
8 { ( 6 , 4 ) ´(x , z ) >́ j 2 } @[ | 6 , 4 ]

Listing 3: CoordL code for coordination pattern P1.

Nodes declaration. As discussed in section 3.1 there are two possible types of
nodes in a coordination pattern: base nodes and control nodes. The former
come directly from the underlying dependency graph and are supposed to
describe fragments of coordination code. Each one is declared with four
attributes (combined in conjunction (&&) or disjunction (||)).

• Statement (st): reference to the coordination code fragment abstracted
in the node. This is typically described by a regular expression acting
as filter over source code during the construction of the dependency
graph G (see [6] for details).

• Type (ct): defines the type of the coordination primitive the code
fragment implements. Such types are assigned during the construction
of G: typical examples are webservice (for a web service call) or
rmi (for a remote method invocation).

• Method (cm): defines the mode in which the request is made. It can
be either sync(hronous) or async(hronous).

• Role (cr): describes the role of the component that is requesting the
service. It can be either a consumer or a producer.

Example node, fork, and join declarations are shown in Listing 3. Control
nodes are introduced by the different variants of fork and join and tread
trigger combinators.

Besides basic and control nodes, CoordL introduces a third type of node
which abbreviates a pattern instance. This is created as in the example
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shown in Listing 4, assuming a previous declaration of the corresponding
pattern. The pattern name is used to identify the type of its instances.
Notice that, in creating a pattern instance both node and thread identifiers
can be instantiated to actual values.

1 pattern1 ( p1 | p2 , p3 ) { . . . }
2 pattern2 (p1 , p2 | p3 , p4 ) { . . . }
3 . . .
4 pattern1 in s tance1 ( p i1 | po1 , po2 ) ;
5 pattern2 in s tance2 ( pi2 , p i3 | po3 , po4 ) ;

Listing 4: Instance declaration.

This abbreviation allows for the hierarchical construction of patterns. All
connections, however, are always made with explicit reference to the relevant
interface nodes, as detailed below.

1 my patt ( p1 | p4 ){
2 node p1 , p2 , p3 , p4 = {
3 s t == ” Invoke (∗ ) ” &&
4 ct == webserv ice &&
5 cr == consumer &&
6 cm == sync } ;
7 f o rk f ;
8 j o i n j ;
9 root p1 ;

10 { f ´(x , y ) >́ (p2 , p3 )}@[ p3 | ]
11 {p1 >́ f , p3 ´y >́ p3}@[ | p3 ]
12 {(p2 , p3 ) ´(x , y ) >́ j }
13 { j ´x >́ p4}
14 }

1 new patt ( p1 | p2 , p3 ){
2 node p1 , p2 , p3 = {
3 s t == ”Get (∗ ) ” &&
4 ct == webserv ice &&
5 cr == consumer &&
6 cm == sync } ;
7 my patt i n s t ( p i | po ) ;
8 root p1 ;
9 {p1 ´x >́ i n s t ( p i | po )}

10 {po ´x >́ p2}@[ | po ]
11 {po ´x >́ p3}
12 }

Figure 5: A hierarchical pattern description.
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Edges specification. Links between input and output nodes in a pattern are
specified with a direct syntax in which an arrow, suitably labelled, is explicitly
written. This corresponds to a simple way of implementing combinator è in
section 3.1. As mentioned there, an edge has a very precise meaning with
reference to the underlying dependency graph G. For instance, connection:
p1 -x-> p2 means that information flows from node p1 to node p2 in a
thread identified by x through an unspecified number of mediating edges in
G. Connections to or from control nodes are illustrated, for fork and join in
Listing 3, and for thread trigger in Listing 5. They implement, as expected,
combinators

/

,

&

and

& /

. Notice all new node identifiers, such as f, j or
m have to be previously declared.

1 {(pa , pb ) ´(x , y ) >́ m, m. sync ´x >́ pc , m. f a i l ´x >́ pd}

Listing 5: Usage of control nodes.

Moreover, symbol ’@’ followed by a list of nodes separated by symbol
‘|’ is used to make both input and output ports of nodes or patterns alive
(i.e., open), once they were used in the previous list of edges definition. This
constructor is used to keep consistent nodes and pattern ports.

Figure 5 shows two coordination patterns in CoordL, and the correspond-
ing graphical representation. The first pattern, identified by my patt, il-
lustrates the composition of base nodes, forks and joins. The second one,
identified by new patt, introduces the declaration of pattern instances and
their (hierarchical) composition. Note that in the graphical rendering of the
second pattern a grey square that represents the inclusion of a pattern in-
stance.

4. Architectural modelling with Archery

Archery [9, 3] is a high-level architectural description language. This
section describes the language, briefly explains its behavioural semantics the
the relations used for architectural analysis. The architectural pattern for
web services, shown in Listing 1, is used for illustration purposes.

4.1. Modelling architectural patterns

4.1.1. Patterns and elements

A specification of an Archery model (Spec) comprises one or more pat-
terns P , a main architecture referenced by a variable V ar and global data
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specifications D. A description of the latter is omitted here because they
coincide with mCRL2 data types.

Spec “ PpP q ˆ V ar ˆD
P “ IdP ˆ Fp˚ ˆ PpEq
Fp “ IdPar ˆDataType

E “ IdE ˆ Fp˚ ˆMPrcˆ PpPrcq ˆ PpPrtq
MPrc “ IdPrcˆ Fp˚ ˆ V al˚ ˆ PpActq ˆBody
Prc “ IdPrcˆ Fp˚ ˆ PpActq ˆBody
Act “ IdActˆDomain˚

Prt “ IdPrtˆDir ˆ PrtType, with IdPrt Ď IdAct

where PpXq denotes the powerser of X. An architectural pattern P defines
the basic building blocks of a family of architectures. It includes a unique
identifier, an optional list of formal parameters Fp and one or more archi-
tectural elements E. In turn, each Fp has an identifier and a data type. For
instance, tuple wsp below corresponds to pattern WSPattern between lines
1 and 10 in Listing 1.

wsp “ pWSPattern, r s, tce, seuq (16)

ce “ pWSCaller, r s, (17)

pDo, r s, r s, trs, snd, rec, ntu, “rs.snd.rec.nt.Do”q,

tu, trs, in, xorq, psnd, out, xorq, prec, in, xorq, pnt, out, xorquq

se “ pWService, r s, pDo, r s, r s, trec, sndu, “rec.snd.Do”q, (18)

tu, tprec, in, xorq, psnd, out, xorquq

An architectural element E models either a component or a connector.
It is described by an identifier, an optional list of formal parameters, a de-
scription of its behaviour and an interface. The behaviour consists of a main
process MPrc, which describes the initial behaviour, and a set of processes
Prc referenced from it. Tuple MPrc comprises an identifier, a list of formal
parameters, a list of initial expressions, matching in order and type the formal
parameters, a set of actions Act, and a process expression Body specified in
a slightly modified subset of mCRL2. An action Act has an identifier and an
optional list of mCRL2 domains. For instance, the main process of element
WSCaller is identified by Do, with no arguments, and defines actions rs,
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snd, rec, nt that respectively represent the events of receiving a signal, send-
ing a request, receiving a response, and notifying termination. Its process
expression specifies an iteration of the sequence of these four actions.

