
November, 2014

Universidade do Minho
Escola de Engenharia

Nuno Filipe Moreira Macedo

A Relational Approach to
Bidirectional Transformation

The MAP Doctoral Program in Computer Science
of the Universities of Minho, Aveiro and Porto

A thesis submitted at the University of Minho for the degree of
Doctor of Philosophy in Informatics (PhD)

under the supervision of
Professor Doutor Manuel Alcino Pereira da Cunha

ii

Acknowledgments

When I enrolled college in an informatics engineering degree, I was convince by
“society” that it was not feasible to be an researcher in Portugal, and that I should just
get a real job. Almost a decade later, it is probably no surprise to find myself with this
PhD dissertation in computer science, still hoping for “society” to be wrong.

My supervisor Alcino Cunha is one of those responsible for me taking that turn,
whose approach to computer science captivated me during my undergraduate years. I
am very thankful for his support and dedication, as well as for all the hours spent with
me so that this dissertation could materialize.

If someone else is responsible for my initiation into research is José Nuno Oliveira
with his contagious enthusiasm about the science in computer science, whom I thank
for the valuable advice and discussions.

I would like to thank Hugo Pacheco, who acted as an unofficial co-supervisor
during my first years of research and helped me kick-start what eventually became this
dissertation. I am also grateful to all my other colleagues from 2.07 and surrounding
labs for all those moments spent not working.

Finally, I thank my family and friends for all the support during this long journey. I
hope that they are all aware of how important they are to me and that no further words
are necessary.

I thank FCT (Portuguese Foundation for Science and Technology) for supporting
the development of this thesis (grant SFRH/BD/69585/2010) through the Programa

Operacional Potencial Humano (POPH), of the QREN framework, within the European
Social Fund. This work was also supported by the FATBIT project (FCOMP-01-0124-
FEDER-020532), funded by ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by national
funds through the FCT.

iii

iv

A Relational Approach to
Bidirectional Transformation

The ubiquity of data transformation problems in software engineering has led to the
development of bidirectional transformation techniques in a variety of application
domains. Model-driven engineering (MDE) is one of those areas, where such techniques
are essential to maintain the consistency between multiple coexisting and simultaneously
evolving models.

However, the lack of in-depth research about certain characteristics of MDE has
hindered the development of effective bidirectional model transformations that are able
to address realistic MDE scenarios. This dissertation tackles two of these issues: that
of constrained transformation domains and least-change transformations. The first
regards the transformations’ ability to take into consideration the constraints imposed
by the meta-models, and is essential to achieve correctness; the second regards the
transformations’ ability to control the selection of updates from among those considered
correct, and is essential to achieve a predictable system.

These two issues are addressed under two popular bidirectional transformation
schemes: in the context of the asymmetric framework of lenses, following a combinato-
rial approach; and in the context of the symmetric framework of constraint maintainers,
proposing a solution based on model finding. The latter was effectively deployed as
Echo, a tool for model repair and transformation. The expressiveness and flexibility
provided by relational logic enabled it to be used as the unifying formalism throughout
this dissertation.

v

vi

Uma Abordagem Relacional à
Transformação Bidirecional

A ubiquidade de problemas de transformação de dados em engenharia de software levou
ao desenvolvimento de técnicas para transformação bidirecional numa variedade de
domínios de aplicação. A Engenharia Baseada em Modelos (MDE) é uma dessas áreas,
onde essas técnicas são essenciais para gerir a consistência entre múltiplos modelos que
coexistem e evolvem simultaneamente.

No entanto, a falta de estudos aprofundados sobre algumas características da MDE
tem dificultado o desenvolvimento de técnicas de transformação bidirecional de mod-
elos eficazes e que consigam lidar com cenários MDE realísticos. Esta dissertação
aborda dois destes problemas: o de domínios de transformação restringidos e o de
transformações com mudanças-mínimas. O primeiro tem que ver com a capacidade das
transformações de ter em consideração as restrições impostas pelos meta-modelos e é
essencial para atingir correcção; a segunda tem que ver com a capacidade de controlar
a seleção de modificações entre as consideradas corretas, e é essencial para obter um
sistema previsível.

Esta tese aborda estes dois problemas sob dois populares esquemas de transformação
bidirecional: no contexto da framework assimétrica das lentes, seguindo uma abor-
dagem combinatorial, e no contexto da framework simétrica dos constraint maintainers,
sendo proposta uma solução baseada em “procura de modelos”. Esta última foi efetiva-
mente implementada como Echo, uma ferramenta para a reparação e transformação
de modelos. A expressividade e flexibilidade proporcionada pela lógica relacional

permitiu que esta fosse usada como o formalismo unificador desta dissertação.

vii

viii

Contents

1 Introduction 1
1.1 Bidirectional Model Transformation 2
1.2 Goals and Contributions . 7
1.3 Overview . 11

I Preliminaries 13

2 Relational Logic 15
2.1 Syntax . 16
2.2 Static Semantics . 19
2.3 Dynamic Semantics . 23
2.4 Binary Relation Properties . 26
2.5 Discussion . 28

3 Bidirectional Transformation 31
3.1 Basic Concepts . 31
3.2 Bidirectional Transformation Properties 36

3.2.1 Round-tripping Properties 36
3.2.2 Totality . 38
3.2.3 Exhaustive Bidirectional Transformations 40
3.2.4 Disambiguating Updates . 41

3.3 Discussion . 44

II Lens Framework 45

4 Invariant-constrained Lenses 47

ix

x Contents

4.1 Invariant-constrained Lens Framework 54

4.1.1 Selective Invariant-constrained Lenses 54

4.1.2 Exhaustive Invariant-constrained Lenses 55

4.1.3 Constraint-Aware Frameworks 58

4.2 Relational Framework . 60

4.2.1 Relational Invariant Language 61

4.2.2 Executing Constrained Relational Expressions 65

4.3 Spreadsheet Framework . 69

4.3.1 Domain-specific Invariants 72

4.3.2 Executing Constrained Domain-specific Expressions 75

4.4 Discussion . 80

5 Least-change Lenses 83
5.1 Least-change Lens Framework . 89

5.1.1 Defining Least-change Lenses 89

5.1.2 Reasoning about Least-change Lenses 92

5.2 Criteria for Composing Least-change Lenses 95

5.2.1 Selective Composition . 96

5.2.2 Exhaustive Composition . 100

5.3 Discussion . 104

III Maintainer Framework 109

6 Maintaining Constraints 111
6.1 Constraint Maintaining with Model Finding 115

6.1.1 Model Finding . 115

6.1.2 Embedding Constraints . 116

6.1.3 Target-oriented Model Finding 122

6.2 Beyond Bidirectional Transformation 123

6.3 Deploying Preference Orders . 129

6.3.1 Least-change as Iterative MF 129

6.3.2 Internal TO-MF . 136

6.4 Discussion . 138

Contents xi

7 Deploying QVT-R Transformations 141
7.1 QVT Relations . 143

7.1.1 Basic Concepts . 143

7.1.2 QVT-R Transformation Examples 145

7.2 Checking Semantics . 150

7.2.1 Standard Checking Semantics 150

7.2.2 Relation Invocations . 153

7.3 Enforcement Semantics . 157

7.3.1 Standard Enforcement Semantics 158

7.3.2 Least-change Enforcement Semantics 159

7.4 Multidirectional QVT-R Transformations 161

7.4.1 QVT-R Multidirectional Checking Semantics 163

7.4.2 Extending the Standard Semantics 165

7.4.3 QVT-R Enforcement Semantics 168

7.5 Discussion . 169

8 Bidirectionalizing ATL Transformations 173
8.1 ATL Language . 175

8.2 Bidirectionalization Technique . 178

8.3 Inferring a Consistency Relation . 180

8.4 Discussion . 183

9 The Echo Framework 185
9.1 Echo Overview . 187

9.2 Architecture . 189

9.3 Embedding TRCs in Alloy . 192

9.3.1 A Brief Introduction to Alloy 192

9.3.2 Embedding Intra-model Constraint TRCs 195

9.3.3 Embedding Inter-model Constraint TRCs 197

9.3.4 Embedding Metrics . 198

9.3.5 Executing the Semantics . 201

9.3.6 Optimizing Alloy Models . 203

9.4 Visualizing Model Instances . 207

9.5 Evaluation . 209

9.6 Discussion . 213

xii Contents

10 Conclusion 215
10.1 Main Contributions . 215
10.2 Final Remarks . 217
10.3 Future Work . 218

A Relation Algebra Laws 221

Bibliography 227

Index of Concepts 241

List of Figures

1.1 Example class diagrams. 3

1.2 Example database schemas. 4

2.1 Concrete syntax of relational expressions and formulae. 17

2.2 Type-inference rules for relational formulae. 21

2.3 Type-inference rules for primitive relational combinators. 22

2.4 Semantics of relational formulae. 23

2.5 Semantics of relational expressions. 24

2.6 A taxonomy for binary relations (Oliveira, 2007). 27

4.1 Instantiations of invariant-constrained lens length • tail : [A]φ ID Nψ. 52

4.2 Approaches to totality preservation in ic-lenses. 59

4.3 Sample transformation language. 60

4.4 Domain and range of unrestricted expressions. 63

4.5 Domain of restricted expressions. 64

4.6 Range of restricted expressions. 64

4.7 Unconstrained execution of binary relations. 66

4.8 Constrained execution of binary relations. 67

4.9 Constrained exhaustive execution of inverted relations. 68

4.10 Constrained selective execution of inverted relations. 68

4.11 Bidirectional spreadsheet formula example. 70

4.12 Representation of the traceability link flf φA. 78

5.1 Meta-models for different views of a simplified Twitter. 84

5.2 Instantiation of lens tw2 ◦ tw1 : TW1 B TW3 86

5.3 Instantiations of least-change lens tw2 ◦ tw1 : TW1� B TW3-. . . 88

5.4 Strictly increasing transformation. 98

xiii

xiv List of Figures

5.5 Quasi strictly increasing transformation. 99

5.6 Monotonic transformation. 102

5.7 Quasi monotonic transformation. 103

5.8 tw1:TW1�TW1 B TW2 failing QUASIMONOT and QUASISTRICTINC

for f : TW2vTW2 B C . 107

6.1 Simplified class diagrams of the CD and DBS meta-models. 118

6.2 Transformation domain CD as a TRC CD 119

6.3 TO-MF problem for a CD domain under the scope from Figure 6.4. . 125

6.4 Concrete scope for a CD transformation domain. 125

6.5 Solutions of the TO-MF problem from Figure 6.3. 126

6.6 Model finding at the core of MDE tasks. 138

7.1 Simplified version of the cd2dbs QVT-R transformation. 146

7.2 Example models for cd2dbs. 147

7.3 Class diagrams of the HSM and NHSM meta-models. 148

7.4 The hsm2nhsm QVT-R transformation. 149

7.5 Example for hsm2nhsm. 150

7.6 QVT-R transformation cd2dbs as a TRC. 156

7.7 QVT-R transformation hsm2nhsm as a TRC. 157

7.8 Least-change propagation example for cd2dbs. 160

7.9 Least-change propagation example for hsm2nhsm. 160

7.10 Class diagrams for the CF and FM meta-models. 162

8.1 The hsm2nhsm ATL transformation. 177

8.2 Class diagrams of the World and Company meta-models. 179

8.3 The employ ATL transformation. 179

9.1 A snapshot of Echo, with DBS and CD models depicted in EMF and in
the Alloy visualizer. 188

9.2 Echo’s architecture. 192

9.3 A (static) specification of CD in Alloy. 194

9.4 Meta-model CD embedded in Alloy. 197

9.5 Part of the Alloy specification for cd2dbs. 199

9.6 A model instance in Alloy. 202

9.7 Quantifier elimination and restriction. 204

List of Figures xv

9.8 Redundancy elimination. 205
9.9 Optimization example. 206
9.10 hsm2nhsm-consistent models as presented in Echo. 209
9.11 Synthetic CD model with n = 3. 210
9.12 Synthetic DBS model with n = 3 and d = 2. 210
9.13 Performance for optimized (OPT) and non-optimized (RAW) imple-

mentations. 213
9.14 Performance over model size n, for fixed ∆ values. 213
9.15 Performance over model distance ∆, for fixed n values. 214

xvi List of Figures

List of Tables

2.1 Supported sorts. 20
2.2 Relation classification under kernel and image (Oliveira, 2007). 27

4.1 IF statement update propagation cases. 75

5.1 Compositionality criteria for selective lc-lenses g ◦ f : A� B C 105
5.2 Compositionality criteria for exhaustive lc-lenses g ◦ f : A� I C . . . 105

9.1 Supported OCL operations. 190
9.2 Scalability tests size for enforce mode with GED and d = 1. 211

xvii

xviii List of Tables

Acronyms

ATL ATLAS Transformations Language.

EMF Eclipse Modeling Framework.

GED Graph-edit Distance.

MDA Model-driven Architecture.

MDE Model-driven Engineering.

MF Model Finding.

OBD Operation-based Distance.

OCL Object Constraint Language.

QVT Query/View/Transformation.

QVT-R QVT Relations.

TO-MF Target-oriented Model Finding.

TRC Typed Relational Constraint.

xix

xx Acronyms

Chapter 1

Introduction

Transforming data between different formats is an essential task in computer science
and software engineering. Ordinary as this exercise may seem, creating a target artifact
b from a source artifact a is often just the first step in a dynamic evolution process:
the initial transformation implicitly binds a and b, and as either artifact gets updated,
modifications must be propagated to the other side in order to keep the overall system
consistent. For decades, this kind of problem has been addressed via ad hoc or domain-
specific techniques in virtually every area of computer science—the view-update prob-
lem from the database community being the classic example. However, in the last few
years, research on bidirectional transformation (Czarnecki et al., 2009) has exploded,
with developments in areas like heterogeneous data synchronization (Brabrand et al.,
2005; Kawanaka and Hosoya, 2006; Foster et al., 2007), string manipulation (Bohan-
non et al., 2008; Barbosa et al., 2010), functional languages (Matsuda et al., 2007;
Voigtländer, 2009; Pacheco and Cunha, 2010), model transformation (Ehrig et al., 2007;
Cicchetti et al., 2010; Macedo and Cunha, 2013), user interfaces (Meertens, 1998; Hu
et al., 2008), relational databases (Bancilhon and Spyratos, 1981; Dayal and Bernstein,
1982; Bohannon et al., 2006), graph transformation (Schürr, 1994; Hidaka et al., 2010),
or spreadsheet systems (Cunha et al., 2012; Macedo et al., 2014c). The main idea
behind bidirectional transformation frameworks is having a single transformation ar-
tifact denote the transformations in both directions (either by construction or through
calculation), avoiding the cumbersome and error-prone task of manually writing and
maintaining two coherent transformations.

1

2 CHAPTER 1: INTRODUCTION

1.1 Bidirectional Model Transformation

A particular area where bidirectional transformation plays an essential role is model-

driven engineering (MDE), a family of development processes that focus on models as
the main development artifact. The higher level of abstraction provided by models pro-
motes maintenance, modularization, reusability and communication between different
stakeholders, and thus MDE has been increasingly adopted by software engineering
practitioners (Schmidt, 2006). At the core of MDE are model transformations (Ger-
ber et al., 2002; Sendall and Kozaczynski, 2003), that enable the system to evolve
both horizontally—by presenting different perspectives or different components of
the system—and vertically—by navigating across different levels of detail through
abstraction and refinement operations (Mens and Gorp, 2006). These (unidirectional)
model transformations essentially allow users to generate fresh target models from
source models.

A classic example of such transformations is the object-relational mapping (cd2dbs)
problem, concerned with persisting object-oriented data in relational databases. To be
effective, the class diagram denoting the structure of the data objects and the relational
database schema denoting the structure of the database—that provide two vertically
different views of the same system—must be consistent with each other. Consider as
an example class diagram c0 (Figure 1.1a) that represents a simple company model
comprised of employees and employers, which are both persons with names, with each
employer being assigned to a department. This class diagram could be persisted in a
database following schema s0 (Figure 1.2a), which could be generated from c0 by a
transformation

−−−−−→
cd2dbs that maps each persistent class (denoted by non-italic title) to a

table, with a column for each of its attributes and associations, including those inherited
from super-classes.

MDE gives rise to a highly dynamic development environment, where different
models are expected to be individually modified by different stakeholders, and incon-
sistencies will undoubtedly be introduced: a developer could update schema s0 to s1

(Figure 1.2b) by assigning locations to departments, breaking the consistency with
the original class diagram c0. Thus, coexisting models introduce the problem of inter-

model consistency management—in contrast to intra-model consistency that manages
the conformity of a model with its meta-model (Huzar et al., 2004). Although these
inconsistencies should be tolerated to some extent (Balzer, 1991), they must eventually
be repaired, and thus a transformation

←−−−−−
cd2dbs, that converts database schemas back

1.1 BIDIRECTIONAL MODEL TRANSFORMATION 3

name : String
Person

Employee

Employer

Department

1

*
department

(a) Model c0.

name : String
Person

Employee

Employer

location : String
Department

1

*
department

(b) Model c1.

name : String
Employee

name : String
Employer

location : String
Department

1

*
department

(c) Model c2.

Figure 1.1: Example class diagrams.

into class diagrams, is required. Maintaining these two transformations (
−−−−−→
cd2dbs and

←−−−−−
cd2dbs) as a coherent pair is clearly a cumbersome and error-prone task, as they must
be manually defined and checked for correctness. The goal of bidirectional model

transformation is precisely to mitigate this problem. As defined by Stevens (2007)

“A bidirectional model transformation is some way of specifying algo-
rithmically how consistency should be restored, which will [...] be able to
modify either of the two models.”

The burden is then to derive the pair of consistency-restoring transformations from a
single specification artifact. To tame this task, in an early position paper, Sendall and
Küster (2004) divide inter-model consistency management in four steps: a) define in
which circumstances the models are consistent; b) detect that models are inconsistent;
c) devise a plan to restore consistency that embodies the intention of the user; d) apply
the plan and restore consistency.

In the general case, model transformations are not bijective, in general typically
each model may be consistent with a (possibly empty) set of opposite models. One of
the most famous bidirectional transformation frameworks is that of lenses, proposed
by Foster et al. (2007) to tackle asymmetric transformation scenarios. Inspired by
the classic view-update problem from the database community (how can updates on a
database view be propagated back to the source table?), lenses are suitable for scenarios
where one of the transformation domains (the view) contains less information than the
other (the source). In this context, the transformation from the source to the view is
usually easier to specify and implicitly defines the relationship between the models.

4 CHAPTER 1: INTRODUCTION

CREATE TABLE Employee (
_ Id i n t ,
name varchar (2 5 5) ,
PRIMARY KEY (_ Id)

) ;
CREATE TABLE Employer (

_ Id i n t ,
name varchar (2 5 5) ,
d e p a r t m e n t i n t ,
PRIMARY KEY (_ Id) ,
FOREIGN KEY (d e p a r t m e n t)

REFERENCES Depar tmen t (_ Id)
) ;

CREATE TABLE Depar tmen t (
_ Id i n t

) ;

(a) Model s0.

CREATE TABLE Employee (
_ Id i n t ,
name varchar (2 5 5) ,
PRIMARY KEY (_ Id)

) ;
CREATE TABLE Employer (

_ Id i n t ,
name varchar (2 5 5) ,
d e p a r t m e n t i n t ,
PRIMARY KEY (_ Id) ,
FOREIGN KEY (d e p a r t m e n t)

REFERENCES Depar tmen t (_ Id)
) ;

CREATE TABLE Depar tmen t (
_ Id i n t ,
l o c a t i o n varchar (2 5 5)

) ;

(b) Model s1.

Figure 1.2: Example database schemas.

This forward transformation is embedded with backward semantics, which should be
able to retrieve information discarded by the forward transformation when creating
the view from the original source. Such is the case of our example, where the forward
transformation

−−−−−→
cd2dbs is straight-forward to define and discards information from the

class diagram when creating the database schema (the classes’ hierarchy tree).

Classic lens frameworks are combinatorial, providing a bidirectional transformation
language comprised of individual primitives and combinators that are given bidirectional
semantics at design time. This allows the user to write complex correct-by-construction
bidirectional transformations, while implicitly defining both the forward and backward
transformations.

Model transformation, however, introduces an additional complexity layer on the
bidirectional transformation problem. Meta-models typically entail additional rich con-
straints over conforming models: a model transformation is said to be correct if, besides
restoring inter-model consistency, produces well-formed models. Consider the case of
class diagrams, where class inheritance must not be cyclic. Depending on the definition
of cd2dbs, the occurrence of cyclic inheritance may not affect inter-model consistency
management, but will without a doubt affect the overall consistency of the environ-
ment. Thus, bidirectional model transformations that do not take into consideration
constraints inherent to the transformation domains are unpredictable and ultimately not

1.1 BIDIRECTIONAL MODEL TRANSFORMATION 5

useful. Although lenses are one of the most widely spread bidirectional transformation
frameworks, having been extended and applied to a variety of data domains, most are
designed to handle tree-like data structures without native support for node references,
which hinders the representation of model artifacts. A lens framework to transform
graph data structures has been proposed by Hidaka et al. (2010), but although models
can naturally be represented as graphs, the lack of support for additional constraints
over the transformation domains renders the framework inadequate in the MDE setting.

Bidirectional transformations are expected to follow certain round-tripping laws
that render them well-behaved. In classic lens frameworks, the pair of transformations
is expected to be acceptable—the updated view data is recoverable from the updated
source data—and stable—consistent models should remain unmodified. However,
these round-tripping laws cover only boundary scenarios, allowing the definition of
many unreasonable transformations in-between. Consider propagating the update that
originated schema s1 back to class diagram c0. According to the lenses’ laws, any
←−−−−−
cd2dbs that produces a class diagram from which

−−−−−→
cd2dbs recovers schema s1 will

be acceptable. Model c2 (Figure 1.1b) is one such candidate, even though the existing
tree hierarchy was destroyed (the notion of person was removed and the name attribute
pushed down the tree to employees and employers). However, the user is probably
not expecting the generation of a fresh new class diagram every time the schema is
updated, but to have information from the existing class diagram not present in the
schema preserved. Since the backward transformation is able to retrieve information
from the original source model c0, model c1 (Figure 1.1c) would clearly be a better
choice, as it preserves more information from c0—its hierarchy tree. This touches one
of the main challenges in model transformation, as Sendall and Küster (2004) already
emphasize: to embody “the intent and expectation of the user”.

Meertens (1998, p. 3–4), one of the first to formalize and study bidirectional
transformation, was already aware of this issue, and went a step further to specify an
additional design principle:

“The claim is that although there are many formal solutions to the
constraint, some are more intuitively natural in terms of user expectation
than others. [...] Generalizing the example leads to the Principle of Least

Change: The action taken by the maintainer of a constraint after a violation

should change no more than is needed to restore the constraint.”

While seemingly simple, correctly capturing, formalizing and enforcing this policy is a

6 CHAPTER 1: INTRODUCTION

pretty challenging task and is typically disregarded by existing techniques, that only
informally and loosely approximate this intuition using ad hoc or heuristic mechanisms.
At the core of the issue is the inevitability that no general-purpose technique will be
able to capture the notion of “closest” solution in each particular context without input
from the user (Pacheco et al., 2014).

Addressing these two issues—support for domain constraints and least-change
policies—is particularly challenging in lens frameworks due to its combinatorial nature,
where combinators are expected to put together opaque lenses while preserving bidirec-
tional properties. Since combinators are not aware of global constraints or succeeding
transformations, they are not able to adapt its behavior accordingly. In fact, even though
the round-tripping laws are loose, lens combinators are typically assigned particular
computations at design time, disregarding the consequences of such choices on the
global produced output.

Transformation-induced constraints, however, fail to describe certain classes of inter-
model consistency maintenance problems, either because the transformation domains
are symmetric—both containing information not present in the other—or due to the very
nature of the problem—like the case of coexisting class diagrams and hierarchical state
machines, where the latter are typically not generated by model transformation. Rather
than a transformation, inter-model constraints in these scenarios are better specified
by a consistency relation that states when two models are consistent. This class of
transformations is usually characterized under the constraint maintainer framework
initially proposed by Meertens (1998) to tackle bidirectionality in the context of user
interfaces. Here, a bidirectional transformation is specified by a non-executable binary
relation that allows consistency testing, associated with two executable consistency-
restoring transformations that must be derived from it.

Likewise to lens frameworks, concrete instantiations of the constraint maintainer
framework typically enforce two loose laws, already proposed by Meertens (1998):
transformations should be correct—(inter-model) consistency is restored—and stable—
consistent models are not updated. Notwithstanding, Meertens was already aware that
these laws under-specify the behavior of the transformations, and went a step further by
specifying the above-mentioned principle of least-change.

Unfortunately, Meertens’ initially proposed technique is not able to scale up to
the complexity inherent to model transformation and, in fact, so far no bidirectional
transformation framework based on the constraint maintainer scheme has success-

1.2 GOALS AND CONTRIBUTIONS 7

fully addressed the two issues previously mentioned. A typical example regards the
Query/View/Transformation (QVT) standard proposed by the OMG (2011a) in the
context of the Model-driven Architecture (MDA) initiative with the intention of stan-
dardizing model transformation. One of the proposed QVT languages is QVT Relations

(QVT-R), in which transformations are specified through consistency relations, allowing
bidirectional reasoning. QVT-R transformations are expected to restore inter-model
consistency (correctness) and “check-before-enforce” (OMG, 2011a, p. 15) (stability).
Other than that, there are no guarantees that information from the models being updated
is preserved. Moreover, intra-model constraints are disregarded, and thus updated
models may potentially be ill-formed.

In terms of expressiveness, constraint maintainer frameworks subsume that of lens
frameworks—the previous cd2dbs problem could be specified by a consistency relation
that stated when a class diagram and a database schema are considered consistent.
Moreover, since transformations are now derived from constraints over the model-based
environment, global concepts like meta-model constraints and least-change principles
seem to be more naturally encoded. However, that comes at a cost: forfeiting the
combinatorial approach means that two coherent transformations must be derived from
a possibly non-executable consistency relation rather than being attained for free from
bidirectional primitives. In fact, constraint maintainers are not even suitable for simple
compositional reasoning (Meertens, 1998, p. 42).

1.2 Goals and Contributions

The goal of this thesis is to explore mechanisms to render bidirectional transformation
frameworks for non-tree-like data usable and predictable by addressing precisely the two
above-mentioned issues: correctness—transformations produce solutions that are both
inter- and intra-model consistent—and least-change—transformations apply minimal
updates, according to specified metrics.

The main contributions can be summarized as follows:

1. the extension of the combinatorial lens framework to support datatype invariants
over the transformation domains and the enforcement of least-change policies
over backward transformations is explored;

2. the formalization of the constraint maintainer framework over model finding

8 CHAPTER 1: INTRODUCTION

procedures is proposed, with regard for intra- and inter-model constraints and
least-change semantics;

3. the proposed constraint maintainer framework is implemented, providing bidi-
rectional semantics for existing model transformation languages and focusing on
the seamless integration with state-of-the-art MDE environments.

Lens framework We start by exploring the feasibility of extending the classic com-
binatorial lens framework with expressive datatype invariants over the transformation
domains in order to support meta-model constraints. Since existing lens frameworks
are mostly functional, the specific behavior of each transformation is decided at design
time—even though the round-tripping laws are loose and allow a wide range of valid
updates—and thus may produce outputs that break the overall domain constraints. We
study how providing the backward transformations with looser specifications, enabling
them to explore the whole range of valid updates and select one deemed more suitable,
affects the overall behavior of this lens framework. To promote usability, classic lens
frameworks require forward transformations to be surjective to assure the totality of
the backward transformation. By providing more refined datatypes we are also able to
support a more expressive language without lifting updatability guarantees.

Multi-valued transformations impose performance limitations, and thus we explore
whether constraint-aware syntactic approaches can be developed. Two instantiations for
the invariant-constrained lens framework are proposed: the first is a general-purpose
approach whose invariants and backward transformations are arbitrary relational ex-
pressions and the second is a domain-specific approach in the context of spreadsheet
formulas where a synthesis procedure calculates concrete backward transformations
from the system’s current invariants.

Next we formalize the concept of least-change lens and extensively explore how the
adoption of this principle affects the behavior of the transformations, in particular under
the sequential composition combinator. Again, we rely on looser specifications that,
by being able to explore the whole range of valid updates, may select those considered
minimal and support composition in scenarios where single-valued transformations
would fail. We show that the ability to customize the metric over which least-change
is enforced is essential to control the overall behavior of the system and capture the
intention of the user, and propose several criteria to test whether, under given metrics,
least-change is preserved by composition.

1.2 GOALS AND CONTRIBUTIONS 9

Constraint maintainer framework While the initial proposal of constraint main-
tainers already advocated the principle of least-change, the technique could not scale
up to more realistic applications, namely those in the MDE context. We provide a
general technique for the deployment of constraint maintainers for graph-like data
structures based on relational model finding procedures. To attain correctness, enforce-
ment semantics take into consideration both intra- and inter-model constraints, while
enforcing least-change involves extending model finding procedures as to produce
minimal updates. The impact of different model distances on the generation of solutions
in the context of MDE is also explored. The underlying model finding procedure can
be generalized to address other model transformation scenarios. In particular, we show
that it can be trivially extended to accommodate model repair, synchronization and the
multidirectional transformation scenarios.

We then present the translation of a concrete model transformation language into
this formalization of the constraint maintainer framework, namely that of QVT-R
transformations, whose update semantics are known to be affected by ambiguities. This
approach allowed us to clarify some of these issues due to its clear and predictable
semantics based on least-change, as opposed to the standard semantics and other
proposed implementations. Taking advantage of the general technique, we also address
the (heretofore widely disregarded) problem of QVT-R transformation over more than
two transformation domains.

Finally, we show that our technique can be used to bidirectionalize unidirectional
transformation languages, as long as sensible inter-model constraints can be derived
from the specifications. As a proof-of-concept, we propose an embedding of the
declarative subset of the widely used ATLAS transformation language (ATL) (Jouault
et al., 2008). ATL is inherently unidirectional and this embedding provides clear
bidirectional semantics with minimal effort, enabling the maintenance of the consistency
between models generated by ATL transformations.

Implementation The complexity of the proposed constraint maintainer and lens
frameworks amounted to that of solving procedures. While this may be expected in
the constraint maintainer framework where the system has to deal with global con-
straints, its occurrence in lens frameworks is more serious: combinatorial approaches
are expected to be built over simple and efficient primitives. Constraint maintainers
are also more expressive than lenses, since they may specify bidirectional transfor-

10 CHAPTER 1: INTRODUCTION

mations in symmetric scenarios. Hence, we chose to pursue the development of the
proposed constraint maintainer technique into an effective bidirectional transformation
framework.

This was attained by embedding MDE artifacts into model finding problems using
the Alloy specification language (Jackson, 2012), which can be analyzed through an
embedding in Kodkod, resulting in a procedure that is guaranteed to be correct and
complete (all valid solutions are calculated) over a bounded universe. To guarantee the
former, the system translates meta-models and any additional constraints over them
(e.g. annotations in the Object Constraint Language (OCL) proposed by the OMG
(2012)), building on previous work (Cunha et al., 2013), and model transformations
(concretely, QVT-R and ATL). To enforce the latter, model metrics are also inferred
from the meta-model.

To be useful in practice, the tool should seamlessly integrate standard MDE pro-
cesses and support standard MDE data formats. The outcome is Echo, a tool whose
goal is to promote the correct and predictable bidirectional model transformations,
deployed as an Eclipse1 plug-in, one of the most widely used IDE’s in MDE contexts,
and built over the Eclipse Modeling Framework (EMF)2. An extensive evaluation of
the behavior and performance of the developed tool is performed. Being solver-based,
performance is the bottleneck of our technique, so we attempt additional optimizations
by simplifying Alloy specifications, which prove to be of general application.

The unifying concept behind the development of this thesis is that of relational

logic, a formalization of first-order logic with relational operators and extended with
transitive closure operations. On the one hand, relational logic provides a higher level of
abstraction than plain first-order logic, rendering it more suitable to reason about MDE
problems, as the success of Kodkod/Alloy toolchain, built over relational logic, has
been proving; on the other hand, partial and multi-valued transformations are natural
concepts in relational formalisms, and have proved essential in the formalization of the
proposed frameworks.

1http://www.eclipse.org/.
2http://www.eclipse.org/modeling/emf/.

http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/

1.3 OVERVIEW 11

1.3 Overview

The remainder of this manuscript is structured in three parts.

Part I introduces the essential concepts required to understand the remainder of the
manuscript.

Chapter 2 introduces relational logic, the formal foundations over which the work of
this thesis is developed.

Chapter 3 presents basic bidirectional transformation concepts that are relevant for
the understanding and assessment of the proposed techniques.

Part II explores the development of lens frameworks over transformation domains
enhanced with datatype invariants and least-change policies.

Chapter 4 introduces a framework of invariant-constrained lenses as well two instanti-
ations that validate its feasibility. This framework was proposed in a publication
by Macedo, Pacheco, and Cunha (2012) and given a concrete instantiation in
Macedo, Pacheco, Cunha, and Sousa (2014c).

Chapter 5 introduces a framework of least-change lenses, analyzing their behavior
under sequential composition. This framework was proposed in a publication by
Macedo, Pacheco, Cunha, and Oliveira (2013b).

Part III explores the development of a correct and least-change constraint maintainer
framework over graph-like data structures.

Chapter 6 proposes the deployment of constraint maintainers (and other general MDE
tasks) as model finding procedures with minimality concerns.

Chapter 7 proposes the embedding into model finding problems of a concrete instanti-
ation of the constraint maintainer framework, namely QVT-R. This embedding
was proposed in publications by Macedo and Cunha (2013, 2014) and Macedo,
Cunha, and Pacheco (2014b).

Chapter 8 shows how to provide bidirectional semantics to unidirectional model
transformation language, using ATL as a proof-of-concept. This embedding was
proposed in a publication by Macedo and Cunha (2014).

12 CHAPTER 1: INTRODUCTION

Chapter 9 presents the deployment of the constraint maintainer framework over the
Alloy model finder as an Eclipse plugin. This resulted in a published tool
demonstration by Macedo, Guimarães, and Cunha (2013a) whose evaluation was
presented in a publication by Macedo and Cunha (2014).

Chapter 10 assesses the overall contribution of the thesis, and presents some possible
future work directions.

Part I

Preliminaries

13

Chapter 2

Relational Logic

The notion of relation is essential in various scientific areas, mathematics or philos-
ophy, since it embodies concepts that are ubiquitous in human knowledge—it is the
simplest mechanism through which relationships between two or more entities can be
denoted. As put by Augustus de Morgan in his seminal work on the calculus of binary
relations (Morgan, 1966, p. 119):

“When two objects, qualities, classes, or attributes, viewed together
by the mind, are seen under some connexion, that connexion is called a
relation.”

Although discussion over the nature of relations dates back to classical Greece, the
calculus of binary relations in its current form was first formalized by Morgan in
1860. His works were soon extended by Charles Sanders Peirce, and further developed
by Ernst Schröder. In 1941, Alfred Tarski finally axiomatized the calculus as the
relation algebra in the shape known today, allowing powerful equational reasoning
about relational expressions (Tarski and Givant, 1987).

Often relational logic provides a more natural way to specify programs than purely
functional formalisms: most so-called functions in computer science are actually partial,
and in many contexts multi-valued functions are essential to characterize programs.
With that in mind, since its first axiomatization by Tarski, a point-free version of
relational logic, inspired by category theory, has been used in a variety of areas of
computer science (Bird and de Moor, 1997; Oliveira, 2007, 2009) in order to specify and
reason about programs, due to its high simplicity and ease of manipulation, generalizing
the functional point-free notation popularized by John Backus (Backus, 1978).

15

16 CHAPTER 2: RELATIONAL LOGIC

Relations are also a natural framework in which to represent certain data domains,
the classic example being relational algebra, that formalizes operations over relational
databases and evolved from the calculus first proposed by Edgar F. Codd (Codd, 1970).
They are also a core concept in MDE: just consider many-to-many associations and
the natural notion of inverse navigations. Therefore, relational expressions will prove
suitable to represent not only transformations but also their data domains, an aspect
that relational specification languages fully exploit. In fact the relational logic behind
the Alloy specification language is inspired by both relation algebra and relational
algebra (Jackson, 2012, p. 326).

This chapter presents the relational formalism that will be used throughout the
dissertation. Section 2.1 presents the syntax of the supported language, while Section 2.2
presents the associated type system. Section 2.3 presents the semantics that allow
the evaluation of relational specifications. Finally, Section 2.4 presents some useful
properties of relational expressions. Section 2.5 wraps up the chapter and comments
on the choice of this formalism. Our formalism is mainly inspired by the application
of relation algebra to program construction by Bird and de Moor (1997) and by the
lightweight, set-theoretic, approach followed in Alloy.

2.1 Syntax

The relational formalism used throughout this dissertation is essentially a characteriza-
tion of first-order logic with operators from the calculus of relations, extended with the
transitive closure operator (sometimes called transitive-closure logic). As a running
example, recall the object-relational problem introduced in Chapter 1 and the very
simple constraint on CD meta-models, forcing the general association over classes to
be acyclic, already in relational logic notation:

∀ c : Class | ¬(〈c, c〉 ∈ general+) ACYCLICGEN

Basic relational expressions Relational expressions (nonterminal Expr at Figure 2.1)
represent relations between sets of elements drawn from the universe, denoted by upper-
case Latin characters (R, S , ...). A relation R that relates n > 0 elements is said to have
arity n (retrieved by |R|) or to be n-ary. Our formalism is assumed to be many-sorted
over S , with the fact that an element a belongs to a sort A ∈ S being denoted by a : A.

2.1 SYNTAX 17

Expr ::= Sort | Rel | Var | idSort | Expr ◦ Expr | Expr ◦ | Expr |
Expr ∪ Expr | Expr ∩ Expr | Expr × Expr |
Expr+ | Expr m Expr | Expr l Expr |
’{’ Decl { ,Decl } ’|’ Form ’}’ |
π1Sort×Sort | π2Sort×Sort | i1Sort+Sort | i2Sort+Sort |
consSort | nilSort | lengthSort

Form ::= True | False | Tuple ∈ Expr | Expr ⊆ Expr |
¬Form | Form ∧ Form | Form ∨ Form |
∀ Decl ’|’ Form | ∃ Decl ’|’ Form

Decl ::= Var : Expr

Tuple ::= 〈Var { ,Var }〉
Var ::= Iden | (Var ,Var)

Rel ::= Iden

Sort ::= Iden | Sort × Sort | Sort + Sort | [Sort]

Figure 2.1: Concrete syntax of relational expressions and formulae.

Sorts are typically identified by upper-case Latin characters (A,B , ...), while variables
are usually denoted by their container sort identifier in lower-case characters (a, b, ...)
(possibly with indexes). In this context, an n-ary relation R may be seen as a subset of
the cartesian product of n sorts A1, ..., An ∈ S , a fact denoted by R : A1↔ ...↔ An.

The strength of relational logic lies on its ability to build complex relations through
expressive combinators, that simplify formula reading and reasoning. The fundamental
operation is the sequential composition of relations as S ◦ R, for any two relations R
and S with |R|+ |S | − 2> 0. For any sort A, the identity binary relation idA embodies
variable equality between elements of A, being the neutral element of composition.
The sort identifier is dropped whenever clear from context. The inverse operation is
defined for every binary relation R as R◦, and inverts the order of the comprising tuples.
Two relations R and S with the same arity can also be combined under the typical
set-theoretic operations of union R ∪ S and intersection R ∩ S , while a relation R may
have its complement R calculated. The difference operation can be derived from the
complement as R \ S = R ∩ S . For any two relations R and S their cartesian product

R× S with arity |R|+ |S | is also assumed to exist. Variables a :A can also be called in
expressions, denoted by the nonterminal Var . For any sort B , it is possible to define the

18 CHAPTER 2: RELATIONAL LOGIC

constant relation aB that relates every element from B with a , defined by the cartesian
product A × a. Given an unary relation R, a binary relation S may be left- or right-
restricted by R values as RmS and SlR, respectively. Nonterminal symbol Rel denotes
free relation variables, denoted by typewriter upper-case Latin characters (R, S, ...),
which must be assigned concrete values at evaluation time, essential to incorporate
external information into relational expressions. In ACYCLICGEN, general is one
such relation: whenever the constraint is tested, it must be assigned a constant tuple set
that embodies the general association of the model instance being checked. Relations
may also be constructed by comprehension, selecting the variable tuples for which the
provided formula holds.