The interface, on the other hand, contains one or more ports Prt. Each
port defines an identifier, which must match the identifier of an action in
any of the element processes, a direction Dir, and a port type PrtType.
The direction can be either in or out and indicates how data along the
attached ports flows. Ports are synchronous; however, a suitable process
algebra expression can be used to emulate any other port behaviour. The
port type indicates how many participants are necessary for a communication
to take place, and can be either and, xor, or or. While an and port requires
all attached participants to synchronise, a xor port requires exactly one, and
an or port at least one.

4.1.2. Pattern and element instances

A variable V ar is a placeholder for instances. It has an identifier, a type
that must match an element or pattern identifier, and an instance Inst as
a value. Inst is either a distinguished value (inactive process) represented
by singleton 1, an element instance EInst, or a pattern instance PInst. In-
stances may not match the variable’s type but they must match the interface
defined by such a type.

V ar “ IdV ar ˆ IdTypeˆ Inst with IdType “ IdP ` IdE

Inst “ 1` EInst` PInst

Einst “ IdE ˆ V al˚

PInst “ IdP ˆ V al˚ ˆ PpV arq ˆ PpAttq ˆ PpRenq
Att “ PR ˆ PR

Ren “ IdPrtˆ PR

PR “ IdV ar ˆ IdPrt

For example, variable ws in the tuple wsv contains a configuration of
pattern WSPattern. The corresponding textual notation for this tuple is
shown between lines 11 and 20 in Listing 1.

wsv “pws,CoordL, pCoordL, rs, tps,WService, pWService, r sqq, (19)

pc1,WSCaller, pWSCaller, r sqq,

pc2,WSCaller, pWSCaller, r sqqu, As,Rsqq
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As “tppc1, sndq, ps, recqq, ppc2, sndq, ps, recqq, pps, sndq, pc1, recqq,

pps, sndq, pc2, recqqu,

Rs “tppc1, rsq, rs1q, ppc1, ntq, nt1q, ppc2, rsq, rs2q, ppc2, ntq, nt2qu

An element instance EInst has an identifier that matches an element
name and a list of actual parameters matching in order and type the formal
parameters.

An architecture, or pattern instance PInst, defines a set of variables and
describes the configuration adopted by their instances. It contains a token
that must match a pattern name; an optional list of actual arguments; a set
of variables; an optional set of attachments; and an interface. The actual
arguments must match in type and order those of the pattern acting as its
type. The type of each variable in the set must is an element defined in the
pattern of which the architecture is an instance.

An attachment Att includes a port reference to an out port and another
one to an in port. Each port reference PR is an ordered pair of identifiers
corresponding to the variable and its instance, respectively. Thus it specifies
which out port communicates with which in port — see lines 16 and 17 in
Listing 1.

The architecture interface is a set of port renamings Ren. Each port
renaming contains a port reference and a token with the external name of
the port. Ports not included in this set are not visible from the outside. Note
that ncluding the same port in an attachment and the interface is incorrect.

4.2. Combinators

Architectural patterns and their instances’ (re)configurations are described
by combinators, which include tuple constructors, update operations, script
application and an architectural product. Tables 1 and 2 provide an (infor-
mal) overview of the language combinators. See [17] for the formal defini-
tions.

Each tuple has an associated set of constructors with identical name, but
written in lowercase letters. There is always a default constructor restricted
to the mandatory components. For instance, the constructors for an archi-
tectural pattern (P ), directed by the corresponding signature, are as follows

p : IdP Ñ P p : IdP ˆ Fp˚ Ñ P

p : IdP ˆ PpEq Ñ P p : IdP ˆ Fp˚ ˆ PpEq Ñ P.
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Pattern construction

Constructors with signature t : idT Ñ T receive an identifier and return a tuple
with default values in each component, where t{T stands for either p{P (pattern),
e{E (element), mprc{MPrc (main process), prc{Prc (process), act{Act (action), or
prt{Prt (port)

ÐâE : P ˆ E Ñ P adds an element to a pattern

­ÐâE : P ˆ IdE Ñ P removes an element from a pattern

ÐâE : P ˆ PpEq Ñ P adds a set of elements to a pattern

­ÐâE : P ˆ PpIdEq Ñ P removes a set of elements from a pattern

˚ : E ˆMPrcÑ E replaces the main process of an element

f : E ˆ PrcÑ E adds a process to an element

­f: E ˆ IdPrcÑ E removes a process from an element

˝, ˝, ˛ : E ˆ IdPrtÑ E adds an And (Or, Xor, resp.) In port to an element

‚, ‚, ˛ : E ˆ IdPrtÑ E adds an And (Or, Xor, resp.) Out port to an element

˝, ˝, ˛ : E ˆ PpIdPrtq Ñ E adds And (Or, Xor, resp.) In ports to an element

‚, ‚, ˛ : E ˆ PpIdPrtq Ñ E adds And (Or, Xor, resp.) Out ports to an element

­˝: E ˆ IdPrtÑ E removes a port from an element

Table 1: Archery’s algebraic notation for patterns.

Update operations are available for each component of each tuple. They
all receive the original tuple and the component to modify, returning the
updated tuple. The sort of updates available depend on the component’s
type. Three variations are provided according to the modified tuple com-
ponent. If it is a set or a list, add and remove operations are considered
in which the second argument contains, respectively, the element to add, or
the identifier of the element to remove. If, on the contrary, the component
is of a non-collection type, only a replace operation is available. The basic
combinators required for the case study discussed in this paper, are described
below. Unless explicitly stated, all operators are infix, and their type and
effect is assumed to fall in one of the aforementioned variations according to
the component type.