Relational logic extends first-order logic by supporting transitive closure and reflex-

ive transitive closure operators, that allow the definition of (otherwise inexpressible)
reachability properties. The transitive closure R+ of a binary relation R is the smallest
transitive relation that contains R. The reflexive transitive closure R∗ of a binary rela-
tion R is the smallest relation containing R that is transitive and reflexive, and can be
defined as R∗ = R+ ∪ id (these properties will be defined shortly in Section 2.4). In
ACYCLICGEN, the transitive closure general+ retrieves all parent classes of a given
class.

Expressions over products, sums and lists are also supported. These will be explored
further below, where these composite sorts are presented.

Relational formulae Formulae (nonterminal Form at Figure 2.1) are expressions that
(given an interpretation and an assignment for the free variables) evaluate to either true
or false, and are typically denoted by lower case Greek characters (φ, ψ, ...). Atomic
formulae either consist of the application of relations to tuples of variables with the
appropriate arity, as 〈a1, ..., an〉 ∈ R for |R| = n, or the comparison of relations with
the same arity through inclusion as R ⊆ S . Relational equality is typically defined by
anti-symmetry as R = S ≡ R ⊆ S ∧ S ⊆ R. In ACYCLICGEN there is a single atomic
formula 〈c, c〉 ∈ general+ that tests whether c is its own super class. Since variables
can be called in expressions, this formula could also be rewritten as 〈c〉 ∈ general+◦c,
giving it a more object-oriented flavor.

Relational formulae are built from typical logical connectives, concretely, unary
negation ¬ and binary conjunction ∧, disjunction ∨ and the derived implication ⇒
and equivalence ≡, as well as the boolean constants True and False. Element variables

2.2 STATIC SEMANTICS 19

are introduced by first-order universal ∀ and existential ∃ quantifications (second-
order quantifications of relation variables are not allowed). For an unary relation
R, notation (∀ a : R | φ) and (∃ a : R | φ) is used to restrict the range of a to
values belonging to R. Nested variable quantifications are typically abbreviated as
(∀ a11, ..., a1i : R1, ..., an1, ..., anj : Rn) (and similarly for existential quantifications).
Occasionally the uniqueness quantification (∃1 a : R | φ) will also be used, which
abbreviates the formula (∃ a : R | φ ∧ ¬(∃ a ′ : R | φ ∧ a 6= a ′)). In ACYCLICGEN,
the constraint quantifies over all classes c, and states that it may not belong to its own
super classes.

To improve readability, if-then-else statements are occasionally used, where expres-
sions if φ then ψ else θ abbreviates (φ ∧ ψ) ∨ (¬φ ∧ θ).

2.2 Static Semantics

Type systems provide extra information about the behavior of expressions, and improve
the ability to statically detect errors, filtering out expressions whose result would be
deemed ill-formed (Pierce, 2002). In the context of relational logic, a (lightweight) type
system can be simulated by assuming the formalism to be many-sorted.

Order-sorted logic The chosen relational formalism is order-sorted, meaning that
S forms a lattice of sorts. In this setting, sorts are not necessarily disjoint, but may be
contained one in another, entailed by the partial order vS : for any two sorts A1,A2 ∈ S
such that A1 vS A2, a :A1 implies a :A2. Unrelated sorts, i.e., A1 6vS A2∧A2 6vS A1,
are disjoint. Thus, this setting embodies a simple hierarchic type system. Two sorts A
and B always have a greatest lower-bound A uS B—which, at the limit, is the smallest
sort ∅ that contains no elements—and smallest upper-bound A tS B—which, at the
limit, is the largest sort U , containing all elements of the universe. Sorts are either
primitive (Z,N, ...) or user-defined (denoted by typewriter upper-case Latin characters),
as the sort Class in the running example. Table 2.1 summarizes the supported sorts
and the corresponding type-checking operations.

For any relational formula φ or relational expression R : A1↔ ...↔ An, their type
(retrieved by Γ(φ) or Γ(R)) is inferred by the typing rules from Figures 2.2 and 2.3,
respectively. There, Γ(R)i , for 1 6 i 6 |R|, denotes the sort of the ith component
of R. To infer the type of an expression, the type of occurring free relations must be

20 CHAPTER 2: RELATIONAL LOGIC

definition sort test

primitive sort

B a : B ≡ a = True ∨ a = False

N a : N ≡ a ∈ N
Z a : Z ≡ a ∈ Z
...

user-defined A a : A ≡ a ∈ e (A)

constants
U a : U ≡ True

∅ a : ∅ ≡ False

product A1 × A2 (a1, a2) : A1 × A2 ≡ a1 : A1 ∧ a2 : A2

sum A1 + A2
(i1 a1) : A1 + A2 ≡ a1 : A1

(i2 a2) : A1 + A2 ≡ a2 : A2

list [A]
[] : [A] ≡ True

(h : t) : [A] ≡ h : A ∧ t : [A]

Table 2.1: Supported sorts.

declared and provided in the starting context; this set of declarations is denoted byR.
In ACYCLICGEN, there is a single free relation, declared as general :Class↔Class.
In an order-sorted setting, relation application is not strict, meaning that a formula that
applies a relation to a tuple with mismatching type is still well-formed and evaluates to
false; the application of a relation R :A1↔ ...↔An to a tuple 〈a1, ..., an〉 is equivalent
to a1 : A1 ∧ ... ∧ an : An ∧ 〈a1, ..., an〉 ∈ R, meaning that it is only evaluated if the
variables type-check.

Since sorts essentially represent sets of elements, each sort A ∈ S is assumed to
give rise to a unary relation A : P(A) that represents the elements belonging to sort A
(nonterminal Sort in Figure 2.1). In ACYCLICGEN, the sort Class also introduces
a unary relation Class that contains all elements of the respective sort, over which
the c quantification is defined. From these sort-derived unary relations, two families
of relational constants emerge. For any n sorts A1, ..., An ∈ S, the universal relation
>A1×...×An , the largest relation over those sorts, is defined by their cartesian product
A1 × ...×An; for any arity n, the empty n-ary relation ⊥n is assumed is defined by the
n-ary cartesian product of the empty sort ∅ (the subscripts are dropped if no ambiguity
arises).

2.2 STATIC SEMANTICS 21

Γ ` True Γ ` False

Γ ` a1 : A1 ... Γ ` an : An Γ ` R : B1↔ ...↔Bn

Γ ` 〈a1, ..., an〉 ∈ R

Γ ` R : A1↔ ...↔ An Γ ` S : B1↔ ...↔Bn

Γ ` R ⊆ S

Γ ` φ
Γ ` ¬φ

Γ ` φ Γ ` ψ
Γ ` φ ∧ ψ

Γ ` φ Γ ` ψ
Γ ` φ ∨ ψ

Γ ` R : PA Γ ⊕ a : A ` φ
Γ ` ∀ a : R | φ

Γ ` R : PA Γ ⊕ a : A ` φ
Γ ` ∃ a : R | φ

Figure 2.2: Type-inference rules for relational formulae.

Composite datatypes To improve the expressiveness of the formalism, S is assumed
to be closed under binary products (×) (i.e., pairs of elements) and coproducts (+)

(i.e., tagged unions), thus (∀ A1,A2 ∈ S | A1 × A2 ∈ S ∧ A1 + A2 ∈ S). Pairs
(a1, a2) : A1 × A2 are deconstructed by projections π1A1×A2

and π2A1×A2
that retrieve

its first (a1 : A1) or second (a2 : A2) element, respectively. Tagged unions A1 + A2

are introduced by injections i1A1+A2
and i2A1+A2

, that tag elements a1 : A1 or a2 : A2

to the left (i1 a1 : A1 + A2) or right (i2 a2 : A1 + A2) sort, respectively. The type
subscript of projections and injections is dropped when there is no ambiguity. Notice
that the notation i1 and i2 is overloaded to represent both the operations that tag the
element and the tag itself (much like constructors in the Haskell functional language).
Type-checking operations over composite types are also presented in Table 2.1.

Useful combinators over composite datatypes may be derived from the primitive
combinators. Expressions may introduce tuples through the fork operator R M S : A↔
B × C that applies two relations R : A↔ B and S : A↔ C to the same input value,
defined as R M S = (π◦1 ◦ R) ∩ (π◦2 ◦ S). In a similar manner, disjoint unions may be
deconstructed by the either operation R O S : B + C ↔ A that applies R : B ↔ A or
S : C ↔A to the input depending on the tag, defined as R O S = (R ◦ i1◦) ∪ (S ◦ i2◦).

For every sort A ∈ S, S is also assumed to be closed under list types [A]. These

22 CHAPTER 2: RELATIONAL LOGIC

Γ (a) = A

Γ ` a : A

Γ (R) = A1↔ ...↔ An
Γ ` R : A1↔ ...↔ An

Γ ` A : PA Γ ` idA : A↔ A

Γ ` R : A1↔ ...↔ An Γ ` S : B1↔ ...↔Bm

Γ ` S ◦ R : A1↔ ...↔ An−1↔ B2↔Bm

Γ ` R : A↔ B

Γ ` R◦ : B ↔ A

Γ ` R : A↔ B

Γ ` R : A↔ B

Γ ` R : A1↔ ...↔ An Γ ` S : B1↔ ...↔Bn

Γ ` R ∪ S : A1 tS B1↔ ...↔ An tS Bn

Γ ` R : A1↔ ...↔ An Γ ` S : B1↔ ...↔Bn

Γ ` R ∩ S : A1 uS B1↔ ...↔ An uS Bn

Γ ` R : A1↔ ...↔ An Γ ` S : B1↔ ...↔Bm

Γ ` R × S : A1↔ ...↔ An↔ B1↔ ...↔Bm

Γ ` R : A↔ B S : PC

Γ ` S l R : A uS C ↔ B

Γ ` R : A↔ B S : PC

Γ ` R m S : A↔ B uS C

Γ ` R1 : PA1 ... Γ ` R1 : PA1 Γ ⊕ a1 : A1 ⊕ ...⊕ an : An ` φ
Γ ` {a1 : R1, ..., an : Rn | φ} : A1↔ ...↔ An

Γ ` π1A×B : A× B ↔ A Γ ` π2A×B : A× B ↔ B

Γ ` i1A+B : A↔ A + B Γ ` i2A+B : B ↔ A + B

Γ ` cons[A] : A× [A]↔ [A] Γ ` nil[A] : [A]

Γ ` length[A] : [A]↔ N
Γ ` R : A↔ B

Γ ` R+ : A↔ B

Figure 2.3: Type-inference rules for primitive relational combinators.

2.3 DYNAMIC SEMANTICS 23

JR ⊆ SKe ≡
J∀ a1 : Γ(R)1, ..., a|R| : Γ(R)|R| | 〈a1, ..., a|R|〉 ∈ R ⇒ 〈a1, ..., a|R|〉 ∈ SKe

J¬φKe ≡ ¬JφKe

Jφ ∧ ψKe ≡ JφKe ∧ JψKe

Jφ ∨ ψKe ≡ JφKe ∨ JψKe

J∀ a : R | φKe ≡ ∀ k : Γ(R)1 | J〈a〉 ∈ R ⇒ φKe ⊕ a 7→k

J∃ a : R | φKe ≡ ∃ k : Γ(R)1 | J〈a〉 ∈ R ∧ φKe ⊕ a 7→k

Figure 2.4: Semantics of relational formulae.

are constructed by the cons[A] (usually denoted in infix notation (h : t) = cons (h, t))
and nil[A] (usually denoted simply by []) operations1. Operations head and tail, that
deconstruct lists, can be derived as head = π1 ◦ cons◦ and tail = π2 ◦ cons◦, since cons◦

splits a non-empty list into its head and tail. Other standard operations over lists, like
length are assumed to exist2.

2.3 Dynamic Semantics

To be evaluated, the combinators that comprise relational formulae and expressions
must be given concrete semantics.

Formula semantics For a relational formula φ, its evaluation JφKe calculates its truth
value given an environment e that binds free variables to concrete tuple sets. Logical
connectives and quantifications are interpreted under standard boolean semantics, as
depicted in Figure 2.4. Relational inclusion is expanded to its point-wise definition: a
relation is contained in another if all its elements are. Inequations are converted to their
point-wise definition, with the introduced variables assumed to be fresh. Quantifications

1In the calculus of binary relations, recursive data types are defined as fixed points of regular functors.
Given a base functor F , let µF denote the inductive type generated by its least fixed point. For example,
for lists we would have [A] = µ(1 + (A × Id)). Two unique functions in : F (µF) → µF and
out : µF → F (µF), that are each other’s inverse, are associated with each data type µF , which allow
to encode and inspect values of the given type, respectively. In this context, the list constructors can be
defined as nil = in ◦ i1 and cons = in ◦ i2, (thus nil O cons = in).

2Recursion in the calculus of binary relations is typically defined using well-known recursion patterns,
namely folds (catamorphisms) and unfolds (anamorphisms), that encode the recursion patterns of
iteration and coiteration, respectively. In lists, fold (|R|) : [A]↔B consumes lists according to an algebra
R :F B↔B , while the dual unfold bd(S)ce :B↔ [A] produces lists according to a coalgebra S :F A↔A.
In this context, length can be defined as (|0 O (succ ◦ π2)|).

24 CHAPTER 2: RELATIONAL LOGIC

J〈a〉 ∈ AKe ≡ e (a) : A

J〈a1, ..., an〉 ∈ RKe ≡ (e (a1), ..., e (an)) ∈ e (R)

J〈a1〉 ∈ a2Ke ≡ e (a1) = e (a2)

J〈a1, a2〉 ∈ idKe ≡ e (a1) = e (a2)

J〈a1, ..., a|R|−1, b2, ..., b|S |〉 ∈ S ◦ RKe ≡
∃ k : Γ(R)|R| uS Γ(S)1 | J〈a1, ..., a|R|−1, k〉 ∈ RK ∧ J〈k , b2, ..., b|S |〉 ∈ SKee ⊕ k 7→k

J〈a, b〉 ∈ R◦Ke ≡ J〈b, a〉 ∈ RKe

J〈a1, ..., an〉 ∈ RKe ≡ ¬J〈a1, ..., an〉 ∈ RKe

J〈a1, ...an〉 ∈ R ∪ SKe ≡ J〈a1, ...an〉 ∈ RKe ∨ J〈a1, ...an〉 ∈ SKe

J〈a1, ...an〉 ∈ R ∩ SKe ≡ J〈a1, ...an〉 ∈ RKe ∧ J〈a1, ...an〉 ∈ SKe

J〈a1, ..., an, b1, ..., bm〉 ∈ R × SKe ≡ 〈a1, ..., an〉 ∈ R ∧ 〈b1, ..., bm〉 ∈ S

J〈a1, a2〉 ∈ R+Ke ≡ J〈a1, a2〉 ∈ RKe ∨ J〈a1, a2〉 ∈ R ◦ RKe ∨ ...

J〈a1, a2〉 ∈ S l RKe ≡ 〈a1, a2〉 ∈ R ∧ 〈a1〉 ∈ S

J〈a1, a2〉 ∈ R m SKe ≡ 〈a1, a2〉 ∈ R ∧ 〈a2〉 ∈ S

J〈a1, ..., an〉 ∈ {k1 : R1, ..., kn : Rn | φ}Ke ≡
J〈a1〉 ∈ R1 ∧ ... ∧ 〈an〉 ∈ Rn ∧ φ [k1 7→ a1, ..., kn 7→ an]Ke

J〈a1, (a2, a3)〉 ∈ π1Ke ≡ e (a1) = e (a2)

J〈a1, (a2, a3)〉 ∈ π2Ke ≡ e (a1) = e (a3)

J〈a2, a1〉 ∈ i1Ke ≡ e (a2) = i1 (e (a1))

J〈a2, a1〉 ∈ i2Ke ≡ e (a2) = i2 (e (a1))

J〈(a1, l1), l2〉 ∈ consKe ≡ e (a1) : e l1 = e l2

J〈l〉 ∈ nilKe ≡ e (l) = []

J〈l , n〉 ∈ lengthKe ≡ length (e (l)) = e (n)

Figure 2.5: Semantics of relational expressions.

over a : R are converted to quantifications at the meta-logic level that iterate through
concrete elements of the type of R, denoted in sans serif typeface (k). Given two
mappings, operation ⊕ overrides shared keys with the value of the second.

For a relational expression R, variable application J〈a1, ..., an〉 ∈ RKe is evaluated
following the definitions in Figure 2.5 that expands the definitions of the relational
operators. These are inspired by the set-theoretic representation of relations and are
mostly self-explanatory. Note that at the primitive combinator level, the valuation of
each element and relation variable must be retrieved from the environment e.

2.3 DYNAMIC SEMANTICS 25

Expression execution When dealing exclusively with binary relations, expressions
can be seen as multi-valued functions (functions that return sets of values). Thus, for
a binary relation R : A↔ B , variable application 〈a, b〉 ∈ R is usually denoted by
b ∈ R a (binary relations are assumed to be run from left to right, consuming A values
and generating B values). This alternative semantics can be trivially defined by set
comprehension as J|||R |||Ke a = {b | J〈a, b〉 ∈ RKe, b ← B }. However, as should be
expected, such definition is highly inefficient and may not even terminate if the output
sort B is infinite. Even with a finite output sort, the execution of a relational expression
may not terminate due to the occurrence of composition, that entails an existential
quantification over a possibly infinite range of elements.

With product sorts, every relation with arity n > 2 may be converted to a binary
version that consumes and/or produces pairs. Unary relations are typically represented
by coreflexive relations (more on this in Section 2.4).

Datatype invariants The simple order-sorted type system may fall short when a more
in-depth understanding of the specification is required: a more refined type system,
that conveys more information about the data domains, allows the development of
extended static checking procedures. In a more technical concern, types can also be
used to improve the efficiency of execution (Pierce, 2002). One possible solution is to
enhance data domains with datatypes invariants that restrict the range of acceptable
values. In fact, the calculus of binary relations has shown be sufficiently expressive and
manageable to perform this kind of tasks (Oliveira, 2009). As should be expected, this
improved expressibility power comes at the cost of the decidability of the type-checking
and type-inference.

A datatype invariant φ over domain A is interpreted as a subset of A. Such con-
strained datatype is denoted by Aφ, and an element is said to belong to it only if it also
belongs to φ, i.e., a :Aφ ≡ a :A∧ 〈a〉 ∈ φ. For a binary relation R :A↔B , expression
R : Aφ↔Bψ denotes the fact that R, when fed values for which φ holds, only produces
values for which ψ holds, i.e.:

∀ a : A, b : B | 〈a〉 ∈ φ ∧ 〈a, b〉 ∈ R ⇒ 〈b〉 ∈ ψ

26 CHAPTER 2: RELATIONAL LOGIC

2.4 Binary Relation Properties

Binary relations are the most commonly occurring relations—being intuitively seen as a
procedure that given an input variable produces a (possibly empty) set of outputs—and
as mentioned in Section 2.3, n-ary relations can always be converted to a binary version.
Additionally, binary relations also benefit from interesting properties which deserve
a deeper presentation. Some of the laws ruling the calculus of binary relations are
presented in Appendix A.

Coreflexives An endo-relation R :A↔A (a binary relation between the same sorts) is
said to be coreflexive if it is a subset of the identity relation (i.e., R ⊆ id), as opposed to
reflexive relations, that are a superset of the identity relation (i.e., id ⊆ R). Coreflexive
relations share interesting properties and thus are usually differentiated by upper-case
Greek characters (Φ,Ψ, ...). Since they always return the same value taken as input,
they act as filters of data: an input value is either outputted unmodified or nothing is
outputted. They can also be used to represent sets (relations with arity n = 1) under
the binary context. For a set φ, ψ, ... : PA, we denote the matching coreflexive by the
respective upper-case Greek character Φ,Ψ, ... : A↔ A, i.e., 〈a, a〉 ∈ Φ ≡ 〈a〉 ∈ φ.
Coreflexives have interesting algebraic properties that simplify their manipulation like,
for example, Φ◦ = Φ, Φ ◦ Φ = Φ, and Φ ◦Ψ = Φ ∩Ψ.

For every binary relation R : A ↔ B , we assume the existence of two special
coreflexives that represent its domain (δR :A↔A) and range (ρR :B↔B). By domain
(range) we mean the exact set of values that are consumed (produced) by a relation, that
is typically smaller than B (A). As should be expected, R = R ◦ δR = ρR ◦ R.

A useful operator over coreflexives is the guard. For a coreflexive Φ : A↔ A,
Φ? = (Φ O (id \ Φ))◦ : A + A↔ A tags the input as a left or right value in a sum,
depending on the result of the test Φ. Composed with an either R O S : A + A↔ B , it
allows the representation of conditionals Φ ? R : S = (R O S) ◦ Φ ? :A↔ B , which
apply R if the input element belongs to Φ, and S otherwise.

Families of relations For every binary relation R : A↔ B we define its kernel and
image as ker R : A↔ A = R◦ ◦ R and img R : B ↔ B = R ◦ R◦, respectively. The
kernel of a relation establishes a kind of equivalence relation between input values that
share the same output, and vice-versa for its image. Thus, these artifacts can be used to
explore certain properties of binary relations, as presented in Table 2.2. For instance, if

2.4 BINARY RELATION PROPERTIES 27

kernel image
reflexive total surjective

coreflexive simple injective

Table 2.2: Relation classification under kernel and image (Oliveira, 2007).

binary relation

injective total simple surjective

representation function abstraction

injection surjection

bijection

Figure 2.6: A taxonomy for binary relations (Oliveira, 2007).

the image of a relation is coreflexive, then no inputs share the same output, and thus the
relation is injective.

Different combinations of these properties give rise to different classes of binary
relations, as depicted in Figure 2.6 (Oliveira, 2007). Following this taxonomy, functions

are the special class of relations which are simple and total. These will typically be
denoted by lower-case Latin characters in order to be distinguished from relations, and
typed as f :A→ B , with membership test usually denoted by b = f a . Partial functions
(i.e., simple relations) are usually typed by f : A⇀ B .

Since the kernel (and image) of a relation relates inputs (outputs) that share outputs
(inputs)—including themselves—it also contains information about the domain and
range of a relation. Concretely, in the binary context, for a relation R, coreflexives
denoting its domain δR may be calculated as ker R ∩ id and its range ρR as img R ∩ id.
As expected, if a relation is total then id ⊆ ker R, and thus δR = id (and similarly for
surjective relations).

Orders Binary relations may also be used to represent orders over data domains. A
preorder R :A↔A over A is an endo-relation that is reflexive and transitive (R◦R ⊆ R

or 〈a1, a2〉 ∈ R ∧ 〈a2, a3〉 ∈ R ⇒ 〈a1, a3〉 ∈ R). A preorder that is also anti-symmetric

(R ∩ R◦ ⊆ id or 〈a1, a2〉 ∈ R ∧ 〈a2, a1〉 ∈ R ⇒ a1 = a2) is a partial order, while a
preorder that is symmetric (R = R◦ or 〈a1, a2〉 ∈ R ≡ 〈a2, a1〉 ∈ R) is an equivalence

28 CHAPTER 2: RELATIONAL LOGIC

relation. If every pair of elements is comparable under a preorder R :A↔A (R∪R◦ = >
or 〈a1, a2〉 ∈ R ∨ 〈a2, a1〉 ∈ R), then the preorder is said to be total; a total partial order
is a linear order. Orders are typically depicted in infix notation a1 R a2 if 〈a1, a2〉 ∈ R.

Point-free notation Relational expressions comprised of the introduced operators and
compared through inequations, give rise to a simple point-free (or variable-free) notation
that, along with the powerful equational laws from Appendix A, provide a simpler
way to reason and manipulate relational expressions. In fact, with the introduction of
products and forks, the resulting logical system is as expressive as first-order logic.
Thus, point-wise formulae are sometimes converted to their point-free counterpart to
ease manipulation, a method known as the point-free transform (Oliveira, 2009). The
simplicity of this calculus of binary relations is manifest, for instance, in the definition
of injectivity, as the following simple calculations demonstrate:

R◦ ◦ R ⊆ id

≡ {-⊆ (Figure 2.4) -}
∀ a2, a

′
2 : A2 | 〈a2, a

′
2〉 ∈ R◦ ◦ R ⇒ 〈a2, a

′
2〉 ∈ id

≡ {-◦ (Figure 2.5) -}
∀ a2, a

′
2 : A2 | (∃ a1 : A1 | 〈a2, a1〉 ∈ R ∧ 〈a1, a

′
2〉 ∈ R◦)⇒ 〈a2, a

′
2〉 ∈ id

≡ {-·◦, id (Figure 2.5) -}
∀ a2, a

′
2 : A2 | (∃ a1 : A1 | 〈a2, a1〉 ∈ R ∧ 〈a ′2, a1〉 ∈ R)⇒ a2 = a ′2

2.5 Discussion

Our main goal when defining the logical system was to achieve a balance between the
many-sorted, category theory-inspired, calculus of binary relations used in the “algebra
of programming” (Bird and de Moor, 1997; Oliveira, 2009) and the loosely-typed
and flexible language over n-ary relations supported by the Alloy/Kodkod relational
specification languages, over which the technique from Part III is built. The two
main gaps are precisely the binary vs. arbitrary arity of relations and the type system.
This relationship between the calculus of binary relations and Alloy has already been
previously explored (Frias et al., 2004; Macedo, 2010; Macedo and Cunha, 2012).

Basic binary relational expressions amount to the relation algebra formalized by
Tarski (Tarski and Givant, 1987). Relation algebra is however only as expressive as

2.5 DISCUSSION 29

first-order logic restricted to three variables. The introduction of product types and
forks gives rise to fork algebra (Frias, 2002), which is as expressive as unrestricted
first-order logic. Further developments formalized the calculus of binary relations under
category theory, where it embodies the notion of allegory (Freyd and Scedrov, 1990).
Unlike relation (and fork) algebra, the categorical perspective is many-sorted and thus
is better suited to represent and calculate programs (Bird and de Moor, 1997; Oliveira,
2009).

Instead of following this strict formalism, by defining an order-sorted formalism,
we follow the approach of systems like Alloy (Edwards et al., 2004), that possess a
laxer type system. The consequence is that operations like the union of two relations
R : A1↔A2 and S : B1↔B2 is well-formed in our formalism, while in the categorical
setting it would not be. Nonetheless, the type-inference and type-checking remain
decidable.

Relations of arbitrary arity are required for the development of this dissertation,
thus the choice of allowing relations with arity different than 2. Nonetheless, as has
been shown, relations with arity n > 2 may be easily embedded in binary relations
between tuples, while those with arity n = 1 may be encoded as coreflexives. Thus,
when suitable, n-ary relations are interpreted as binary relations, in order to harness the
full power of the calculus of binary relations.

30 CHAPTER 2: RELATIONAL LOGIC

Chapter 3

Bidirectional Transformation

Bidirectional transformation frameworks emerged in a variety of computer science dis-
ciplines and application contexts, and thus exhibit different shapes and properties (Czar-
necki et al., 2009). In this chapter we provide a brief overview of the characteristics
deemed relevant for the understanding of this dissertation, with a particular focus on
bidirectional model transformation and least-change bidirectional transformation. Un-
less explicitly stated, in this chapter a “transformation” amounts to a partial function
(i.e., a simple binary relation).

3.1 Basic Concepts

Scheme Bidirectional transformations take different shapes depending on the con-
text being applied. In fact, the choice of the transformations’ scheme greatly affects
the expressivity and range of possible properties of the bidirectional transformation
framework (Diskin, 2011; Pacheco et al., 2013).

In the most simple setting, a bidirectional transformation between data domains A
and B may consist simply of transformations tot : A⇀B and fromt : B ⇀A, denoting
a bidirectional mapping t . Such is the case, for instance, when tot and fromt are each
others inverse, resulting in a bijection between the transformation domains (Brabrand
et al., 2005). More relaxed frameworks may allow transformations between data
domains containing different information as long as one of the transformations is
injective, i.e., it is information-preserving (Mu et al., 2004). Bidirectional mappings
over non-injective transformations may also be defined, but due to information loss,
the system must disambiguate the range of possible solutions (Kawanaka and Hosoya,

31

32 CHAPTER 3: BIDIRECTIONAL TRANSFORMATION

2006).

In order to achieve better round-tripping properties, bidirectional transformations
typically take into consideration extra information from the pre-state of the target do-
main (the transformation domain into which the update is being propagated), rather
than just the state of the updated source. The bidirectional transformation framework of
lenses developed by Foster et al. (2007) is one such example1. Bidirectional transforma-
tions in lenses are asymmetrical: a lens f is comprised of transformations getf :A⇀B ,
that produces B values from A values, and putf : A× B ⇀ A, that produces A values
from B values, possibly considering extra information from the pre-state of the A

domain. For this reason, lenses are better suited for scenarios where B contains less
information than A, i.e., B is a view of A. In fact, lenses are inspired by the seminal
works on the view-update problem from the database community (how can updates on
a database view be propagated back to the original tables?) studied by Bancilhon and
Spyratos (1981), Dayal and Bernstein (1982) and Gottlob et al. (1988).

In the most general scenario both transformation domains have information not
present in the other. Bidirectionality in this context is usually achieved by the symmetric
constraint maintainer framework introduced by Meertens (1998)—since there is no
“dominant” data domain, rather than specified by a transformation, maintainers are
specified by a declarative constraint that defines the notion of consistent state. A
maintainer T between transformation domains A and B consists of a consistency
relation T :A↔B , that defines when two values are consistent, and two transformations
−→
T :A×B⇀B and

←−
T :A×B⇀A that set as the target domain either B or A, respectively,

retrieving extra information from their pre-state.

Specification artifact One main difference between these schemes is the artifact
through which the bidirectional transformation is specified—either through one of the
transformations, from which the system must derive the backward propagation proce-
dure, or through a declarative constraint, from which both the forward and backward
propagation procedures must be derived.

Typically, transformation specifications are used in asymmetric contexts when
there is a dominant flow of information, making one of the transformations “easier”
to specify (although some advocate the specification of the backward transformation

1In this presentation we consider to be a lens framework any asymmetric framework comprised of
transformations of the shape getf : A⇀ B and putf : A × B ↔ A, rather than just the combinatorial
framework over semantic types first introduced by Foster et al. (2007).

3.1 BASIC CONCEPTS 33

instead (Pacheco et al., 2014)). This kind of framework is also more prone to composi-
tional reasoning, as transformations are typically composable. Such is the case of lenses,
where writing a forward transformation entails the backward semantics. Constraint
specifications usually consist of consistency relations that define when the system
is consistent, and is the approach followed by the constraint maintainer framework.
Constraints are typically more expressive than transformations, as they may naturally
represent partial and many-to-many relationships. To achieve a bidirectional transforma-
tion however, either a constraint is given executable semantics—like embedding them
on a constraint solving problem—or concrete transformations are syntactically derived
from it. This kind of framework is also not prone to compositional reasoning (Meertens,
1998, p. 42).

Bidirectionalization technique Bidirectionalization is the process through which the
bidirectional behavior of a bidirectional transformation framework is attained2. These
can be broadly divided into three classes.

Combinatorial transformation languages are typically domain-specific languages
where each primitive or combinator is embedded with both forward and backward
semantics (Foster et al., 2007; Hu et al., 2008; Pacheco and Cunha, 2010; Hofmann
et al., 2011). In this kind of framework, when the user writes a transformation she
is implicitly defining both transformations, which are correct-by-construction. The
strength of these frameworks lies on the fact that combinators are expected to preserve
the round-tripping properties given opaque lenses.

In contrast, syntactic approaches produce the bidirectional transformation through
the syntactic analysis of the specification artifact at compilation time (Brabrand et al.,
2005; Kawanaka and Hosoya, 2006; Matsuda et al., 2007; Ehrig et al., 2007). These are
required if operational transformations are to be derived from declarative specifications,
when a global analysis of the program is required or in the bidirectionalization of
general-purpose languages. Other approaches require extra information from the state
of the system to perform backward evaluation, and thus post-pone the generation
of the backward transformation to run-time (Voigtländer, 2009). In these semantic

approaches, backward evaluation is performed at run-time by analyzing the state of
specific executions. One advantage of these frameworks is that they may abstract away

2Some literature (Czarnecki et al., 2009) considers “bidirectionalization” the process through which
a forward transformation is given backward semantics, excluding combinatorial approaches where the
putback is implicitly defined in each combinator. Here a broader perspective is considered.

34 CHAPTER 3: BIDIRECTIONAL TRANSFORMATION

from the concrete language over which the transformation was specified. Classification
is many times not as straight-forward as choosing one of these approaches. For instance,
some syntactic techniques may generate transformations that perform additional tests
at run-time, borrowing aspects from semantic techniques (Voigtländer et al., 2010;
Cicchetti et al., 2010).

Update representation Transformations may be provided different levels of infor-
mation about how the post-state of the source domain was attained3. In state-based

bidirectional transformations, transformations take as input only the post-state value
of the source, ignoring how it was attained from the pre-state value. These can lead to
incorrect updates, since, for instance, the removal and insertion of an object with the
same name may be identified as a modification. This problem of matching information
from the pre- and post-states is known as the alignment problem, and is still an active
research topic in bidirectional transformation (Barbosa et al., 2010; Diskin et al., 2011;
Pacheco et al., 2012).

One possible solution is to rely on delta-based (or operation-based) transforma-
tions (Diskin et al., 2011), where besides the updated state, transformations are given
extra information on how it was attained from the pre-state. Concrete instantiations
of operation-based frameworks include the representation of the exact sequence of
editing operations (a history-based, or directed, representation) or simply establishing
a correspondence between elements of the original and updated states (a canonical,
or symmetric, representation). As the name implies, history-based updates can be
converted into canonical updates by removing possible redundancies in the editing
sequence. However, operation-based approaches may be more complex to implement,
and sometimes there is still the need to restrict the range of possible operations in order
to avoid an excessive complexity of the system.

Multi-valued transformations As already stated, and shall be made evident in Sec-
tion 3.2, round-tripping laws are sufficiently loose to allow multiple valid update
propagations. Typically, the bidirectionalization technique chooses at design time the
specific behavior of the transformations, in order to render the framework functional
and effective in practice. This however may reduce the updatability of the system, since

3This axis regards representability of vertical updates—the traceability between the pre- and post-
states of the source domain being consumed by the transformation—in contrast to that of horizontal
updates—the traceability between the two transformation domains (Diskin et al., 2011).

3.1 BASIC CONCEPTS 35

particular execution environments (like those with domain constraints) may render
some updates invalid. An alternative would be to allow multi-valued transformations,
enabling transformations to produce multiple valid values at each step, thus not com-
mitting to particular values and not reducing the choices of succeeding transformations.
Multi-valued transformations are not necessarily non-deterministic: if the same set of
values is always produced by a transformation, this is actually a deterministic procedure.
Pure non-determinism—like simply selecting a random element from the output of
a multi-valued transformation—is undesirable as it reduces the predictability of the
system (Stevens, 2010).

Transformation domain Bidirectional transformation frameworks are defined with
different application scenarios in mind, which has implications on the data structures
manipulated by the transformations. While some are clearly more expressive than
others, there is always a trade-off between the expressiveness, the efficiency and the
complexity of the transformations over those structures.

Strings are one of the simplest data structures, defining ordered unstructured data.
This simplicity allows extremely simple and efficient string manipulation transforma-
tions (Bohannon et al., 2008). Data in string format abounds, thus while simple, these
prove to be extremely useful. Trees provide a way to define hierarchical structured
data, comprising most of the possible types in common programming languages (Foster
et al., 2007). Graph structures generalize trees by allowing cycles and multiple parents,
providing means to represent more complex data structures (Hidaka et al., 2010; Her-
mann et al., 2011). Typically, unless lacking associations, models are isomorphic to
graphs. However, graph manipulation and transformation is much more complex. Data
can also be presented as relations, sets of tuples, as in the representation of relational
databases (Bohannon et al., 2006) or spreadsheets (Cunha et al., 2012). Graphs (and
thus models) can also be embedded in binary relations. If relations of arbitrary arity
are allowed, these are more expressive than graphs (they are instead isomorphic to
hyper-graphs). Both graphs and relations can eventually be encoded in trees, although
some of its characteristics will not be naturally captured and may not be exploited by
transformation systems.

36 CHAPTER 3: BIDIRECTIONAL TRANSFORMATION

3.2 Bidirectional Transformation Properties

Whatever the chosen scheme, transformations are expected to follow certain behavior
rules that render them well-behaved. In bidirectional transformations, this usually
entails some correctness (updates restore consistency), invertibility (updates on one
of the values are preserved on the opposite) or stability (null updates on one of the
domains should induce null updates on the opposite) properties.

3.2.1 Round-tripping Properties

In the case of a bidirectional mapping t between transformation domains A and B , the
transformation may be expected to be at least left- or right-invertible.

a0 ∈ fromt b0 ⇒ b0 ∈ tot a0 LEFT-INVERTIBLE

b0 ∈ tot a0 ⇒ a0 ∈ fromt b0 RIGHT-INVERTIBLE

Essentially, these laws force one of the transformations to be injective in order to
be invertible. Given some additional totality assumptions, such mapping represents
either an abstraction (if A is “larger” than B) or a refinement (if A is “smaller” than
B) (Oliveira, 2007). If a transformation is both left- and right-invertible, tot and
fromt are isomorphisms between their domains (and, if total, bijections). Since the
transformations in mappings have no knowledge of the pre-state of the target domain,
there is no notion of stability.

In lens frameworks, the putback is aware of the pre-state of the target domain, and
thus is expected to follow stricter rules.

a ∈ putf (, b0)⇒ b0 ∈ getf a PUTGET

b0 ∈ getf a0 ⇒ a0 ∈ putf (a0, b0) GETPUT

PUTGET, also known as acceptability, is the lenses version of invertibility, stating that
the update on a view must somehow be preserved on the updated source a , and GETPUT,
also known as stability, guarantees that, if a view is not updated, then neither will the
source when applying the backward transformation. In the regular lens framework
proposed by Foster et al. (2007), lenses are expected to follow these two laws.

Definition 3.1 (very well-behaved lens). A lens f between transformation domains A

3.2 BIDIRECTIONAL TRANSFORMATION PROPERTIES 37

and B , comprised by transformations getf : A⇀ B and putf : A× B ⇀ A, is said to

be a very well-behaved lens, denoted by f : A B B , if PUTGET and GETPUT hold.

Since we do not assume any totality constraints a priori, these laws simply entail
bounds on the behavior of the putback: PUTGET restricts the range of acceptable
computations, while GETPUT sets the range of mandatory computations.

The main strength of combinatorial frameworks like the lens frameworks is their
ability to build complex transformations from simple ones while preserving “well-
behavedness”. In this context, the most essential combinator is the sequential composi-

tion of two very well-behaved lenses f : A B B and g : B B C as g ◦ f : A B C ,
defined by

getg◦f a = getg (getf a)

putg◦f (a0, c) = putf (a0, putg (getf a0, c))

which is also well-behaved, whatever the provided lenses f and g represent.
The notion of consistency in bidirectional mappings and lenses is rather ambigu-

ous. Typically, one of the transformation—the one used to specify the bidirectional
transformation—is assumed to represent an implicit consistency relation. In the case of
lenses, getf would play that role, in which case the correctness property degenerates
into PUTGET (Pacheco et al., 2013).

Some lens frameworks enforce stricter laws over their transformations. For instance,
some frameworks requires lenses to be undoable or even history-ignorant. The latter is
specified by the following law:

a ∈ putf (a0,) ∧ a ′ ∈ putf (a, b0)⇒ a ′ ∈ putf (a0, b0) PUTPUT

This law states that the propagation of a source update is independent of the view update
history. Lenses for which PUTPUT holds are dubbed well-behaved lenses.

Other frameworks (Mu et al., 2004; Liu et al., 2007; Hu et al., 2008; Hidaka et al.,
2010) rely instead on looser laws, requiring only “one-and-a-half” round-tripping
properties, as the following law:

a ∈ putf (, b0)⇒ a ∈ putf (getf a, b0) PUTGETPUT

Under this law, also known as weak-acceptability, source updates are allowed to
introduce side-effects of the view state.

38 CHAPTER 3: BIDIRECTIONAL TRANSFORMATION

Rather than specifying how the forward and backward transformations interact
with each other, in constraint maintainers, whose core artifact is a consistency rela-
tion, the laws state instead the relationship between it and the transformations. Since
constraint maintainers are symmetric, the laws are dual for both consistency-restoring
transformations.

b ∈ −→T (a0, b0)⇒ T (a0, b)

a ∈ ←−T (a0, b0)⇒ T (a, b0) CORRECT

T (a0, b0)⇒ b0 ∈
−→
T (a0, b0)

T (a0, b0)⇒ a0 ∈
←−
T (a0, b0) HIPPOCRATIC

CORRECT simply states that transformations are correct if they produce consistent
values, while HIPPOCRATIC states that they are hippocratic values that are already
consistent are not updated by the transformations. Similarly to the lens round-tripping
laws, these laws also entail bounds on the behavior of the transformations: CORRECT

restricts the range of acceptable computations, while HIPPOCRATIC imposes mandatory
computations.

Definition 3.2 (well-behaved maintainer). A constraint maintainer T between trans-

formation domains A and B , comprised by the consistency relation T : A↔ B and

transformations
−→
T : A × B ⇀ B and

←−
T : A × B ⇀ A, is said to be a well-behaved

constraint maintainer, denoted by T : A BC B , if CORRECT and HIPPOCRATIC hold.

3.2.2 Totality

The round-tripping properties presented above were defined modulo totality. This
means that, besides GETPUT and CORRECT forcing null updates to be propagated as
null updates, transformations may be undefined everywhere else and still be considered
well-behaved.

In fact, some bidirectional transformation frameworks (Matsuda et al., 2007; Voigtlän-
der, 2009; Voigtländer et al., 2010) provide no totality guarantees. Although these
languages are designed with sensible transformations, the lack of totality restrictions
compromises the predictability of the system, since the transformations may fail at
run-time. Thus, some restrictions on the totality of the transformations are typically
imposed.

3.2 BIDIRECTIONAL TRANSFORMATION PROPERTIES 39

The strongest of these is to guarantee that the bidirectional transformation never
fails. In lens frameworks (Foster et al., 2007; Pacheco and Cunha, 2010; Wang et al.,
2010), this amount to having getf and putf total.

Definition 3.3 (total lens). A very well-behaved lens f : A B B is said to be total,
denoted by f : A D B , if getf and putf are total.

A direct consequence of having a total lens is that the forward transformation must
be surjective: since putf must be defined for every pair (a, b), PUTGET will force
every b to be the view of some source element4. This compromises the expressibility of
the bidirectional transformation language, since many interesting transformations (like
duplication or constant operations) are not surjective. Thus, some frameworks assume
instead some weaker totality properties. For instance, a lens is said to be safe (Pacheco,
2012) (or domain correct (Diskin, 2008)) if they are defined at least for the values in the
range of the opposite transformations. In the case of lenses this results in the following
property:

b0 = getf a0 ⇒ ∀ a ′ : A | (∃ a : A | a ∈ putf (a ′, b0))

Regarding constraint maintainer frameworks, CORRECT does not impose any up-
datability criteria, while HIPPOCRATIC only require the transformations to be defined for
input pairs that are already consistent. Nonetheless some approaches require the transfor-
mation to be always defined, like the original constraint maintainer proposal (Meertens,
1998).

Definition 3.4 (total constraint maintainer). A well-behaved constraint maintainer

T : A BC B is said to be total, denoted by T : A DE B , if
−→
T and

←−
T are total.

This will force relation T to be total: if the transformations are always able to
propagate updates in both directions over a pair (a, b), then, from CORRECT, there is
always at least an element consistent with a and an element consistent with b.

Many times the lack of totality stems from the reduced expressibility of the type
system, specially in transformations over rich data domains like models, where datatype
constraints abound. In fact, the original lens proposal by Foster et al. (2007) is designed
over types enhanced with invariants, that allowed the definition of total combinators
over the refined datatypes.

4The reverse implication is also true: every total and surjective function can be lifted to a total very
well-behaved lens (Foster et al., 2007).

40 CHAPTER 3: BIDIRECTIONAL TRANSFORMATION

3.2.3 Exhaustive Bidirectional Transformations

Multi-valued transformations are well-behaved if the set of produced updates is within
that range of valid sources. We introduce the novel notion of exhaustive bidirectional
transformations, which return every acceptable element, in contrast to selective ones
that select a single element to be returned. In the lens scheme, these can be defined as
follows.

Definition 3.5 (exhaustive lens). A well-behaved exhaustive lens f : A I B consists

of a transformation getf : A⇀ B and a multi-valued multi-valued Putf : A× B ↔ A

such that PUTGET, GETPUT and the following property hold:

b 6∈ getf a0 ∧ b ∈ getf a ⇒ a ∈ Putf (a0, b) EX-PUTGET

First, note that the putback is not longer restricted to be simple (a fact denoted by the
upper case Putf). Law EX-PUTGET states that, for non-null view updates, the putback
of an exhaustive lens must return every acceptable source. If instead the view update is
null (getf a = getf a

′), the behavior of the putback is unrestricted (except for the case
a ∈ Putf (a, getf a), already entailed by GETPUT). This does not affect the totality of
the lens since it forces Putf (a, getf a) to be defined for every a :A. These multi-valued
putbacks can be directly implemented, for example using the non-determinism monad
in a functional language like Haskell. Since our setting is many-sorted, the range of
such exhaustive transformations depends on the valuations assigned to each sort.

Exhaustive totality is defined in the same way as the selective case.

Definition 3.6 (exhaustive total lens). An exhaustive lens f : A I B is said to be total,
denoted by f : A ID B , if getf and Putf are total.

The notion of exhaustive constraint maintainer is attained in a similar manner: if the
two elements are not consistent with each other, then the transformations must return
every valid update.

Definition 3.7 (exhaustive constraint maintainer). A well-behaved exhaustive constraint
maintainer f : A IJ B consists of a consistency relation T : A× B and multi-valued

transformations
−→
T :A×B↔B and

←−
T :A×B↔A, such that HIPPOCRATIC, CORRECT

3.2 BIDIRECTIONAL TRANSFORMATION PROPERTIES 41

and the following property hold:

¬(T (a0, b0)) ∧ T (a0, b)⇒ b ∈ −→T (a0, b0)

¬(T (a0, b0)) ∧ T (a, b0)⇒ a ∈ ←−T (a0, b0) EX-CORRECT

3.2.4 Disambiguating Updates

In general, the bidirectional transformation laws presented in the previous section allow
multiple valid backward transformations, which may affect the predictability of the
bidirectional transformation system.

These laws only provide loose bounds on the behavior of the transformations,
and should be taken as first principles only: for example, GETPUT “only provides a
relatively loose constraint on the behavior of lenses”, as originally remarked by the
authors of the lens framework (Foster, 2009). To understand the behavior of a lens f ,
a user cannot rely solely on the laws and must directly inspect the definition of putf .
Therefore, laws providing more guarantees about putf would provide a better account of
its behavior to users: instead of requiring only that the source remains unchanged when
the view is unchanged, they could enforce some selection criterion on update translation.
The same applies to the constraint maintainer framework, since CORRECT only states
that the resulting value m′ is consistent. Such selection criterion may be obtained
by defining a preference order over the acceptable updates, which could embody, for
instance, the notion of minimal update.

Much existing work in the context of database view updating is concerned with,
given a view function, deriving an update strategy that translates view updates into
source updates according to some minimization criteria. Hegner (2004) introduces a
notion of order on sources (�A) and on views (�B) and postulates, among other proper-
ties, that view updating shall be order-compatible (getf a �B b ⇒ a �A putf (a, b)).
His notion of order is only between two values of the transformation domain (hence�A,
for a type A), and the above property formalizes that, if an updated view is at most an
original view, then the updated source shall be at most the original source. In the context
of database tables, his particular orders imply the reflection of view insertions as source
insertions, and similarly for deletions. He then establishes that, under particular condi-
tions and for monotonic getf functions, there is a unique translation of insertion and
deletion view updates under a constant complement approach (Bancilhon and Spyratos,

42 CHAPTER 3: BIDIRECTIONAL TRANSFORMATION

1981). More recently, Johnson et al. (2010) show the connection between the constant
complement update translators from (Hegner, 2004) and lenses, by demonstrating that
they arise from well-behaved lenses in a category of ordered sets.

These “order-based” lenses impose an absolute order on the elements of the trans-
formation domain, which may not always be sensible. A significantly distinct approach
is followed by Meertens (1998), whose notion of order is “triangular”, as it relates two
updated values in regard to their distance to an original value. This principle of least-
change tightens the bounds imposed by the CORRECT law of constraint maintainers,
thus making the behavior of the comprising transformations more predictable. Let A
be a transformation domain and � :A→ (A↔ A) be a family of total preorders that,
given an element a0 : A, compare elements relative to their “distance” to a0

5.

Definition 3.8 (stable preorder). For any value a0 ∈ A, a preorder �a0 is said to be

stable if a0 is its unique minimal value, i.e.,

a �a0 a0 ≡ a = a0 ORDSTABLE

Condition ORDSTABLE ensures that the element m is the single closest value to
itself, i.e., a is the universal lower-bound of �a . Given families of stable preorders �
andv over transformation domains A and B , respectively, least-change in the constraint
maintainer framework can then be defined as follows:

b ∈ −→T (a0, b0)⇒ T (a0, b) ∧ (∀ b ′ : B | T (a0, b
′)⇒ b vb0 b

′)

a ∈ ←−T (a0, b0)⇒ T (a, b0) ∧ (∀ a ′ : A | T (a ′, b0)⇒ a �a0 a
′) LC-CORRECT

That is, whatever the value b produced by
−→
T , it will be at least as close to the original b0

as any other value b ′ that is also consistent with a0 (and dually for
←−
T). This reduces the

upper-bound on the transformations imposed by CORRECT that allowed any consistent
solution to be returned.

Definition 3.9 (least-change constraint maintainer). Given families of stable preorders

� and v over transformation domains A and B , respectively, a constraint maintainer

T :A BC B is said to be a least-change constraint maintainer, denoted by T :A� BC Bv,

if HIPPOCRATIC and LC-CORRECT hold.

5Anti-symmetry is not required because any two points at the same distance will be comparable in
either way and they need not be the same.

3.2 BIDIRECTIONAL TRANSFORMATION PROPERTIES 43

In the context of exhaustive bidirectional transformations, the transformations is
expected to return every minimal value, rather than a single one.

Definition 3.10 (exhaustive least-change constraint maintainer). Given families of

stable preorders � and v over transformation domains A and B , respectively, an

exhaustive constraint maintainer T : AIJ B is said to be an exhaustive least-change

constraint maintainer, denoted by T : A� IJ Bv, if CORRECT and the following

property hold:

T (a0, b) ∧ (∀ b ′ : B | T (a0, b
′)⇒ b vb0 b

′)⇒ b ∈ −→T (a0, b0)

T (a, b0) ∧ (∀ a ′ : A | T (a ′, b0)⇒ a �a0 a
′)⇒ a ∈ ←−T (a0, b0)

LC-HIPPOCRATIC

Unlike LC-CORRECT, LC-HIPPOCRATIC tightens the lower-bound on the trans-
formations imposed by HIPPOCRATIC: the latter requires the transformations to be
defined for every consistent input pair; the former requires them to be defined whenever
there is a valid minimal solution (which degenerates into HIPPOCRATIC if the input is
already consistent).

One possible way to construct such family of total preorders is to rely on a distance
function ∆ : A→ A→ N on A values as (Meertens, 1998):

a �a0 a
′ ≡ (∆ a0 a) 6 (∆ a0 a

′)

where 6 : N↔ N is the standard order on natural numbers6. The preorder is stable if
the underlying distance is stable, i.e., the closest value to a value m is itself7:

∆ (a1, a2) = 0 ≡ a1 = a2 DISTSTABLE

We shall denote this “lifted” preorder as [∆ a0] : A↔ A and the whole derived family
as [∆] : A→ (A↔ A).

Some approaches address the ambiguity of view-update translation without relying
explicit preference orders. Keller (1986) tackles this issue for non-constant complement

6Instead of natural numbers any well ordered set could be used in the range of the distance function,
providing more flexibility when computing distances. Notice also that if, for a given a0, ∆ a0 is an
injective distance function, then the induced preorder �a0

will be anti-symmetric (i.e., a partial order).
7In a metric space, this clause is known as identity of indiscernibles. In fact, it could be reasonable to

assume that (A,∆) is a metric space, satisfying other properties such as symmetry or triangle inequality,
although these are orthogonal to the properties of least-change bidirectional transformation.

44 CHAPTER 3: BIDIRECTIONAL TRANSFORMATION

approaches (very well-behaved lenses), and proposes an interactive algorithm that runs
a dialog with the view programmer to choose a particular putf function that obeys 5
minimization criteria. Larson and Sheth (1991) claim that the view information is not
sufficient to disambiguate view updates, and propose to consider not only a dialog with
the view programmer but also a dialog with the view user, obeying similar minimization
criteria. More recent developments by Pacheco et al. (2014) advocate the best way to
disambiguate update propagation is to directly specify the putback.

3.3 Discussion

In this section we intend only to provide a rough overview of the possible bidirectional
transformation frameworks. Nonetheless, the variety of bidirectional transformation
languages and frameworks that have been developed deem this task incomplete by
nature. Abstract frameworks over which the frameworks can be instantiated (Diskin,
2011; Pacheco et al., 2013; Terwilliger et al., 2012) and bidirectional transformation
surveys (Czarnecki et al., 2009; Hu et al., 2011) have been proposed to attenuate these
gaps. Each of the succeeding chapters provides a more in-depth discussion of the
relevant state-of-the-art on bidirectional transformation.

Round-tripping laws were purposely defined modulo totality, as to allow transfor-
mations to be partial. If dealing with total transformations, such will be explicitly stated.
The definition of the multi-valued exhaustive bidirectional transformations is novel, and
will prove to be useful throughout this dissertation, developed in a relational, rather
than functional, setting.

Part II

Lens Framework

45

Chapter 4

Invariant-constrained Lenses

Datatype constraints are a common requirement in data transformation: they play an
essential role on improving the predictability and updatability of the system, since
without them transformations may fail at run-time for inputs deemed well-formed.
For instance, although applying a transformation tail : [A] ⇀ [A] to an empty list
type-checks, it will fail to execute—a fact not directly captured by algebraic type
systems like that of Haskell. This predictability problem is even more significant in
the bidirectional transformation context. For a lens to be considered total, its forward
transformation must be total and surjective, since in order to be propagated backwards
by the putback, an updated view must have a matching source element. For this reason,
many interesting transformations are not admissible as total well-behaved lenses. The
duplication transformation id M id : A→ A× A is a paradigmatic example, where the
backward transformation is only well-behaved for pairs whose elements are the same, a
fact impossible to capture in plain algebraic datatypes and about which the user may
be unaware. Since the backward transformations, unlike the forward transformations,
emerge from the bidirectionalization procedure through possibly obscure processes,
rather than being written by the user, the type system plays an even greater role on
managing the expectations of the user.

These issues lead to a well-known tradeoff in the design of bidirectional transforma-
tion languages between the expressiveness provided by its syntax and the robustness
enforced by the totality and round-tripping laws. Some approaches (Pacheco and Cunha,
2010; Wang et al., 2010) compromise expressiveness and provide a set of combinators
that build only total (over unconstrained domains) and surjective transformations: the
above duplication operation would simply not be allowed. Others ignore the totality

47

48 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

requirement in order to admit non-surjective transformations (Matsuda et al., 2007;
Voigtländer, 2009; Voigtländer et al., 2010), in which case round-tripping laws can be
trivially satisfied, for example by making putbacks always undefined for non-null up-
dates. Obviously these languages are designed with sensible backward transformations,
but since their behavior is not fully documented the user’s intuitions may be severely
compromised due to unquantifiable updatability. In this context, a duplication lens has
view type A × A and yet its putback fails for any pair whose elements are different.
Preserving totality, it is possible to weaken the round-tripping laws to work modulo
equivalence relations, i.e., for an equivalence relation ∼ between B views, enforce only

a ∈ putf (, b)⇒ getf a ∼ b

and state that values outside the range of a forward transformation are indistinguishable
from values inside that range (Foster et al., 2008). Here, with an equivalence relation
over pairs (a,) ∼ (a ′,) ≡ a = a ′, a putback for the duplication combinator that
always returns the first element of the pair is regarded as well-behaved:

putidMid (, (a1, a2)) = a1, getidMid a1 = (a1, a1), (a1, a1) ∼ (a1, a2)

Yet another option is to relax both totality and round-tripping laws (Mu et al., 2004; Liu
et al., 2007; Hu et al., 2008; Hidaka et al., 2010), with the PUTGET law relaxed to an
one-and-a-half round-trip variant that permits view side-effects, i.e., enforce only weak-
acceptability as enforced by PUTGETPUT. In this case, duplication could be supported
by assigning it a putback that coherently selects one element of the updated pair (in the
cited frameworks, it would the one most recently updated), breaking PUTGET but not
its relaxed version:

putidMid (, (a1, a2)) = a1, getidMid a1 = (a1, a1), putidMid (, (a1, a1)) = a1

Enhancing the datatypes with invariants would allow the definition of more refined
transformation domains, allowing partial lenses to be perceived as total and well-
behaved under those restricted domains. For instance, duplication could be interpreted as
a total invariant-constrained lens idMid:A D (A× A)same, whose view domain invariant
restricts pairs to those with equal elements, i.e., 〈(a, b)〉 ∈ same ≡ a = b. This
alternative tradeoff was actually the one followed in the regular lens framework (Foster
et al., 2007): in order to preserve totality, a powerful semantic type system with
invariants was used to specify the exact transformation domains, which allowed the

49

definition of duplication, constants and conditional combinators as total well-behaved
lenses.

The ability to introduce datatype constraints could in theory provide an additional
benefit in the context of lens frameworks: to allow the user to have a finer control
over the behavior of the backward transformations, which are under-specified by the
regular round-tripping laws, as already exposed in Section 3.2. In a combinatorial
approach, when defining the forward transformation the user is simultaneously defining
the behavior of the backward transformation, which was “chosen” when the language
was designed from among those deemed well-behaved by the round-tripping laws. For
instance, for the tail : [A] B [A] lens, the assigned putback would typically preserve
the original list’s head:

puttail ((h0: _), t) = (h0 : t)

When defined at design time, without knowledge about the execution environment, this
seems to be a sensible putback definition. Yet, the notion of sensible greatly varies
depending on the context, and given that the round-tripping laws allow an arbitrary
element to be attached to the updated tail t , the user may wish to have a finer control
over the putback’s behavior. Allowing the user to introduce additional constraints on
the source domain would grant her such control to a certain degree. For instance, the
user could introduce a constraint uniq over the source lists forcing all the elements of a
list to be the same. This would have two direct consequences: first, the invariant would
need to be propagated to the view domain, which would also be restricted to lists with
an unique element; second, puttail would have to adapt itself to such invariant in order
to attach adequate heads to the updated tail, in this case by attaching at the head of the
updated tail t its unique element.

Nonetheless, to preserve the decidability of the type system, the expressiveness of
the regular lens framework (Foster et al., 2007) was still restricted by forcing composed
lenses to agree not only on types but also on invariants (with the type equality check
performed syntactically), as depicted in following diagram:

γφ ψ
f g

g ⚪ f

50 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

In such scenario, duplication can, for instance, be followed by a merging operation
that only accepts pairs with two equal elements, but not by a generic projection that is
defined for whatever pair.

In fact, a more expressive composition is required to allow the definition of such
bidirectional transformations. Consider the tentative composition of two invariant-
constrained lenses f : Aφ D Bψ and g : Bθ D Cγ , that are total over their constrained
domains, but where the set of values accepted by ψ and θ are not exact matches, as
depicted in the following diagram:

θ' γ' γφ φ'

f

g
g'f'

g' ● f'

g ⚪ f

θ

ψ

The first research question of this chapter is precisely: how may two total well-behaved

invariant-constrained lenses over arbitrary invariants be combined into another total

well-behaved invariant-constrained lens?

This cannot be achieved using regular lens composition. To preserve totality,
the invariant-constrained composition, which will be denoted by •, must be “type-
changing”, calculating the exact source φ′ and view γ′ domain invariants of the com-
bined transformation to attain a total invariant-constrained lens g • f : Aφ′ D Bγ′ .
However, restricted transformation domains by themselves do not guarantee well-
behavedness nor totality—even for views within γ′, the putback of g may still produce
values outside ψ, for which the behavior of the putback of f is undetermined. As
a concrete example, consider the composition of total invariant-constrained lenses
tail : [A]len[1..[D [A] and length : [A] D N, where [A]lenφ denotes the set of lists whose
length belongs to φ (e.g., len[0..10] contains all strings whose length is between 0 and
10).). Using the regular lens composition ◦ definition presented in Section 3.2.1, its
putback would be defined as:

l = putlength◦tail (l0, n) ≡
let t = putlength (gettail l0, n)

in l = puttail (l0, t)

This composition happens to be well-behaved in the regular lens setting since tail is

51

surjective. This is perceived in Figure 4.1a: given any updated view, whatever the
updated source selected by putlength will be consumable by puttail.

Yet, once user-defined constraints are introduced, that is no longer the case. For
instance, by restricting tail to lists whose elements are the same, as tail : [A]len[1..[∩uniq D

[A]uniq, although the overall transformation length ◦ tail remains surjective there is no
guarantee that the output of putlength is within uniq and thus consumable by puttail, as
depicted in Figure 4.1b. This could be (naively) solved by an adapted lens composition
that simply filters out invalid intermediary elements:

l = putlength•tail (l0, n) ≡
let t = putlength (gettail l0, n)

in l = puttail (l0, t) ∧ 〈t〉 ∈ uniq

This version does guarantee the well-behavedness of the invariant-constrained lens
length • tail : [A]len[1..[∩uniq B N, but not its totality, since it is simply discarding the
updated tail t produced by putlength when uniq does not hold. To be total, the putback
would have to be given a broader definition that allows the enumeration of all valid
updates, so that a tail t within uniq is eventually produced (assuming that the view
domain is exact and thus there is at least one valid view update). Concretely, putlength
will be able to generate every list with the given length, as allowed by the round-tripping
laws, and eventually produce one whose elements are all the same. These exhaustive

lenses f : A I B , whose putbacks return sets of sources, allow the preservation of
totality in invariant-constrained lenses, given the following putback definition:

l ∈ Putlength•tail (l0, n) ≡
∃ t : Putlength (gettail l0, n) |
l ∈ Puttail (l0, t) ∧ 〈t〉 ∈ uniq

This now gives rise to a total well-behaved invariant-constrained lens length • tail :

[A]len[1..[∩uniq
ID N. The putback is now depicted in upper-case to emphasize its multi-

valuedness; if it happens to be single-valued, the definition degenerates into the above
presented. Other invariant instantiations may not preserve the totality and surjectivity
of the overall lens, as the example depicted in Figure 4.1c, where restricting the input
lists to have length higher than 1 renders the view 0 invalid (tails may not be empty).
These scenarios can be addressed in a similar manner given the ability to calculate exact
invariants. Such exhaustive invariant-constrained lenses could also be used to interpret

52 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

[...,...]
[a1,a1,a1]

[...,a1,a1]

...

[a1]

[...]

[]

[A]

...

[]

[A]

1

...

0

ℕ

[a1,a1]

[a1,a2]

[a1]

[...]

[...,...]

[a1,a1]

[...,a1]

[a2,a1]

2[a1,a2,a1]

[...,a2,a1]

[...,...,...]

(a) φ = len[1..[and ψ = N.

[...,...]
[a1,a1,a1]

[...,a1,a1]

...

[a1]

[...]

[]

[A]

...

[]

[A]

1

...

0

ℕ

[a1,a1]

[a1,a2]

[a1]

[...]

[...,...]

[a1,a1]

[...,a1]

[a2,a1]

2[a1,a2,a1]

[...,a2,a1]

[...,...,...]

(b) φ = len[1..[∩ uniq, ψ = N.

[...,...]
[a1,a1,a1]

[...,a1,a1]

...

[a1]

[...]

[]

[A]

...

[]

[A]

1

...

0

ℕ

[a1,a1]

[a1,a2]

[a1]

[...]

[...,...]

[a1,a1]

[...,a1]

[a2,a1]

2[a1,a2,a1]

[...,a2,a1]

[...,...,...]

(c) φ = len[2..[, ψ = [1..[.

Figure 4.1: Instantiations of invariant-constrained lens length • tail : [A]φ ID Nψ.

other inherently partial combinators, like the fork or conditional combinators, as lenses
with maximum updatability. Thus, as already mentioned, extending bidirectional
transformations to support datatype invariants is a two-step process: first, transformation
domains must be enhanced with adequate invariants that must be propagated through the
lenses’ transformation domains; second, putback specifications must adapt themselves
to the invariants provided in each instantiation.

Executing multi-valued putbacks is expectedly inefficient. First, this kind of frame-
work heavily relies on the (possibly inefficient) evaluation of constraints, as they are
required not only to perform type-checking, but also to guarantee the effective execution
of well-behaved putbacks. Second, even in a finite universe, one can easily envision
the multi-valued putback of length generating an overwhelming number of lists before
getting to one within uniq. Yet, standard combinatorial approaches, with the assumption
of opaque and static putbacks, establish a clear limitation on the possible optimizations.
A syntactic constraint-aware bidirectionalization procedure, where the putback is able
to effectively adapt itself to the invariants, would enable values to be rejected early
in the execution, guaranteeing, for instance, that the putback of length produces only
lists within uniq (rather than producing arbitrary lists that are simply discarded by the
putback of tail).

This gives rise to this chapter’s second research question: can constraint-aware

bidirectionalization procedures be defined that produce selective total well-behaved

invariant-constrained lenses over arbitrary invariants? We try to answer this question

53

following two different instantiations of the invariant-constrained lens framework. The
first derives the putback through syntactic inversion of the forward transformation, using
the relational calculus as a general-purpose language to represent both the datatype
invariants and the transformations. Denoting the artifacts in a unifying language eases
their definition and reasoning about their properties. Unlike in the purely combinatorial
approach, the shape of the putback is known, a fact that can be exploited to improve the
execution of the putbacks. Thus, procedure is also proposed that, through the propaga-
tion of invariants down the expression, is able to more efficiently execute putbacks and
be selective, if desired. While benefiting from the expressibility power of the calculus of
relations, it also suffers from undecidable type-checking and type-inference algorithms,
which hinder the applicability of such framework. The second technique derives the se-
lective putback through a constraint-aware synthesis procedure, that is well-behaved for
the provided invariants. This is explored in the bidirectionalization of a domain-specific
language—that of spreadsheet formulas. The main design goals were to provide a bidi-
rectional transformation system that was intuitive to the user, by allowing spreadsheet
formulas to be run forwards in the standard way or backwards to propagate updates on
a formula cell to a set of input cells selected by the user; conservative, requiring only
a minimal extension to the interface, thus preserving the usability of the system and
keeping it predictable to the user; and transparent, by allowing the users to inspect (and
eventually control) both the invariants and the synthesized backward transformations
as spreadsheet formulas themselves. To achieve these goals, the synthesis procedure,
given concrete cell constraints, generates well-behaved putbacks that are also written as
standard spreadsheet formulas.

The contributions of this chapter, mirroring its structure, are the following:

• we introduce the notion of selective and exhaustive invariant-constrained lens

(Section 4.1) and show that the former can be used to achieve a combinatorial lens
framework that preserves both well-behavedness and totality, albeit inefficiently;

• we propose a constraint-aware bidirectionalization procedure for invariant-constrai-
ned lenses based on arbitrary relational expressions and expression inversion
(Section 4.2) providing an expressive and flexible instantiation;

• we propose a constraint-aware bidirectionalization procedure for invariant-constrai-
ned lenses designed in a specific environment and based on a synthesis procedure
(Section 4.3) providing and efficient and controlled instantiation.

54 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

Section 4.4 discusses previously developed related work and overviews the contri-
butions.

4.1 Invariant-constrained Lens Framework

This section introduces the concept invariant-constrained lenses or ic-lenses, lenses that
are well-behaved over constrained datatypes.

The main idea behind the ic-lens framework is the relaxation of the regular lens laws
to only hold modulo the invariants: to be considered well-behaved, transformations
must still be acceptable and stable, but only concerning values within the constrained
domains. For the moment, invariants can be seen as subsets of the transformation
domains, closed under typical set operations; in the succeeding sections, these will be
instantiated to concrete artifacts and operations.

4.1.1 Selective Invariant-constrained Lenses

In typical lens frameworks, putbacks are single-valued, selecting a single updated
source from the range of acceptable ones. Introducing invariants in such selective lenses
gives rise to the following definition.

Definition 4.1 (selective ic-lens). A well-behaved selective invariant-constrained lens
f : Aφ B Bψ consists of transformations getf : Aφ ⇀ Bψ and putf : Aφ × Bψ ⇀ Aφ

such that the following properties hold:

〈a0〉 ∈ φ ∧ 〈b0〉 ∈ ψ ∧ a ∈ putf (a0, b0)⇒ b0 ∈ getf a PUTGET-INV

〈a0〉 ∈ φ ∧ b0 ∈ getf a0 ⇒ a0 ∈ putf (a0, b0) GETPUT-INV

Recall from Section 2.3 that a binary relation R : Aφ ↔ Bψ produces values in
ψ when fed values in φ, thus typing the forward transformation as getf : Aφ ⇀ Bψ

forces it to produce views in ψ when fed sources in φ (and similarly for the backward
transformation). Thus, invariants in an ic-lens can also be seen as pre- and post-
conditions of the transformations: if fed values conforming to the invariants, they are
guaranteed to produce values that also do; otherwise, their behavior is unknown.

Like regular lenses, arbitrary well-behaved ic-lenses do not provide any updatability
guarantees: in the limit case, transformations that are undefined for every non-null

4.1 INVARIANT-CONSTRAINED LENS FRAMEWORK 55

update are considered well-behaved. Thus, some additional totality restrictions are
required.

Definition 4.2 (total selective ic-lens). A selective invariant-constrained lens f : Aφ B

Bψ is said to be total, denoted by f : Aφ D Bψ, if the following properties hold:

〈a〉 ∈ φ⇒ (∃ b ′ : B | b ′ ∈ getf a) GETTOTAL-INV

〈a〉 ∈ φ ∧ 〈b〉 ∈ ψ ⇒ (∃ a ′ : A | a ′ ∈ putf (a, b)) PUTTOTAL-INV

These relaxed totality laws state that an ic-lenses is considered total if its comprising
transformations are at least defined for the provided invariants (the transformations
may be defined for values outside the invariants, but their behavior over those values is
disregarded by the laws). Consequently, while totality and PUTGET in regular lenses
entail the surjectivity of the forward transformation (Section 3.2.2), their invariant-
constrained version only forces getf to be surjective over ψ, i.e., 〈b〉 ∈ ψ ⇒ (∃ a ′ : A |
〈a ′〉 ∈ φ ∧ b ∈ getf a

′).

One of the strengths of lens frameworks is their combinatorial nature, that enables
building complex correct-by-construction bidirectional transformations from simple
primitives. However, as already exposed above for the essential composition combina-
tor, while producing ic-lenses that are well-behaved is straight-forward—simply cut
elements that fall outside the invariants—preserving the totality of the combined lens
when the invariants are not perfect matches is not possible for selective lenses. As
already hinted, to obtain a framework of total ic-lenses, one must rely on exhaustive
bidirectional transformations.

4.1.2 Exhaustive Invariant-constrained Lenses

To enable the preservation of totality, the putbacks must be given a looser and multi-
valued specification that allows the calculation of all acceptable source updates. With
these exhaustive putbacks adapted to the invariant-constrained scenario, restricting
source updates no longer reduces updatability.

Definition 4.3 (exhaustive ic-lens). A well-behaved exhaustive invariant-constrained
lens f : Aφ I Bψ consists of a transformation getf : Aφ ⇀ Bψ and a multi-valued

binary relation Putf : Aφ × Bψ↔ Aφ such that PUTGET-INV, GETPUT-INV and the

56 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

following property hold:

b 6∈ getf a0∧b ∈ getf a∧〈a0〉 ∈ φ∧〈a〉 ∈ φ⇒ a ∈ Putf (a0, b) EX-PUTGET-INV

Law EX-PUTGET-INV forces a behavior similar to that imposed by EX-PUTGET,
but only within A elements for which φ holds. Again, it does not affect the totality of
the lens since, because for every 〈a〉 ∈ φ, GETPUT-INV already forces Putf (a, getf a)

to contain a value in φ, (precisely the same a).
These multi-valued putbacks can be still be implemented using the non-determinism

monad in a functional language like Haskell, with each produced source update being
checked for φ membership.

Exhaustive totality is defined in the same way as the selective case.

Definition 4.4 (total exhaustive ic-lens). An exhaustive ic-lens f : Aφ I Bψ is said to

be total, denoted by f : Aφ ID Bψ, if GETTOTAL-INV and PUTTOTAL-INV hold.

Unlike in selective combinators, partiality can be controlled in exhaustive invariant-
constrained lenses. In fact, this framework has the potential to support non-total and
non-surjective transformations, which would render such languages more expressive
than most supported by existing lens frameworks.

Regarding the composition of two total exhaustive ic-lenses g : Bθ ID Cγ and
f : Aφ ID Bψ, first there is the need to calculate the exact domain and range of
getg ◦ getf , denoting the maximum updatability of the combined lens g • f . This
amounts to finding the set of A sources for which getf generates values consumable
by getf and the set of C views for which Putg generates values consumable by Putf .
Essentially, getg ◦ getf is defined for every element a in φ such that getf a is within
θ, i.e., φ ∩ (θ ◦ getf), while its range consists of c values within γ such that one of
its pre-images under getg is within ψ, i.e., γ ∩ (getg ◦ ψ). Under these constraints,
both f and g will act within the constrained Bψ∩θ and thus, the putback Putg will be
guaranteed to eventually produce sources that are consumable by Putf in each run. This
is achieved with the following transformations:

getg•f a = getg (getf m θ a)

a ∈ Putg•f (a0, c) ≡ ∃ b : (Putg m ψ) (getf a0, c) | a ∈ Putf (a0, b)

These are simply the definitions for the regular lens composition presented in Sec-
tion 3.2.1, with restricted transformations that filter out values outside the intermediary

4.1 INVARIANT-CONSTRAINED LENS FRAMEWORK 57

invariant ψ∩θ. The θ restriction on the output of getf is required because it may produce
values in ψ \ θ, for which the behavior getg is unknown. As for the ψ restriction on the
output of Putg is required because, while a c element within getg ◦ ψ is guaranteed to
have at least a pre-image within ψ, it may have others that are not. This gives rise to the
following ic-lens combinator:

Γ ` f : Aφ ID Bψ Γ ` g : Bθ ID Cγ
Γ ` g • f : Aφ∩(θ◦getf) ID Cγ∩(getg◦ψ)

If ψ and θ are disjoint, the source domain φ ∩ (θ ◦ getf) will be empty, rendering the
ic-lens trivially well-behaved (and total).

Exhaustive primitive combinators can be easily defined. For instance, a total
exhaustive invariant-constrained lens for the projections can be defined as

Γ ` π1 : (A× B)φ ID Aψ

given a putback that simply returns every acceptable pair:

getπ1
(a, b) = (π1 m ψ) (a, b)

Putπ1 ((a0, b0), a) = a × (φ� a)

For a predicate φ over pairs A× B and an element a : A, φ� a partially evaluates φ
over a, resulting in a predicate over B containing all b elements related to a by φ.

The conditional combinator ω ? f : g between two exhaustive ic-lenses f :Aφ ID Bψ

and g : Aθ ID Bγ may also be defined under this setting. In this context, both Putf and
Putf can propagate a b view update backwards if it is within its range, as long as the
produced value is within ω and A \ ω, respectively. As for the source domain, any a

element within the source invariant of f or g for which ω or A \ ω hold, respectively,
can be consumed by the ic-lens. This gives rise to the following combinator:

Γ ` f : Aφ ID Bψ Γ ` g : Aθ ID Bγ
Γ ` ω ? f : g : A(φ∩ω)∪(θ\ω) ID B(ψ∩(getf ◦ω))∪(γ∩(getg◦(A\ω)))

The respective putback must simply preserve the source when the view update is null,
applying both Putf and Putg otherwise:

getω?f :g a = ω ? f : g a

Putω?f :g (a0, b) =

58 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

if getf a0 = b ∧ 〈a0〉 ∈ ω then (Putf m ω) (a0, b)

else if getg a0 = b ∧ 〈a0〉 6∈ ω then (Putg m (A \ ω)) (a0, b)

else (Putf m ω ∪ Putg m (A \ ω)) (a0, b)

Exhaustive invariant-constrained lenses can be converted back to a selective version
through biased selectors (Meertens, 1998). Given a constraint φ and a “target” a (not
necessarily in φ) , operation a § φ generates a “repaired” value that satisfies constraint
φ. The only restriction is that already valid values shall be preserved:

∀ a : φ | a § φ = a §-STABLE

The biased selector allows the selection of a value from among a set that approximates
a target. At this stage it can be seen as an abstract placeholder that could allow the
user to control the selection of updates. It can be used to convert an exhaustive ic-lens
f : Aφ ID Bψ into a selective version, by having its putback defined as:

putf (a0, b) = a0 § (Putf (a0, b))

Since Putf returns a set of values, the biased selector can be used to select a single
solution.

4.1.3 Constraint-Aware Frameworks

In Section 4.1.2 a purely combinatorial framework of exhaustive invariant-constrained
lenses, where the totality of the sub-lenses is preserved by the invariant-constrained
combinators, was proposed. However, as might be expected, the deployment of such
framework would be extremely inefficient: higher-order combinators, being given
opaque and constraint-oblivious sub-lenses, are confined to filter out unwanted outputs.
This amounts roughly to the procedure depicted in Figure 4.2a, where Putg must
produce every valid source just to have those outside ψ filtered out. A different
bidirectionalization approach would be to define constraint-aware putbacks, that are
able to adapt themselves to provided invariants, highly improving the efficiency their
performance: such putback would now fall in the scenario depicted in Figure 4.2b,
where a restricted set of values is produced by Putg that is guaranteed to be within ψ.
Essentially, this amounts to designing a specialized execution procedure for constrained
putbacks Putl m φ for which the invariant-constrained lens laws still hold. Under

4.1 INVARIANT-CONSTRAINED LENS FRAMEWORK 59

θ' γ' γφ φ'
θ

ψ Putg m Putf

(a) Constraint-oblivious approaches.

θ' γ' γφ φ'
θ

ψ Putg m Putf

(b) Constraint-aware approaches.

Figure 4.2: Approaches to totality preservation in ic-lenses.

this setting totality may be preserved under selective transformations: while in the
combinatorial setting, a constraint-oblivious selective putback for g would select an
arbitrary value from within θ, which may fall outside ψ (Section 4.1.1), for constraint-
aware transformations the selection is guaranteed to fall within ψ and thus produces
valid outputs.

The evaluation of datatype invariants is a cornerstone in the ic-lens framework, since
every execution of an ic-lens f :Aφ ID Bφ requires type-checking the input values—i.e.,
evaluating φ and ψ for input source and view elements, respectively. Furthermore, in
constraint-aware frameworks, invariants are also fundamental in the derivation and
execution of putbacks. Thus, to deploy such frameworks, concrete instantiations for the
invariant language and the invariant operations used throughout the previous section
must be carefully designed so that the resulting language is manageable. Namely,
if bidirectional totality is expected to hold, the following operations must be given
effective instantiations:

membership test 〈a〉 ∈ φ the essential operation, required to both type-check trans-
formations and allow the putback to filter out undesired values;

constrained domain ψ ◦ R and range R ◦ φ required to support totality-preserving
lens combinators;

invariant manipulation φ ∩ ψ, φ ∪ ψ, φ \ ψ, ... the set of supported manipulation op-
erations directly affects the expressibility of the supported language;

60 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

id : A→ A

· ◦ · : (A⇀ B)→ (B ⇀ C)→ (A⇀ C)

· M · : (A⇀ B)→ (A⇀ C)→ (A⇀ B × C)

π1 : A× B → A

π2 : A× B → B

b : A→ B

· ? · : · : (A⇀ A)→ (A⇀ B)→ (A⇀ B)→ (A⇀ B)

Figure 4.3: Sample transformation language.

partial evaluation of product invariants φ� a and φ� a required to support totali-
ty-preserving product combinators;

biased selector a § φ required to define useful selective primitives.