Combinators related to patterns include addition (ÐâE) and removal ( ­ÐâE)
of an element. A distributed (and overloaded) version for these operators op-
erators upon a set PpEq, and iteratively calls the original operation for each
element in it.

Combinators for elements modify both their behaviour and interface. The

19



Instance construction

var : IdV ar ˆ IdType creates a variable

einst, pinst : IdType creates an element (resp. pattern) instance

pr : IdV ar ˆ IdPrt creates a port reference

ren : IdPrtˆ PR creates a renaming

att : PRˆ PR creates an attachment

l̋ : PInstˆ V ar Ñ PInst adds an instance to a pattern instance

­l̋ : PInstˆ IdV ar Ñ PInst removes an instance from a pattern instance

l̋ : PInstˆ PpV arq Ñ PInst adds instances to a pattern instance

­l̋ : PInstˆPpIdV arq Ñ PInst removes instances from a pattern instance

c : PInstˆAttÑ PInst adds an attachment to a pattern instance

­c : PInstˆAttÑ PInst removes an attachment from a pattern instance

c : PInstˆ PpAttq Ñ PInst adds attachments to a pattern instance

­c : PInstˆ PpAttq Ñ PInst removes attachments from a pattern instance

o : PInstˆRenÑ PInst adds a port renaming to a pattern instance

­o : PInstˆ IdPrtÑ PInst removes a port renaming from a pattern instance

o : PInstˆ PpRenq Ñ PInst adds a set of port renamings to a pattern instance

­o : PInstˆPpIdPrtq Ñ PInst removs port renamings from a pattern instance

e : V ar ˆ InstÑ V ar sets the value of a variable

eId : V ar ˆ InstÑ V ar sets the value of a variable Id in a pattern inst.

b : PInstˆ PInstÑ PInst architectural product

b : V ar ˆ V ar Ñ V ar architectural product of the variable’s values

Table 2: Archery’s algebraic notation for instance construction.

former group includes the replacement of the main process (˚) and the addi-
tion (f) and removal (­f) of processes. For the latter, different symbols are
used to distinguish combinators for adding ports according to type and direc-
tion: ˝, ‚, ˝, ‚, ˛, ˛, where circles, squares, and diamonds correspond to and,
to or and to xor types, and filled (respectively, hollow) symbols indicate the
out (respectively, in) direction. The port removal combinator is indicated
with symbol ­˝. Distributed versions of these operators are also defined.

Using these combinators pattern WSPattern, described as a tuple in
expression (16), and textually in Listing 1, is written

wsp “ ppWSPatternq ÐâE tce, seu (20)

ce “ epWSCallerq ˛ tsnd, ntu ˛ trec, rsu

˚mprcpDo, trs, snd, rec, ntu, “rs.snd.rec.nt.Do”q (21)

20



se “ pWServiceq ˛ rec ˛ snd˚mprcpDo, trec, sndu, “rec.snd.Do”q (22)

Pattern instances are updated by adding (l̋) or removing ( ­l̋) instances,
both admitting distributed (and overloaded) versions. And, similarly, to add
(c) and remove ( ­c) attachments and renamings (o and ­o). There is also an
operation to replace (e) the value in a variable. When the first argument is
a pattern instance, this can also be used with an identifier id (as in eid) that
indicates the value of the inner variable id to be replaced. For example, the
expression below describes aWSPattern configuration in which a web service
is connected to two callers. Notice that, in variable tuples a component is
missing; 1 is the assumed value, as in ps,WServiceq “ varps,WServiceq “
ps,WService, 1q.

wsv “ varpws,WSPatternq e pinstpWSPatternq

l̋ tsi, ci1, ci2u c atts o rs (23)

si “ ps,WServiceq e einstpWServiceq

ci1 “ pc1,WSCallerq e einstpWSCallerq

ci2 “ pc2,WSCallerq e einstpWSCallerq

atts “ tppc1, sndq, ps, recqq, ppc2, sndq, ps, recqq,

pps, sndq, pc1, recqq, pps, sndq, pc2, recqqu

rs “ tppc1, rsq, rs1q, ppc1, ntq, nt1q, ppc2, rsq, rs2q, ppc2, ntq, nt2qu

Architectural product, b : PInstˆPInstÑ PInst, combines two archi-
tectures of the same type into a single one, putting them side by side. For
convenience, an operator (b : V ar ˆ V ar Ñ V ar) that returns and takes
variables as arguments is defined. The types and values of the variables must
coincide. Argument variables are discarded: the identifier of the returned one
derives from the argument variables.

Scripts take a list of arguments and can be applied to a specific configura-
tion. Expression (24) defines a script node that takes an argument n and can
be applied to architecture x. It creates an instance of pattern WSPattern in
variable vpIdn, creates variable idn and assigns an instance of WSCaller to
it. It also renames its ports and makes them externally visible, according to
R. This allows the resulting architecture to initiate action, notify termina-
tion, send a request, and receive a response, respectively. Script application
is denoted by Ź. Then, applying script node to an empty architecture is

21



written as nodepnq Ź 1, or simply as nodepnq.

nodepnqpxq fi varpvpIdn,WSPatternq e pinstpWSPatternq

l̋ vn o R (24)

vn “ pidn,WSCallerq e einstpWSCallerq

R “ tppidn, rsq, rsnq, ppidn, ntq, ntnq,

ppidn, sndq, sndnq, ppidn, recq, recnqu

4.3. Behavioural semantics

The behavioural semantics of Archery is given through a translation T
into a mCRL2 specification (see [9] for details). Let us illustrate this with
our running example. Each element instance is translated to (at least) two
processes, one calling the other, defined by unique identifiers. For example,
the translation of the web service instance, referenced by variable s in our
example (see expression 19, or expression 23, or line 14 in Listing 1), results
in the two processes specified between lines 1 and 3 of Listing 6 (for brevity,
action declarations are omitted). If the instance as an initial value given
by an expression, the caller uses it as an actual parameter. Other processes
defined within the element are recursively translated.