The following sections present two contrasting approaches to such instantiation: one
expects invariants to be defined in the same language of the transformations, resulting
in an expressive general-purpose language, at the cost of an unquantifiable complexity;
the other, designed in a controlled environment, forgoes expressibility by restricting the
invariants to a normalized shape, over which the selected operations are guaranteed to
be efficient. These frameworks are instantiations of ic-lenses (Definitions 4.1 and 4.3)
but their dedicated putback derivation and execution procedures allow us to abandon
the exhaustive combinators from Section 4.1.2.

4.2 Relational Framework

In this setting, both invariants and transformations are arbitrary relational expressions,
defined as standard binary relational expressions, following a syntax similar to the one
used throughout this dissertation (Figure 2.1). This gives rise to an expressive general-
purpose bidirectional transformation language. For the purpose of this presentation, the
forward transformation will be specified using the simple (or simplicity-preserving)
combinators depicted in Figure 4.3. By supporting combinators like forks and condi-
tionals, our language becomes more expressive than most existing lens frameworks.

This syntactic bidirectionalization approach is split into two phases: first, a relational
expression representing an exhaustive putback is derived from the forward transforma-
tion through formula inversion; second, an execution procedure is defined that takes

4.2 RELATIONAL FRAMEWORK 61

Algorithm 1: Syntactic bidirectionalization through formula inversion.
input : forward transformation f : Aφ⇀ Bψ
output : total invariant-constrained lens bf c : Aφ∩δf ID Bρ(f ◦φ)

getf ← f ;
Putf ← [f] ? π1 : (f ◦ m φ ◦ π2);

advantage of the shape of the putback and the known invariants to improve performance.
The first stage is rather straight-forward to define, as depicted in Algorithm 1, and
results in the derivation of an invariant-constrained lens bf c : Aφ∩δf ID Bρ(f ◦φ) from
a transformation f : Aφ ⇀ Bψ. Let [f] define the invariant 〈a, b〉 ∈ [f] ≡ b ∈ f a

(explored shortly). Then, the derived Putf trivially satisfies the round-tripping laws,
since [f] explicitly tests whether the view was updated. If so, it returns the original
source; otherwise, it runs f backwards to recover all possible sources that could have
originated that view. The resulting invariant-constrained lens is total and well-behaved
over sources in φ that are also in the domain of f (φ∩ δf) and views that result from the
application of f to φ sources (ρ(f ◦ φ)), which by definition of f : Aφ⇀ Bψ, is smaller
than ψ. The remainder of this section focuses on the second phase, presenting effective
means to calculate the invariants and execute the putbacks.

4.2.1 Relational Invariant Language

In the calculus of binary relations, invariants take the shape of coreflexives. Recall that
coreflexives are relational expressions that either return the input value or fail, and thus
act as filters. Recall from Section 2.4 that sets and coreflexives are isomorphic, and thus
we freely switch between the set (φ, ψ, γ, θ, ... : PA) and coreflexive (Φ,Ψ,Γ,Θ, ... :

A⇀ A) representations.

Language Using coreflexives to represent invariants, rather than arbitrary sets, is
beneficial because it allows us to define invariants in the same language in which the
transformations are written—useful, since we hope to derive invariants from transfor-
mations and have the latter adapt themselves to the former. In this context, restricted
execution R m φ amounts to execute Φ ◦ R, since coreflexives filter out unwanted
elements. This calculus of invariants is inspired by the one proposed by Oliveira (2009),
where typing a relation as R : Aφ → Bψ denotes its pre- and post-conditions, i.e.,
R ◦ Φ ⊆ Ψ ◦ R, or ρ(R ◦ Φ) ⊆ Ψ, much like the transformations comprising partial

62 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

ic-lenses. It follows that all typing rules from (Oliveira, 2009) are applicable to our
framework. The round-tripping laws of the ic-lens framework can in this context be
simply stated as:

Putf ◦ (Φ×Ψ) ⊆ get◦f ◦ π2 PUTGET-INV

(getf M id)◦ ◦ Φ ⊆ Putf GETPUT-INV

A coreflexive on products A × B can always be specified by a relation between
the elements of pairs A × B . Any binary relation R : A↔ B can be converted to a
normalized coreflexive [R] :A×B⇀A×B defined as [R] = (π◦2 ◦R◦π1)∩ id, meaning
that 〈(a, b), (a, b)〉 ∈ [R] ≡ 〈a, b〉 ∈ R. Another way to put it is to say that [R] is the
largest coreflexive Φ such that π2 ◦Φ ⊆ R ◦π1, since Φ ⊆ [R] ≡ (π2 ◦Φ◦π◦1) ⊆ R. For
example, using this combinator the same predicate stating that both components of a
pair are equal can be specified as [id] :A×A⇀A×A. Given coreflexives Φ:A⇀A and
Ψ :B⇀B , their product is the coreflexive Φ×Ψ :A×B⇀A×B that holds for pairs
whose elements are independent of each other, as long as the left element satisfies Φ and
the right element satisfies Ψ. It can alternatively be specified as Φ×Ψ = [Ψ ◦ > ◦ Φ].

From this definition many interesting properties of this relation may be derived, such
as [>] = id, [⊥] = ⊥, the cancellation rules π1◦[R] = (idMR)◦ and π2◦[R] = (R◦Mid)◦,
[R] = [R] ∩ id and [π2 ◦ Φ ◦ π◦1] = Φ for any coreflexive on pairs Φ. Since lifting of
the relation R between A and B elements is at the core of this invariant, their partial
evaluation can be simply defined as [R]� a = R a and [R]� b = R◦ b.

Coreflexives on sums A + B are considerably simpler, since predicates on sums
can always be specified using the sum combinator (each sum has either an A or a B

element, thus the invariant may not relate them). Given coreflexives Φ : A⇀ A and
Ψ : B ⇀ B , their sum is the coreflexive Φ + Ψ : A + B ⇀ A + B that holds for left
values that satisfy Φ and right values that satisfy Ψ.

Operations Membership test 〈a〉 ∈ φ amounts to evaluating the expression 〈a, a〉 ∈
Φ, which is typically an efficient procedure following the definitions from Figure 2.5,
with one exception: the occurrence in Φ of compositions R ◦ S where the first rela-
tion S is not simple yields undecidable algorithms, since they give rise to existential
quantification tests. In this context, evaluating an expression 〈a, a〉 ∈ R ◦ S involves S
enumerating all valid outputs until R is able to process one; if no such element exists,
the procedure may not even terminate with infinite sorts. To improve efficiency, the

4.2 RELATIONAL FRAMEWORK 63

δ(f ◦ g) = δ(δf ◦ g) ρ(f ◦ g) = ρ(f ◦ ρg)

δid = id ρid = id

δb = id ρb = b ∩ id

δ(f M g) = δf ∩ δg ρ(f M g) = [g ◦ f ◦]
δπ1 = δπ2 = id ρπ1 = ρπ2 = id

δ(Θ ? f : g) = (δg ∩Θ) ∪ (δf ∩Θ) ρ(Θ ? f : g) = ρ(f ◦Θ) ∪ ρ(g ◦ (id \Θ))

Figure 4.4: Domain and range of unrestricted expressions.

relational expressions are simplified using a rewrite system similar to one previously
developed for the optimization of point-free functional expressions (Cunha and Visser,
2011; Pacheco and Cunha, 2011). Essentially, this rewrite system applies some of
the point-free laws from Appendix A as unidirectional rewrite rules that eliminate
problematic compositions. If the final expression still contains some of those, the
implementation can issue a warning informing that its usage as an invariant checker
may not be feasible.

Invariant manipulation operations are trivially implemented because the union,
intersection and difference of coreflexive expressions is also coreflexive, thus φ ∩ ψ =

Φ ∩Ψ, φ ∪ ψ = Φ ∪Ψ and φ \ ψ = Φ \Ψ.

Regarding the constrained domains and ranges of expressions, ψ ◦ R amounts
to δ(Ψ ◦ R)—the domain of R when outputs are filtered through Ψ—and R ◦ φ to
ρ(R ◦ Φ)—the range of R when inputs are filtered through Φ. Although the default
definitions for domain (δf = (f ◦ ◦ f) ∩ id) and range (ρf = (f ◦ f ◦) ∩ id)) could be
directly applied and evaluated following again the semantics of Figure 2.4, we propose
a dedicated derivation algorithm for the supported language that avoids the insertion
of problematic combinators. The result is depicted in Figures 4.4 to 4.6, defined by
induction for the sample language defined in Figure 4.3. To avoid infinite reductions
in compositions, the laws from Figures 4.5 and 4.6 should be prioritized, which detail
how the domain and range of restricted transformations is calculated. These also arise
from the calculation of domain and range of unrestricted compositions (e.g., as shown
in Figure 4.4, the domain of a composition R ◦ S is defined as the domain of δR ◦ S ;
this matches the pattern Φ ◦ S , processed by the rules in Figure 4.5).

The expressions resulting from these definitions are more amenable for execution
(and consequently, type-checking) than the default domain and range definitions—
although they are derived from them using relational calculus—because most of the

64 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

δ(Φ ◦ id) = Φ

δ(Φ ◦ b) =

 id if 〈b, b〉 ∈ Φ

⊥ otherwise
δ([R] ◦ (f M g)) = (δg ◦ f ◦ ◦ R◦ ◦ g ◦ δf) ∩ id

δ(Φ ◦ π1) = Φ× id

δ(Φ ◦ π2) = id× Φ

δ(Φ ◦ (Θ ? f : g)) = (δ(Φ ◦ f) ∩Θ) ∪ (δ(Φ ◦ g) \Θ)

Figure 4.5: Domain of restricted expressions.

ρ(id ◦ Φ) = Φ

ρ(b ◦ Φ) =


⊥ if Φ = ⊥
b ◦ b◦ if Φ 6= ⊥
b ◦ Φ ◦ b◦ otherwise

ρ((f M g) ◦ Φ) = [f ◦ Φ ◦ g◦]
ρ(π1 ◦ [R]) = δR

ρ(π2 ◦ [R]) = ρR

ρ((Θ ? f : g) ◦ Φ) = ρ(f ◦ (Φ ∩Θ)) ∪ ρ(g ◦ (Φ \Θ))

Figure 4.6: Range of restricted expressions.

compositions are eliminated. The domain of fork expressions falls in the special case
f ◦ ◦ R ◦ g , which can be efficiently evaluated (in fact, if f and g are total it can simply
be evaluated as a ∈ (f ◦ ◦ R ◦ g) b ≡ (f a) ∈ R (g b) (Oliveira, 2007)). Thus, type-
checking shall be decidable except for particular ranges of fork combinators—those
where 〈a, b〉 ∈ getf ◦ get◦g is undecidable due to the entailed existential quantification.

After applying the laws of Figures 4.4 to 4.6, the resulting expression is further
simplified by the rewrite system already mentioned. The rewrite system is also used to
perform the equality test Φ = ⊥ that occurs in the range of the constant combinator in
Figure 4.6. However, such test may not be decidable and the rewrite system may not be
able to reduce into ⊥ an expression that is semantically equivalent to ⊥. If it cannot
be shown that Φ is effectively empty, the default definitions of range and domain are
applied instead. Still, for some cases when it can be shown that Φ 6= ⊥, allowing the
range definition to be further simplified.

4.2 RELATIONAL FRAMEWORK 65

4.2.2 Executing Constrained Relational Expressions

In the context of calculus of binary relations, executing an expression R m φ amount to
simply executing Φ◦R. This section explores how such execution can be operationalized
in an efficient way.

Executing binary relations We have shown in Section 2.3 that a binary relation R

can be trivially given alternative semantics as a multi-valued function J|||R |||K, through
a highly inefficient and impractical procedure. Figure 4.7 presents an alternative
optimized definition that avoids the exhaustive search over the universe for a large
set of combinators that can be used to build putbacks. This semantics can still be
directly implemented in standard functional languages using the non-determinism
monad. However, given a value a , even if we are only interested in one of the results of
J|||R |||K a , there are still several concerns for efficiency (besides the inverse) that may lead
to infinite runs without returning a single value, rendering such definition impractical.
For example, in the left-biased implementation of intersection we still need to iterate
over all results of R until a suitable value that also satisfies S is found. However, this
results in an exhaustive constraint-oblivious procedure as ineffective as those from the
exhaustive combinatorial approach: the combinators comprising R may be generating
elements that will simply be disregarded by Φ.

Consider as an example the expression (id M id)◦ ◦ (length◦ M head◦) : N↔ [N],
that given a natural n calculates lists with length n whose first element is also n . Multi-
valued operations head◦ and length◦ generate all lists with n at its head and all lists
with length n, respectively; (id M id)◦ represents the merging operation, defined as the
inverse of the duplication, a partial function that takes as input pairs with two copies
of the same element, and returns such element. In an unbounded execution following
the semantics from Figure 4.7, length◦ and head◦ execute freely until they both return
the same list, so that it can be consumed by (id M id)◦. Such execution may not even
terminate, since, for instance, head◦ could be generating all possible lists by increasing
length before iterating through their content (including the elements at their heads). The
problem persists even when assuming that the user is expecting a single return value,
and relying on lazy evaluation.

Executing constrained binary relations The most problematic component when
executing the putback derived from Algorithm 1 is the expression f ◦ m φ, which

66 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

J|||R ◦ S |||K a = {b | c ← J||| S |||K a, b ← J|||R |||K c} J||| id |||K a = {a }
J|||R ∩ S |||K a = {b | b ← J|||R |||K a, J〈a, b〉 ∈ SK} J||| π1 |||K (a, b) = {a }
J|||R ∪ S |||K a = J|||R |||K a ∪ J||| S |||K a J||| π2 |||K (a, b) = {b}
J|||R M S |||K a = {(b, c) | b ← J|||R |||K a, c ← J||| S |||K a } J||| i1 |||K a = {i1 a }
J|||R O S |||K (i1 b) = J|||R |||K b J||| i2 |||K b = {i2 b}
J|||R O S |||K (i2 c) = J||| S |||K c J||| b |||K a = {b}
J|||Ro |||K b = {a | a ← A, J〈b, a〉 ∈ RoK} J||| ⊥ |||K a = { }
J|||Θ? |||K a = {i1 a ′ | a ′ ← J|||Θ |||K a } ∪ {i2 a ′ | a ′ ← J|||A \Θ |||K a }

Figure 4.7: Unconstrained execution of binary relations.

contains the inverted transformation. Executing such expression amounts to executing
Φ ◦ f ◦, which could be done through the definitions from Figure 4.7. Yet, equipped with
the invariant φ over outputs, such execution semantics can be optimized by propagating
the invariants over the outer expressions down to the inner expressions, in order to
avoid backtracking and the computation of intermediate values that are valid for sub-
expressions but rejected by the global expression. In this case, due to the domain of
(idM id)◦, length◦ M head◦ will be aware that length◦ and head◦ must generate the same
list; this information may in turn be propagated down to length◦ and head◦, narrowing
their executions. In particular, given an input n, either the values generated by length◦

can be restricted to lists with head n or, dually, those produced by head◦ to lists with
length n. This will result in an efficient and complete (in the sense that all acceptable
values will eventually be produced if desired) multi-valued execution.

Figure 4.8 shows how this propagation can be performed. For instance, in the
evaluation of R◦S we can narrow the evaluation of S to return only values in the domain
of R (and vice-versa), thus avoiding generation of values that would be discarded by R;
since the fork RMS is only defined for values in the domain of both R and S , the source
invariant of each branch is restricted by the source invariant of the other. The inverse
of expressions is presented in Figure 4.9, where each case is analyzed individually
to achieve better efficiency. We omit the evaluation of the inverse of idem-potent
combinators (id,Θ,>,⊥) and of combinators whose inverse can be easily distributed
(R ◦ S ,R ∩ S ,R ∪ S) and thus can be executed by the definitions in Figure 4.8.

The evaluation of the primitive combinators is, for most cases, fairly obvious, since
it consists in their standard definition, with a membership test for the desired invariant.
It is important to note that all invariant tests occur at the primitives, meaning that

4.2 RELATIONAL FRAMEWORK 67

J|||Φ ◦ id |||K a = J|||Φ |||K a
J|||Φ ◦ ((R ◦ S)) |||K a = {c | b ← J||| δ(Φ ◦ R) ◦ S |||K a,

c ← J|||Φ ◦ R |||K b}
J|||Φ ◦ (R ∩ S) |||K a = {b | b ← J||| δS l R m ρ(Φ ◦ S ◦ a) |||K a }
J|||Φ ◦ (R ∪ S) |||K a = J|||Φ ◦ R |||K a ∪ J|||Φ ◦ S |||K a
J||| [U] ◦ (R M S) |||K a = {(b, c) | b ← J||| δS l R m ρ(U ◦ ◦ S ◦ a) |||K a,

c ← J||| δR l S m ρ(U ◦ b) |||K a }
J|||Φ ◦ π1 |||K (a, b) = J|||Φ |||K a
J|||Φ ◦ π2 |||K (a, b) = J|||Φ |||K b
J|||Φ ◦ (R O S) |||K (i1 a) = J|||Φ ◦ R |||K a
J|||Φ ◦ (R O S) |||K (i2 b) = J|||Φ ◦ R |||K b
J||| (Φ + Ψ) ◦ i1 |||K a = {i1 a ′ | a ′ ← J|||Φ |||K a }
J||| (Φ + Ψ) ◦ i2 |||K b = {i2 b ′ | b ′ ← J|||Ψ |||K b}
J||| (Φ + Ψ) ◦ (Θ?) |||K = {i1 a ′ | a ′ ← J|||Θ |||K a, J〈a ′, a ′〉 ∈ ΦK} ∪

{i2 a ′ | a ′ ← J|||A \Θ |||K a, J〈a ′, a ′〉 ∈ ΨK}
J|||Φ ◦ ⊥ |||K a = { }
J|||Φ ◦ > |||K a = {b | b ← B , J〈b, b〉 ∈ ΦK}
J|||Φ ◦ b |||K a = J|||Φ |||K b

Figure 4.8: Constrained execution of binary relations.

infeasible values are never passed through higher-order combinators. Nevertheless,
redundant values can still be generated, even if they produce a valid output. For instance,
in an expression b ◦ >, where b is a valid output, > will generate all possible values,
even though they will all be transformed into the same acceptable value by b. In many
of such cases, the rewrite system already presented can be used to remove redundant
value generation—in this case, b ◦ > would be reduced to b.

The most interesting narrowing cases are those of the intersection and the inverse of
fork (which is actually also an intersection). For these cases, with the default definition
from Figure 4.7, the R branch would execute independently of the invariants of S and
its output would be tested in S . Naturally, the unconstrained evaluation of R can be very
inefficient and may process and generate infeasible values that are not in the domain or
range invariant of S , respectively. Using invariants, we restrict R to the domain of S
and constrain the values generated by R to only those that would also be produced by
S . For instance, in the execution of the inverse of the fork J||| (R M S)◦ |||K (b, c), instead

68 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

J|||Φ ◦ b◦ |||K b = {a | a ← A, J〈a, a〉 ∈ ΦK}
J|||Φ ◦ (R M S)◦ |||K (a, b) = {c | c ← J||| ρ(ψ ◦ S ◦ ◦ b) ◦ R◦ |||K a }
J||| [U] ◦ π◦1 |||K a = {(a, b) | b ← J|||U |||K a }
J||| [U] ◦ π◦2 |||K b = {(a, b) | a ← J|||U ◦ |||K b}
J||| (Φ + Ψ) ◦ (R O S)◦ |||K c = J|||Φ ◦ ((R◦ ◦ i1)) |||K c ∪ J|||Ψ ◦ ((S ◦ ◦ i2)) |||K c
J|||Φ ◦ i1◦ |||K (i1 a) = J|||Φ |||K a
J|||Φ ◦ i2◦ |||K (i2 b) = J|||Φ |||K b

Figure 4.9: Constrained exhaustive execution of inverted relations.

J|||Φ ◦ > |||K a = {a § φ}
J|||Φ ◦ b◦ |||K b = {b § φ}
J||| [U] ◦ π◦1 |||K a = {(a, a § (U a))}
J||| [U] ◦ π◦2 |||K b = {(a, a § (U ◦ a))}

Figure 4.10: Constrained selective execution of inverted relations.

of having J|||R◦ |||K b running freely, it is restricted to produce values that would also be
produced by J||| S ◦ |||K c, as specified by its post-condition ρ(Ψ ◦ S ◦ ◦ c). A right-biased
implementation would be equivalent. This renders this optimization procedure as not
purely syntactic, as only when the concrete value a is known may the exact range of
the fork branches be known.

The execution procedure just presented is multi-valued: primitives return every
valid value within the provided invariant. However, since the invariants propagated
through the combinators are exact, whatever the value chosen in the execution of the
primitives will be consumed by the succeeding combinators. As a consequence, using
bias selectors a § φ at the primitive combinator level would give rise to a selective
execution that is still guaranteed to succeed, thus preserving totality. Figure 4.10
shows such selective procedures for the multi-valued primitives, in a version that
will only return a single value, and that would give rise to the selective total ic-lens
bf c : Aφ∩δf D Bρ(f ◦φ).

Example execution To give an example of the proposed techniques, consider the
transformation f = π1M id :A×B → A×(A×B) and its syntactic bidirectionalization
bπ1M idc following Algorithm 1. Following the approach presented in Section 4.2.1, we
can infer its exact domain (id) and range ([π◦1]) and lift it to an ic-lens that only accepts

4.3 SPREADSHEET FRAMEWORK 69

views (a1, (a2, b)) where a1 = a2. Should the view value be updated, the optimized
backward transformation would execute as follows:

J||| id ◦ ([f] ? π1 : (f ◦ ◦ π2)) |||K ((a0, b0), (a, (a, b)))

= {-Def. Θ ? R : S ; Φ ◦ ((R ◦ S)) (Fig. 4.8); Domain/Range (Fig. 4.4) -}
{y | x ← J||| ((id + (id× [π◦1]))) ◦ ([f]?) |||K ((a0, b0), (a, (a, b)))

y ← J||| id ◦ (π1 O (f ◦ ◦ π2)) |||K x }
= {-((Φ + Ψ)) ◦ (Θ?) (Fig. 4.8); 〈(a0, b0), (a, (a, b))〉 6∈ [f] -}

{y | y ← J||| id ◦ (π1 O (f ◦ ◦ π2)) |||K i2 ((a0, b0), ((a, (a, b))))}
= {-Φ ◦ (R O S) (Fig. 4.8) -}

{y | y ← J||| id ◦ (f ◦ ◦ π2) |||K ((a0, b0), (a, (a, b)))}
= {-Φ ◦ ((R ◦ S)), Φ ◦ π1 (Fig. 4.8); Domain/Range (Fig. 4.4) -}

{y | w ← J||| [π◦1] |||K (a, (a, b)), y ← J||| id ◦ f ◦ |||K w }
= {-[π◦1] (a, (a, b)) -}

{y | y ← J||| id ◦ (π1 M id)◦ |||K (a, (a, b))}
= {-Φ ◦ (R M S)◦ (Fig. 4.8); Domain/Range (Fig. 4.4) -}

{y | y ← J||| ρ(a, b) ◦ π◦1 |||K a }
= {-ρ(a, y) = ρa × ρy = [ρb ◦ > ◦ ρa]; [R] ◦ π◦1 (Fig. 4.8) -}

{(a, z) | z ← J||| ρb ◦ > ◦ ρa |||K a }
= {-Simplifications: Appendix A; R ◦ S (Fig. 4.7); 〈a〉 ∈ ρa -}

{(a, b)}

Note how the coreflexive invariants only need to be evaluated at the primitive level.
In fact, the semantics of π◦1 is multi-valued but the invariant propagated down to its
execution forces the generation of a single result. Simplifications are applied to convert
the invariant over pairs into the normalized form, which are omitted.

4.3 Spreadsheet Framework

The framework presented in the previous section was built upon arbitrary relational
expressions. While extremely expressive, the tradeoff is an unquantifiable complexity.
In this section a different approach is explored, considering a more manageable invariant
language that emerged in the bidirectionalization of a domain-specific language—that
of spreadsheet formulas.

In this context, the subjects of bidirectionalization are ordinary spreadsheet formulas,
written in a standard spreadsheet formula language. Each formula is processed as an

70 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

=D2+E2

=#F2*G2-G2

=IF(H2>0;#H2;"Loss")=RIGHT(#B2;4)

Figure 4.11: Bidirectional spreadsheet formula example.

independent bidirectional transformation, what allows us to keep a simple design while
handling the necessary environment information. A formula f on a cell B that depends
on input cells A1, ...,An will be denoted as f : A1 × ... × An → B (for readability,
A1 × . .× An will often be abbreviated to A). In general, updates can be reflected back
in more than one way to the input cells. In order to keep the system predictable, we
adopt a conservative updating principle and ask users to explicitly indicate, for each
formula, which cells can be updated, by marking them with the special symbol #. This
ensures no modifications occur unless authorized by the user—formulas without #

marks behave as ordinary unidirectional ones.
Consider the spreadsheet for the forecast of profits depicted in Figure 4.11. Each

row represents a product whose first column defines its identifier, the second and third
its name and reference (extracted using the RIGHT function from the name), and the
next three its production cost, taxes cost and profit margin. The last column presents a
summary report of the total expected profit (calculated in column H), and is processed
with an IF statement: profits are simply presented as numerical values, and losses are
alerted with the string "Loss". Thus, a modification to the cost of a product will trigger
the recalculation of the resulting profit, but the opposite is not possible: one can not
simply modify the profit and trigger a recalculation of the costs. Bidirectionalizing such
spreadsheet in our system amounts to introducing # marks denoting how to propagate
view updates backwards, as depicted in column H : updates on the total profit are
expected to be propagated to the profit margin rather than to the production cost.

It is easy to see that the output of the formula in column I is either a positive number
or the string "Loss". Thus, user updates in these bidirectional cells must be somehow
restricted: a negative value has no source values that output it (breaking PUTGET).
Similarly, in the references column C calculated by a RIGHT function, any string with
length higher than 4 is outside its range. Since spreadsheet formulas are not surjective
in general1, we need a way to check whether an updated value is within the domain of a

1In fact, spreadsheets, as a lightweight programming language, lack a type system, thus the precise

4.3 SPREADSHEET FRAMEWORK 71

bidirectional formula. This problem is aggravated by chains of bidirectional formulas:
the putback of the second formula must generate values within the range of the first
one. Now imagine that the user inserted a constraint in column F stating that the profit
margin can never exceed 200% (using, for instance, the ‘Data Validation’ feature of
Excel). The domain of allowed values in the I cells must be coherently restricted, to
forbid the insertion of profit values that will exceed the 200% margin. For instance, any
value higher than 53 in the column I of product 1 would result in an invalid update.
These two scenarios (non-surjective formulas and user-defined constraints) motivated
the introduction of invariants in this specific scenario, that filter out invalid values. We
will assume user-defined constraints to be applied only at input cells2, which must
be propagated through chains of formulas in order to restrict the range of valid view
updates. To contribute to the seamless integration of the bidirectional transformation
system, invariants are not propagated backwards to the input cells, since this would
affect the pre-existing behavior of the spreadsheet (meaning that forward evaluation
may fail, much like in the unidirectional spreadsheet scenario).

Roughly, spreadsheet formulas consist of the sequential composition of primitive
functions. This composition may be performed in two ways: either through formula

nesting (by defining complex formulas g (f (A))) or through formula chaining (by
having C = g (B), where B is itself a formula B = f (A)). For simplicity, we
focus on the latter, since nested formulas can be decomposed into chains of formulas3.
Data duplication amounts to duplicate cell references, but supporting such formulas
would require a deep analysis of the dependency graph and jeopardize our localized
approach, and thus are forbidden (see Macedo et al. (2014c) for the technical discus-
sion). Conditional combinators are supported through IF statements, and are addressed
independently. Thus, the bidirectionalization of a spreadsheet formula must take into
consideration both the chain of formulas that precede it and generate a putback for each
one of them. This procedure is resumed in Algorithm 2. Essentially, each formula is
bidirectionalized taking into consideration the range of the preceding formula (or the
cell invariant, if it is the first formula of the chain) by procedure SYNTH. Its range,
calculated by procedure EVAL is then propagated to the next function in the chain.
Since the synthesis procedure is constraint-aware and the procedure calculates the exact

invariants are considered to describe the “types” for which formulas are total and surjective.
2The evaluation of formulas in systems like Excel actually ignores invariants in output cells, outputting

any value produced by a formula regardless of the cell’s constraint.
3For instance, B = g (f (A)) can be rewritten to B = g (X) and X = f (A), with a fresh auxiliary

cell X .

72 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

Algorithm 2: Syntactic bidirectionalization through formula synthesis.
input : formulas f1 : A1 ⇀ A2, ..., fn : An⇀ An+1 and initial invariant φ1 : PA1

output : invariant-constrained lenses f1 : A1φ1 B A2φ2 , ..., fn :Anφn B An−1φn+1

for i ← 1 to n do
putfi ← SYNTH (fi , φi);
φi+1 ← EVAL (fi , φi);

end

range of the functions, the resulting putback will never fail. The remainder of this
section explores the development of these procedures. Since the technique is to be
integrated in a spreadsheet system, the execution of transformations is to be handle
by that same system. Thus, unlike the previous approach, this technique has only a
synthesis stage.

4.3.1 Domain-specific Invariants

Language Following the design decisions made regarding the bidirectional spread-
sheet system, the invariant language should be intuitive to the typical spreadsheet
user and expressible as standard spreadsheet formulas so that type-checking could
be performed by the data validation functionalities offered by standard spreadsheet
systems.

Formally, an invariant φ will consist of a set of C ∈ C clauses that denote sets
of values. The set of all values in an invariant is defined as the union of all values in
its comprising clauses. Inspired by typical spreadsheet formulas, clauses over strings,
reals, integers or booleans are supported, according to the following abstract syntax:

C ∈ Number | Integer | Text | B
Number ∈ 〈R..R〉 | 〈R..R〈|〉R..R〉 |〉..R〉 | 〈R..〈| >R

Integer ∈ [Z..Z] | [Z..[|]..Z] | >Z

Text ∈ Σ∗ | lenInteger | >Σ∗

Boolean ∈ True | False | >B

Here, the clause >c contains all values in c (e.g., >R contains all numbers), while the
clause Σ∗ is a string constant. Numeric constants [x ..x] or 〈x ..x 〉 are often written as
x . Integer intervals [x ..y − 1] and [x + 1..y] are typically denoted as open intervals
[x ..y [and]x ..y], respectively. Note that for x , y ∈ Z, 〈x ..y〉 is a continuous interval

4.3 SPREADSHEET FRAMEWORK 73

while [x ..y] is a discrete one. Most of these clauses are inspired by the data validation
features of Excel and the constraint languages of logical spreadsheet systems (Adachi,
2001; Kassoff et al., 2005), that usually support numerical intervals. The notable
exception is the lenInteger clause that denotes the set of strings whose length belongs to
the integer parameter. To be manageable, invariants are processed in a normalized form,
such that their comprising clauses are disjoint. Our invariants can deal with numerical
formulas whose range is representable by a finite set of intervals—e.g., the square A^2

over integers is not definable, as it would require an infinite union of singleton sets
(though the square of real numbers works fine). Regarding string manipulation, only
invariants which are oblivious to the string’s content are supported (with the exception
of constants)—we cannot give precise invariants for the range of functions like UPPER.
Even so, this simple language of invariants is already sufficient to solve interesting
bidirectional transformation examples.

Operations The membership test 〈a〉 ∈ φ boils down to testing whether a belongs to
any of the comprising clauses, i.e., 〈a〉 ∈ φ ≡ ∨

C ∈φ (a ∈ C); since the language was
designed to preserve the standard spreadsheet formula language, this operation can be
deployed using the underlying spreadsheet system. Invariant manipulation operations
must produce themselves normalized invariants, e.g.:

{ [x ..y]} ∪ { [a..b]} = if a 6 y ∧ x 6 b

then { [min (x , a)..max (y , b)]} else { [x ..y], [a..b]}
{ [x ..y]} ∩ { [a..b]} = if a 6 y ∧ x 6 b

then { [max (x , a)..min (y , b)]} else { }
{ [x ..y]} \ { [a..b]} =

if x < a then { [x ..min (y , a − 1)]} else { } ∪
if b < y then { [max (x , b + 1)..y]} else { }

The difference operation on invariants is required for some function primitives, like IF

statements; however, for particular cases over strings the resulting invariant may not be
expressible in a normalized form (e.g., {>Σ∗ } \ {s }, representing all strings except s).

Regarding the domain and range of restricted expressions, as already mentioned,
only R◦φwill be required in this context, which amounts to the EVAL (R, φ) procedure.
Since nested formulas are assumed to be decomposed into formula chains, the forward
transformations are always primitive functions f . Thus, such range can be calculated by

74 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

defining the symbolic execution of every supported primitive function over normalized
invariants. Since invariants consist of clauses, EVAL (f , φ) =

⋃
C ∈φ (EVAL (f ,C)),

decomposing the view invariant calculation into execution of f over individual invariant
clauses.

As an example, consider the LEN primitive function, that calculates the length of a
string. Its symbolic execution over normalized invariants is specified as:

EVAL (LEN (#A), x ∈ Σ∗) = {LEN (x)}
EVAL (LEN (#A), lenx) = {x }
EVAL (LEN (#A),>Σ∗) = {>Z}
EVAL (LEN (#A),) = { }

Note that the range calculation depends on the formulas’ #-marked cells. For
instance, while the range of #A + #B contains the case

EVAL (#A + #B , ([x ..y], [a..b])) = { [x + a..y + b]}

for #A + B the same case takes instead the shape

EVAL (#A + B , ([x ..y], [a..b])) = { [x + B ..y + B]}

since B cannot be updated.

The IF (C ,#A,#B) logical statement is an interesting spreadsheet formula, that
affects the flow of update propagation. Without nested formulas, its putback simply
needs to decide whether to propagate the update to A or B depending on the condition
and the cell invariants on A and B . To make it manageable, predicate C (without #

marks) is interpreted as a normalized invariant (ψA, ψB ,K), with ψA and ψB normalized
invariants on A and B , respectively, and K a constant predicate. Also, let φA and φB

denote the invariants existing in A and B respectively. The range of acceptable values is
conditioned by the acceptable updates on the branches (φA and φB) and the conditions
that trigger the selection of the branches (ψA and ψB). For instance, values on φA may
not be acceptable if there is no respective acceptable B value that renders condition C

true. Range calculation is thus defined by (omitting K for the sake of simplicity):

EVAL (IF (C ,#A,#B), ((ψA, ψB), φA, φB)) =

if (φA \ ψA = ∅) then φB \ ψB else {φB } ∪
if (φB ∩ ψB = ∅) then ∅ else φA ∩ ψA

4.3 SPREADSHEET FRAMEWORK 75

c∈ c∈ ← c

φA ∩ ψA φB ∩ ψB A

φA ∩ ψA φB \ ψB B

φA \ ψA φB ∩ ψB B

φA \ ψA φB \ ψB B

Table 4.1: IF statement update propagation cases.

The rationale is the following: if all acceptable A values render the condition on A true
(φA \ ψA = ∅), then no B values that render the condition true are valid (Aφ ∩ Bφ),
because when the condition holds, the updated is propagated through A; if all B values
render the condition on B false (φB ∩ ψB = ∅), then no A values may be produced,
since the A branch will never be selected. Table 4.1 helps understand this reasoning by
presenting all update propagation possibilities.

This IF statement from spreadsheets differs from the relational conditional combi-
nator because the condition is defined over the environment of the system rather than
over a single input value. In fact, the IF statement amounts to conditional expressions
Θ ? π1 : π2 : A× A→ A, with Θ an invariant over pairs A× A.

4.3.2 Executing Constrained Domain-specific Expressions

One of the main focus of the bidirectional spreadsheet system was to provide a seamless
integration, aimed at typical spreadsheet users. Following this goal, in order to allow the
user to understand the backward semantics of a formula (and eventually parameterize it),
we follow a white-box approach, specifying all backward transformations as spreadsheet
formulas themselves4.

Preliminaries As has been introduced, the user is able to control which input cells
are allowed to be updated through # marks on cell references. Thus, the putback of a
bidirectional formulas must assign updated values to each #-marked cell, calculated
by independent putback components. The overall putback of a formula may be seen
as the tupling of those components (with constant values for unmarked cells). To
characterize the different scenarios, each of these components is indexed with extra

4For presentation purposes transformations are expressed in an “intermediary” language that can be
easily translated to the standard spreadsheet formula language.

76 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

marks: � denotes the cell for which the putback is being defined; � denotes another
#-marked cell; and cell names denote a non-marked constant parameter. E.g., a formula
C = #A + #B where both A and B are #-marked gives rise to the lens

C = #A + #B : A× B B C

getC=#A+#B (a, b) = a + b

putC=#A+#B ((a, b), c) = (put�+� ((a, b), c), put�+� ((a, b), c))

updating the values of A and B when C is updated, while a formula C = #A + B

gives rise to the lens

C = #A + B : A× B B C

getC=#A+B (a, b) = a + b

putC=#A+B ((a, b), c) = (put�+B ((a, b), c), b)

where only A is updated. Note that the definition of put�+B is not the same as put�+�.
Since C = #A + B is injective, there is only a single valid putback:

put�+B ((a, b), c) = c − b

For C = #A+ #B however, c can be divided into A and B in any way as long as they
sum up to c and preserve stability. One option is to prioritize A as:

put�+� ((a, b), c) = c − b

put�+� ((a, b), c) = b

Another example, a reasonable putback formula for the LEN function would retrieve
as much as possible from the original string, while appending random suffixes when
the length increases:

putLEN (�) (a, b) =

if b 6 LEN (a) then LEFT (a, b)

else a & REPEAT ("A", b − LEN (a))

The backward evaluation of formula chains exploits the reactive nature of spread-
sheets: updating an intermediate formula cell will trigger the backward evaluation of its
own formula (recall that nested formulas are assumed to have been decomposed). For
instance, for cells C = g (#B), B = f (#A) and A = a, update C ← c triggers an

4.3 SPREADSHEET FRAMEWORK 77

Algorithm 3: Putback synthesis procedure SYNTH.
input : function f : A1 × ...An ⇀ B and source domain (φA1 , ..., φAn)
output :putf : A1 × ...An × B ⇀ A1 × ...An and view domain ψB

φB ←
⋃

C ∈φA (EVAL (f ,C));
for #Ai do

init putf (...,�i ,...)
;

for (ψB , (ψA1 , ..., ψAn))← Â�f (φA1 , ..., φAn) do
append to putf (...,�i ,...)

condition if b : ψB then
←−−−−−−−−−−−
f (...,�i , ...) ψAi ;

end
end
putf ← (putf (...,�1,...), ..., putf (...,�n ,...));

update on B with putg (B , c) = putg (f (A), c), which in turn triggers the update on
A with putf (A, putg (f (A), c)) = putf (a, putg (f (a), c))—which amounts exactly
to the regular definition of lens composition (Section 3.2). Such localized chaining
updates require a careful analysis of the formula dependencies in order to be sound.
Roughly, the dependency graph regarding #-marked cells must form a tree whose
leaves are value cells (for the in-depth technical discussion the reader is redirected
to (Macedo et al., 2014c)). A major consequence is that duplication (embodied by
multiple references to the same cell) is disallowed5.

Synthesis procedure Algorithm 2 split formula bidirectionalization into a local syn-
thesis procedure that at each formula cell, statically bidirectionalizes its primitive
function f under current cell constraint (φA1 , ..., φAn). This putback, needs to be able
to, given an updated view b, find one possible source value a that is consistent with b
and satisfies the existing source invariant. The simple putback definitions just presented
are not sufficiently flexible to that purpose. Instead, we developed a constraint-aware
synthesis procedure that generates such putback formulas, relying on specific synthesis
procedures for each supported primitive function. This procedure is summarized in
Algorithm 3.

The first step calculates the range φB through the EVAL operation explored in
Section 4.3.1. The remainder steps deal with the generation of the putback. Without

5Since bidirectionalization is performed at the cell level, duplication is inherently supported to a
certain degree (for formulas with disjoint dependency graphs) even with these restrictions. For example,
consider B = f(#A) and C = g(A); updating the value B assigns a new value to A through f , which
in turn triggers a forward evaluation of g , restoring the consistency between A and C .

78 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

�B�A �A �B

Eval(f, �A)]f �A

Figure 4.12: Representation of the traceability link flf φA.

going into much detail, Â�f (φA1 , ..., φAn) denotes the normalized traceability between
source and view invariants, and is required to ease the putback component synthesis.
Its left projection must form a partition of the range invariant φB .

For instance, consider a function f(A) = A^2, with a pre-existing source invariant
φA = {〈0..10〉, 〈−6..− 5〉}. Applying EVAL (A^2 ◦ φ) yields:

〈0..10〉 7→ 〈0..100〉
〈−6..− 5〉 7→ 〈25..36〉

With view invariant φB = {〈0..100〉}. The clauses of φB overlap, as values 〈25..36〉
are produced by both 〈0..10〉 and 〈−6..− 5〉. Since the B component of the normalized
traceability must form a partition, these must be split, and thus ·�A^2 φ becomes:

{〈0..25〈, 〉36..100〉} 7→ {〈0..10〉}
{〈25..36〉} 7→ {〈−6..− 5〉, 〈0..10〉}

Figure 4.12 depicts this process graphically, by comparing EVAL (f , φA) with the
produced flf φA. By keeping this traceability in a normalized form, the source invariant
into which the updated a′ source must fall for each view b can be easily found. It is
worth noting that calculating this normalized traceability is only feasible in this context
of semantic invariants: in the syntactic invariants from Section 4.2.1 such task would
be impossible.

Operation
←−−−−−−−−−−−
f (...,�i , ...) ψAi : A × B → Ai , for an updated view b : ψB and an

original source (a1, ..., an), produces a consistent update ai ′ : ψAi for the cell Ai . These
operations shall be statically synthesized, for a particular source invariant (φA1 , ..., φAn)

and primitive function f , and are the components that actually describe the behavior of
each putback formula. The putf (...,�i ,...)

transformation for a cell #Ai simply assembles
these components together: based on the traceability, putf (...,�i ,...)

tests to which ψB

invariant the updated b belongs and applies the corresponding
←−−−−−−−−−−−
f (...,�i , ...) ψAi . The

overall putf simply applies the putback synthesized for each #Ai in parallel.

4.3 SPREADSHEET FRAMEWORK 79

Consider as an example an invariant φA = {"abc", "xyz", len[4..10]} over a cell A.
For a cell B = LEN (#A) calculating the traceability Â�LEN (A) φA results in:

{3} 7→ {"abc", "xyz"}
{ [4..10]} 7→ { len[4..10]}

with view invariant φB = { [3..10]}. Now, putback components
←−−−−−−−−−
LEN (A) {3} and←−−−−−−−−−−−−

LEN (A) { [4..10]} must be synthesized. After being composed, the overall putLEN (�)

for the particular source invariant φA is then:

putLEN (�) (a, b) =

if b = 3 then

if b 6 LEN (a) then

if LEFT (b, a) = "abc" then "abc"

else if LEFT (b, a) = "xyz" then "xyz"

else LEFT (b, a) § {"abc", "xyz"}
else

if LEFT (b, "abc") = a then "abc"

else if LEFT (b, "xyz") = a then "xyz"

else a § {"abc", "xyz"}
if 4 6 b 6 10 then

if b 6 LEN (a) then LEFT (b, a)

else a & a § { lenb−LEN a }

If the updated view b is 3, it searches the constants for the closest string; otherwise
the len[4..10] clause allows it to freely generate the closest solution. This putback
is automatically synthesized and could eventually be simplified: if b : {3} is true,
b 6 LEN (a) always holds.

Note the use of a § φ operations in the putback specification. Likewise the previous
approach, the allows the biased selection of values when there are multiple valid
solutions. In the spreadsheet context, at implementation time, the a § φ operations
can either be given a default value or remain a placeholder which the user is able to
parametrize within φ.

80 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

4.4 Discussion

This chapter addressed an open problem in view-update frameworks that arises in the
presence of (explicit or implicit) constraints over the transformation domains and is
responsible for the latent partiality found in most practical lens frameworks. We have
proposed to alleviate this problem by regarding datatype invariants as first class entities,
which allowed us to reason about the bidirectional transformations properties within
their scope. The result is an expressive bidirectional transformation scheme that is able
to support expressive combinators like duplication or conditional choices. The proposed
bidirectional transformation framework can be seen as a bidirectional transformation
language over algebraic types similar to the one for lenses over generalized trees first
developed by Foster et al. (2007). They devise a complex set-based type system with
invariants to precisely define the domains for which their combinators are well-behaved.
However, combining lenses requires matching on invariants rather than on types, which
is too restrictive. A dual approach is followed by Foster et al. (2008), where composition
requires matching on equivalence relations that relax the lens domains.

The potential of a purely combinatorial approach was analyzed, but the overhead
of defining exhaustive backward transformations counterbalances its main advantages,
which led to the exploration of context-aware syntactic bidirectionalization procedures.
This was explored in two fronts: one relied on the relational calculus as a general-
purpose language for the specification of both transformations and invariants, the other
addressed the issue in the particular context of spreadsheet formulas.

The former approach builds up on previous work by Pacheco and Cunha (2010,
2011) on the development of a language of functional point-free combinators allowing
only surjective transformations. In this chapter such language was extended to support
typical non-surjective combinators such as forks. The presentation is a simplified
version of a more thorough exploration presented in (Macedo et al., 2012), where
generalized constrained relational expressions are effectively evaluated. While including
more combinators (like sums and injections), the fundamental idea is the same presented
in the chapter. In fact, the technique proved to be independent of the bidirectional
transformation context and applicable to relational expressions in general. Unlike the
data abstraction approach by Wang et al. (2010), our lens language allows arbitrary type
constructors and deconstructors without extending the language with ad hoc primitives
and surjectivity tests. Although omitted here, in the full paper (Macedo et al., 2012) we
have shown that this technique can be extended to support typical recursion patterns,

4.4 DISCUSSION 81

in particular folds and unfolds. Much like the normalized invariants for products, a
normalized shape for recursive types also proved to be useful in the calculation of the
domain and range of recursive transformations.

Similar to our syntactic bidirectionalization technique, some proposed frameworks
derive the backward transformations by calculation, but are less expressive than ours.
Mu et al. (2004) propose a technique to derive the putback by inverting injective forward
transformations through algebraic reasoning, while Matsuda et al. (2007) bidirectional-
ize a restricted first-order language (namely, without duplication) based on a notion of
view-update under constant complement. They also calculate an automata that matches
the exact domain of the transformations, and acts similarly to our invariants. The lens
language for graph transformations proposed by Hidaka et al. (2010) processes view
insertions using the universal resolving algorithm (URA), exploring all possible right
inverses for the forward transformation. URA (Abramov and Glück, 2000) has been de-
veloped to compute the inverses of functional programs. Like our evaluation algorithm,
it is complete (it lazily enumerates all possible values) but not always terminating (since
recursive types may admit infinitely many values). Nevertheless, unlike in URA, we
are able to optimize expressions before evaluation using the relational calculus. This
allows to cut many intermediate infeasible values, making value generation for most
invariants much more efficient.

The latter approach is also a simplified presentation of the work presented (Macedo
et al., 2014c), by omission of most technical details. The result was the deployment of
a functional add-in for Microsoft Excel, deployed in an online setting, benefiting from
the reactive nature of spreadsheet systems. In this sense, it is similar to the interactive
bidirectional XML editor proposed by Hu et al. (2008), which reacts immediately to
one operation at a time, although to ensure that after each update the editor converges
into a consistent state, transformations only obey one-and-a-half round-tripping laws.
To the best of our knowledge, existing work on the application of bidirectional trans-
formation techniques to spreadsheets has not yet considered the bidirectionalization of
spreadsheet formulas. Cunha et al. (2012) developed an OpenOffice plugin that tackles
the bidirectional synchronization of spreadsheet models (modeling their business logic)
and conforming instances.

Significant work has been done in extending spreadsheets with solving capabili-
ties (Fylstra et al., 1998; Adachi, 2001; Konopasek and Jayaraman, 1984; Cervesato,
2013; Kassoff et al., 2005) that could to some extent provide bidirectional behavior.

82 CHAPTER 4: INVARIANT-CONSTRAINED LENSES

However, at the user-interface level, solving is more tailored for search and optimiza-
tion problems described through a set of global constraints over the spreadsheet, the
spreadsheet acting as a mere interface to the solver. Typically, for every backward
computation, the user must set up a new constraint-solving problem using a specialized
interface. The user is expected to reason about bidirectionalization in a new language
and/or interface—not using plain spreadsheet formulas. Our “solver” is not explicit and
upfront but a backend: constraints are not first class entities that the user manipulates,
but integrated seamlessly into the bidirectionalization approach. Besides, constraint-
solvers typically support arithmetic constraints, but not high-level combinators like
conditionals, table lookups or string manipulation, at which bidirectional transforma-
tions excel. GoalDebug (Abraham and Erwig, 2007) allows users to fix incorrect
formulas by defining (numeric) constraints over their outputs: if the constraints are
broken, the system proposes changes on the formula in order to restore consistency.
These changes may involve modifying the formula or one of its parameters, being
propagated until value cells are reached. While at first sight this technique resembles
our own, they are fundamentally different: bidirectional transformations are meant to
propagate updates between the transformation domains, leaving formulas unchanged.

It is widely accepted that non-deterministic transformations are undesirable due to
their inherent predictability, since repeated executions may yield different results (Stevens,
2010). It should however be emphasized that exhaustive bidirectional transformations
that return all valid elements are not non-deterministic, as they always return the same
set of solutions. In fact multi-valued specifications could promote predictability by
allowing users to control the particular semantics of the transformations that the bidirec-
tional transformation language is not able to capture. In fact, the selective frameworks
proposed in Section 4.2 and Section 4.3 where achieved through the insertion of biased
selections at primitive level, that could be parametrized by the used. The next chapter
proposes a different technique to address this issue: to refine the behavior of loosely
specified backward transformations through the definition of an order of preference
over the source updates.

Chapter 5

Least-change Lenses

Recall the PUTGET and GETPUT round-tripping laws from the regular lens framework,
presented at Section 3.2.1 that render a (partial) lens f : A B B well-behaved:

a ∈ putf (a0, b)⇒ b ∈ getf a PUTGET

b0 ∈ getf a0 ⇒ a0 ∈ putf (a0, b0) GETPUT

Throughout this dissertation we have been interpreting these laws as upper- and lower-
bounds for the behavior of the backward transformation: PUTGET entails that view
updates are translated exactly by putf , and thus imposes an upper bound on its behavior
(admissible behaviors); GETPUT entails that if the view is not changed, then it must be
“put back” to the same source, and thus imposes a lower bound on the behavior of putf
(mandatory behaviors). Thus, in general, these laws do not entail a unique backward
transformation but instead define a range of valid backward propagation procedures.

Consider as an example the class diagram TW1 in Figure 5.1a that models a
simplified Twitter: models consist of persons who may follow other persons (persons
are allowed to follow themselves for simplicity purposes). A model transformation
tw1 : TW1 ⇀ TW2 that converts the “follows” links to the popularity of each person
could be defined, resulting in models conforming to TW2 in Figure 5.1b (with the
additional constraint maxpop stating that popularity cannot be higher than the number
of existing persons). To satisfy GETPUT, a backward transformation for tw1 must
return the same source when the view is not changed. If the view is changed, then it
must satisfy PUTGET, which essentially only requires popularity preservation. For
example, should somebody be added to a TW2 view with popularity n, the putback has

83

84 CHAPTER 5: LEAST-CHANGE LENSES

Person *

* follows

(a) Meta-model TW1 .

popularity : Nat
Person

(b) Meta-model TW2 with
Personmaxpop.

Person

(c) Meta-model TW3 .

Figure 5.1: Meta-models for different views of a simplified Twitter.

freedom to determine the n persons that should follow her or him. Unfortunately, it is
also free to rearrange the followers of all other persons, as long as their total popularity
remains the same.

As already discussed in Section 3.2.4, the lens laws should be taken as first princi-
ples: for example, GETPUT “only provides a relatively loose constraint on the behavior
of lenses”, as originally remarked by the authors of the lens framework (Foster, 2009).
Thus, most modern combinatorial bidirectional transformation languages (see refer-
ences (Foster et al., 2007; Bohannon et al., 2008; Pacheco and Cunha, 2010; Hidaka
et al., 2010; Hermann et al., 2011) among others) select a fixed putback from among
those deemed well-behaved at design time, in an attempt to specify the expected back-
ward behavior of each combinator. Others propose interactive algorithms that dialog
either with the language designer (Keller, 1986) or with the user (Larson and Sheth,
1991) in order to disambiguate the selection of updates. A more drastic approach
advocates that the only way to fully control the behavior of update propagation is to
allow the user to directly write the putback and have the forward transformation derived
from it instead (Pacheco et al., 2014). Refining the transformation domains as proposed
in Chapter 4 is another mechanism that may reduce such unpredictability, by restricting
the values among which the putback is able to choose. However, while in the end these
approaches may provide sensible backward transformations, to understand the behavior
of a lens, a user cannot rely solely on the laws and must directly inspect the definition
of the backward transformation. To provide a better account of its behavior to users, the
putback’s update selection criteria should be embodied in the round-tripping properties
of the bidirectional transformation framework.

This led to the emergence of frameworks that incorporate the notion of “optimal”
update in the formalization of well-behavedness. These are typically attained by the
definition of a preference order over the domain elements, that guide the selection of
the source update. Some approaches propose the introduction of “absolute” orders

85

� :A↔ A and v :B ↔ B over the transformation domains (Hegner, 2004; Johnson
et al., 2010), and then force the putbacks to preserve the order of the updates as:

getf a v b ⇒ a � putf (a, b)

This kind of absolute orders are suitable in operation-based frameworks, like in the
database context where the insertion/deletion of tuples establishes an order over updates:
if a view b ′ results from the insertion of a tuple in b—rendering b ′ “greater” than b—then
it should be reflected on the source also as an insertion—rendering the update source
“greater” than the original one. Yet, in a state-based setting it is not as easy to envision
what this order might represent. Consider a left-projection lens π1 : N× N D N and
an update propagation (a ′, b ′) = putπ1 ((a0, b0), a). From GETPUT, a ′ is necessarily
the updated view a, thus putπ1 must only assign a value to b ′ such that a0 6 a ⇒
(a0, b0) � (a, b ′). Assuming the product order (a, b) � (a ′, b ′) ≡ a 6 a ′ ∧ b 6 b ′,
the above law entails that a0 6 a ⇒ b0 6 b ′. Although this does further document
the behavior of the backward transformation, it is not clear why the value of b0 may
not be decremented when the view a0 is incremented. Rather than orders on values, in
state-based frameworks one must reason about orders on updates.

This leads to the principle of least-change proposed by Meertens (1998) for the
bidirectional transformation framework of constraint maintainers and already presented
in Section 3.2.4. Here, backward propagation is guided by a “relative” order � :A→
(A↔ A) on sources, that compares the acceptable sources in relation to the distance
to the original one. When applied to lenses, this principle will allow us to tighten the
bounds imposed by the traditional laws, thus making the behavior of the backward
transformation more predictable, by enforcing:

a ∈ putf (a0, b0)⇒ b0 ∈ getf a ∧ (∀ a ′ : A | b0 ∈ getf a
′ ⇒ a �a0 a

′)

Now, in the π1 lens example mentioned above, assuming a reasonable order on pairs
(like (a, b) �(a0,b0) (a ′, b ′) ≡ a 6a0 a ′ ∧ b 6b0 b ′, where a 6a0 a ′ compares the
absolute value of the difference between a/a ′ and a0), the selected source would be
(a ′, b), that is at minimal distance from (a, b). Returning to the Twitter example, if one
defines an order �TW1 : TW1 ↔ TW1 where a model is “closer” than another if it
shares with the original source model more persons and “follows” links, the problematic
putback for tw1 that rearranged the previously existing followers will no longer be

86 CHAPTER 5: LEAST-CHANGE LENSES

{p1→p2,p1→p1,
p2→p1,p2→p2,}

{p2→p1}

{p1→p1,p1→p2}

{p2→p1,p1→p2}

{p2→p1,p2→p2}

{p1→p1,p2→p2}

{p2→p1,p1→p2,
p2→p2}

{p1→p1,p1→p2,
p2→p2}

{p2→p1,p1→p1,
p1→p2}

{p2→p1,p1→p1,
p2→p2}

{p1→p1}

{}

{(p1,1),(p2,0)}

{(p1,0),(p2,0)}

{(p1,1),(p2,1)}

{(p1,1),(p2,2)}

{(p1,2),(p2,2)}

{(p1,2),(p2,1)}

{}

{p1}

{p1,p2}

TW1 TW2 TW3
tw1 tw2

Figure 5.2: Instantiation of lens tw2 ◦ tw1 : TW1 B TW3 .

acceptable—although different backward transformations can still be defined, reflecting
the different follow arrangements for the newly inserted persons.

While the least-change property is intuitive to formulate, deploying an effective
combinatorial system that enforces it is not straight-forward. Indeed, Meertens did not
investigate the composition of least-change constraint maintainer (since maintainers
are by nature not suitable for compositional reasoning (Meertens, 1998, p. 42)) and
many authors (Stevens, 2010; Diskin, 2008; Hofmann et al., 2011) view the lack of
compositionality as a drawback. This results in frameworks where propagating updates
backwards through composition may generate elements with little resemblance with the
original ones. Back to our example, consider a second transformation tw2 : TW2 ⇀

TW3 that filters out persons with no followers, removing the popularity of each person
in the process, ending up with meta-model TW3 from Figure 5.1c. Figure 5.2 depicts
update propagation alternatives over the unrestricted composition tw2 ◦ tw1 for a fixed
universe with two persons p1 and p2 (the set of persons is omitted from the TW1 and
TW2 instantiations, having only the “follows” and “popularity” relations depicted,
respectively), for a scenario where p2 is introduced in the view of {p2 → p1} (blue
instances denote the input values of the putback). The putbacks of tw1 and tw2 are
able to generate any acceptable source (here denoted by green instances), resulting in
updates that are no distinguishable by the lens but not perceived as minimal by the user,
including those that disregard the original follower relation p2 → p1.

Developing complex least-change bidirectional transformations requires a careful

87

analysis of the relation between the transformations and the preference orders defined
over the transformation domains. Our fundamental (and novel) research question in
this chapter is: under which conditions may two least-change lens be sequentially

composed such that the resulting lens is also a least-change lens? Concretely, when
does f ◦ g : A� B C- hold? Consider the tentative sequential composition of two
least-change lenses f :A� B Bv and g :Bv B C-, where the putback of f is known to
produce minimal source updates according to � and that of g minimal source updates
according to v, as depicted in the following diagram:

getf a0

c�1
1

c�2
1

c�3
1

�1

c�2
1

�1
c�3
1

�2
a0

c�3
1

getg · getf a0

c1 c�1
1

�1

getfgetg

c2

c�1
2

c�1
2

�1

C- Bv A�

On the left subfigure, C views spread over concentric circles according to the distance
entailed by - to a hypothetical center denoting getg ◦ getf a0 (represented by a star).
Similarly for the center and right subfigures, for B and A elements with center getf a0

and a0 and under orders v and �, respectively. Elements c−i denote the B pre-images
of element c under getf (which are not unique, since forward transformations need not
be injective), while elements c−i−j denote the A pre-images of element c−i under getg .

It is easy to envision why least-change composition is not trivial: the selection of
“closest” elements by the putback of g does not necessarily entail “closest” elements are
produced by the putback of f . For instance, if (getg ◦ getf) (a0) is updated to c1, and
the putback of g selects the minimal update c1

−1, the putback of f would necessarily
return its only view c1

−1−1, which is not the minimal update in relation a0; yet, the
selection of the non-minimal update c1

−2 by the putback of g would allow the putback
of f to select the minimal update in relation to a0, c1

−2−1. Moreover, in a combinatorial
context, well-behaved transformations are expected to be combined into transformations
that are also well-behaved without inspecting the particular behavior of the sub-lenses.
Thus, the ability to be composable should be intrinsic to well-behaved least-change
lenses, rather than to specific pairs. Suppose, for instance, that tw1 is a least-change
lens minimizing updates according to the order �TW1 presented above. Can it be
safely composed with another (arbitrary) least-change lens? The answer depends on

88 CHAPTER 5: LEAST-CHANGE LENSES

{p1→p2,p1→p1,
p2→p1,p2→p2,}

{p2→p1}

{p1→p1}

{}

{p1→p1,p1→p2}

{p2→p1,p1→p2}

{p2→p1,p2→p2}

{p1→p1,p2→p2}

{p2→p1,p1→p2,
p2→p2}

{p1→p1,p1→p2,
p2→p2}

{p2→p1,p1→p1,
p1→p2}

{p2→p1,p1→p1,
p2→p2}

{(p1,1),(p2,0)}

{(p1,0),(p2,0)}

{(p1,1),(p2,1)}

{(p1,1),(p2,2)}

{(p1,2),(p2,2)}

{(p1,2),(p2,1)}

{}

{p1}

{p1,p2}

TW1�T W1 TW2vT W2 TW3
tw1 tw2

(a) �= �TW1 and v= vTW2 .

{p1→p2,p1→p1,
p2→p1,p2→p2,}

{p2→p1}

{p1→p1}

{}

{p1→p1,p1→p2}

{p2→p1,p1→p2}

{p2→p1,p2→p2}

{p1→p1,p2→p2}

{p2→p1,p1→p2,
p2→p2}

{p1→p1,p1→p2,
p2→p2}

{p2→p1,p1→p1,
p1→p2}

{p2→p1,p1→p1,
p2→p2}

{(p1,1),(p2,0)}

{(p1,0),(p2,0)}

{(p1,1),(p2,1)}

{(p1,1),(p2,2)}

{(p1,2),(p2,2)}

{(p1,2),(p2,1)}

{}

{p1}

{p1,p2}

TW1�T W1 TW2vT W20 TW3
tw1 tw2

(b) �= �TW1 and v= vTW2 ′ .

Figure 5.3: Instantiations of least-change lens tw2 ◦ tw1 : TW1� B TW3-.

the metrics followed by tw2: if an order vTW2 ′ on TW2 ignores the popularity of
new persons, it will obviously lead to problematic executions of tw1. This is depicted
in Figure 5.3b: if the TW2 model {(p1, 1), (p2, 2)} is selected—a minimal update in
the perspective of the putback of tw2—the putback of tw1 is not able to produce a
minimal repair. What if tw2 performs under an order vTW2 on TW2 that considers the
popularity of new persons, as depicted in Figure 5.3a, will the putback of tw1 be able to
always produce minimal updates? While that does seem to be the case, intuitive criteria
must be defined so that each lens can be easily tested for its least-change properties.

Like in invariant-constrained lenses, we will show that allowing putbacks to be
exhaustive will somehow tame these issues: the putback of the first transformation
would be able to consider the different alternatives, and maybe return the desired
least-changed sources. For instance, in Figure 5.3b, if the putback of tw2 returns both
{(p1, 1), (p2, 2)} and {(p1, 1), (p2, 1)}, the putback of tw1 will be able to produce a
minimal update from the latter. While multi-valued composition is not ideal—as the
putback of f needs to search which intermediate candidates produced by the putback of
g will allow it to generate minimal sources updates—it may still be better than trying
to discover the least-changed sources of the composed transformation directly, since
for reasonable orders the guidance from the inner transformations will greatly limit the
search space.

5.1 LEAST-CHANGE LENS FRAMEWORK 89

The contributions of this chapter, as well as its structure, are the following:

• we introduce the notion of least-change lenses by applying the principle of least-
change to regular lenses (Section 5.1) under two dual formalizations: one based
on selective single-valued putbacks and another on exhaustive multi-valued ones
that correspond to the tightening of the upper- and lower-bounds imposed by the
round-tripping laws, respectively.

• we explore the viability of a combinatorial approach under least-change for the
two formalizations, in particular under sequential composition (Section 5.2),
ending up with a set of criteria under which least-change is indeed preserved by
composition.

Section 5.3 closes the chapter with an overview and discussion of the contributions.

5.1 Least-change Lens Framework

In Section 3.2.4 the principle of least-change as proposed by Meertens (1998) for the
constraint maintainer framework was presented. In this section we adapt this property
to the asymmetrical lens setting and explore the consequences of adopting it.

5.1.1 Defining Least-change Lenses

Adapting the least-change property to the lens setting is rather straight-forward. In this
asymmetric context of least-change lenses, or lc-lenses, the forward transformation is
assumed to be a concrete, user-defined transformation, and thus only the putback needs
be further controlled by least-change. To that purpose there is the need to define a family
of total preorders over source elements � :A→ (A↔A) that are stable in regard to its
input element, i.e., a0 is the minimum of �a0 (Definition 3.8). These stable preorders
could be derived from distance functions over sources ∆ : A→ A→ N that satisfies
the identity of indiscernibles (Equation (DISTSTABLE)), which is denoted by [∆]. In
our example a TW1 model instance consists of a pair (W ,F), with W a set of persons
and F a “follows” relation from persons to persons (a set of pairs F ⊆W ×W). Thus,
a suitable metric is the size of their symmetric differences:

∆TW1 (W ,F) (W ′,F ′) =

|W 	W ′|+ |F 	 F ′|

90 CHAPTER 5: LEAST-CHANGE LENSES

where X 	 Y = (X − Y) ∪ (Y − X)

Lifting this distance to a family of preorders results in the �TW1 previously presented.
A model instance of TW2 can instead be seen as a pair (W ,P), where W is again

a set of persons and P is seen as a multi-set of persons P denoting their popularity—a
person occurs as many times in P as its popularity. Membership test X x shall denote
the set indicator function, returning the number of occurrences of x in X (generalizing
that over regular sets that returns either 0 or 1). Again, a suitable metric could be the size
of their symmetric differences (generalized to multi-sets with the obvious definition):

∆TW2 (W ,P) (W ′,P ′) =

|W 	W ′|+ |P 	 P ′|
where X 	 Y = (X − Y) ∪ (Y − X)

Lifting ∆TW2 results in the family of preorders vTW2 , and thus pairing metrics ∆TW1

and ∆TW2 results in behavior like the one depicted in Figure 5.3a1. The alternative
order vTW2 ′ that ignored the popularity of persons not contained in both instances
could be defined by the following distance function:

∆TW2 ′ (W ,P) (W ′,P ′) =

|W 	W ′|+ |(P ⊗ (W ∩W ′))	 (P ′ ⊗ (W ∩W ′))|
where (X ⊗ Y) x = if x ∈ Y then X x else 0

Pairing metric ∆TW2 ′ with ∆TW1 results instead in behavior like the one depicted in
Figure 5.3b.

Selective Least-change Lenses By inspecting the above defined least-change law
definition, we see that it acts as an upper-bound for the putback: it removes values that
are farther away from the original source from the range of valid updates. This gives
rise to a selective version of least-change lenses: one in which, if the putback is defined,
it returns least-changed sources.

Definition 5.1 (selective lc-lens). Given a family of stable total preorders� :A→ (A↔
A), a well-behaved selective least-change lens f : A� B B consists of transformations

getf :A⇀B and putf :A×B⇀A such that GETPUT and the following property hold:

a ∈ putf (a0, b0)⇒ b0 ∈ getf a∧ (∀ a ′ :A | b0 ∈ getf a
′ ⇒ a �a0 a

′) LC-PUTGET
1These amount to the graph-edit distance, that will be automatically inferred from the meta-models in

succeeding chapters.

5.1 LEAST-CHANGE LENS FRAMEWORK 91

LC-PUTGET is a refinement of PUTGET, in the sense that the resulting source
value is required to be not only acceptable, but also one of closest to the original a0

among the sources that share the same view b, according to the preorders �. Since the
preorder over elements B does not affect the definition of least-change, it is usually
omitted from the type declarations.

Although this definition further restricts the backward transformation, there may
still be more than one valid putf for the same getf and preorders �, since there may
be multiple source elements at the same distance from the original source. Consider,
from our running example, transformation tw1 with preorders [∆TW1] over TW1 . If
we insert a person p in the view with popularity n, puttw1 is free to choose who will
be her followers, since any instance with n followers for p is at the same distance
from the original source (although it is no longer free to change the followers of other
persons, since this would result in more distant instances). This is depicted in the
left-hand side of Figure 5.3a: with this formulation the putback would have to select a
single source from those colored green. Regarding transformation tw2, assuming the
preorders [∆TW2], when a new person is inserted to the view, puttw2 must assign him
or her popularity 0, leaving only one acceptable source update (cf. right-hand side of
Figure 5.3a). However, assuming preorders vTW2 ′ instead, puttw2 is free to assign the
new person an arbitrary popularity (cf. right-hand side of Figure 5.3b). In both cases,
the refined putback must preserve the popularity of the previously existing persons.

Obviously, the preorder may not discriminate much, and at one end of the spectrum
we may have a preorder induced by the metric that considers all different values at the
same distance2:

∆0 s s ′ = if s = s ′ then 0 else 1

In this case, LC-PUTGET degenerates into the regular PUTGET, allowing the same
backward transformations as the regular lens laws, only recovering the original source
when the view update is null, bringing us back to the scenario depicted in Figure 5.2.
The other extreme case occurs when the preorder is refined to the point where minimal
values are unique and there is a single valid putback. This will occur when, for any
a0 ∈ A, ∆ a0 : A→ N is injective (which when lifted results in a total order), since the
minimal sources will always be unique.

2In metric space terminology, this is known as the discrete metric on a set.

92 CHAPTER 5: LEAST-CHANGE LENSES

Exhaustive Least-change Lenses For many pragmatic examples a single-valued
putback that commits to a particular minimal update will be too restrictive to allow
compositionality. The least-change composition example depicted at Figure 5.3b clearly
fails for selective putbacks. Therefore, we will introduce a variant of least-change lenses
where the putback is allowed to be multi-valued, enumerating all possible minimal
updates. As usual, to be distinguished from the single-valued versions, these putbacks
will be denoted as Putf .

Definition 5.2 (exhaustive lc-lens). Given a family of stable total preorders � :A→
(A↔A), a well-behaved exhaustive least-change lens f :A� I B consists of a partial

forward transformation getf : A⇀ B , and a multi-valued backward transformation

Putf : (A× B)↔ A such that PUTGET and the following property hold:

b0 ∈ getf a∧(∀ a ′ :A | b0 ∈ getf a
′ ⇒ a �a0 a

′)⇒ a ∈ Putf (a0, b0) LC-GETPUT

In exhaustive least-change lenses, the LC-GETPUT law replaces GETPUT as
the lower-bound of the putback and PUTGET is kept as the upper-bound. In fact,
LC-GETPUT is the dual of LC-PUTGET, as it states that, if a source a (with view b) is
one of the closest to a0, then it must be returned by Putf (a0, b) (possibly among other
non-minimal updates). This duality will become clear in the next section. It is also
worth noting that LC-GETPUT forces Putf to be defined for every pair (a0, b) such
that b is the view of some source a, i.e., to be safe (Section 3.2.2).

Returning to transformation tw2 under preorders vTW2 (cf. Figure 5.3b), when a
new person p2 is added to the TW3 view, only an exhaustive well-behaved Puttw2 that
returns models with all possible popularities for p2 may guarantee that the subsequent
Puttw1 will be able to generate minimal source updates by selecting the one that assigns
popularity 0 to p2.

5.1.2 Reasoning about Least-change Lenses

In the sequel we use the point-free subset of relational logic to formally specify and rea-
son about the two least-change lens formalizations, paving the way to easily transcribing
properties found about one of them to the other.

To ease calculations, we use a curried version of the putback transformations‘put· f : A→ (B ↔ A). Transcribing PUTGET and GETPUT to this version makes it
even more clear that they establish lower- and upper-bounds for the putback for every

5.1 LEAST-CHANGE LENS FRAMEWORK 93

original source a0 ∈ A: ’putf a0 ⊆ get◦f PUTGET

ρa0 ◦ get◦f ⊆’putf a0 GETPUT

where ρa0 = {(a0, a0)} filters out values other than a0, restricting the output of get◦f
to a0. As ρa0 is at most the identity, such bounds are consistent—the lower-bound
ρa0 ◦ get◦f is smaller than the upper-bound get◦f .

The principle of least-change, formalized by the LC-PUTGET and LC-GETPUT

laws, can be encoded in terms of the so-called shrink operator R � S : A↔B proposed
by Mu and Oliveira (2011) that minimizes the output of a binary relation R : A↔ B in
regard to another binary relation S : B ↔ B , and defined as follows:

〈a, b〉 ∈ (R � S) ≡ 〈a, b〉 ∈ R ∧ (∀ b ′ : B | 〈a, b ′〉 ∈ R ⇒ 〈b, b ′〉 ∈ S)

In relational notation this equals defining R � S = R ∩ S / R◦, where b ∈ S / R a

denotes relational division ∀ c : C | a ∈ R c ⇒ b ∈ S c. So R � S is at most R and
its output is a minimum in regard to S . Using the shrink operator, the least-change laws
proposed for selective and exhaustive lc-lenses can be specified as follows, for every
a0 ∈ A: ’putf a0 ⊆ get◦f � �a0 LC-PUTGET

get◦f � �a0 ⊆’Putf a0 LC-GETPUT

Clearly, these laws are dual of each other. Moreover, it can be shown that they refine
the regular laws in the sense that LC-PUTGET lowers the upper-bound imposed by
PUTGET and LC-GETPUT raises the lower-bound imposed by GETPUT.

Proposition 5.1. Given a family of stable total preorders � :A→ (A↔ A), for every

a0 ∈ A,

ρa0 ◦ get◦f ⊆ get◦f � �a0 ⊆ get◦f

Proof. The upper-bound is trivial since get◦f ∩ �a0 / getf ⊆ get◦f ; for the lower-bound
we have

ρa0 ◦ get◦f ⊆ get◦f � �a0

≡ {-shrink definition -}

94 CHAPTER 5: LEAST-CHANGE LENSES

ρa0 ◦ get◦f ⊆ get◦f ∩ �a0 / get·

≡ {-∩-UNIVERSAL ; /-DEF -}
ρa0 ◦ get◦f ⊆ get◦f ∧ ρa0 ◦ get◦f ◦ getf ⊆ �a0

≡ {-ρa0 = a0 ◦ a0
◦ ; SHUNTING -}

a0
◦ ◦ get◦f ◦ getf ⊆ a0

◦ ◦ �a0

≡ {-ORDSTABLE thus a0
◦ ◦ �a0 = > -}

a0
◦ ◦ get◦f ◦ getf ⊆ >

Note how ORDSTABLE is required for this proof. This was expected, since the
lower-bound imposed by GETPUT restricts the result of putf for the original source a0,
and ORDSTABLE states precisely that a0 is a minimum of the preorder. This proposition
also shows that LC-GETPUT and LC-PUTGET are consistent bounds.

Whenever ∆ a0 is injective, for any a0 ∈ A, (resulting in an antisymmetric
�a0 = [∆ a0], and thus a total order) or getf is injective, get◦f � �a0 is simple3 and so
will’putf a0. Moreover:

Proposition 5.2. If get◦f � �a0 is simple for every a0 ∈ A,’putf a0 = get◦f � �a0 is the

only total backward transformation that gives rise to a well-behaved selective lc-lens.

It is also the smallest Putf that gives rise to a well-behaved exhaustive lc-lens.

Proof. Trivial, since �a0 is reflexive and shrinking simple relations by reflexive order-
ings has no effect (Mu and Oliveira, 2011).

Since GETPUT is a requirement for lc-lenses and PUTGET follows from Proposi-
tion 5.1, every well-behaved selective lc-lens is a well-behaved regular lens, as should
be expected:

Γ ` f : A� B B

Γ ` f : A B B

For every well-behaved regular lens f : A B B there is at least one family of
stable total preorders � :A → (A↔ A) under which f can be interpreted as a well-
behaved selective lc-lens: that which emerges from the discrete metric ∆0, under which
LC-PUTGET degenerates into PUTGET. Thus:

Γ ` f : A B B

Γ ` f : A[∆0] B B
(5.1)

3Since antisymmetric shrinking criteria ensure simplicity (Mu and Oliveira, 2011).

5.2 CRITERIA FOR COMPOSING LEAST-CHANGE LENSES 95

Finally, any well-behaved exhaustive regular lens can also be seen as a well-behaved
exhaustive lc-lens by assigning a preorder such that get◦f � �a0 is simple and equal to
Putf . For instance, for any natural k , the distance function

∆f (a, a0) =

 0 if a = Putf a0 (getf a)

k otherwise

results, for every a0 ∈ A, in a total preorder such that

a ′ [∆f a0] a ≡ (a ∈’Putf a0 (getf a)⇒ a ′ ∈’Putf a0 (getf a
′))

LC-GETPUT follows easily, thus:

Γ ` f : A I B

Γ ` f : A[∆f] I B

5.2 Criteria for Composing Least-change Lenses

This section explores under which conditions does the composition of two well-behaved
least-change lenses f : A� B B and g : Bv B C result in another well-behaved
least-change lens g ◦ f : A� B C . In the curried putback version, the transformations
comprising the regular lens composition combinator (◦) (Foster et al., 2007) take the
shape, for any original source a0 ∈ A:

getg◦f = getg ◦ getf◊�putg◦f a0 = (’putf a0) ◦ (’putg (getf a0))

In general least-change is not preserved by composition, since putg◦f is not guar-
anteed to return minimal values. This has already been demonstrated for our running
example, under the update propagation example depicted in Figure 5.3b with preorders
vTW2 ′ over TW2 . Consider the depicted update on TW3 that inserts a new person p2.
Clearly, minimal updates on TW1 regarding puttw2◦tw1 are those that insert person p2

in TW1 with a single follower (it would not show up in TW3 otherwise). However,
with vTW2 ′ , puttw2 may assign an arbitrary popularity to p2 and still be regarded as
minimal, denying puttw1 the ability to generate minimal TW1 updates in the process.

96 CHAPTER 5: LEAST-CHANGE LENSES

5.2.1 Selective Composition

We will see that in order to preserve LC-PUTGET in the selective scenario, the forward
transformations will need to somehow preserve the preorders between view and source
elements. To be more precise, the goal of this section is to analyze under which
conditions LC-PUTGET is preserved by composition, i.e.:

(∀ a : A |’putf a ⊆ get◦f � �a) ∧ (∀ b : B |’putg b ⊆ get◦g � vb)⇒
(∀ a : A | ◊�putg◦f a ⊆ getg ◦ get◦f � �a)

In other words, if for every execution, putf and putg either fail or produce a single
minimal update, will putg◦f be able to do the same? It is worth recalling that in a
combinatorial frameworks, the well-behavedness of the composed should emerge solely
from the well-behavedness of the opaque “sub-lenses” and thus the compositionality
criteria should be intrinsic to each “sub-lens”, rather than depend on their relationship.

The simplest condition for this to hold is for getg to be injective: since get◦g will be
simple, there will be a single valid putg , and thus there is no ambiguity in the choice of
propagated updates.

Proposition 5.3. If f : A� B B and g : Bv B C are well-behaved selective lc-lenses

and getg is injective, then g ◦ f : A� B C is a well-behaved selective lc-lens.

Having an injective getf , however, is not enough to preserve LC-PUTGET. Still, a
sufficient condition on getf is for it to be strictly increasing between the preorders �a0

and v(getf a0), for any a0 ∈ A:

a1 ≺a0 a2 ⇒ (getf a1) @(getf a0) (getf a2)

We will abuse the notation and say that such transformations are strictly increasing
between the families of preorders � and v.