1 proc WService_s_init = Do_s;
2 proc Do_s = (rec_s_snd_c1 + rec_s_snd_c2).cal_s.
3 (snd_s_rec_c1 + snd_s_rec_c2).Do_s;
4 proc WSCaller_c1_init = Do_c1;
5 proc Do_c1 = rs_c1.rec_c1_snd_s.snd_c1_rec_s.nt_c1.Do_c1;
6 proc WSCaller_c2_init = Do_c2;
7 proc Do_c2 = rs_c2.rec_c2_snd_s.snd_c2_rec_s.nt_c2.Do_c2;
8 init
9 hide ({cal_s,synch_snd_c1_rec_s,synch_snd_c2_rec_s,

10 synch_snd_s_rec_c1,synch_snd_s_rec_c2},
11 rename ({nt_c2->nt2_ws,rs_c2->rs2_ws,
12 nt_c1->nt1_ws,rs_c1->rs1_ws},
13 allow ({nt_c1,nt_c2,rs_c1,rs_c2,
14 synch_snd_c1_rec_s,synch_snd_c2_rec_s,
15 synch_snd_s_rec_c1,synch_snd_s_rec_c2},
16 comm ({snd_c2_rec_s|rec_s_snd_c2->synch_snd_c2_rec_s,
17 snd_c1_rec_s|rec_s_snd_c1->synch_snd_c1_rec_s,
18 snd_s_rec_c2|rec_c2_snd_s->synch_snd_s_rec_c2,
19 snd_s_rec_c1|rec_c1_snd_s->synch_snd_s_rec_c1},
20 WSCaller_c2_init||WSCaller_c1_init||WService_s_init
21 )));
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Listing 6: Translation of example WSPattern configuration to mCRL2.

A process expression may include sequence composition, alternative choice,
conditionals, actions, process calls and ports. The translation of the first
three results in the same operation applied to the translated operands. Each
action and process is given a unique identifier by combining its name with
the variable’s one, e.g., process Do becomes Do s (see line 1 of Listing 6).

The translation of a port depends on its type and the attachments to
which it belongs. For each attachment, an action is defined using the variable
and port identifiers of the original port reference. For instance, the two at-
tachments of port rec give rise to actions rec s snd c1 and rec s snd c2.
The generated actions are combined into a process expression that represents
the expected behaviour according to the port’s type. This can be illustrated
varying the type of rec to be and, or and xor. The resulting expressions are
shown in lines 1, 2 and 3 of Listing 7. The direction of the port influences
the resulting process expression when the ports involved have parameters
and there is a flow of data.

1 rec_s_snd_c1|rec_s_snd_c2
2 rec_s_snd_c1+rec_s_snd_c2+rec_s_snd_c1|rec_s_snd_c2
3 rec_s_snd_c1+rec_s_snd_c2

Listing 7: Example process expressions for ports.

The translation of a pattern instance is summarised in expression (25)
which represents the parallel composition of the processes resulting from
translating instances referenced by the pattern inner variables vars. Listing
6 shows the parallel composition in line 20. The communication among such
processes is established by an operator Γ (comm) according to a set C of
communication rules calculated from the attachments. Each communication
rule references two actions of processes that synchronise, and a third one
resulting from the synchronisation. The corresponding rules for our example
are shown between lines 16 and 19. Then, operator ∇ (allow) allows a
set A of synchronisations and actions (not ports) and blocks all the others,
preventing in this way the individual activation of a port (see lines 13 and 15
in our example translation). Operator ρ (rename) renames actions according
to a set R calculated from the renamings of the pattern instance (see lines 11
to 12). The last operator, τ (hide), turns actions in set H invisible (between
lines 9-10). Finally, set H is calculated from the actions that occur in the
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processes conforming the pattern instance, excluding port interactions.

τHpρRp∇ApΓCp
ź

v P vars

T pvqqqqq (25)

4.4. Architectural analysis

Architectural models in Archery can be compared through the behavioural
equivalences and preorders defined in mCRL2. Actually, rooted branching
bisimilarity, «RB, provides a basis for establishing architectural interchange-
ability with respect to the interface behaviour. Branching bisimilarity [12]
relates behaviours differing in the amount of internal activity but exhibiting
similar branching structure. Rooted branching bisimilarity adds a rootedness
condition: initial internal transitions are never inert. Formally, architectural
equivalence and refinement are defined as follows

a ” bô T paq «RB T pbq and a Ď bô T paq ĎRB T pbq (26)

Coarser relations are sometimes necessary to compare Archery models.
Weak trace equivalence and refinement, which abstract from the internal
branching structure, can also be used to define coarser architectural relations.

5. Translating CoordL to Archery and back

5.1. From CoordL to Archery

CoordL models can be represented in Archery as instances of specific ele-
ments of a pattern. For this let us define a translation Ap¨q to represent a
CoordL model as an Archery specification. The result is an instance of pattern
WSPattern, first defined in section 2 (see Listing 1), extended with elements
standing for each of CoordL main combinators. To illustrate the translation
process we concentrate on coordination pattern P1, given in expression 8 and
depicetd in Figure 3), to illustrate the translation.

5.1.1. Base node

Base nodes represent interactions. In this work we focus on synchronous
web service calls. Then, a base node (2) is represented in Archery as an
instance of element WSCaller, which stands for a web service synchronous
caller (see alternatively (17) or (21)). Translation Ap¨q for a node n is defined
in (27) in terms of script node, previously specified in (24). As an example,
the translation of the first base node in P1 is Ap3q “ nodep3q.

Apnq “ nodepnq Ź 1 “ nodepnq (27)
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5.1.2. Juxtaposition

The juxtaposition of two CoordL patterns, formally defined in (3), is the
architectural product of the translation of each of them. In the example,
translating the juxtaposition of the two first base nodes yields expression
Ap3b 4q “ nodep3q b nodep4q.

Appb qq “ Appq b Apqq (28)

5.1.3. Link

The representation of a CoordL link (4) in Archery depends of whether
it is a loop or not. The latter case resorts attachments, but for the former,
a different behaviour for the instance that represents the web service caller
must be specified. Element RLink stands for such a reflexive link, that
includes the possibility of a calling loop.

R “ epRLinkq ˛ trs, recu ˛ tse, sndu

˚mprcpDo, trs, ntu, “rs.Loop.nt.Do”q

f prcpLoop, trec, sndu, “snd.rec.pτ ` τ.Loopq”q

A link between nodes i and j in pattern p is translated as the application
of reconfiguration linkpi, jq to the translation of p. Then, the specific recon-
figuration depends on whether the link is a self-reference or not (30). In the
former case, the value of variable idi is replaced by an instance of element
RLink. In the latter the corresponding attachment is made.

Apppq èj
i q “ linkpi, jq Ź Appq (29)

linkpi, jqpxq fi

"

x e idi einstpRLinkq if i “ j
x c ppidi, ntq, pidj, rsqq if i ‰ j

(30)

The translation of a link among a list of nodes L and node j is the
successive application of link to the translation of p as follows.

Apppq èj
Lq “ linkpL, jq Ź Appq “ linkpi, jq Ź

iPL
Appq (31)

The first two links of our example are then translated as follows.

App3b 4q è4
t3,4uq “ linkpt3, 4u, 4q Ź Ap3b 4q
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5.1.4. Fork

The representation of fork nodes (5) requires an element Fork in the
pattern WSPattern. Such an element defines instances with a in port rs for
receiving start notifications, and two out ports (ssa and ssb) to send start
notifications to the two instances.

F “ epForkq ˛ trsu ˛ tssa, ssbu

˚mprcpDo, trs, ssa, ssbu, “rs.pssa.ssb` ssb.ssaq.Do”q

We translate a fork node f that starts threads in nodes a and b as an
instance of element Fork. The corresponding external visible ports of a and
b are removed. Subsequently the out port of f is attached to the respective
rs ports in nodes a and b.

Apf / a
b ppqq “ forkpf, a, bq Ź Appq (32)

forkpf, a, bqpxq fi x l̋ ppidf , Forkq e einstpForkqq (33)

­o trsa, rsbu o ppidf , rsq, rsf q

c tppidf , ssaq, pida, rsqq, ppidf , ssbq, pidb, rsqqu

The fork in the example CoordL pattern is translated as Apf2 / 3
5 Qq “

forkpf2, 3, 5q Ź ApQq where Q stands for the rest of the expression.

5.1.5. Join

In a similar way the instances of element Join of pattern WSPattern
represent join nodes (6). Instances of such an element have two in ports to
receive termination notifications from either node a or node b and an out
port to notify its termination.

J “ epJoinq ˛ trta, rtbu ˛ tntu

˚mprcpDo, trs, rta, rtbu, “prta.rtb` rtb.rtaq.nt.Do”q

Then, a join between nodes a and b to node j in pattern p is translated as
the application of reconfiguration joinpa, b, jq to the architecture resulting
from translating p. The script includes an instance of element Join into
the architecture, removes renamings of ports which notify termination of
instances representing a and b, and reconnect such ports to the corresponding
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ones in the Join instance.

Apppq a
b & jq “ joinpj, a, bq Ź Appq (34)

joinpj, a, bqpxq fi x l̋ ppidj, Joinq e einstpJoinqq (35)

­o tnta, ntbu o ppidj, ntq, ntjq

c tppida, ntq, pidj, rtaqq, ppidb, ntq, pidj, rtbqqu

The translation of a join node among lists A and B requires iterating the
sets to remove external ports and to create appropriate attachments.

Apppq A
B & jq “ joinpj, A,Bq Ź Appq (36)

joinpj, A,Bqpxq fi x l̋ ppidj, Joinq e einstpJoinqq o ppidj, ntq, ntjq (37)

­o
iPAYB

nti c
aPA

ppida, ntq, pidj, rtaqq c
bPB
ppidb, ntq, pidj, rtbqq

We are now ready to completely translate the coordination pattern frag-
ment P1 used as an example. Thus,

ApP1q “ forkpf2, 3, 5q Ź joinpj2, t3, 4u, t5, 6uq Ź (38)

p linkpt3, 4u, 4q Ź nodep3q b nodep4q q

b p linkpt5, 6u, 6q Ź nodep5q b nodep6q q

5.1.6. Thread trigger

CoordL thread trigger (7) nodes are represented by instances of TTrigger
shown below. It provides in ports rta and rtb to receive notifications of
termination from nodes a and b and out ports ssc and ssd to send start
signals to nodes c and d.

T “ epTTriggerq ˛ trta, rtbu ˛ tssc, ssdu

˚mprcpDo, trta, rtb, ssc, ssdu,

“prta.rtb` rtb.rtaq.ssc.Do` rta.ssd.Do` rtb.ssd.Do”q

A thread trigger on p connecting nodes a, b, c and d is translated by
applying reconfiguration ttriggerpa, b, c, dq to the architecture resulting from
translating p. The script creates an instance of TTrigger and adds it into
the architecture. Subsequently removes renamings of ports which notify ter-
mination of instances representing a and b, and ports receiving start signals
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of instances representing c and d. Then, it connects the corresponding ports
to the ones in the TTrigger instance.

Apppq ab

& / c
dq “ ttriggerpa, b, c, dq Ź Appq (39)

ttriggerpa, b, c, dqpxq fi px b nodepcq b nodepdqq ­o tnta, ntb, rsc, rsdu (40)

l̋ ppidt, TTriggerq e einstpTTriggerqq

c tppida, ntq, pidt, rtaqq, ppidb, ntq, pidt, rtbqq,

ppidt, sscq, pidc, rsqq, ppidt, ssdq, pidd, rsqqu

In the case that lists A and B of nodes are given as arguments to the
thread trigger node, the reconfiguration requires iterating on such lists to
remove renamings and create attachments accordingly.

Apppq AB

& / c
dq “ ttriggerpA,B, c, dq Ź Appq (41)

ttriggerpA,B, c, dqpxq fi px b nodepcq b nodepdqq (42)

l̋ ppidt, TTriggerq e einstpTTriggerqq

­o
aPA

nta ­o
bPB

ntb ­o trsc, rsdu

c
aPA

ppida, ntq, pidt, rtaqq c
bPB
ppidb, ntq, pidt, rtbqq

c tppidt, sscq, pidc, rsqq, ppidt, ssdq, pidd, rsqqu

5.2. From Archery to CoordL

An Archery specification representing a coordination pattern can be trans-
lated back to CoordL. The model is assumed to be an instance of the archi-
tectural pattern WSPatternand to be structured in terms of architectural
products and the application of the following scripts: node (24), link (30),
fork (33), join (35), and ttrigger(40)). Translation Cp¨q receives such a
specification S and returns a CoordL model. It is defined inductively as
follows,

Cpnodepaqq “ xtau, tau, tau,Hy
CpS1 b S2q “ CpS1q b CpS2q

Cplinkpa, bq Ź Sq “ CpSq èb
a

Cpforkpf, a, bq Ź Sq “ f / a
b CpSq

Cpjoinpj, a, bq Ź Sq “ CpSq a
b & j

Cpttriggerpa, b, c, dq Ź Sq “ pCpSqq ab

& / c
d
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The translation for scripts with set or list arguments, namely for variants
of link, join and ttriger, becomes

CplinkpL, bq Ź Sq “ CpSq èb
L

Cpjoinpj, A,Bq Ź Sq “ CpSq AB & j

Cpttriggerpa, b, c, dq Ź Sq “ pCpSqq ab
& / c

d

Applying the translation to the result of expression (38), i.e., CpApP1qq,
yields a CoordL model which is equivalent, modulo commutativity/associa-
tivity and thread renaming, to P1.