A strictly increasing getf reads: if a source a1 is smaller than another source a2

(regarding the distance to the original source a0), then its view getf a1 shall be smaller
than the view of a2 (regarding the distance to the original view getf a0). In point-free
notation this can be expressed as follows:

≺a0 ⊆ get◦f ◦@(getf a0) ◦ getf STRICTINC

5.2 CRITERIA FOR COMPOSING LEAST-CHANGE LENSES 97

In total preorders, we have a1 ≺a0 a2 ≡ ¬(a2 �a0 a1), thus an equivalent formula-
tion is:

(getf a1) v(getf a0) (getf a2)⇒ a1 �a0 a2

This property is similar to that enforced by “order-based” frameworks (Hegner, 2004),
but over relative, rather than absolute, orders.

Proposition 5.4. If f : A� B B and g : Bv B C are well-behaved selective lc-

lenses and getf is strictly increasing between the families of preorders � and v, then

g ◦ f : A� B C is a well-behaved selective lc-lens.

Unfortunately this requirement is too restrictive, as it forces getf to be injective,
meaning that it cannot abstract information from the source.

To help understand why composition succeeds when getf is strictly increasing,
Figure 5.4 shows a possible configuration under this assumption. On the left subfigure,
several B views spread over concentric circles according to their distance to a hypotheti-
cal center denoting getf a0 (and represented by a star). Similarly for the right subfigure,
for A sources and center a0. Elements a−1 denote the pre-image of an element a under
getf . In this case, we have an one-to-one correspondence since getf , being strictly
increasing, must be injective. Another consequence of this property is that all B views
that are at the same distance from getf a0 (e.g., b1, b2 and b3) must have their pre-images
at the same distance from a0 (b−1

1 , b−1
2 and b−1

3 , respectively). Moreover, the relative
distances to the center are preserved, in the sense that, for example, since b1 v(getf a0) b4

then b−1
1 �a0 b

−1
4 . Now, consider the backward propagation performed by a hypothetical

lc-lens g , when putting back a given view to the original source getf a0 such that all the
named elements are acceptable source updates. Being well-behaved, putg will return
one of the values that is closest to getf a0, in this case either b1, b2 or b3; putf must
return one of their pre-images which, due to the above assumptions, is guaranteed to be
one of the closest to a0, whatever choice is made by putg . This renders the composed
lens g ◦ f well-behaved under least-change.

While a strictly increasing getf suffices to guarantee that any composition g ◦ f
is also a well-behaved least-change lens, in order to attain a proper compositional
language and be able to compose any sequence of transformations, this property must
also be preserved by composition.

98 CHAPTER 5: LEAST-CHANGE LENSES

getf

b1

b4b3

b2

b5

b6

b7

Bv

b�1
7

b�1
6

b�1
5

b�1
4b�1

3

b�1
2

b�1
1

A�

Figure 5.4: Strictly increasing transformation.

Proposition 5.5. For two transformation getf :A�⇀Bv and getg :Bv⇀C- such that

getf is strictly increasing between the families of preorders � and v and getg is strictly
increasing between the families of preorders v and -, then getg ◦ getf : A�⇀ C- is

strictly increasing between � and -.

A more interesting requirement is the following more relaxed version of STRICTINC,
that does not imply injectivity:

(∀ a ′2 : A | getf a2 = getf a
′
2 ⇒ a1 ≺a0 a

′
2)⇒ (getf a1) @(getf a0) (getf a2)

In point-free notation this is written

≺a0 / (get◦f ◦ getf) ⊆ get◦f ◦@(getf a0) ◦ getf QUASISTRICTINC

Under quasi strictly increasing transformations, a view getf a1 is required to be
closer to getf a0 than another view getf a2 only when a1 is closer to a0 than all other
sources a ′2 that also map to the view of a2. An alternative formulation using the “less
than or equal” preorders is

(getf a2) v(getf a0) (getf a1)⇒ (∃ a ′2 : A | getf a2 = getf a
′
2 ∧ a ′2 �a0 a1)

or ρ(getf) ◦ v(getf a0) ◦ getf ⊆ getf ◦ �a0 in the point-free notation. In other words,
when a view b2 is smaller than or equal to another view b1 (regarding the distance
to a view getf a0), then at least one source with view b2 is smaller than or equal to
all the sources with view b1 (regarding the distance to a source a0). The difference

5.2 CRITERIA FOR COMPOSING LEAST-CHANGE LENSES 99

getf

b1

b4b3

b2

b5

b6

b7

Bv

b�1
7

b�1
2

b�1
4

b�1
6

b�1
1b�1

5

b�1
3

A�

Figure 5.5: Quasi strictly increasing transformation.

to STRICTINC can easily be seen in Figure 5.5. Now the pre-image of a view value can
contain several sources at different distances from the center. Still, for views at the same
distance to getf a0 (e.g., b1, b2 and b3), the minimum values of their pre-images must
all be at the same distance from a0 (minimal values of b−1

1 , b−1
2 and b−1

3 , respectively).

Proposition 5.6. If f : A� B B and g : Bv B C are well-behaved selective lc-lenses

and getf is quasi strictly increasing between the families of preorders � and v, then

g ◦ f : A� B C is a well-behaved selective lc-lens.

Figure 5.5 also helps understanding why this proposition holds. Again, when
propagating an update whose acceptable sources are the named elements, putg is free
to choose any value closest to getf a0 and, whatever the choice made, putf will always
be able to return one of the sources closest to a0 from their pre-images. An example
of a transformation that is not strictly increasing but is quasi strictly increasing is
determining the size of a set, with the obvious metrics (size of symmetric difference in
the source and absolute value of the difference in the view).

Unlike with strictly increasing transformations, the composition of two quasi strictly
increasing transformations only remains so if getf is surjective.

Proposition 5.7. For two transformation getf : A�⇀ Bv and getg : Bv⇀ C- such

that getf is surjective and quasi strictly increasing between the families of preorders �
and v and getg is quasi strictly increasing between the families of preorders v and -,

then getg ◦ getf : A�⇀ C- is quasi strictly increasing between � and -.

In a lens framework, requiring surjectivity is a typical restriction, as already exten-
sively discussed in Chapter 4.

100 CHAPTER 5: LEAST-CHANGE LENSES

An interesting class of lenses is the one obtained from transformations with a
perfect complement. A function cplf is said to be a complement of getf if getf M cplf

is injective, i.e., any source can be losslessly represented as a view/complement pair.
For view update translation under a constant complement, there is a unique source
update for each view update (Bancilhon and Spyratos, 1981). A complement is said
to be independent (Keller and Ullman, 1984) when getf M cplf is bijective, i.e., any
view/complement pair corresponds to a source state. If a getf has an independent
complement (we call it perfect), then there exists a lens with a unique optimal putf
with perfect updatability, since it is possible to translate all view updates onto source
updates while keeping the complement constant. Typical examples of transformations
that fall under this category are tuple projections, whose perfect complement is exactly
the information projected out.

Having a perfect complement is not sufficient for a least-change lens to be compos-
able. However, if getf is strictly increasing among sources with the same complement,
then it is also quasi strictly increasing, and thus can safely be composed.

Proposition 5.8. If getf : A⇀ B has perfect complement and

(getf a1) v(getf a0) (getf a2) ∧ cplf a1 = cplf a2 ⇒ a1 �a0 a2

for every a0, a1, a2 ∈ A, then getf is quasi strictly increasing between the families of

preorders � and v.

Proving that a transformation is quasi strictly increasing is not trivial. This is an
example of a useful class of transformations where such proof can be much simplified.

5.2.2 Exhaustive Composition

Dually to the selective case, the necessary condition for two exhaustive least-change
lenses to be composable is the following:

(∀ a : A | get◦f � �a ⊆’Putf a) ∧ (∀ b : B | get◦g � �b ⊆’Putg b)⇒
(∀ a : A | getg ◦ get◦f � �a ⊆ ◊�Putg◦f a)

That is, if Putf and Putg produce at least all minimal updates, will Putg◦f be able to do
the same?

Once again, an injective getg guarantees least-change compositionality. However, it
requires getf to be total, in order to guarantee that Putg◦f is safe.

5.2 CRITERIA FOR COMPOSING LEAST-CHANGE LENSES 101

Proposition 5.9. If f :A� I B and g :Bv I C are well-behaved exhaustive lc-lenses,

getf is total and getg is injective, then g ◦ f : A� I C is a well-behaved exhaustive

lc-lens.

Interestingly, the remaining laws that ensure exhaustive compositionality are dual
to those for the selective case: we can either reverse every law from R ⊆ S to S ⊆ R

or, equivalently, replace every ≺a by �a . For example, instead of requiring getf to be
strictly increasing it suffices to require it to be monotonic:

a1 �a0 a2 ⇒ (getf a1) v(getf a0) (getf a2)

Remember that monotonicity reads the same way as the strictly increasing property, by
simply replacing “smaller than” by “smaller than or equal to” in the text. An equivalent
formulation in the opposite direction is:

(getf a1) @(getf a0) (getf a2)⇒ a1 ≺a0 a2

In the point-free notation we have

�a0 ⊆ get◦f ◦ v(getf a0) ◦ getf MONOT

Unlike the strictly increasing property, monotonicity no longer implies that getf is
injective; instead, it implies the dual property, that getf is total (entailing a safe Putg◦f).

Proposition 5.10. If f : A� I B and g : Bv I C are well-behaved exhaustive

lc-lenses and getf is surjective and monotonic between the families of preorders � and

v, then g ◦ f : A� I C is a well-behaved exhaustive lc-lens.

Unlike in Proposition 5.4, getf is now required to be surjective (note that surjectivity
is the dual property of simplicity, which getf always satisfies). Figure 5.6 demonstrates
the differences between being strictly increasing and monotonic, and why this property
ensures a well-behaved exhaustive composition. Unlike in Figure 5.4, the pre-images
of the B views at the same distance from getf a0 (e.g., b1 and b2) are allowed to be at
different distances from a0 (elements from b−1

1 and b−1
2 , respectively). However, we

have the restriction that, for example, when b1 @(getf a0) b4 then b−1
1 ≺a0 b

−1
4 , forcing the

pre-images of views at different distances from getf a0 to also be at different distances
from a0 (respecting the relative orders). This ensures that when Putg returns all values

102 CHAPTER 5: LEAST-CHANGE LENSES

getf
b1

b4b3

b2

b5

b6

b7

Bv

b�1
7

b�1
2

b�1
4

b�1
6

b�1
1

b�1
5

b�1
3

A�

Figure 5.6: Monotonic transformation.

at the minimum distance from getf a0, all sources at the minimum distance from a0 are
contained in their pre-image. This example also helps understanding why exhaustive lc-
lenses were defined to return at least all minimal values rather than exactly all minimal
values: even if the “sub-lenses” return exactly the minimal values (b1, b2 and b3), the
composed lens will produce values other than the minimals (those at the pre-images of
b−1

1 and b−1
3).

An interesting fact is that, unlike in total partial-orders, a strictly increasing transfor-
mation is not necessarily monotonic. This means that we can can have transformations
whose composition is well-behaved in the selective scenario, but not well-behaved in
the exhaustive one. Figure 5.4 helps understanding why: even if Putg returns a value
closest to getf a0, (e.g., b3) there is no chance for Putf to return all values closest to a0,
since some of the pre-images closest to a0 originate from views at minimal distance
from getf a0 (namely b2).

As with strictly increasing transformations, monotonicity is preserved by composi-
tion.

Proposition 5.11. For two transformations getf : A⇀ B and getg : B ⇀ C such that

getf is monotonic between the families of preorders � and v and getg is monotonic
between the families of preorders v and -, then getg ◦ getf : A⇀ C is monotonic
between � and -.

Again, monotonicity can be relaxed to

(∀ a ′2 : A | getf a2 = getf a
′
2 ⇒ a1 �a0 a

′
2)⇒ (getf a1) v(getf a0) (getf a2)

5.2 CRITERIA FOR COMPOSING LEAST-CHANGE LENSES 103

getf

b1

b4b3

b2

b5

b6

b7

Bv

b�1
7

b�1
2

b�1
4

b�1
6

b�1
1

b�1
5

b�1
3

A�

Figure 5.7: Quasi monotonic transformation.

or with the point-free notation:

�a0 / (get◦f ◦ getf) ⊆ get◦f ◦ v(getf a0) ◦ getf QUASIMONOT

In quasi monotonic transformations, if a source a1 is smaller than or equal to all the
sources with view b (regarding the distance to a source a0), then its view getf a1 shall
be at most b (regarding the distance to a view getf a0). Alternatively, when a view b2 is
smaller than another view b1 (regarding the distance to a view getf a0), then at least
one source with view b2 is smaller than all sources with view b1 (regarding the distance
to a source a0):

(getf a2) @(getf a0) (getf a1)⇒ (∃ a ′2 : A | getf a2 = getf a
′
2 ⇒ a ′2 ≺a0 a1)

Like monotonicity, quasi monotonicity entails a total getf .

Proposition 5.12. If f : A� I B and g : Bv I C are well-behaved exhaustive

lc-lenses and getf is surjective and quasi monotonic between the families of preorders

� and v, then g ◦ f : A� I C is a well-behaved exhaustive lc-lens.

Figure 5.7 illustrates this property. The difference to monotonicity is that only
the minimum pre-images of each view are required to respect the relative orders, for
instance, even though b4 is farther from getf a0 than b2, some elements from b−1

4 may
be closer to a0 than elements from b−1

1 other than the minimal. This suffices for Putf to
able to return all closest sources to a0 given all closest views to getf a0.

104 CHAPTER 5: LEAST-CHANGE LENSES

Likewise to quasi strictly increasing transformations, preservation of quasi mono-
tonicity by composition requires the surjectivity of the first transformation.

Proposition 5.13. For two transformation getf : A�⇀ Bv and getg : Bv⇀ C- such

that getf is surjective and quasi monotonic between the families of preorders � and

v and getg is quasi monotonic between the families of preorders v and -, then

getg ◦ getf : A�⇀ C- is quasi monotonic between � and -.

Finally, regarding lenses with perfect complement, exhaustive least-change compo-
sitionality is ensured by a monotonic getf among sources with the same complement,
since this ensures that getf is quasi monotonic.

Proposition 5.14. If getf : A⇀ B has perfect complement and

a1 �a0 a2 ∧ cplf a1 = cplf a2 ⇒ (getf a1) v(getf a0) (getf a2)

for every a0, a1, a2 ∈ A, then getf is quasi monotonic between the families of preorders

� and v.

5.3 Discussion

This chapter introduced a framework of least-change lenses that is characterized by two
dual scenarios: a single-valued one that only requires transformations to selectively
return minimal updates, and a multi-valued one that requires them to exhaustively
return all minimal updates. Several sufficient conditions that enable composition of
least-change lenses were also presented (summarized in Tables 5.1 and 5.2), an issue not
addressed in the pioneering work by Meertens (1998), where no linguistic mechanisms
to combine maintainers following least-change, including composition, are proposed.
The properties for well-behavedness and for composition arose naturally from the
duality between both scenarios.

We have modeled our framework in Alloy, which has proved very useful in the early
stages of this research to rapidly explore and verify/discard different propositions4. Of
course, such automatic verification is necessarily bounded, and full unbounded calcula-
tional proofs for all our propositions were then conducted in the Isabelle/HOL (Nipkow

4The Alloy model can be downloaded from http://wiki.di.uminho.pt/twiki/pub/
Research/FATBIT/Publications/lc-lenses.als.

http://wiki.di.uminho.pt/twiki/pub/Research/FATBIT/Publications/lc-lenses.als
http://wiki.di.uminho.pt/twiki/pub/Research/FATBIT/Publications/lc-lenses.als

5.3 DISCUSSION 105

f : A� B B g : Bv B C

getg injective
getf strictly increasing
getf quasi strictly increasing
getf with perfect complement and strictly increasing
over complement

Table 5.1: Compositionality criteria for selective lc-lenses g ◦ f : A� B C .

f : A� I B g : Bv I C

getf total getg injective
getf surjective and monotonic
getf surjective and quasi monotonic
getf with perfect complement and monotonic over
complement

Table 5.2: Compositionality criteria for exhaustive lc-lenses g ◦ f : A� I C .

et al., 2012) proof assistant5. Our criteria are still not general enough to encompass
least-change lenses we believe can be composed, although more relaxed criteria will
most likely not be independent of the “sub-lenses”, denying the advantages of a truly
compositional approach. This issue raises the interesting question of completeness:
is there a limit on the expressiveness of a least-change lens that can be composed
safely with any other such lens? Our (still unproved) conjecture is that such limit is
set precisely at quasi strictly increasing transformations for the selective scenario, and
quasi monotonic transformations for the exhaustive one.

We advocate the principle of least-change as a tool to trim down the variability
inherent in a bidirectional transformation to reasonable bounds while still supporting
precise and predictable bidirectional laws. In this sense, least-change lenses and
the invariant-constrained lenses explored in Chapter 4 complement each other, both
providing means to tame the unpredictability inherent to the regular lens laws: the latter
allows the restriction of the acceptable updates, while the former enforces an order on
their selection. It remains to be seen however, how the combinators besides sequential
composition behave under least-change.

In contrast with traditional bidirectional transformation approaches, whose criteria

5The Isabelle/HOL theory can be downloaded from http://wiki.di.uminho.pt/twiki/pub/
Research/FATBIT/Publications/lc-lenses.thy.

http://wiki.di.uminho.pt/twiki/pub/Research/FATBIT/Publications/lc-lenses.thy
http://wiki.di.uminho.pt/twiki/pub/Research/FATBIT/Publications/lc-lenses.thy

106 CHAPTER 5: LEAST-CHANGE LENSES

for update translation (besides the regular well-behavedness laws) are usually vague or
non-existent, least-change bidirectional transformations come equipped with an order
on sources plus least-change well-behavedness laws that constitute a formal and explicit
documentation of the criteria used for update translation. Therefore, reimplementing
existing bidirectional transformation approaches in our framework could bring to light
their underlying update translation semantics. Under this perspective, the composition
of least-change lenses could be more flexible, by allowing orders over the datatypes
to differ from lc-lens to lc-lens: one would write f : A B� B to state that lens f is
well-behaved for order �. By doing so, the order could specify more precisely the
behavior of a lens, and given two lc-lenses f : A B� B and B : B Bv C , an interesting
research direction is to infer an order - such that g ◦ f : A B- C is a well-behaved
lc-lens. Obviously, one could always default to the discrete metric ∆0 following 5.1,
but the goal would be to derive a more precise (i.e., more predictive) preorder. This
resembles the properties explored in Chapter 4 over ic-lenses, where well-behavedness
was preserved by “type-changing” combinators. In fact, in ic-lenses—unlike in lc-
lenses—assessing whether well-behavedness is preserved by combinators is a rather
trivial problem, and has already been explored in the context of regular lens (Foster
et al., 2007).

Other approaches to minimal update propagation that do not rely on least-change (Lar-
son and Sheth, 1991; Keller, 1986) consider whole getf functions and do not allow
reasoning by composition. The minimization criteria of the technique by Larson and
Sheth (1991) can be seen as an order on sources and their algorithms as an exhaustive
least-change lens, whereas the dialog is an additional mechanism to allow choosing a
minimal source from the various possible. Buneman et al. (2002) study the complexity
of minimizing view updates for a monotonic fragment of relational algebra, for two
kinds of deletion and annotation updates, and conclude that this problem is NP-hard
for queries including both projection-join or join-union. They consider two metrics
for minimality: first the number of changes in the source, and second the number of
side effects in the view caused by the view update. Although our notion of order is
more natural with the former metric (since the lens laws disallow view side effects),
our framework of lc-lenses is general in the sense that it does not assume any particular
order on states nor language of updates. Also, while they study the problem of inverting
an individual lens in a minimal way, we consider the orthogonal problem of composing
“minimized” lenses.

5.3 DISCUSSION 107

{p1,p2}
{p2→p1}

{p1,p2}
{p1→p1}

{(p1,1),(p2,0)}

{(p1,1)}

{(p1,2),(p2,1)}

{p1}
{p1→p1}

{p1,p2}
{p2→p1,p1→p1,

p1→p2}

{p1,p2}
{p2→p1,p1→p1,

p2→p2}

c'

c

TW1�T W1 TW2vT W2 C
tw1 f

Figure 5.8: tw1 : TW1�TW1 B TW2 failing QUASIMONOT and QUASISTRICTINC

for f : TW2vTW2 B C .

Like already posited in Section 4.4, allowing putbacks to be multi-valued does not
compromise the predictability of the system (as would non-deterministic transforma-
tions): users are no longer required to rely on transformations with possibly opaque or
contrived semantics, instead being given the chance to control the produced updates.
Nonetheless, multi-valued composition rises obvious efficiency issues and it is not
clear whether techniques similar to the invariant propagation from Section 4.2 could
be developed for least-change. However, having the putback of f searching which
intermediate candidates produced by the putback of g will allow it to generate minimal
sources, is probably still better than trying to discover the least-changed sources of
the composed transformation directly, since for reasonable orders the guidance from
the inner transformations will greatly limit the search space (indeed, it allows the
construction of a search tree by composition). A more serious issue is that the proposed
criteria are rather tedious (and unintuitive) to verify and it is still not clear how better
proof methods to perform such task could be developed. For example, we expected our
example transformation tw1 to be quasi monotonic (with distance function ∆TW1), but
have found that such is not the case. An example is presented in Figure 5.86. We are
currently investigating whether other subtle redefinitions of ∆TW1 and ∆TW2 , namely
using distance functions that give rise to lexicographic orders, would satisfy any of the
criteria.

6Least-change lens tw1 fails to compose with a hypothetical f due to not being quasi monotonic
nor quasi strictly increasing: when view c is updated to c′, neither having putf select a single minimal
update allows puttw1 to select a minimal update—the selective scenario—nor having Putf select all
minimal updates allows Puttw1 to select all minimal updates—the exhaustive scenario.

108 CHAPTER 5: LEAST-CHANGE LENSES

Part III

Maintainer Framework

109

Chapter 6

Maintaining Constraints

Throughout this dissertation we have been emphasizing the importance of bidirectional
transformations that are aware of both domain constraints and minimality criteria. In
Part II we tackled these issues under the combinatorial setting of lenses, with a particular
focus on their sequential composition. To render these truly combinatorial—i.e., to
guarantee that well-behavedness is preserved by the combinators—complex update
propagation mechanisms were proposed that may render such approaches unfeasible:
invariant-constrained lenses require type-inference mechanisms that may not be decid-
able, while exhaustive least-change lenses require putbacks to generate every acceptable
element so that the succeeding putbacks may search for an appropriate one. The core
concept in combinatorial approaches is the creation of complex, correct-by-construction
bidirectional transformations from a set of simple primitives and combinators; if de-
ploying these combinators is impractical, the combinatorial principle is undermined.

In fact, this kind of issues is typical in more general frameworks, like that of con-
straint maintainers. Compositional reasoning over constraint maintainers was deemed
unsuitable by Meertens (1998, p. 42) from the start precisely because testing the com-
position of consistency relations—which in general are not simple—may yield an
undecidable algorithm. The tradeoff is that constraint maintainers are more expres-
sive than lens frameworks, being able to handle the symmetric scenario where neither
transformation domain is a view of the other. As a consequence, constraint maintainers
typically embody global constraints defined over the system, their comprising transfor-
mations being responsible for restoring its consistency when needed. In this part of
the dissertation we explore the potential of such perspective, specifying bidirectional
transformations by a constraint over the state of the system and disregarding their

111

112 CHAPTER 6: MAINTAINING CONSTRAINTS

combination into more complex artifacts. Since the asymmetric restriction imposed
by lenses—of having a functional forward transformation—is no longer relevant, we
are also able to focus on bidirectional transformations whose consistency relation is of
arbitrary multiplicity.

The main hindrance in the development of constraint maintainer frameworks is that
the three components of T : M BC N must be derived from a single specification
of T : the consistency checker T : M ↔ N as well as the two consistency-restoring
transformations1 −→T : M × N ⇀ N and

←−
T : M × N ⇀M , taking into consideration

both the constraints imposed by the meta-models and the provided preference orders so
that least-change may be enforced, as depicted in the following diagram:

This leads to restrictions over the specification language in order to render the derivation
procedure feasible, as well as to derived transformations that are not sufficiently flexible
to be applicable in many scenarios. As a consequence, very few effective instantiations
of the constraint maintainer scheme exist. For instance, the QVT-R specification lan-
guage by OMG (2011a) is one of the best known instantiation of constraint maintainers
where consistency relations are specified as declarative relations that establish when two
models are consistent. Yet, in order to attain consistency-restoring transformations that
are effective, relations must be written in such way that almost resembles an imperative
procedure (OMG, 2011a, p. 18). This jeopardizes the advantages of writing declarative
constraints, as the user must think in an imperative paradigm. Most alternative imple-
mentations of QVT-R provide transformations that are not really bidirectional (Boronat
et al., 2006; de Lara and Guerra, 2009), ignoring the initial models, and even the QVT-R
standard (OMG, 2011a) only retrieves such information if explicit keys for the models

1These components are not necessarily embodied in artifacts, but may instead represent update
procedures.

113

are defined. Introducing an additional complexity layer, transformations should also be
aware of the domain constraints, especially in the context of MDE, where meta-model
constraints abound. Failing to do so results in procedures that are simply not useful.
Such is the case of the semantics proposed for QVT-R (OMG, 2011a) as well as tools
that aim at implementing it. As far as we are aware, least-change semantics is not
considered by any available implementation. Another widely study instantiation of
constraint maintainers is that of Triple Graph Grammars (TGGs). However, these focus
on the simultaneous application of updates, being more suitable for batch transformation
scenarios (although some work has been developed on the incremental execution of
TGGs (Ehrig et al., 2007; Giese and Wagner, 2009)).

To avoid these issues, in this chapter we see such frameworks under a different
perspective. Recalling the constraint maintainer laws for

−→
T , we have:

n ∈ −→T (m0, n0) ⇒ T (m0, n) CORRECT

T (m0, n0) ⇒ n0 =
−→
T (m0, n0) HIPPOCRATIC

The first states that transformations should restore consistency between the models, and
the second that consistent models should not be updated; in both, the consistency relation
is at the core of the transformations’ behavior. In fact, the goal of the transformations is
repairing the inter-model constraint entailed by the maintainer when inconsistencies
are introduced, while also taking into consideration intra-model constraints imposed
by the meta-models. Under this interpretation, we could deploy constraint maintainers
according to the following architecture:

checks

reads
writes writes

refersTo

conformsTo

compares

conformsTo

compares

refersTo

specifies

solves

controls

m

M

≤

n

N

Constraint

T

Finder

⊑

controls

Unlike the above approach where actual transformations must be derived, the burden of
this approach is on the embedding of the specification artifacts into a unifying logical

114 CHAPTER 6: MAINTAINING CONSTRAINTS

formalism. Consistent solutions could then be generated by relying on model finding

procedures. The JTL framework proposed by Cicchetti et al. (2010) follows such
approach, embedding constraints in a solver and asking the system to find consistent
solutions. Yet, it lacks the ability to control the proposed updates, which may result in
solutions with little resemblance with the original target model. Consider the following
definition of least-change for

−→
T , given preorders v over N :

n ∈ −→T (m0, n0)⇒ T (m0, n) ∧ (∀ n ′ : N | T (m0, n
′)⇒ n vn0

n ′)

LC-CORRECT

Essentially, least-change entails a “biased selection” (Meertens, 1998) that selects
minimal solutions from among those considered valid by the constraints. This hints
that, rather than being embedded in the constraint, least-change should be deployed as
a mechanism to control the solutions produced by the model finder.

The main research question of this chapter is: can least-change constraint maintain-

ers be deployed over model finding procedures? To attain this, first there is the need
to provide an embedding of the intra- and inter-model constraints into a specification
language that is amenable to model finding; second, one needs to implement mecha-
nisms that allow that same finder to provide least-change behavior. In the context of this
dissertation, the unifying language over which constraints are defined is relational logic.
Due to recent developments on relational model finding, such relational constraints may
be solved by the Kodkod model finder developed by Torlak and Jackson (2007). By
providing a higher-level specification language—arising from its support for relational
logic and transitive closure—relational model finders have proven to be suitable to
address MDE problems (Anastasakis et al., 2010; Kuhlmann and Gogolla, 2012; Cunha
et al., 2013). In fact, the potential of Kodkod for intra-model consistency repair has
previously been explored (Kleiner et al., 2010; Straeten et al., 2011) although the ability
to produce minimal updates has only recently been tackled (Cunha et al., 2014).

Due to the general nature of the model finding problem, once the mechanism to
enforce least-change is defined it can be employed to address other MDE tasks. In
particular, we show that once the intra- and inter-model constraint is embedded in
relational logic, model finding can be used to solve model repair, synchronization or
multidirectional transformation problems.

The contributions and structure of this chapter are the following:

• we formalize the notion of constraint maintainers based on model finding (Sec-

6.1 CONSTRAINT MAINTAINING WITH MODEL FINDING 115

tion 6.1) where the comprising transformations amount to consistency-restoring
procedures;

• we show that such formalization can be generalized to address other MDE tasks
(Section 6.2) like model repair, synchronization and multidirectional transforma-

tion;

• we explore how least-change behavior can be obtained from off-the-shelf model
finders (Section 6.3).

Section 6.4 wraps up the chapter and discusses the results.

6.1 Constraint Maintaining with Model Finding

In the context of constraint maintainers, bidirectional transformations are represented
by a global constraint over the environment, rather than a relational expression that
consumes and produces elements (as with the lens frameworks from Part II). More
specifically, while a lens f :A B B transforms data between sorts A and B , a constraint
maintainer T : M BC N is embodied by a formula that is evaluated for the current
state of the transformation domains M and N . Thus, data is instead represented by
relational variables occurring in the formula, whose valuations define the state of M
and N . In fact, as discussed in Section 3.1, relational data is actually better suited to
represent graph-like data structures. In this perspective, maintaining a constraint may
be seen as a model finding problem, where the procedures look for variable assignments
such that the intra- and inter-model constraints hold.

6.1.1 Model Finding

In the relational setting, free variablesR represent relations, and their values consist
of tuple sets drawn from universe T . Much like predicates in standard predicate logic,
these relations must have a uniform arity, and thus the tuple set assigned to a variable
must be uniform, containing only tuples with the same arity. A transformation domain
M introduces a set of relation variables, while models conforming to it consist of a
binding for those variables, representing the current state of the model. Relational
model finding consists precisely of finding a model binding m :R⇀ T for the free
relations for which a formula φ holds, i.e., JφKm ≡ True. However, this problem is

116 CHAPTER 6: MAINTAINING CONSTRAINTS

in general undecidable, and thus, model finders must execute over a restricted search
space by considering a bounded universe of atoms A, rather than the whole universe
of elements U . To further control the search space, the range of acceptable values for
each free variable can usually be constrained. In the relational setting, and in Kodkod
in particular, these are embodied by lower- and upper-bounds for the tuple set assigned
to each free variable, i.e., tuple sets RL,RU : T for a relation R such that RL ⊆ RU . In
this context, a binding is only valid if the value assigned to each variable is within the
given bounds.

Definition 6.1 (valid binding). A binding m :R⇀ T is said to be valid under bound

mapping B :R⇀ T × T comprised of tuples R 7→ (RL,RU), denoted by m : B , if

∀ R : δB | RL ⊆ (m(R)) ⊆ RU

The upper- and lower-bounds of a relation are also expected to have uniform arity,
and thus force the same arity on its valuation. This also entails that, to be valid, a model
binding must provide a valuation for each relation bound by B .

Given the interpretation of models as relation assignments, model finding consists
of finding such bindings under the provided bounds.

Definition 6.2 (model finding). A (relational) model finding (MF) problem is a tuple

〈A, φ,B〉, where A is the universe of atoms, φ is a formula and B : R⇀ T × T is

a mapping from relations to bounds R 7→ (RL,RU) over A such that fv(φ) ⊆ δB . A

model finding procedure J||| A, φ,B |||K : P(R⇀ T) is said to solve the MF problem if

m ∈ J||| A, φ,B |||K ≡ m : B ∧ JφKm

To be a solution of a model finding problem, a binding must be valid under bounds
B and render formula φ true. The latter can be performed using standard semantics,
like the one presented at Section 2.3. This definition entails that a valid solution must
assign values to all variables bound by B , even if not occurring in φ. Moreover, it also
assumes the model finding procedure returns every valid solution.

6.1.2 Embedding Constraints

As shown above, the core procedures of the proposed approach are the embedding
of the MDE artifacts into solvable constraints; this section addresses precisely these

6.1 CONSTRAINT MAINTAINING WITH MODEL FINDING 117

translations.

Intra-model constraints Back to the MDE level, each transformation domain M

under meta-model M embedded in relational logic, introduces a set of sorts SM (rep-
resenting the declared types), free relation variables RM bounded by the SM sorts
(typed properties that represent the state of the model) and a formula φM over those
RM relations (the intra-model constraints that restrict the range of acceptable models):
a binding m :R⇀ T is said to conform to the transformation domain M if it binds the
RM relations in such a way that φM holds, i.e., m : M ≡ JφMKm . When processed in
such a way, a transformation domain M is interpreted as a typed relational constraint

M , according to the following definition.

Definition 6.3 (typed relational constraint). A typed relational constraint (TRC) C is a

tuple 〈φC ,SC ,DC〉, where φC is a formula, SC ⊆ S a set of sorts and DC a mapping

from relations to type declarations R 7→ A1 ↔ ...↔ An, with A1, ..., An ∈ SC and

fv(φC) ⊆ δDC .

The set of declared relation variablesRC can be retrieved by δDC . Given a typed
relational constraint M , M i shall denote another typed relational constraint that is
equivalent toM modulo alpha-renaming, each variable having the index i appended.
In practice, this duplicates relation variables while preserving the declared sorts. This
is required to represent different transformation domains over the same meta-model
M or different coexisting states of a transformation domain. A number of techniques
have been proposed that allow the embedding of meta-models and their constraints into
relational logic (Anastasakis et al., 2010; Kuhlmann and Gogolla, 2012; Cunha et al.,
2013). Our embedding is based on the one proposed by Cunha et al. (2013) for UML
models annotated with OCL constraints because, unlike other proposals, it covers an
expressive OCL subset that includes closure and operation specifications via pre- and
post-conditions (more details in Section 9.2).

As an example, consider a simplified version of the class diagrams CD and relational
database schemas DBS meta-models, depicted at Figure 6.1. Figure 6.2 depicts a typed
relational constraint CD that emerges from a transformation domain CD over CD.
The set of sorts SCD introduced denotes the classes declared within CD, as well as the
class hierarchy vS . Mapping DCD declares the free relations required to represent
every CD model. Note the occurrence of relations ACD for every sort A in SCD : while
the sort A denotes all elements of its type, ACD represents only A elements present

118 CHAPTER 6: MAINTAINING CONSTRAINTS

classes
general

setPersistent ()
addAttribute (n : String)
remAttribute (n : String)
moveAttribute (n,m: String)

persistent : Bool
Class

Attribute

attributes

1

*

0..1

*
addClass (n : String)
remClass (n : String)

Package

* 1

setName (n : String)
name : String

NamedEntity

class

namespace

(a) Meta-model CD.

tables

addColumn (n : String)
remColumn (n : String)

Table

Column

columns

1

*

addTable (n : String)
remTable (n : String)

Schema

* 1

setName (n : String)
name : String

NamedEntity

class

schema

(b) Meta-model DBS.

Figure 6.1: Simplified class diagrams of the CD and DBS meta-models.

in each particular state of CD . This allows sorts to be shared among different typed
relational constraints derived from the same meta-model, since a duplicated CD1

introduces new relations ACD1 for each sort A. Formula φCD introduces additional
constraints over the bindings ofRCD . The first line represents the restriction on circular
inheritance; the second models inheritance under relations ACD (NamedEntity is
abstract, so all elements within must belong to one of the sub-sorts); formulae from the
third block restrict the value of the free relations to be defined within elements present
in the particular CD instantiation; finally, the last block defines the multiplicity of the
relations, following the classification defined in Section 2.4.

Inter-model constraints To be useful in the MDE context, constraint maintainers
must also take into consideration the intra-model constraint imposed by the meta-models.
Model finding problems are multi-valued, returning all valid solutions. Thus, deploying
constraint maintainers as such procedures will result in an exhaustive framework.

Definition 6.4 (exhaustive invariant-constrained constraint maintainer). An exhaustive

well-behaved invariant-constrained constraint maintainer T :M IJ N is an exhaustive

constraint maintainer such that following properties hold for
−→
T (and dually for

←−
T):

n ∈ −→T (m0, n0) ⇒ T (m0, n) ∧ n : N CORRECT-INV

T (m0, n0) ∧m0 : M ∧ n0 : N ⇒ n0 ∈
−→
T (m0, n0) HIPPOCRATIC-INV

T (m0, n) ∧m0 : M ∧ n : N ∧ ¬T (m0, n0)⇒ n ∈ −→T (m0, n0)

EX-CORRECT-INV

Given families of stable preorders � and v over transformation domains M and N ,

6.1 CONSTRAINT MAINTAINING WITH MODEL FINDING 119

SCD = ({Package, Class, Attribute, NamedEntity, String},
{Package vS NamedEntity, Class vS NamedEntity,

Attribute vS NamedEntity})
DCD = {PackageCD : P Package, ClassCD : P Class,

AttributeCD : P Attribute, NamedEntityCD : P NamedEntity,
nameCD : NamedEntity↔ String, classesCD : Package↔ Class,

attributesCD : Class↔ Attribute, generalCD : Class↔ Class,

persistentCD : P Class}
φCD = (∀ c : ClassCD | ¬(c ∈ general+

CD c)) ∧
PackageCD ∪ ClassCD ∪ AttributeCD = NamedEntityCD ∧
nameCD ⊆ NamedEntityCD × String ∧
classesCD ⊆ PackageCD × ClassCD ∧
attributesCD ⊆ ClassCD × AttributeCD ∧
generalCD ⊆ ClassCD × ClassCD ∧
persistentCD ⊆ ClassCD

img nameCD ⊆ id ∧ id ⊆ ker nameCD

img generalCD ⊆ id

ker classesCD ⊆ id ∧ id ⊆ img classesCD

ker attributesCD ⊆ id ∧ id ⊆ img attributesCD

Figure 6.2: Transformation domain CD as a TRC CD .

respectively, it is an invariant-constrained least-change constraint maintainer T :M� IJ

Nv if CORRECT-INV and the following property hold for
−→
T (and dually for

←−
T):

T (m0, n) ∧m0 : M ∧ n : N ∧ (∀ n ′ : N | T (m0, n
′)⇒ n vn0

n ′)⇒
n ∈ −→T (m0, n0) LC-HIPPOCRATIC-INV

The inter-model constraint entailed by a constraint maintainer T : M IJ N is
also interpreted as a typed relational constraint T , since it may introduce new relation
variables into the model finding problem. Some of the relations from DT are however
expected to overlap with those of DM and DN , as T should refer to the state of the
transformation domains it is relating.

The deployment of a constraint maintainer T :M IJ N must be aware of both intra-
and inter-model constraints, and thus M , N and T must be combined into a single

120 CHAPTER 6: MAINTAINING CONSTRAINTS

typed relational constraint2. Two typed relational constraints C1 = 〈φC1 ,SC1 ,DC1〉
and C2 = 〈φC2 ,SC2 ,DC2〉 can be combined if the shared relation declarations are
consistent, i.e., they are assigned the same type (∀ R : δDC1 ∩ δDC2 | DC1(R) =

DC2(R)). In that case, they may be combined in the following way:

〈φC1 ,SC1 ,DC1〉 f 〈φC2 ,SC2 ,DC2〉 = 〈φC1 ∧ φC2 ,SC1 ∪ SC2 ,DC1 ∪ DC2〉

Since model finding procedures require upper- and lower-bounds to be defined
over each free variable, deploying typed relational constraint requires the derivation
of bounds for each relation from their declared types. Since a bounded universe is
also required, assigning to each sort in SC a finite scope will allow the derivation of
the universe A as well as entail concrete upper-bounds for each declared relation. For
a typed relational constraint C, bDCcs shall denote the procedure that, given a fixed
scope s : S ⇀ T for the defined sorts SC , converts relation declarations into relation
bounds, as

bDCcs = {R 7→ (∅, s(A1)× ...× s(An)) | (R 7→ A1↔ ...↔ An)← DC }

Now that the intra- and inter-model constraints are embedded into a model finding
problem, given a relational model finder we are able to restore the consistency of the
system. However, to embody a bidirectional transformation, an additional restriction
over the model finding problem must be introduced, that of preserving the pre-state of
the source domain. Recall that operation⊕ : (A⇀B)→ (A⇀B)→ (A⇀B) between
mappings overrides shared keys with the value of the second, i.e., ∀ a : δR ∩ δS |
(R ⊕ S)(a) = S (a). Thus, given a bound B and a binding m , expression B ⊕ (mMm)

replaces the bound of every relation R fixed by m to be the constant m(R), i.e.,
(B ⊕ (m Mm))(R) = (m(R),m(R)).