6. Architectural re-engineering at work

The re-engineering process starts by inspecting the code of the legacy
system under consideration, using CoordPat to extract the original system
coordination layer. As discussed in section 2, the coordination pattern shown
in Figure 2 describes the coordination logic of the module responsible for
updating user profiles in components CRM, ERP and TS. Two undesired
behaviours and an improvement opportunity were detected upon an informal
analysis:

• Duplicate user creation – The service issues a user existence check and,
in case of a negative answer, calls repeatedly the user creation operation
until it answers. This loop copes with the possibility of a creation
failure, but does not distinguish this from the case in which although
the user is effectively created, but the response to the corresponding
service fails. If this happens, duplicated users are inserted into the
system. The problem can be avoided by inserting user-existence checks
before every call to the creation operation.

• Parallel user updates – Upon checking and creating users, the service
updates them by sequentially calling the corresponding operations in
the CRM, ERP and TS components. Since there is no dependence
among these operations and the call order is arbitrary, it is possible to
call them in parallel.

• Deadlocks – If one of the create or update operations is off-line the
service will loop indefinitely. Also this can be easily fixed by suitably
limiting the number of retries to a natural number.
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Once the coordination model of the original system is extracted, the next
phase translates it to Archery. This produces a sequence of models: at each
step the new model is compared with the previous one to detect whether
they are (behaviourally) equivalent, or one is a refinement of the other. Such
relationships can be automatically established in Archery using the underlying
mCRL2 tools. Note, however, that as one might have expected, along a
process aiming at improving the functionality of an architecture most design
steps lead to non bisimilar models. The situation is completely different from
a specification refinement process. Finally, once a satisfactory model has been
obtained, it is translated back to CoordL to guide a re-implementation phase.

The rest of this section is organised as follows: subsection 6.1 provides a
translation of our example CoordL model to an Archery specification. Such
model is then modified by identified common patterns (subsection 6.2), to
include user-existence checks (subsection 6.3), to replace sequential calls to
updatings by parallel ones (subsection 6.4), and, finally, to avoid deadlocks
(subsection 6.5). The reverse translation from Archery to CoordL is shown in
subsection 6.6.

6.1. From CoordL to Archery

The translation from CoordPat to Archery is a direct application of Ap¨q
(introduced in section 5.1). Note that the fragment P1 of the example was
already translated (see expression (38)). Therefore, we end up with

ApP q “ A0 “ linkpj2, 7q Ź p forkpf1, f2, 1q Ź joinpj1, tj2u, t1, 2uq Ź

p linkpt1, 2u, 2q Ź nodep1q b nodep2q q

b p forkptf2u, 3, 5q Ź joinpj2, t3, 4u, t5, 6uq Ź

p linkpt3, 4u, 4q Ź nodep3q b nodep4q q b

p linkpt5, 6u, 6q Ź nodep5q b nodep6q q q q

b p linkp7, 7q Ź linkpt7, 8u, 8q Ź linkpt8, 9u, 9q Ź

nodep7q b nodep8q b nodep9q q

6.2. Detecting patterns

The re-engineering process starts once an Archery specification is ob-
tained. In the case study discussed in this paper, the architect’s attention was
first driven towards detecting common, repeating patterns. Let us describe
in some detail the steps taken in this phase.
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First of all a behavioural pattern was detected in the interaction of three
pair of instances, and each pair was factored out into a single one. Specifically,
it was observed that the configuration among instances generated by nodes 1
and 2, 3 and 4, and 5 and 6, can be generalised taking the pair of nodes a and
b as parameters into a reconfiguration linkpta, bu, bq Ź nodepaq b nodepbq.
Moreover, such configuration can be replaced by an instance of a new element,
ReadLoopCreate, shown in expression (43). Then, the reconfiguration script
in expression (44) is defined to instantiate it. Note that rlcpa, bq Ź 1 ”
linkpta, bu, bq Ź nodepaq b nodepbq Ź 1, i.e., they are interchangeable. This
equivalence holds provided that roots activate configurations only once. Node
identifier cpa, bq allows us to trace original node identifiers, and thus to recover
the CoordL model.

RLC “ epReadLoopCreateq ˛ trs, recr, reccu ˛ tnt, sndr, sndcu (43)

˚mprcpDo, trs, sndr, recr, ntu,

“rs.sndr.recr.pτ ` τ.Loopq.nt”q

f prcpLoop, trecc, sndcu, “sndc.recc.pτ ` τ.Loopq”q

rlcpa, bqpxq fi x l̋ p (44)

pidcpa,bq, ReadLoopCreateq e einstpReadLoopCreateqq

o tppidcpa,bq, rsq, rscpa,bqq, ppidcpa,bq, ntq, ntcpa,bqq,

ppidcpa,bq, sndrq, sndaq, ppidcpa,bq, recrq, recaq,

ppidcpa,bq, sndcq, sndbq, ppidcpa,bq, reccq, recbqu

The nodes that invoke update operations, namely 7,8 and 9, follow a
specific pattern as well. In this case, it is enough to define a script that
captures such a pattern as it is done in (45). Then, the example configuration
is reformulated as in (46), It can be shown that A0 ” A1.

updpaqpxq fi linkpa, aq Ź nodepaq (45)

A1 “ linkpj2, 7q Ź (46)

p forkpf1, f2, 1q Ź joinpj1, tj2u, cp1, 2qq Ź rlcp1, 2q

b p forkpf2, cp3, 4q, cp5, 6qq

Ź joinpj2, cp3, 4q, cp5, 6qq Ź rlcp3, 4q b rlcp5, 6q q q

b p linkp7, 8q Ź linkp8, 9q Ź updp7q b updp8q b updp9q q
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6.3. Introducing user-existence checks

Duplicated users may be created by A1. According to the available in-
formation in the original CoordL pattern (see Figure 2), nodes 1, 3, and 5
are read operations performed on each subsystem to ensure that the user
does not exist, before the respective nodes 2, 4, and 6 that actually cre-
ate it. Note that if a create operation succeeds, but the response does
not arrive to the coordinator service, a duplicated user is shown. In A1

this isisolated in element ReadLoopCreate. We address it by defining ele-
ment ReadCreateLoop as indicated in (47) which forces the loop to include
the user-existence check on every call. The reconfiguration script rclpa, bq
that creates instances of this element is very similar to rlcpa, bq, but for the
instantiated element. As expected, the two configurations are not equiva-
lent, i.e., rclpa, bq Ź 1 ı rlcpa, bq Ź 1. However, there is an equivalence
rclpa, bq Ź 1 ” linkpa, bq Ź linkpb, aq Ź nodepaq b nodepbq, which indicates
how to express the new element in terms of reconfiguration scripts used by
Ap¨q, which helps in translating the resulting specification back to CoordL.
We obtain a configuration A2 (by replacing script rlc with rcl) in which every
call to a create is preceded by a call to a read, and such that A1 ı A2.

RCL “ epReadCreateLoopq ˛ trs, recr, reccu ˛ tnt, sndr, sndcu (47)

˚mprcpDo, trs, ntu, “rs.Loop.nt.Do”q

f prcpLoop, trecr, sndr, recc, sndcu,

“sndr.recr.pτ ` τ.sndc.recc ` sndc.recc.Loopq”q

6.4. Putting user-update operations in parallel

The subsequent re-engineering step modifies the coordinator by placing
user-updates, i.e., instances representing nodes 7, 8, 9, in parallel. For this,
we define in (48) a new configuration A3, that differs from A2 in a number
of forks and joins allowing the concurrent execution of these instances. As
expected A2 ı A3.

A3 “ linkpj1, f3q Ź p forkpf1, f2, 1q Ź joinpj1, j2, cp1, 2qq Ź rclp1, 2q (48)

b p forkpf2, cp3, 4q, cp5, 6qq Ź joinpj2, cp3, 4q, cp5, 6qq Ź

rclp3, 4q b rclp5, 6q q q

b p forkpf3, 7, f4q Ź joinpj3, 7, j4q Ź updp7q

b p forkpf4, 8, 9q Ź joinpj4, 8, 9q Ź updp8q b updp9q q q
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6.5. Avoiding deadlocks

At this stage, a potential for deadlock still remains. Actually, when an
update or create operation does not respond, the call is repeated until a
response is obtained. As a consequence, if one of the operations is off-
line, the integrated user-update neither fails nor succeeds. The problem
is solved by adding elements that have a counter and an iteration limit,
and replacing in a new configuration A4 the corresponding instances. Ele-
ment ReadCreateF initeLoop in (49) replaces ReadCreateLoop and element
UpdateF initeLoop in (50) is used instead of RLink for updates. We need
to define new configuration scripts for these elements. Script rcfl in (51)
replaces rcl, only differing in the creation of the variable and the instance,
which now receives an integer N as a parameter. The set R of renamings
remains unaltered. In a similar way, script ufl in (52) replaces upd, which
has a constructor that receives an integer as parameter as well. We observe
that the configurations obtained by the respective scripts are not equivalent,
i.e., rcflpa, bq Ź 1 ı rclpa, bq and uflpaq Ź 1 ı updpaq Ź 1. Note that the
new elements just introduced convey information that cannot be translated
to CoordL.

RCFL “ epReadCreateF initeLoop, rxmax, Intysq (49)

˛ trs, recr, reccu ˛ tnt, sndr, sndcu

˚mprcpDo, rxn, Int,maxys, trs, ntu,

“rs.Loopp0, nq.nt.Dopnq”q

f prcpLoop, rxi, Inty, xn, Intys, trecr, sndr, recc, sndcu,

“sndr.recr.pτ ` τ.sndc.recc

` τ.sndc.recc.pi ă nq ą́ Looppi` 1, nq ăą τq”q

UFL “ epUpdateF initeLoop, rxmax, Intysq (50)

˛ trs, recu ˛ tse, sndu

˚mprcpDo, rxn, Int,maxys, trs, ntu,

“rs.Loopp0, nq.nt.Dopnq”q

f prcpLoop, rxi, Inty, xn, Intys, trec, sndu,

“snd.rec.pτ ` τ.pi ă nq ą́ Looppi` 1, nq ăą τq”

rcflpa, bqpxq fi x l̋ ppidcpa,bq, ReadCreateF initeLoopq (51)

e einstpReadCreateF initeLoop, rN sqq o R

uflpaqpxq fi x l̋ ppida, UpdateF initeLoopq (52)
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e ida einstpUpdateF initeLoop, rN sqq

6.6. Translating back to CoordL

Upon obtaining a satisfactory specification, translation Cp¨q is applied to
obtain the corresponding CoordL model. Given that the model in section 6.5
cannot be expressed in CoordL, we translate A3 instead, the one obtained
in section 6.4, shown in (48). Before applying the translation, we need to
replace scripts rcl and upd by their equivalent forms expressed in terms of
scripts link and node. Translation Cp¨q applied to the resulting model yields
(53), which is graphically depicted in Figure 6.

p p f1 / f2
1 1b 2 è2

1è
1
2 (53)

b p f2 / 3
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1 - CallWS(CRMReadUser,2)
2 - CallWS(CRMCreateUser,2)
3 - CallWS(ErpReadUser,2)
4 - CallWS(ErpCreateUser,2)
5 - CallWS(TSReadUser,2)
6 - CallWS(TSCreateUser,2)
7 - CallWS(CRMUpdateUser,2)
8 - CallWS(ERPUpdateUser,2)
9 - CallWS(TSUpdateUser,2)

Figure 6: Coordination pattern for the re-engineered integrated update.
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7. Related work and conclusions

This paper introduced an approach to the architectural re-engineering of
legacy software systems, ranging from the reconstruction of coordination pat-
tens from source code to the specification, analysis and modification of the
corresponding architectural model at a higher level of abstraction, as well as
its mapping back to the implementation layer. Conceptually, it focuses on the
architecture’s structure of interactions which is often strongly weaved with
the application at the source code level. Methodologically, the approach com-
bines an extraction and analysis stage with an iterative re-engineering process
at a higher level of abstraction. Both stages are tool-supported, by CoordPat
and Archery, respectively. The former is an extension to CoordInspector [1]
to which adds a notion of coordination pattern, a language and a calculus of
such patterns, and a facility for pattern search and identification over a pro-
gram dependency graph. The latter is a high level architectural description
language which resorts to mCRL2 for behaviour simulation and analysis.