Proposition 6.1 (constraint maintaining as MF). Let T : M IJ N be a well-behaved

invariant-constrained constraint maintainer, such that 〈φIJ,SIJ,DIJ〉 = M f N f

T , and s : S ⇀ T a concrete scope with δs ⊆ SIJ. For two valid model bindings

m : bDMcs and n : bDNcs , T can be deployed as a model finding procedure with:

T (m, n) ≡ J||| ρs , φIJ, bDIJcs ⊕ ((m ∪ n) M (m ∪ n)) |||K 6= ∅
2Unlike invariant-constrained lenses from Chapter 4, the transformation domains of invariant-

constrained constraint maintainers are not appended with additional invariants because these are entailed
by the associated meta-models.

6.1 CONSTRAINT MAINTAINING WITH MODEL FINDING 121

−→
T (m, n) = if T (m, n) then n

else RN l J||| ρs , φIJ, bDIJcs ⊕ (m Mm) |||K
←−
T (m, n) = if T (m, n) then m

else RM l J||| ρs , φIJ, bDIJcs ⊕ (n M n) |||K

Proof. Formula φIJ results from the combination of the TRCs from the constraint and
the transformation domains. Thus, by definition of model finding (Definition 6.2), the
defined problems always return solutions that intra- and inter-model consistent. For
the T (m, n) procedure, the valuation of the models is fixed to the pre-state models,
thus it will return solutions if m and n are intra- and inter-model consistent. For the
−→
T (m, n) and

←−
T (m, n) procedures, CORRECT-INV holds because φIJ will hold for

the solutions; HIPPOCRATIC-INV holds because the procedure explicitly tests if m and
n are already consistent; EX-CORRECT-INV holds because model finding procedures
return every solution (Definition 6.2). These update the expected model because the
valuation of the source model is fixed to the valuation of its pre-state. Since the used
formalism is many-sorted, the universal quantification from EX-CORRECT-INV is
bounded by the elements of the sorts and thus the scope required by model finding
problems does not affect the well-behavedness of the constraint maintainer.

Checking the consistency also requires a model finding procedure because, although
m and n bind everyRM andRN variable, T may introduce free variables for which
an assignment must be found. If no such variables are introduced by T , then it can be
simply run as the test JφIJK

m∪n , since input models m and n are assumed be within the
provided scope. As for restoring the consistency, a model finding procedure is deployed
with constant bounds for the variables of the source domain. Correctness is obviously
guaranteed by this procedure, since the goal of model finding is precisely to solve φIJ
and stability is achieved artificially since the finding procedure has no knowledge of
the pre-state of target domain. Exhaustiveness is achieved due to the nature of model
finding procedures. Since model finding assigns values to every relation, including
those fixed, the solution must be filtered for the relations regarding the expected output
model (e.g., filtering a binding with RM lm retrieves the assignments of variables
related toM).

122 CHAPTER 6: MAINTAINING CONSTRAINTS

6.1.3 Target-oriented Model Finding

Although constraint maintainers can be deployed over standard model finding proce-
dures, these do not provide any minimality guarantees. Elsewhere (Cunha et al., 2014)
we studied an extension to model finding that enables the definition of targets for each
free relation variable, that denote the optimal solution for the model finding problem:
solutions generated by target-oriented model finders must approximate the defined
targets.

Definition 6.5 (target-oriented model finding). A target-oriented (relational) model
finding (TO-MF) problem is a tuple 〈A, φ,B ,T ,�〉, where 〈A, φ,B〉 is a model finding

problem, T :R⇀ T is a mapping from relations to targets R 7→ RT within A with

RL ⊆ RT ⊆ RU and δT ⊆ δB , and � :(R⇀ T)→ ((R⇀ T)↔ (R⇀ T)) a family

of total preorders over tuple sets. A model finding procedure J||| A, φ,B ,T |||K� :P(R⇀T)

is said to solve the problem if

m ∈ J||| A, φ,B ,T |||K� ≡ m ∈ J||| A, φ,B |||K ∧ (∀ m ′ : J||| A, φ,B |||K | m �T m ′)

Like least-change, target-oriented model finding does not necessarily entail a single
solution: depending on the metric, there might be multiple solutions at a minimal
distance. We say that a solution is optimal if it matches all defined targets: if the
preorders are stable (Definition 3.8), these are the only ones returned when valid. Note
that not every relation variable bound by B must have a target assigned by T , in which
case their valuation does not affect the target-oriented procedure. In this case there are
multiple optimal solutions.

Least-change constraint maintainers can be deployed as target-oriented model
finders by, besides fixing the state of the source domain, setting the pre-state of the
target domain as the target of the model finding problem.

Proposition 6.2 (least-change constraint maintaining as TO-MF). Let T :M� IJ Nv

be a well-behaved invariant-constrained least-change constraint maintainer, such that

〈φIJ,SIJ,DIJ〉 = M f N f T and s : S ⇀ T a concrete scope with δs ⊆ SIJ.

For two valid model bindings m : bDMcs and n : bDNcs , T can be deployed as a

target-oriented model finding procedure with:

T (m, n) ≡ J||| ρs , φIJ, bDIJcs ⊕ ((m ∪ n) M (m ∪ n)) |||K 6= ∅
−→
T (m, n) = RN l J||| ρs , φIJ, bDIJcs ⊕ (m Mm), n |||Kv

6.2 BEYOND BIDIRECTIONAL TRANSFORMATION 123

←−
T (m, n) = RM l J||| ρs , φIJ, bDIJcs ⊕ (n M n),m |||K�

Proof. The procedures follows the same rationale as Proposition 6.1, but considering
the pre-state of the target domain as the target of the problem. HIPPOCRATIC-INV no
longer needs the explicit test since for stable preorders (as required by Definition 6.4),
if the target is a solution, it will be the only one. LC-HIPPOCRATIC-INV holds due
to the nature of target-oriented model finding (Definition 6.5). Again, the bounded
nature of model finding does not affect LC-HIPPOCRATIC-INV because the universal
quantification is itself bound by the valuation of the sorts.

Now, besides fixing the bounds of the source model, the model finding procedure
is given the bindings of the original target model as the target of the problem. Since
the preorders are assumed to be stable, the stability of the transformation no longer
has to be achieved in an artificial way: if m and n are already consistent, the model
finding procedure will only return optimal solutions, whoseRM andRN components
are exactly m and n (only the valuation of the variables introduced by T may vary).
LC-HIPPOCRATIC-INV holds because the model finding procedure will generate all
valid solutions at minimal distance.

6.2 Beyond Bidirectional Transformation

While the focus of this dissertation is bidirectional transformation, deploying constraint
maintainers as target-oriented procedures allows us to address other MDE tasks in
a straight-forward manner. For instance, model repair, one of the most essential
MDE tasks, can be directly deployed over model finding procedures. As presented in
Section 6.1.2, a transformation domain M is essentially a typed relational constraintM ,
where testing whether a model m is well-formed m : M amounts to checking whether
JφMKm holds. From this interpretation, given a family of stable preorders � over M ,
an exhaustive correct and least-change model repair operation M ↑ :M ↔M can be
easily defined, for which the following laws shall hold:

m ∈ M ↑m0 ⇒ m : M M-CORRECT-INV

m0 : M ⇒ m0 ∈ M ↑m0 M-HIPPOCRATIC-INV

m : M ∧ ¬m0 : M ⇒ m ∈ M ↑m0 M-EX-CORRECT-INV

m : M ∧ (∀ m ′ : M | m �m0
m ′)⇒ m ∈ M ↑m0 M-LC-HIPPOCRATIC-INV

124 CHAPTER 6: MAINTAINING CONSTRAINTS

These laws are essentially those of constraint maintainers but restricted to a single
model: repairs must generate consistent models, models that are already consistent shall
not be modified, and whenever the initial model is inconsistent, all consistent repair
models shall be returned. Model repair without least-change concerns would be even
more problematic than constraint maintainers: in the latter the consistency with the
opposite model must still be enforced, but in the former arbitrary conforming models
are simply produced.

Assuming the need for least-change, deploying model repair as a target-oriented
model finding procedure can be performed as follows.

Proposition 6.3 (least-change model repair as TO-MF). For a concrete scope s :S⇀T
with δs ⊆ SM , a valid model binding m : bDMcs , can be repaired by the following

target-oriented model finding procedure:

M ↑m = J||| ρs , φM , bDMcs ,m |||K�

Proof. Formula φM embodies the intra-model constraint, so the rationale is the same
as Proposition 6.2 for a single transformation domain.

The bindings of relations occurring in the original model m are set as the targets
of the model finding problem, so that the generated models are as close as possible
to m. Since the only relation variables in this problem are introduced by M , the
binding produced by the repair needs not be filtered. Figure 6.3 depicts a model repair
problem that resulted from the embedding of the CD typed relational constraint from
Figure 6.2 for the concrete scope depicted in Figure 6.4, given an initial model that
contained cyclic inheritance (the tuples (C1,C2) and (C2,C1)). Figure 6.5 depicts the
two solutions calculated by the target-oriented model finding procedure.

Model repair is a more concrete application scenario than bidirectional transforma-
tion. However, more general MDE tasks can also be formalized in a similar way. For
instance, a problem related to bidirectional transformation is that of model synchro-

nization, where, unlike in bidirectional transformation, both models are allowed to be
updated in order to restore consistency.

Definition 6.6 (exhaustive synchronizer). An exhaustive synchronizer is comprised of

a predicate T : M ↔ N and a transformation
←→
T : M × N ↔M × N . It is said to

6.2 BEYOND BIDIRECTIONAL TRANSFORMATION 125

A = {P1,C1,C2,C3,A1,A2, "Company", "Employee", "Person", "Salary"}
B = {NamedEntityCD 7→ (∅, {P1,C1,C2,C3,A1,A2}),

PackageCD 7→ (∅, {P1}),
ClassCD 7→ (∅, {C1,C2,C3}),
AttributeCD 7→ (∅, {A1,A2}),
nameCD 7→ (∅, {(P1, "Company"), (P1, "Employee"),

(P1, "Person"), (P1, "Salary"),

(C1, "Company"), (C1, "Employee"), ...}),
classesCD 7→ (∅, {(P1,C1), (P1,C2), (P1,C3)}),
attributesCD 7→ (∅, {(C1,A1), (C1,A2), (C2,A1),

(C2,A2), (C3,A1), (C3,A2)}),
generalCD 7→ (∅, {(C1,C1), (C1,C2), (C1,C3),

(C2,C1), (C2,C2), (C2,C3), ...}),
persistentCD 7→ (∅, {C1,C2,C3})}

T = {NamedEntityCD 7→ {P1,C1,C2,A1},
PackageCD 7→ {P1},
ClassCD 7→ {C1,C2},
AttributeCD 7→ {A1},
nameCD 7→ {(P1, "Company"), (C1, "Person"),

(C2, "Employee"), (A1, "salary")},
classesCD 7→ {(P1,C1), (P1,C2)},
attributesCD 7→ {(C2,A1)},
generalCD 7→ {(C2,C1), (C1,C2)},
persistentCD 7→ {C2}}

φ = φCD

Figure 6.3: TO-MF problem for a CD domain under the scope from Figure 6.4.

String 7→ {"Company", "Employee", "Person", "Salary"}
NamedEntity 7→ {P1,C1,C2,C3,A1,A2}
Package 7→ {P1}
Class 7→ {C1,C2,C3}
Attribute 7→ {A1,A2}

Figure 6.4: Concrete scope for a CD transformation domain.

126 CHAPTER 6: MAINTAINING CONSTRAINTS

m ′1 = {NamedEntityCD 7→ {P1,C1,C2,A1},
PackageCD 7→ {P1},
ClassCD 7→ {C1,C2},
AttributeCD 7→ {A1},
nameCD 7→ {(P1, "Company"), (C1, "Person"),

(C2, "Employee"), (A1, "salary")},
classesCD 7→ {(P1,C1), (P1,C2)},
attributesCD 7→ {(C2,A1)},
generalCD 7→ {(C2,C1)},
persistentCD 7→ {C2}}

m ′2 = {NamedEntityCD 7→ {P1,C1,C2,A1},
PackageCD 7→ {P1},
ClassCD 7→ {C1,C2},
AttributeCD 7→ {A1},
nameCD 7→ {(P1, "Company"), (C1, "Person"),

(C2, "Employee"), (A1, "salary")},
classesCD 7→ {(P1,C1), (P1,C2)},
attributesCD 7→ {(C2,A1)},
generalCD 7→ {(C1,C2)},
persistentCD 7→ {C2}}

Figure 6.5: Solutions of the TO-MF problem from Figure 6.3.

be an exhaustive well-behaved invariant-constrained synchronizer T : M ⇔ N if the

following properties hold:

(m, n) ∈ ←→T (m0, n0)⇒ T (m, n) ∧m : M ∧ n : N S-CORRECT-INV

T (m0, n0) ∧m0 : M ∧ n0 : N ⇒ (m0, n0) ∈ ←→T (m0, n0) S-HIPPOCRATIC-INV

T (m, n) ∧m : M ∧ n : N ∧ ¬T (m0, n0)⇒ (m, n) ∈ ←→T (m0, n0)

S-EX-CORRECT-INV

Given families of stable preorders � and v over transformation domains M and N ,

respectively, it is an invariant-constrained least-change synchronizer T : M� ⇔ Nv if

S-CORRECT-INV and the following property hold:

T (m, n) ∧m : M ∧ n : N∧

6.2 BEYOND BIDIRECTIONAL TRANSFORMATION 127

(∀ m ′ : M , n ′ : N | T (m ′, n ′)⇒ (m, n) -(m0,n0) (m ′, n ′))⇒
(m, n) ∈ ←→T (m0, n0) S-LC-HIPPOCRATIC-INV

Where - results from the combination of the preorders � and v into a preorder over

pairs M × N .

The derivation of the product preorder - will be explored in Section 6.3. Unlike
constraint maintainers, these are deployed as model finding procedures without fixed
relations, but having the pre-state of both transformation domains set as the problem’s
targets.

Proposition 6.4 (least-change synchronization as TO-MF). Let T : M� ⇔ Nv be an

invariant-constrained least-change synchronizer, such that 〈φ⇔,S⇔,D⇔〉 = M f

N f T and s : S⇀ T a concrete scope with δs ⊆ S⇔. For two valid model bindings

m : bDMcs and n : bDNcs , T can be deployed as a target-oriented model finding

procedure as:

T (m, n) ≡ J||| ρs , φ⇔, bD⇔cs ⊕ ((m ∪ n) M (m ∪ n)) |||K 6= ∅
←→
T (m, n) = let mn ′ = J||| ρs , φ⇔, bD⇔cs ,m ∪ n |||K-

in (RM lmn ′,RM lmn ′)

Proof. Formula φ⇔ embodies the intra- and inter-model constraint, so the rationale is
the same as Proposition 6.2, provided that no domain has fixed valuations and both
pre-state models are set as targets of the problem.

Finally, we can also generalize maintainers to relate multiple models rather than
exactly two. This allows us to tackle the problem of multidirectional transformation,
which thus far has been widely disregarded. Let σT denote the set of n transformation
domains {M1, ...,Mn } related by a multidirectional constraint maintainer andm denote
the respective n models m1 ∪ ... ∪ mn . For a tuple of k selectors i = (i1, ..., ik)

with ij ∈ [1..n], σT i shall denote the (ordered) selection of transformation domains
(Mi1 , ...,Mik) andmi the respective models mi1 ∪ ... ∪mik .

Definition 6.7 (exhaustive multidirectional constraint maintainer). An exhaustive well-
behaved invariant-constrained multidirectional constraint maintainer T : M1 IJ ...IJ

128 CHAPTER 6: MAINTAINING CONSTRAINTS

Mn is comprised of a predicate T : M1 ↔ ... ↔ Mn and a set of transformations
−→
T σT t :M1× ...×Mn↔Mt1× ...×Mtk , for any tuple t = (t1, ..., tk) of domain indexes,

such that the following properties hold:

mt ∈
−→
T σT t m0 ⇒

∧
i ∈ t

mt i : Mi ∧ T (m0 ⊕ mt) X-CORRECT-INV

T m0 ∧
∧

i ∈ [1..n]

m0i : Mi ⇒m0 ∈ m0 ⊕ (
−→
T σT t m0) X-HIPPOCRATIC-INV

T (m0 ⊕ mt) ∧
∧

i ∈ [1..n]

(m0 ⊕ mt)i : Mi ∧ ¬T m0 ⇒mt ∈
−→
T σT t m0

X-EX-CORRECT-INV

Given families of stable preorders �1, ...,�n over transformation domains M1, ...,Mn ,

respectively, it is an invariant-constrained least-change multidirectional constraint
maintainer T :M1�1 IJ ...IJ Mn�n if X-CORRECT-INV and the following property

hold:

T (m0 ⊕ mt) ∧
∧

i ∈ [1..n]

(m0 ⊕ mt)i : Mi∧

(∀m′t : σT t | T (m0 ⊕ m′t)⇒mt �σT i
m0
m′t)⇒

mt ∈
−→
T σT t m0 X-LC-HIPPOCRATIC-INV

Where �σT i results from the combination of the preorders �i into a preorder over

tuples σT i .

The derivation of the tuple preorder �σT i will be explored in Section 6.3. These
laws extend those of bidirectional constraint maintainers. For transformations over
models t , the updatedmt combined with the source models must be consistent; if the
original models m0 are already consistent, then updating them should produce null
updates.

Proposition 6.5 (least-change multidirectional constraint maintaining as TO-MF). Let

T : M1�1 IJ ...IJ Mn�n be an invariant-constrained least-change multidirectional

constraint maintainer, such that 〈φIJ,SIJ,DIJ〉 = M1 f...fMn f T and s :S⇀T
a concrete scope with δs ⊆ SIJ. For n valid models bindings mi : bDMics , T can be

deployed as a target-oriented model finding procedure for any tuple t = (t1, ..., tk) of

domain indexes, as:

6.3 DEPLOYING PREFERENCE ORDERS 129

T m ≡ J||| ρs , φIJ, bDIJcs ⊕ (m Mm) |||K 6= ∅
−→
T σT t m = let m′ = J||| ρs , φIJ, bDIJcs ⊕ (mt Mmt),mt |||K(�M1×...×Mn)

in (RMt1
lm′, ...,RMtk

lm′)

wheremt = m \mt .

Proof. Formula φIJ embodies the intra- and inter-model constraint, so the rationale
is the same as Proposition 6.2, provided that the source domains are fixed to their
pre-state valuations and the pre-state of the target domains are set as the target of the
problem.

Here, there is a set of source models—that must remain constant—and a set of k
target models mti —that must approximate the original ones.

6.3 Deploying Preference Orders

Our approach to constraint maintaining as model finding considers the definition of
the model finding problem and the ability to produce minimal solutions as orthogonal
concerns. Section 6.1 addressed the former; this section will address the latter. We
start by exploring how to approximate targets under arbitrary metrics using off-the-
shelf relational model finders (Kodkod in particular); then we show that for particular
preference orders, least-change can be achieved by directly exploiting the functionalities
of the SAT solvers that are behind relational model finding.

As initially presented in Chapter 3 (and extensively explored in Chapter 5 in the
context of lens frameworks), the family of total stable preorders � :M → (M ↔M)

can be attained by lifting a distance function ∆ : M × M → N that is also stable
(Section 3.2.4). In this section we follow the same approach and focus on orders derived
from distance functions. However, in the MDE constraint maintainer context, meta-
models are first-class artifacts that are processed and embedded into the bidirectional
transformation; this allows us to rely on automatically inferred distance functions, rather
than defining them in an ad hoc way (as in Chapter 5).

6.3.1 Least-change as Iterative MF

In general, since relational model finders do not have native support for targets, target-
oriented procedures must be defined by external means. The most direct method is to

130 CHAPTER 6: MAINTAINING CONSTRAINTS

iteratively call standard model finders to search for models at an increasing distance from
the original one. Under this approach, for a distance d , the model finding procedure
shall be called d + 1 times (the first run tests whether the models are already consistent,
at distance 0).

Embedding distance functions In this context, a given distance function ∆ over
transformation domain M must be embedded in a typed relational constraint in order
to be used in the model finding procedure. Let M s and M t be two copies of the
M typed relational constraint modulo variable renaming. The embedding of ∆ as
a typed relational constraint, for a particular d : N, is the typed relational constraint
∆d = 〈φd

∆,SM ,DM s ∪ DM t ∪ Dd
∆〉. If ∆d holds, then model m ′ : M t is at most at

distance3 d from m : M s , i.e., for a scope s : S ⇀ T ,

∆ (m,m ′) 6 d ⇐ J||| ρs , φd
∆, bDd

∆c
s ⊕ ((m ∪m ′) M (m ∪m ′)) |||K 6= ∅

The metric may introduce free variables Dd
∆, in which case m and m ′ will bind the

variables concerning M s and M t , while the remainder are left free for the finder to
solve. It is important to note that the embedding of the distance function is bounded:
even if two models are at distance d according to ∆, within a fixed scope it might not be
possible to calculate that distance since variables Dd

∆ are bounded (thus the implication
on the formula).

Given this formulation, an iterative procedure over model finding can be deployed
that iteratively calls ∆d until a solution is found. For model repair, this can be achieved
by adapting Proposition 6.3 in the following way.

Proposition 6.6 (least-change model repair as iterative MF). For a concrete scope

s : S ⇀ T with δs ⊆ SM , a valid model binding m : bDMcs , can be repaired by

iteratively calling a model finding procedure

M ↑m = RM l J||| ρs , φM ∧ φd
∆ [Rt Z⇒ R], bDM ∪ Dd

∆c
s ⊕ (ms Mms) |||K

from d = 0 until SAT, where Rx Z⇒ Ry replaces every variable Rx ∈ RMx by the

matching variable Ry ∈ RMy and ms renames every binding of R in m by one over

Rs .

3Recall that distance functions are not necessarily symmetric.

6.3 DEPLOYING PREFERENCE ORDERS 131

Proof. Since φM is still expected to hold, M-CORRECT-INV still holds; if the order is
stable, then φ0

∆ will only hold when the targets are solutions of the problem, guarantee-
ing M-HIPPOCRATIC-INV; M-HIPPOCRATIC-INV is guaranteed by the iterative nature
of the process, that searches for solutions at increasing distance from the target.

Essentially, theM t variables from ∆ are replaced by the respective free variables
that shall denote the solution of the problem, while those regardingM s are assigned
constant bounds that correspond to the valuation provided by the original model: this
effectively tests the distance between the valuation calculated by the finder and the
provided pre-state. The binding produced by the model finding procedure is filtered
to retain only the variables related to the original problem, filtering out the portion of
the binding concerning the variables introduced by ∆d . The same technique could be
applied to achieve least-change constraint maintainers by adapting Proposition 6.2 in a
similar way.

It is important to note that this procedure is only least-change modulo the provided
scope: the generated solutions represent the models closest to the target that are
representable under the provided scope. Mechanisms can be developed to tame this
issue, namely by increasing the universe of atoms at each iteration. This is further
explored in Section 9.3.

Operation-based distance Instantiating the procedure just presented requires the
definition of φd

∆ and any additional declarations Dd
∆ for any distance d . One standard

way to define the distance between two models is to define the set of valid edit operations
and measure the number of required steps to reach one model from the other (Diskin
et al., 2011). Let φU be a formula denoting the set of valid model updates between two
typed relational constraint copiesM s andM t , i.e., JφUKm∪m

′
holds if there is a valid

update between models m :M s and m ′ :M t . This formula can be lifted to the following
distance function:

∆U (m,m ′) =


0 if m = m ′

d if d ∈ U∗ (m,m ′)

∞ otherwise

where

d ∈ U∗ (m,m ′) ≡ ∃ m1 : M 1, ...,md−1 : M d−1 |

132 CHAPTER 6: MAINTAINING CONSTRAINTS

J(φU [Rt Z⇒ R1])Km∪m1 ∧ ...∧
J(φU [Rs Z⇒ Ri ,Rt Z⇒ Ri+1])Kmi∪mi+1 ∧ ...∧
J(φU [Rs Z⇒ Rd−1])Kmd−1∪m ′

which denotes the fact there is an update path of length d from m to m ′, where each φU
has its free variables replaced by those introduced by the intermediate states, except
for Rs variables in the first step that denote the initial model m : M s and Rt in the last,
denoting the target model M t . If two models are at infinite distance, then there is no
path of whatever length that connects them. This metric is stable and total, and thus
gives rise to stable total preorders (although, it may not be symmetric, since updates
are not necessarily undoable). This definition forces null updates to be always valid,
otherwise the model finder would not be able to produce optimal solutions.

In this context, target-oriented model finding may be attained by minimizing the
number of update steps from the target of the problem to a consistent model. However,
since this metric requires higher-order quantifications to detect the update traces, it
is not directly definable in the φd

∆U formula. Nonetheless, second-order existential
quantifications can be converted to first-order problems through a process known as
skolemization. A second-order existential quantification is skolemized by creating a
free relation variable that represents it: proving the existential quantification amounts
to providing a witness to the fresh free variable. In this case, it amounts to, at each
iteration, create relation variables to allocate the intermediate model states, to which
the finder must assign valid values:

Dd
∆U = DM s ∪ DM1 ∪ ... ∪ DMd−1

φd
∆U = φU [Rt Z⇒ R1] ∧ ... ∧ φU [Rs Z⇒ Ri ,Rt Z⇒ Ri+1] ∧ ... ∧ φU [Rs Z⇒ Rd−1]

EachM i denotes a new copy ofM as a typed relational constraint, whose variables
RM i must be solved. Following Proposition 6.6, variables Rs will be bounded by the
problem’s targets while variables Rt will replaced by free variables representing the
fresh model. The intermediate models are not required to be well-formed (constraints
φM i are not included in the formula) meaning that the edit operations may temporarily
introduce inconsistencies, as long as last model of the sequence is consistent.

A typical instantiation of φU arises from the set of valid edit operations that can
be applied to a model. For a transformation domain M , this operation-based distance

6.3 DEPLOYING PREFERENCE ORDERS 133

(OBD) can be automatically inferred from the operations defined within its meta-model,
and is denoted by ∆U

M . This allows the user to control the repair of the models by
specifying in the meta-model which edit operations can be applied to update conforming
models. In MDA, these may be specified using pre- and post-conditions defined in
(a subset of) OCL following the technique from (Cunha et al., 2013) (detailed in
Section 9.2).

Consider that for the purposes of our running example, the methods whose interfaces
are depicted in Figure 6.1 are instantiated in the meta-model CD and let TOU denote the
embedding of its OCL definition into relational logic. Formula φd

∆U
CD

would contain,
among the others, the following formula regarding the setName operation:

TsetNameU ≡ ∃ n : String, self : ClassCD t |
nameCD t ◦ self = n ∧
∀ c : ClassCD t | (nameCD t ◦ c = nameCDs ◦ c ∨ self = c) ∧
PackageCDs = PackageCD t ∧ ClassCDs = ClassCD t ∧
AttributeCDs = AttributeCD t ∧ classesCDs = classesCD t ∧
attributesCDs = attributesCD t ∧ generalCDs = generalCD t

Assuming that the set of valid edit operations is comprised by these methods, the
overall φd

∆U
CD

formula would test, for each step, if the pre- and post-states are related by
an operation, resulting in the following formula:

φd
∆U

CD
≡ op [Rt Z⇒ R1] ∧ ... ∧ op [Rs Z⇒ Ri ,Rt Z⇒ Ri+1] ∧ ... ∧ op [Rs Z⇒ Rd−1]

where op = TsetNameU ∨ TsetPersistentU ∨ TaddAttributeU ∨
TremAttributeU ∨ TmoveAttributeU ∨
TaddClassU ∨ TremClassU

From this example it is easy to envision scenarios where the distance is not symmetric:
it suffices to have operations that are not undoable by the other ones.

OBD allows the assignment of lower costs to complex updates (by simply creating
an operation that composes smaller operations), providing the user a certain degree
of control over the produced updates. However, assigning higher costs to simple
operations is not as straight-forward as they may not be decomposable. This would
require customizable operation costs which is left as future work.

134 CHAPTER 6: MAINTAINING CONSTRAINTS

Graph-edit distance While expressive, metrics like the one just presented require
the duplication of free relations at each step, greatly encumbering the solving process.
However, some “history-ignorant” metrics can measure the distance between two
models without searching for intermediate states, which can be deployed as a lighter,
albeit still iterative, procedure. The graph-edit distance (GED) (Voigt, 2011) is an
example of such metric. GED can be implemented by applying the symmetric difference
to tuple sets, as:

Dd
∆	 = DM s

φd
∆	 =

∑
R∈RM

|Rs 	 Rt |

Since each sort A gives rise to a unary relation ACD that denotes which elements of that
sort are present in each instantiation of CD , the symmetric difference between bindings
counts changes both in the edges and in the nodes of the graph representation of a
model. GED can be automatically derived for each provided meta-model. We denote the
derivation of this distance from the meta-model of a transformation domain M by ∆	M .
The tradeoff is that the constraint language must now support integer expressions. Since
Kodkod relies on SAT solvers to solve problems, integers are converted to their binary
representation while integer operations are converted into boolean circuits. While too
elaborate to support complex operations, this embedding is feasible when used in a
restrained manner.

GED is meta-model independent and may be automatically inferred for any meta-
model provided by the user. For instance, for a transformation domain CD conforming
to CD, φd

∆	CD

could be defined as:

φd
∆	CD

≡ d =

|PackageCDs 	 PackageCD t |+ |ClassCDs 	 ClassCD t |+
|AttributeCDs 	 AttributeCD t |+
|nameCDs 	 nameCD t |+ |classesCDs 	 classesCD t |+
|attributesCDs 	 attributesCD t |+ |generalCDs 	 generalCD t |

Unlike OBD, the simple metric definition provided by GED assumes a fixed reper-
toire of edit operations which may not be desirable. In particular, there is no control
over the “cost” of complex operations. For example, changing the name of a class will
have a cost of 2, since it requires deleting the current nameCDs edge and inserting a new

6.3 DEPLOYING PREFERENCE ORDERS 135

one, while adding a new attribute to a class will cost 3, since it requires inserting a new
attribute in AttributeCD t , setting its nameCD t , and connect it to the class through
attributesCD t . If the user wishes both these operations to be atomic edits and have
the same unitary cost, or to allow only particular edits in order to further control the
acceptable solutions, she must rely on more expressive metrics, like OBD.

Combining metrics We have shown in Section 6.2 that the technique developed to
deploy bidirectional constraint maintainers could be adapted to more general procedures,
like multidirectional constraint maintainers and synchronizers, given a mechanism to
combine metrics defined over each transformation domain.

Let M1, ...,Mn be n transformation domains and ∆i , for i ∈ [1..n] denote the
respective distance function. Let also +−n : N ↔ N × ... × N be a multi-valued
function that, given a natural k, returns all n tuples whose sum is k (e.g., +−2 3 =

{(0, 3), (1, 2), (2, 1), (3, 0)}). Formula ∆d for a metric over product M1 × ... ×Mn

can then be defined as:

φd
∆ = 〈

∨
(d1,...,dn)∈+−n d

(
∧

i ∈ [1..n]

φdi
i ∆0),

⋃
i ∈ [1..n]

S∆i ,
⋃

i ∈ [1..n]

D∆i 〉

Under particular metrics, this procedure can be greatly simplified. For instance,
under GED one could easily define a distance over tuples by simply adding up the
symmetric distances of the bindings over all relations DM i . For instance, a distance
on two transformation domains CD and DS over meta-models CD and DBS could be
defined as:

φd
∆	CD,DS

≡ d =

|PackageCDs 	 PackageCD t |+ |ClassCDs 	 ClassCD t |+
|AttributeCDs 	 AttributeCD t |+
...

|SchemaDS s 	 SchemaDS t |+ |TableDS s 	 TableDS t |+
|ColumnDS s 	 ColumnDS t |+
...

Combined OBDs could also be defined, by defining the set of valid edit operations as
the union of the valid operations in the meta-models of the transformation domains Mi .

136 CHAPTER 6: MAINTAINING CONSTRAINTS

6.3.2 Internal TO-MF

Due to its low-level, GED can be deployed in more effective ways, in particular by
exploring advanced capabilities of SAT solvers. This allows, for particular metrics, the
deployment target-oriented model finding as internal procedures.

A model finding problem 〈A, φ,B〉 is encoded in a boolean formula by Kodkod
in the following way (Torlak and Jackson, 2007). For every mapping R 7→ (RL,RU)

of arity n, a matrix R with n dimensions of size |A| is created, where the value at
each position j1, ..., jn denotes whether the tuple (aj1 , ..., ajn) is present in relation R.
Positions regarding tuples in the lower-bound RL are automatically set to 1, while
those regarding tuples outside the upper-bound are set to 0; for those in between, fresh
boolean variables Rj1,...,jn are created. Relational operations are then translated to
matrix operations, resulting in a boolean formula whose free boolean variables are
those occurring in the matrix representation of the relations. Let’s call this translation
dA, φ,Be.

When defined at the model finding level, model metrics are embedded in formula φ
and encoded in the boolean formula in each iteration. When dealing with arithmetic
operations, which are unfolded into corresponding boolean circuits, this may easily
encumber the solving process. Modern SAT solvers provide additional functionalities
that may allow minimization to be controlled internally, which has been explored
elsewhere by us (Cunha et al., 2014).

One such capability is the support for cardinality constraints. In this kind of
problems, the solver is given an additional set of clauses, where at most a given number
of them must hold. Deploying GED remains an iterative procedure, but the distance
computation is now handed internally.

Proposition 6.7 (minimize GED with cardinality constraints). A target-oriented model

finding problem J||| A, φ,B ,T |||K∆	 can be solved by iteratively calling SAT solvers with

cardinality constraints 〈dA, φ,Be, cd〉 with

cd =
∑

R∈δB ,(aj1 ,...,ajn)∈RT

¬Rj1,...,jn +
∑

R∈δB ,(aj1 ,...,ajn)∈RU \RL\RT

Rj1,...,jn 6 d

from d = 0 until SAT.

Proof. The problem is correct because the problem with cardinality constraints will
still guarantee that φ holds. A negated literal ¬Rj1,...,jn is created for every element in

6.3 DEPLOYING PREFERENCE ORDERS 137

the target and a positive literal Rj1,...,jn for each element outside the target but within
the bounds of the problem. Thus solving the problem for d = n amounts to changing
n elements from the target; since the process starts at d = 0, this will amount to a
target-oriented model finding problem under GED.

The cardinality constraint cd essentially counts the GED between the returned
valuation and the provided target, which is to be minimized. Since minimality is
handled internally rather than by a boolean circuit representing the GED calculation,
this technique has shown to be more efficient than that presented at Section 6.3.1 (Cunha
et al., 2014). If there is a solution for d = 0, then it is exactly the target, guaranteeing
stability.

Maximum satisfiability problems represent another class of SAT problems whose
goal is to maximize the number of clauses that are satisfied. However, typically some of
the problem’s clauses are obligated to be satisfied. PMax-SAT problems 〈φ, ψ〉 address
this issue by dividing the problem into a set φ of hard clauses—i.e., mandatory—and a
set ψ of soft clauses—i.e., optional—which are to be maximized.

Proposition 6.8 (minimize GED as PMax-SAT). A target-oriented model finding prob-

lem J||| A, φ,B ,T |||K∆	 can be embedded in a PMax-SAT problem 〈dA, φ,Be, ψ〉, such

that

ψ =
⋃

R∈δB ,(aj1 ,...,ajn)∈RT

Rj1,...,jn ∪
⋃

R∈δB ,(aj1 ,...,ajn)∈RU \RL\RT

¬Rj1,...,jn

Proof. Constraint φ is set as hard constraint, so the returned valuations are solutions of
the model finding problem. For each potential tuple of a relation, if the respective tuple
is in the target, a soft literal clause containing that variable is created; otherwise, a soft
literal clause with the negated variable is created: maximizing the number of satisfied
soft clauses will amount to a target-oriented model finding problem under GED.

Essentially, maximizing the set of satisfying soft clauses minimizes, according to
GED, the number of changes from the target. This technique has the advantage of no
longer being an iterative procedure. However, it will depend on the solver’s ability to
extract suitable UNSAT cores, which may be unpredictable (Cunha et al., 2014). The
optimal solution is returned if it is possible to assign true to all soft clauses, providing
stability.

138 CHAPTER 6: MAINTAINING CONSTRAINTS

(Card-SAT)(PMax-SAT)SAT

(TO-)MF

(LC-)Sync(LC-)MX(LC-)BX (LC-)MR

Figure 6.6: Model finding at the core of MDE tasks.

6.4 Discussion

This chapter explored how bidirectional transformations in the shape of constraint
maintainers can be deployed as model finding procedures. In the process, we have
shown that this process can be generalized to address other MDE tasks, as summarized
in Figure 6.6. A deeper analysis of target-oriented model finding problems over different
classes of SAT problems was performed by us elsewhere (Cunha et al., 2014).

The fact that different MDE tasks can be deployed over a unifying formalization
hints that each of these tasks may draw inspiration from the solutions proposed for
different applications. In particular, it raises the question of deploying constraint
maintainers over existing model repair techniques. Model repair techniques can be
classified over two broad categories. In one, techniques derive repair plans by syntactic
analysis of the constraints and model instances. In the other, in which our embedding
falls, techniques employ solvers to calculate a new model that satisfies the constraints.
While the former is usually more efficient and scales better, it is less expressive and
flexible than the latter. For example, it is not as well suited to deal with multiple
inconsistencies, nor inconsistencies that affect a large portion of the model (likely to
occur when using closures to express reachability properties). Moreover, they usually
rely on a fixed set of abstract edit operations to specify the repairs, which the user must
manually instantiate and is not able to parametrize.

Most existing intra-model repair tools (Reder and Egyed, 2012; Puissant et al.,
2013; Xiong et al., 2009) fall into the first class of repair techniques. To achieve high
efficiency, they typically limit the expressiveness of repair updates, do not require the
generation of fully consistent models, or require constraints to be manually annotated

6.4 DISCUSSION 139

with inconsistency resolution hints. Nonetheless, it would be interesting to explore
whether these techniques would scale to the bidirectional transformation setting. For a
maintainer T : M BC N , this could be achieved by creating a “dummy” meta-model
M ×N , over which the model repairs are deployed by interpreting T as an intra-model
constraint. To execute transformations

−→
T (m, n) (and dually for

←−
T), an additional

restrictions could be introduced in the constraint stating that m is not modified in the
repair process (which may require the duplication of model m if there is no native
mechanism to access the pre-state of the model being repaired).

The few existing tools based on model finding do not abide to the desirable principle
of least-change. Kleiner et al. (2010) propose a general approach for constraint-based
solving in the context of MDE (including application to model repair), using the Alloy
Analyzer and OPL solvers as concrete examples. However, the original inconsistent
model is specified as the lower-bound for the new model, meaning that the solver will
only be able to add new atoms and edges while solving the constraints. Following a
similar approach, Straeten et al. (2011) assess the feasibility of using Kodkod to repair
inconsistencies. Given an inconsistent Kodkod problem, a consistent problem is found
by relaxing the bounds of the original model in order to allow the addition of new
relations or the removal of relations suspected of causing the selected inconsistencies.
This assumes that the concrete inconsistencies were previously detected by an external
tool. In both approaches there is also no control over how close the new model is
to the original one and the authors do not reason on how to manage the creation of
new atoms. Hegedüs et al. (2011) describe a technique for generating quick fixes for
DSMLs embedding on CSP over models. The technique guarantees that the number of
inconsistencies on the model decreases, even if side-effects occur. This is achieved by
applying every candidate fix to the inconsistent model and detecting and counting the
inconsistencies in the resulting model. In terms of expressivity, this last approach is the
closest to ours, but, being also solver based, it suffers from the same scalability issues,
as will be discussed in Section 9.5 when evaluating its deployment.