7.1. Related work

There is a number of tools and methodologies targeting the identification
of architectural elements from source code or intermediate code represen-
tations based on programs analysis techniques (see, e.g. [18] for an early
reference). CoordPat shares a number of intuitions discussed in [19, 20, 21].
CoordPat search, however, is driven by coordination patterns, parametric on
the communication primitives used in the source programming platform (the
glue primitives), embodying complex interaction and architectural models.
To the best of our knowledge, this has not been made before. The CoorL
language, however, was initially inspired by operational notations for the
description of Reo circuits [22], namely in [23] and [24].

Archery is an architectural description language (ADL). ADLs model soft-
ware architectures in terms of components and connectors arranged according
to their interfaces in configurations. The interaction points of components
and connectors are called ports and roles, respectively. Reference [25], iden-
tifies these abstractions as essential for an ADL, and stresses the impor-
tance of providing tool-support to the development and evolution of archi-
tectural models. Notations that do not provide first-class constructors for
these abstractions, such as UML [26], cannot be considered as architectural
languages. Actually, UML was conceived to provide a unique syntax and
modelling framework for object oriented software development. Although it
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can be used to model software architectures, as is shown in [27], a proper
ADL-like extension of object oriented constructors to represent architectural
abstractions is required [25].

ACME [28], ADR [29], Darwin [30, 31, 32], and Wright [33, 34] are among
the languages that provide the essential abstractions. While ACME is fo-
cussed in the structural dimension of architectural specifications, the others
address, in different ways, the representation and analysis of architectures
able to reconfigure themselves at run-time [30, 34, 27]. All of them pro-
vide constructors to define types of architectural elements (components and
connectors), with associated interfaces defined in terms of a broad notion
of interaction points. However, two main approaches can be distinguished.
In one of them different constructors are used to deal with component and
connector abstractions separately [28, 33, 34]. In the other there is a single
constructor to manage them uniformly [29, 35, 32]. The Archery language
follows the latter approach providing a single constructor to define architec-
tural element types. All of these languages provide a constructor to build
configurations out of instances of architectural element types previously de-
fined.

Tool supported development and analysis of architectural models, and
their evolution, entail the need for a formal, underlying semantics. Reference
[36] provides an extensive discussion of this issue and proposes a classifica-
tion of ADLs based on the style of semantics adopted. Two groups emerge as
particularly important: process algebra and graph-based approaches. While
Darwin [30] and Wright [34] are examples of the former, ADR [29] combines
both approach. Reference [16], in particular, presents a way of interpret-
ing process algebra descriptions as graphs and an algebra of for (ADR-like)
graphs made of graph composition operators and a sound of complete ax-
iomatization of graph isomorphism. Similarly to Darwin and Wright, Archery
[3] models the behavioural dimension in software architectures with process
algebras. It also exploits the higher order, equational data types provided
by mCRL2 by allowing the specification of data-typed interactions and data-
state of architectural element instances.

Although the formal semantics of ACME is debatable (ACME places it-
self at a meta-level for interchanging different types of architectural abstrac-
tions), the language gained recognition as the least common denominator for
architectural design [28, 27]. Actually, it adds to the essential abstractions
a representation to model hierarchical composition and representation maps
which map internal interaction points of a configuration to its external inter-
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face. Archery represents these abstractions with a constructor that indicates
that an architectural element instance has an internal architecture whose
interaction points are mapped to the externally visible ones.

ADLs that support the concept of architectural pattern [37] or style [38]
facilitate the development of specifications because they are able to abstract
recurring forms. Reference [39] gives a general characterisation as a descrip-
tion of element and configuration types, and a set of constraints their use.
Unfortunately, the notion is often used without a proper formalisation.

Patterns can be enriched by the specification of architectural constraints
in a suitable logic. The latter can be enforced either by construction, or either
by restriction [40]. ADR [29] uses the former mechanism leaving constraints
implicit. The latter approach requires the explicit specification of constraints
that forbid generic (re)configuration operations leading to incorrect config-
urations. Darwin [31] enforces constraints by restriction with a translation
of the structural dimension of architectures to Alloy [41]. Archery follows a
similar approach. A language extension for the specification of architectural
constraints in modal logics is under development. How those can be mapped
back to constraints at the level of coordination patterns as the ones specified
in CoordL, remains a topic for future research.

7.2. Contributions and future work

The main contribution of this paper was the re-engineering approach
itself, and a systematic translation scheme from code-level models (as gener-
ated by CoordPat) to conceptual models (as represented in Archery) and back.
The CoordPat tool and a formal semantic model for its pattern description
language (CoordL) was also introduced here.

The combined use of these two methodologies/tools provides the working
software architect with an interesting, yet simple, framework for architectural
re-engineering. Further case studies are being made to provide extra empiri-
cal evidence of its usefulness and identify possible improvements.

But, of course, a number of questions remain to be answered. A main
topic concerns the automatisation of the whole bi-directional translation pro-
cess from CoordL to Archery and back, and the integration of the whole ap-
proach in the Eclipse platform for easier deployment. Another one concerns
the enrichment of both CoordL coordination patterns and Archery architec-
tural patterns with quantitative annotations, for example to measure com-
munication throughput or, in general, QoS levels associated to architectures,
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and to propagate such information along composition. More and more a sys-
tem behaviours of interest are broader than the traditional Boolean “correct”
or “incorrect” judgment. Quantitative aspects include, among others, tim-
ing (discrete, continuous or hybrid), probability of success or failure including
cost and reward, and quantified information flows in a software architecture.
Addressing such aspects along the lines of the approach discussed in this
paper constitutes a main challenge to our current work.
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