Under this formalization, concrete constraint maintainer frameworks must only pro-
cess intra- and inter-model constraints into relational logic, at which point consistency-
restoring transformations can be executed as model finding procedures. In the remainder
of this part we will provide such instantiations for QVT-R (Chapter 7) and ATL (Chap-
ter 8) model transformations. The deployment of the technique as an effective tool is
lastly presented at Chapter 9.

140 CHAPTER 6: MAINTAINING CONSTRAINTS

Chapter 7

Deploying QVT-R Transformations

To support MDE, the Object Management Group (OMG) launched the Model-driven
Architecture (MDA) initiative, which prescribed the usage of MOF (OMG, 2013)
(usually presented as UML class diagrams (OMG, 2011b)) and OCL (OMG, 2012)
for the specification of (object oriented) models and constraints over them. More
recently, to specify transformations between models, OMG (2011a) proposed the
Query/View/Transformation (QVT) standard. While QVT provides three different
languages for the specification of transformations, the most relevant to MDE is the
QVT Relations (QVT-R) language, that allows the specification of a bidirectional
transformation by defining a single declarative consistency relation between two (or
more) transformation domains. Given this specification, the transformation can be run
in two modes: checkonly, to test whether two models are consistent according to the
specified relation; or enforce, that given two models and an execution direction (picking
one of the transformation domains as the target) updates the target model in order to
recover consistency. The standard prescribes a “check-before-enforce” semantics, that
is, enforce mode cannot modify the target if the models happen to be already consistent
according to checking semantics. Clearly, this amounts to a constraint maintainer with
a consistency checker and consistency-restoring transformations, stability arising from
the “check-before-enforce” policy, an interpretation first pointed out by Stevens (2010).

However, effective tool support for QVT-R has been slow to emerge, which hinders
the universal adoption of this standard. In part, this is due to the incomplete and
ambiguous semantics defined in (OMG, 2011a). While the checking semantics has
recently been clarified and formalized (Stevens, 2013; Bradfield and Stevens, 2012;
Guerra and de Lara, 2012), the enforcement semantics still remains largely obscure and

141

142 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

even incompatible with other OMG standards, despite some recent efforts to provide
a formal specification (Bradfield and Stevens, 2013). Namely, it completely ignores
possible OCL constraints over the meta-models, thus allowing updates that can lead to
ill-formed target models. Likewise, none of the existing QVT-R model transformation
tools supports such constraints, which makes them unusable in many realistic scenarios.
Unfortunately, there are other problems that affect them. Some do not even comply to
the standard syntax and support only a “QVT-like” language (including not providing
both running modes as required by the standard). Others do not support truly non-
bijective bidirectional transformations (for example, ignoring the pre-state of the target
model in the enforce mode). Some purposely disregard the intended QVT-R semantics
(including checking semantics) and implement a new (still unclear and ambiguous) one.
In most cases it is not clear if the supported checking semantics is equivalent to the one
formalized in (Stevens, 2013; Bradfield and Stevens, 2012; Guerra and de Lara, 2012).
And finally, none clarifies the problems and ambiguities in the standard concerning
enforcement semantics, nor presents a simple enough alternative for this mode that
makes its behavior predictable to the user.

In this chapter we explore how least-change QVT-R bidirectional transformations

can be deployed as constraint maintainers over model finding. Doing so requires
the derivation of a relational inter-model constraint that embodies the QVT-R trans-
formation, so that bidirectional transformations can be deployed according to the
formalization presented in Chapter 6. Such approach allows both the meta-models and
transformation specifications to be annotated with OCL constraints, and will support a
large subset of the standard QVT-R language, including execution of both modes inde-
pendently as prescribed. The checking semantics will closely follow the one specified
in the standard, being equivalent to the one formalized in (Stevens, 2013; Bradfield and
Stevens, 2012; Guerra and de Lara, 2012). Finally, instead of the ambiguous (and OCL
incompatible) enforcement semantics proposed in the standard, our transformations
will follow the clear and predictable principle of least-change (Meertens, 1998), and
just return updated consistent target models that are at a minimal distance from the
original. In particular, the “check-before-enforce” policy required by QVT-R is trivially
satisfied by this semantics. Our deployment supports the two different meta-model
independent mechanisms to measure the distance between two models presented in
Section 6.3: GED, that just counts insertions and deletions of nodes and edges in the
graph that corresponds to a model; and OBD where the user is allowed to parameterize

7.1 QVT RELATIONS 143

which operations should count as valid edits, by attaching them to the meta-model and
specifying their pre- and post-conditions in OCL.

While the bidirectional scenario is the focus of all work on QVT-R that we are aware
of, the standard imposes no limitation on the number of transformation domains that
may be related. The multidirectional semantics proposed by the standard is however
too limitative to be used in practical situations. Backed up by the generalization of the
bidirectional transformation problem from Section 6.2, we explore an extension to this
semantics that renders it more expressive.

The contributions of the chapter are the following:

• we analyze the standard QVT-R checking semantics and embed it in relational
logic (Section 7.2), solving ambiguities that occur;

• we show that the standard QVT-R enforcement semantics is undesirable, and
propose instead an alternative based on least-change (Section 7.3);

• we explore the heretofore disregarded problem of multidirectional QVT-R trans-
formations (Section 7.4).

These are prepended by an introduction to the QVT-R language (Section 7.1) and
succeeded by a discussion of the overall results (Section 7.5).

7.1 QVT Relations

In this section the basic concepts regarding the QVT-R language are introduced. A
more detailed presentation can be found in the OMG (2011a) standard.

7.1.1 Basic Concepts

The QVT standard by OMG (2011a) defines three model transformation languages:
QVT Operational, an imperative language for the specification of unidirectional trans-
formation; QVT Relations, whose specifications are declarative consistency relations
that can be run in multiple directions; and QVT Core, a lower level declarative language
over which QVT-R is supposed to be embedded.

A QVT-R specification consists of a QVT-R transformation T between a set of
transformation domains, embodied by meta-model specifications, that states under
which conditions their conforming models are considered consistent. For most of this

144 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

chapter we restrict ourselves to the bidirectional scenario, i.e., QVT-R transformations
between two transformation domains. The generalization of these concepts to the
multidirectional scenario is addressed independently in Section 7.4. From T , QVT-R
requires the inference of three artifacts: a relation T : M ↔ N that tests whether two
models m : M and n : N are consistent and transformations

−→
T : M × N ↔ N and

←−
T :M ×N ↔M that propagate changes on a source model to a target model, restoring
consistency between the two. Thus, QVT-R transformations can be interpreted in two
modes: checkonly mode, where T simply checks the models for consistency; and
enforce mode, where

−→
T or

←−
T is applied to inconsistent models in order to restore

consistency, depending on which of the two models the user wishes to update. The
transformations are aware of both models when executing: if models m :M and n :N are
initially consistent, and m is updated to m ′,

−→
T takes as input both m ′ and n to produce

the new consistent n ′. This way the system is able to retrieve from n information
not present in the opposing model. This formalization of QVT-R is inspired by the
concept of constraint maintainer (Meertens, 1998), and was first proposed by Stevens
(2010). Naturally, when the transformations propagate an update the result is expected
to be consistent. The properties that transformations in QVT-R are expected to hold
are precisely those of regular maintainers: CORRECT and HIPPOCRATIC, the latter
embodied by the “check-before-enforce” policy enforced by the standard (OMG, 2011a,
p. 15).

A QVT-R transformation is defined by a set of QVT-R relations. Each QVT-R
relation consists of a domain pattern for each of the QVT-R transformation’s domains,
that defines which objects of the corresponding model it relates by pattern matching—
we call these candidate elements. It may also include when and where constraints,
that act as a kind of pre- and post-conditions for the QVT-R relation application,
respectively. These constraints may contain arbitrary OCL expressions (although the
standard imposes some strict restrictions to achieve effective enforcement semantics, as
will be shown in Section 7.3). The abstract syntax of a (binary) QVT-R relation is the
following:

[top] relation R {

[variable declarations]

domain M a : A { πTM } [{ πCM }];

domain N b : B { πTN } [{ πCN }];

[when { ψ }]

7.1 QVT RELATIONS 145

[where { φ }]

}

In a QVT-R relation R, the domain pattern for transformation domain M consists of a
domain variable a and a template πT

M that binds the values of some of its properties
(attributes or related associations), which candidate objects of type A must match.
Likewise for the domain N for transformation domain N . To simplify the presentation,
the above syntax restricts QVT-R relations to have exactly one domain variable per
transformation domain. If the multiplicity of a navigated property R is different from
one, pattern templates involving it denote inclusion tests, i.e., a pattern R = a denotes
the test 〈a〉 ∈ R. Properties can also be navigated backwards through the opposite

keyword. Templates can be complemented with arbitrary OCL constraints, denoted by
πC
M and πC

N . The conjunction of πT
M and πC

M (πT
N and πC

N) will be denoted by πM (πN).
QVT-R relations can optionally be marked as top, in which case they must hold for
every candidate a and b elements. Otherwise, they are only tested for particular a and
b elements when invoked in when or where clauses.

7.1.2 QVT-R Transformation Examples

The first example that will be used is a simplified version of the classic object-relational
mapping transformation that illustrates the QVT-R standard (OMG, 2011a), already
presented at Chapter 1. Figure 7.1 defines a QVT-R transformation cd2dbs between
two transformation domains CD and DS conforming to meta-models CD (Figure 6.1a)
and DBS (Figure 6.1b) respectively, that will give rise to a constraint maintainer cd2dbs:

CD IJ DS . The goal of this bidirectional transformation is to map every persistent
class of a package to a table of the matched schema. Each table should contain a column
for each attribute (including inherited ones) of the corresponding class. An intra-model
constraint of the CD meta-model that cannot be captured by class diagrams, nor by
QVT-R key constraints (more in Section 7.3.1), is the requirement that the association
general, which entails the inheritance tree of the class diagram, should be acyclic.
One must resort to OCL constraints to express it, for example by adding the following
invariant to the CD meta-model:

context Class inv:

not self.closure(general)->includes(self)

146 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

transformation cd2dbs (CD:CD,DS:DBS) {

// PackageToSchema
top relation P2S {

n:String;
domain CD p:Package { name = n };
domain DS s:Schema { name = n };

}

// ClassToTable
top relation C2T {

n:String;
domain CD c:Class {

persistent = true,
opposite(Package.classes) = p:Package{},
name = n };

domain DS t:Table {
opposite(Schema.tables) = s:Schema{},
name = n };

when { P2S(p,s); }
where { A2C(c,t); }

}

// AttributeToColumn
relation A2C {

domain CD c:Class {};
domain DS t:Table {};
where { PA2C(c,t) and SA2C(c,t); }

}

// PrimitiveAttributeToColumn
relation PA2C {

n:String;
domain CD c:Class {

attribute = a:Attribute { name = n } };
domain DS t:Table {

column = l:Column { name = n } };
}

// SuperAttributeToColumn
relation SA2C {

domain CD c:Class { general = g:Class {} };
domain DS t:Table {};
where { A2C(g,t); }

}
}

Figure 7.1: Simplified version of the cd2dbs QVT-R transformation.

7.1 QVT RELATIONS 147

name : String
Person

salary : Int
Employee

Employer

(a) Class diagram cd0.

CREATE TABLE Employee (
name varchar (2 5 5) ,
s a l a r y i n t

) ;
CREATE TABLE Employer (

name varchar (2 5 5)
) ;

(b) Database schema ds0.

Figure 7.2: Example models for cd2dbs.

The constraint relies on the transitive closure operator, which has recently been intro-
duced to the OCL standard (OMG, 2012, p. 168). Although simplified (no associations
in CD and no keys in DBS), this version of the transformation still exhibits some of the
problems of the original version presented in the standard, which will be described in
Section 7.2.2.

In cd2dbs there are two top QVT-R relations: P2S (PackageToSchema) that maps
each package to a schema with the same name, and C2T (ClassToTable) that maps each
class to a table with the same name. To ensure that a class is only mapped to a table
if the respective package and schema are also matched, QVT-R relation C2T invokes
P2S (with concrete domain variables) in the when clause. For a concrete class c and
table t , C2T also calls QVT-R relation A2C (AttributeToColumn) in the where clause,
that will be responsible for mapping each attribute in c to a column in t . A2C directly
calls PA2C (PrimitiveAttributeToColumn, complex attributes are disregarded in this
simplified version), that translates each attribute directly declared in c to a column in t ,
and SA2C (SuperAttributeToColumn), that recursively calls A2C on the super-class of c,
so that each inherited attribute is also translated to a column in t . Figure 7.2 depicts a
class diagram and a database schema that are supposed to be consistent according to
this consistency relation (italic class diagram names denote non-persistent classes, like
Person).

Another classical bidirectional model transformation example is that of the expan-
sion/collapse of a hierarchical state machine (HSM). In a HSM, states may themselves
contain sub-states (in which case they are called composite states), as defined by the
HSM meta-model in Figure 7.3a. Likewise the CD meta-model, the HSM meta-model
also requires an additional OCL constraint to avoid circular containment. Transitions
may exist between sub-states and states outside their owning composite state. One

148 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

target
source* 1

* 1

machine

addTransition(s,t : String)
addTopState(n : String)
addSubState(n,m : String)

name : String
SMachine

name : String
State

1

*
Transition

CompositeState

container

0..1

*

machine 1

*
transitions states

(a) Meta-model HSM.

target
source* 1

* 1

machine

addTransition(s,t : String)
addTopState(n : String)
addSubState(n,m : String)

name : String
SMachine

name : String
State

1

*
Transition

machine 1

*
transitions states

(b) Meta-model NHSM.

Figure 7.3: Class diagrams of the HSM and NHSM meta-models.

advantage of HSMs is abstraction, and a HSM can be collapsed into a non-hierarchical
state machine (NHSM) that presents only top-level states, inheriting the incoming and
outcoming transitions of their sub-states. The NHSM meta-model (Figure 7.3b) is similar
to HSM without the container association and the CompositeState class.

The consistency relation between a HSM and its collapsed view is specified by
the hsm2nhsm QVT-R transformation in Figure 7.4 between transformation domains
HM and NM conforming to HSM and NHSM, respectively, giving rise to the constraint
maintainer hsm2nhsm : HM IJ NM . Much like cd2dbs, top QVT-R relation M2M

(MachineToMachine) relates state machines with the same name, being a pre-condition
of the S2S (StateToState) QVT-R transformation. Top QVT-R relation S2S relates every
state of a HSM with a NHSM state with the same name as the top-level state owning it.
The where clause of QVT-R relation S2S tests whether the HSM state s is top-level or
not: if so, TS2S (TopStateToState) is called, which matches s to a NHSM state with the
same name; otherwise, SS2S (SubStateToState) is called, which recursively calls S2S
with the container state of s . Each transition is mapped by the top QVT-R relation T2T

(TransitionToTransition), which can be trivially specified by resorting to a where clause
stating that two transitions are related if their source and target states are related by S2S.
Since every sub-state in a HSM is related to the same NHSM top-state as its container,
every transition between sub-states is automatically pushed up to their top-states.

Figure 7.5 depicts two very simple state machines that are consistent according to
this consistency relation: in the HSM (Figure 7.5a) there is a state Idle and a composite
state Active containing two states Waiting and Running; a transition connects the
Idle state to the Waiting state. In its collapsed view (Figure 7.5b), the Active state
is folded, while the transition from the sub-state Waiting is pushed up to it.

7.1 QVT RELATIONS 149

transformation hsm2nhsm (HM : HSM, NM : NHSM) {

// SMachineToSMachine
top relation M2M {

n:String;
domain HM s:SMachine { name = n };
domain NM t:SMachine { name = n };

}

// StateToState
top relation S2S {

domain HM s:State {
machine = sm:SMachine{} };

domain NM t:State {
machine = tm:SMachine{} };

when { M2M(sm,tm); }
where {

if s.container->isEmpty() then TS2S(s,t)
else SS2S(s,t) endif;

}
}

// TopStateToState
relation TS2S {

n: String;
domain HM s:State { name = n };
domain NM t:State { name = n };

}

// SubStateToState
relation SS2S {

domain HSM s:State {};
domain NHSM t:State {};
where { S2S(s.container,t); }

}

// TransitionToTransition
top relation T2T {

domain HM ht:Transition {
target = htt:State{},
source = hts:State{} };

domain NM nt:Transition {
target = ntt:State{},
source = nts:State{} };

where { S2S(hts,nts) and S2S(htt,ntt); }
}

}

Figure 7.4: The hsm2nhsm QVT-R transformation.

150 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

Active

IdleWaiting

Running

(a) HSM hm0.

IdleActive

(b) NHSM nm0.

Figure 7.5: Example for hsm2nhsm.

7.2 Checking Semantics

QVT-R’s checking semantics assesses whether two models are consistent according
to the specified QVT-R transformation. Although the consistency check is by itself
fundamental to detect inconsistencies, in QVT-R it is also at the core of the enforcement
semantics since the latter must “check-before-enforce”. In this section we embed such
semantics into a typed relational constraint that is amenable to be deployed under the
formalization presented in Chapter 6, i.e., for a QVT-R transformation T , we show how
to derive the typed relational constraint T = 〈φT ,ST ,DT 〉.

7.2.1 Standard Checking Semantics

The semantics of a QVT-R relation differs whether it is invoked at the top-level or
with concrete domain variables by when and where clauses. The specified top-level
semantics is directional. As such, from each QVT-R relation R two formulae RI and
RJ must be derived, to check whether m : M is R-consistent with n : N and if n : N is
R-consistent with m :M , respectively. For a QVT-R relation R, RI and RJ will denote
the embedding of a top QVT-R relation R into a relational formula, the former being
formalized as follows:

RI ≡ ∀ xs | ψB ∧ πM ⇒ (∃ ys | πN ∧ φB)

where xs = fv(ψ ∧ πM) ∪ {a : AM },
ys = (fv(πN ∧ φ) ∪ {b : BN }) \ xs

Here fv(e) retrieves the set of free variables from the expression e, so xs denotes the
set of variables used in the when constraint and in the source domain pattern, while ys

is the set of variables used exclusively in the where constraint and in the target domain

7.2 CHECKING SEMANTICS 151

pattern. This semantics is rather straightforward: essentially, for every element a : A

that satisfies the when condition ψ and matches the πM domain pattern, there must exist
an element b : B that matches the πN domain pattern and satisfies the where condition
φ. The semantics of RJ in the opposite direction is dual. Domain pattern templates,
which consist of sets of property bindings, for example

domain M a : A

{ X = b : B { Z = d : D { . . . }, . . . },

y = c }

{ πCM };

where X and Z are many-to-many associations and y an attribute, are interpreted under
their OCL equivalent (OMG, 2011a, p. 19–20), in this case

domain M a : A

{}

{ πCM and a.X->includes(b) and b.Z->includes(d) and a.y = c and . . . };

since domain patterns may be complemented with OCL constraints. For instance, the
following pattern from the cd2dbs QVT-R transformation

domain CD c:Class

{ persistent = true,

opposite(Package.classes) = p:Package{},

name = n }

{};

is equivalent to the pattern

domain CD c:Class {}

{}

{ c.persistent and p.classes->includes{c} and c.name = n };

Likewise to the constraints that may annotate meta-models (Section 6.1.2), these OCL
expressions, along with those occurring in where/when clauses φ / ψ, are processed
into relational logic following the technique proposed by Cunha et al. (2013) (technical
details are presented in Chapter 9). The domain pattern just mentioned results in

〈c〉 ∈ persistentCD ∧ 〈p〉 ∈ classes◦CD ◦ c ∧ nameCD ◦ c = n

The OCL navigation operator and the relational composition operator are defined in
opposite directions. Thus, an OCL expression a.R results in the relational expression
R.a.

152 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

The QVT-R standard defines rather precisely the top-level semantics, but is omissive
about the semantics of QVT-R relations R between A and B invoked with concrete
expressions e1 : A and e2 : B as R (e1, e2). Recent works on the formalization of
QVT-R checking semantics (Stevens, 2013; Bradfield and Stevens, 2012; Guerra and
de Lara, 2012) clarify that it is essentially the same as the top-level—still directional,
but defined over concrete elements by fixing the domain variables. However, each
relation invocation cannot simply be expanded to this definition, since recursive calls
would lead to infinite loops. For instance, in the hsm2nhsm QVT-R transformation, S2S
and SS2S call each other recursively: if each SS2S(s,t) and S2S(s.container,t)

calls were expanded, it would lead to infinite expansions. Instead, since predicates can
be encoded by relations, for every relation R that is called by another we introduce two
new relation variables RB :A↔B and RC :A↔B in DT ; then, each relation invocation
R (e1, e2) is translated as either the membership test 〈e1, e2〉 ∈ RB or 〈e1, e2〉 ∈ RC,
depending on the direction the calling relation is being run. This was already depicted
in the semantics defined above, where, given a formula ψ, ψB denotes the same formula
with all QVT-R relation invocations replaced by the respective directional version.

The valuation of the RB and RC variables must then be restricted to the desirable
QVT-R semantics. From each QVT-R relation R with domain variables of type A and
B , two formulae RI and RJ are inferred, that restrict the valuation of the free relations
RB : A↔ B and RC : A↔ B . The former is formalized as:

RI ≡ RB = {a : AM , b : BN | (∀ xs | ψB ∧ πM ⇒ (∃ ys | πN ∧ φB))}
where xs = fv(ψ ∧ πM),

ys = fv(πN ∧ φ) \ xs

The test in the opposite direction RJ is again dual. These formulae are derived a single
time, although this step can be skipped for QVT-R relations to which there are no calls.
A top relation R may also be called from other QVT-R relations, in which case both
RI/RJ and RI/RJ formulae are derived.

Two models are consistent according to a QVT-R transformation T if they are
consistent for all top QVT-R relations in both directions. However, since our embedding
of relation calls also requires the axiomatization of the corresponding variables, non-top
relations must also be processed into formula φT . For a QVT-R transformation T , let
TT denote the set of its top QVT-R relations and ST the set of relations which are called

7.2 CHECKING SEMANTICS 153

from other relations within it. Its embedding can then be specified as:

φT =
∧

R∈TT
(RI ∧ RJ) ∧

∧
R∈ST

(RI ∧ RJ)

Since formula φT expectedly refers to relations from the transformation domains M
and N , the overall typed relational constraint T is defined as:

T = 〈φT ,SM ∪ SN ,DM ∪ DN ∪
⋃

R∈ST
{RB,RC}〉

7.2.2 Relation Invocations

Although it may be tempting (and probably more intuitive) to define RI in terms of RB,
that is RI ≡ ∀ a : AM | (∃ b : BM | 〈a, b〉 ∈ RB), this definition is not semantically
equivalent to the one presented above, as previously discussed by Bradfield and Stevens
(2012). For instance, consider the semantics (in the direction of CD) of QVT-R relation
PA2C from the cd2dbs QVT-R transformation:

PA2CJ ≡ ∀ t : TableDS , l : ColumnDS |
〈l〉 ∈ columnsDS ◦ t ⇒ (∃ c : ClassCD , a : AttributeCD |
〈a〉 ∈ attributesCD ◦ c ∧ nameCD ◦ a = nameDS ◦ l)

〈c, t〉 ∈ PA2CC ≡ ∀ l : ColumnDS |
〈l〉 ∈ columnsDS ◦ t ⇒ (∃ a : AttributeCD |
〈a〉 ∈ attributesCD ◦ c ∧ nameCD ◦ a = nameDS ◦ l)

Consider a simple CD model where a class a with an attribute x extends a class b with
an attribute y . Consider also a DBS model with a single table a containing columns x
and y . While PA2CJ holds for this pair of models, PA2CC returns false for every pair of
classes and tables. Of course, there are cases where the two semantics are equivalent.
For instance, C2T could be defined as a non-top QVT-R relation and be called from the
where clause of P2S. The behavior is equivalent because the only free variable (n) is
bound to a unitary attribute.

Due to this asymmetry and the directionality of the semantics, the behavior of QVT-
R transformations may not meet the expectations of the user. In particular, cd2dbs as
defined in the standard does not have a bidirectional semantics, because the check in
the direction of CD imposes that the only pairs of cd2dbs-consistent and well-formed
finite models are ones where all classes are non-persistent and there are no tables. To

154 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

see why this happens, consider the QVT-R relations A2C and SA2C when checked in
the direction of CD . These QVT-R relations call each other recursively, and their non
top-level semantics is:

〈c, t〉 ∈ A2CC ≡ 〈c, t〉 ∈ PA2CC (c, t) ∧ 〈c, t〉 ∈ SA2CC

〈c, t〉 ∈ SA2CC ≡ ∃ g : ClassCD | 〈g〉 ∈ generalCD ◦ c ∧ 〈g , t〉 ∈ A2CC

If the transformation takes into account the OCL constraint requiring inheritance to
be acyclic, the predicate 〈c, t〉 ∈ A2CC never holds in a finite model, since c will be
required to have an infinite ascending chain of general objects. This is due to the
under-restrictive domain pattern for the domain DS in SA2C (empty in this case), that
requires every table to have a matching class with a super-class, which, due to recursion,
is also required to have a super-class, and so on. This is but one of the problems that
occur in the original specification of this transformation, and is another example of
the ambiguities that prevail in the QVT-R standard (OMG, 2011a): while it requires
consistency to be checked in both directions, the case study used to illustrate it was
clearly not developed with bidirectionality in mind. Note that checking consistency
only in the direction of DS does not suffice, since, for example, it will not prevent
spurious tables to appear in the target schema.

Relation calls in the where and when constraints require reasoning about recursion.
Two situations can be distinguished: one is well-founded recursion, where the call
graph of the transformation contains a loop, but in any evaluation it is traversed only
finitely many times; another is cyclic (or infinite) recursion, where such a loop may
actually be traversed infinitely many times (e.g., when a relation directly or indirectly
calls itself with the same arguments). The semantics of well-founded recursion is
not problematic, but the standard is omissive about what should happen when infinite
recursion occurs. A possible interpretation is that it should not be allowed, although
in general it is undecidable to detect if that is the case. Similarly to some QVT-R
formalizations (Stevens, 2013; Guerra and de Lara, 2012), the embedding presented in
this chapter is not well-defined when infinite recursion occurs.

Recently, a formal semantics of QVT-R was proposed by Bradfield and Stevens
(2012) that is well-defined even in presence of infinite recursion, by resorting to modal
mu calculus. To see why taking OCL constraints into account is fundamental, a
transformation conforming to this semantics, but that ignores the requirement that
general is acyclic, would consider an (ill-formed) CD model with a single persistent
class a that generalizes itself consistent with a DBS model with a table a.

7.2 CHECKING SEMANTICS 155

To prevent the problem in the cd2dbs QVT-R transformation described above,
one could tag each column with the path to the particular general they originated
from, and then refine the DS domain pattern to prevent problematic recursive calls. A
simpler alternative is to resort to the transitive closure operation, and map at once every
declared or inherited attribute of a given class to a column of the matching table. In this
new version of cd2dbs—that will be considered in the remainder of the chapter—A2C,
PA2C and SA2C are replaced by the following alternative definition of A2C:

// AttributeToColumn

relation A2C {

n:String; a:Attribute; g:Class;

domain CD c:Class {} {

(c->closure(general)->includes(g) or g = c) and

g.attributes->includes(a) and a.name = n };

domain DS t:Table {

column = l:Column { name = n } };

}

The additional OCL constraint in the CD domain pattern acts as a pre-condition when
applying the transformation in the direction of DS , and as a post-condition in the other
direction. As such, it could not be specified in the when clause, since it would act as
(an undesired) pre-condition for both scenarios. Figure 7.6 presents the embedding
of this transformation as the cd2dbs typed relational constraint, after some formula
simplifications to improve readability.

Unlike cd2dbs, the recursive version of hsm2nhsm, whose forward typed relational
constraint embedding is presented in Figure 7.7 (tests in the HM direction omitted
from φhsm2nhsm), does produce the intended behavior. The reason is that, while a single
attribute in cd2dbs may give rise to columns in multiple tables, an HSM transition
in hsm2nhsm gives rise to a single NHSM transition. As a consequence, unlike A2C

that must be defined over class elements, T2T can be defined directly over transition
elements. These particularities are difficult to grasp at design time, thus effective tool
support for QVT-R is essential for the design of consistency relations that embody the
intentions of the user.

The recursive typed relational constraint in Figure 7.7 helps understanding why this
embedding is not well behaved in the presence of circular recursion. The axiomatization
of S2SB states that a sub-state a is related with a state b if a is related to b by SS2SB,

156 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

Scd2dbs = SCD ∪ SDS

Dcd2dbs = DCD ∪ DDS ∪
{P2SB : Package↔ Schema, P2SC : Package↔ Schema,

A2CB : Class↔ Table, A2CC : Class↔ Table}
φcd2dbs =

∀ p : PackageCD | (∃ s : SchemaDS | nameCD ◦ p = nameDS ◦ s) ∧
∀ s : SchemaDS | (∃ s : PackageCD | nameDS ◦ s = nameCD ◦ p) ∧
∀ p : PackageCD , s : SchemaDS | 〈p, s〉 ∈ P2SB ⇒
∀ c : classesCD ◦ p ∩ persistentCD | (∃ t : tablesDS ◦ s |
nameCD ◦ c = nameDS ◦ t ∧ 〈c, t〉 ∈ A2CB) ∧

∀ p : PackageCD , s : SchemaDS | 〈p, s〉 ∈ P2SC ⇒
∀ t : tablesDS | (∃ c : classesCD ◦ p ∩ persistentCD |
nameCD ◦ c = nameDS ◦ t ∧ 〈c, t〉 ∈ A2CC) ∧

P2SB = {p : PackageCD , s : SchemaDS | nameCD ◦ p = nameDS ◦ s } ∧
P2SC = {p : PackageCD , s : SchemaDS | nameCD ◦ p = nameDS ◦ s } ∧
A2CB = {c : ClassCD , t : TableDS |
∀ g : general∗CD ◦ c, a : attributesCD ◦ g |

(∃ l : columnsDS ◦ t | nameDS ◦ l = nameCD ◦ a)} ∧
A2CC = {c : ClassCD , t : TableDS | ∀ l : columnsDS ◦ t |

(∃ g : general∗CD ◦ c, a : attributesCD ◦ g | nameDS ◦ l = nameCD ◦ a)}

Figure 7.6: QVT-R transformation cd2dbs as a TRC.

which happens if a◦container is related to b by S2SB, and so on until a top-level state
is reached. If a ◦ container = a , which introduces circularity, there will be two valid
valuations for S2SB and SS2SB: one where S2SB = {(a, b)} and SS2SB = {(a, b)}
and another where S2SB = { } and SS2SB = { }. The latter is clearly incorrect and
will lead to undesirable behavior. Since the meta-model enforces acyclic containment
associations, and our constraint maintainers are constraint-aware, this embedding will
be well-behaved.

7.3 ENFORCEMENT SEMANTICS 157

Shsm2nhsm = SHM ∪ SNM

Dhsm2nhsm = DHM ∪ DNM ∪
{M2MB : SMachine↔ SMachine, M2MC : SMachine↔ SMachine,

S2SB : State↔ State, S2SC : State↔ State,

TS2SB : State↔ State, TS2SC : State↔ State,

SS2SB : State↔ State, SS2SC : State↔ State}
φhsm2nhsm =

∀ s : SMachineHM | (∃ t : SMachineNM | nameHM ◦ s = nameNM ◦ t) ∧
∀ sm : SMachineHM , tm : SMachineNM | 〈sm, tm〉 ∈ M2MB ⇒
∀ s : (machine◦HM ◦ sm) | (∃ t : (machine◦NM ◦ tm) |

if (containerHM ◦ s = ∅) then 〈s , t〉 ∈ TS2SB
else 〈s , t〉 ∈ SS2SB) ∧

∀ ht : TransitionHM | (∃ nt : TransitionNM |
〈sourceHM ◦ ht , sourceNM ◦ nt〉 ∈ S2SB ∧
〈targetHM ◦ ht , targetNM ◦ nt〉 ∈ S2SB) ∧

M2MB = {s : SMachineHM , t : SMachineNM | nameHM ◦ s = nameNM ◦ t } ∧
S2SB = {s : StateHM , t : StateNM |
∀ sm : SMachineHM , tm : SMachineNM | 〈sm, tm〉 ∈ M2MB ⇒
〈s〉 ∈ machine◦HM ◦ sm ⇒ 〈t〉 ∈ machine◦NM ◦ tm ∧

(if (containerHM ◦ s = ∅) then 〈s , t〉 ∈ TS2SB
else 〈s , t〉 ∈ SS2SB)} ∧

TS2SB = {s : StateHM , t : StateNM | nameHM ◦ s = nameNM ◦ t } ∧
SS2SB = {s : StateHM , t : StateNM | 〈containerHM ◦ s , t〉 ∈ S2SB} ∧
...

Figure 7.7: QVT-R transformation hsm2nhsm as a TRC.

7.3 Enforcement Semantics

Besides showing many ambiguities and omissions, we believe that, due to the reasons
presented next, the enforcement semantics intended in the standard is quite undesirable.
Instead, we propose an alternative that is easy to formalize, more flexible, and more
predictable to the end-user, built on the formalization presented in Chapter 6.

158 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

7.3.1 Standard Enforcement Semantics

In the QVT-R standard, update propagation is required to be deterministic (OMG,
2011a, p. 18). This is a desirable property, since it makes its behavior more predictable.
However, to ensure determinism, every QVT-R transformation is required to follow very
stringent syntactic rules that reduce update translation to a trivial imperative procedure.
Namely, it should be possible to order all constraints in a QVT-R relation in such a
way that the value of every free variable is fixed by a previous constraint. Although
not clarified in the standard, this means that every QVT-R relation invoked in when

and where constraints is either invoked with previously bound variables, or required
to be deterministic as well, even if those constraints were only intended to control
relation application in order to render update propagation deterministic. For example,
in QVT-R transformation cd2dbs, update propagation in the DS direction will only be
deterministic for QVT-R relation C2T if at most one s is consistent with p according
to QVT-R relation P2S (note that s is still free in the when clause). In this particular
example that happens to be the desired behavior, but in general such determinism
is undesirable since it forces QVT-R relations to be one-to-one mappings, limiting
the expressiveness of the language. Moreover, it defeats the purpose of a declarative
transformation language, since one is forced to think in terms of imperative execution
and write more verbose transformations. For example, our simpler version of A2C using
transitive closure would not be allowed, since the value of g is not known a priori when
enforcing consistency in the direction of CD .

Another problem is the predictability of update propagation. Being determinis-
tic is just part of the story—it should be clear to the user why some particular ele-
ment was chosen to be updated instead of another. The only mechanism proposed
by QVT-R to control updatability are keys. For example, one could add the state-
ment key Table (name, schema); to the running example to assert that each table is
uniquely identified by the pair of properties name and schema. If an update is required
on a table to restore consistency (for example, when an attribute is added to an existing
class), such key is used to find a matching table. When found, an update is performed,
otherwise a new table is created. This works well when all domains involved in QVT-R
relations have natural keys—which again points to one-to-one mappings only—but fails
if such keys do not exist. In those cases, the standard prescribes that update propagation
should always be made by means of creation of new elements, even if sometimes a
simple update to an existing element would suffice. Since creation requires defaults

7.3 ENFORCEMENT SEMANTICS 159

for mandatory (multiplicity one) properties, this would result in models with little
resemblance with the original, which would probably end up being useless to the user.

7.3.2 Least-change Enforcement Semantics

Our alternative enforcement semantics is based on the principle of least-change, that
promotes predictability by requiring updates to be as small as possible. QVT-R “check-
before-enforce” policy is just a particular case of this more general principle. Following
Section 6.1, given the embedding of the transformation domains (Section 6.1.2), of
distances over conforming models (Section 6.3) and the embedding of the inter-model
constraint (presented in this chapter for QVT-R transformations), we are able to deploy
least-change constraint maintainers based on model finding. In this section we analyze
the behavior of such constraint maintainer under the two concrete metrics presented
in Section 6.3.1: GED and OBD. Note that least-change by itself does not ensure a
single solution, although it substantially reduces the set of possible results. If among
the returned models the user wishes to favor a particular subset, QVT-R keys or OCL
constraints can be added to the meta-model to further guide the transformation engine.

The choice of the metric directly affects the behavior of the bidirectional transfor-
mation, since the model finding procedure is guided by the implied preference order.
Recall the class diagram and database schema presented at Figure 7.2 and imagine that
the database manager decides that employers also have salaries, creating a salary

column in the Employer table. Minimal repairs on the class diagram according to GED
are either setting Employee as a super-class of Employer (Figure 7.8a) or to move the
attribute salary from Employee up to Person (Figure 7.8b), both at distance 2. If
none of these are desirable repairs, the user could eventually ask for the next closest
solution at distance 3, which in this case is the introduction of a new attribute salary
in Employer (Figure 7.8c).

Suppose the user wants to rule out all repairs that change the class hierarchy or
assign the same cost to either create a new attribute or move an attribute from one class
to another. To do so, she can specify (using OCL) which are the valid edit operations
that can be performed to repair a model and propagate the update under OBD. For CD
models, assume the existence of operations whose signature is presented in Figure 6.1a.
Notice that there are no edit operations that modify the hierarchy, and both creation and
moving of an attribute are now atomic edit operations. Through OBD our technique
finds the minimal sequence of edit operations that repairs the model. In our company

160 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

name : String
Person

salary : Int
Employee

Employer

(a) Class diagram cd1.

name : String
salary : Int

Person

Employee

Employer

(b) Class diagram cd2.

name : String
Person

salary : Int
Employee

salary : Int
Employer

(c) Class diagram cd3.

Figure 7.8: Least-change propagation example for cd2dbs.

Active

IdleWaiting

Running Error

(a) HSM hs1.

Active

IdleWaiting

Running Error

(b) HSM hs2.

Active

IdleWaiting

Running Error

(c) HSM hs3.

Figure 7.9: Least-change propagation example for hsm2nhsm.

running example, there will now be two minimal repairs, namely insert the new attribute
salary in class Employer (Figure 7.8c), or moving the existing one from Employee

to the common super-class Person (Figure 7.8b), which were considered at different
distances under GED. As expected, the solution which set Employer as a sub-class of
Employee has also been excluded.

For another example of the tradeoff between GED and OBD, consider the problem
hsm2nhsm of expanding/collapsing hierarchical state machines. Imagine the user wants
to allow the occurrence of errors and creates a new simple state Error on the collapsed
diagram from Figure 7.5b and a transition to it from Active. Propagating this update
back to the expanded state machine using GED would yield 3 possible solutions at
minimal distance: the creation of the simple state Error with a transition to it from
either the composite state Active (Figure 7.9a) or the sub-states Waiting (Figure 7.9b)
or Running (Figure 7.9c), all at minimal cost. The user would be able to navigate
through these solutions and select the most suitable one depending on the context.

Suppose however that the user prefers that transitions inserted in the collapsed state
machine are reflected back only at the top-level states. If that is the case, she could

7.4 MULTIDIRECTIONAL QVT-R TRANSFORMATIONS 161

simply define an addTransition operation in such a way that it only allows the inser-
tion of transitions between top-level states, without any other operation that introduces
transitions (for instance, restricting the edit operations to those whose signatures are
depicted in Figure 7.3a). In that case, if the previous update was propagated using the
OBD metric, it would present only one solution at minimal distance, namely the inser-
tion of a new transition from the composite state Active to Error (Figure 7.9a). We
believe this combination of an automatically inferred metric and a user parameterizable
one provides a high level of flexibility to our technique.

7.4 Multidirectional QVT-R Transformations

Heretofore, this chapter dealt with the scenario where QVT-R transformations relate
two models. Nonetheless, the bidirectional scenario is not sufficient to tackle some
applications. An arbitrary number of models may coexist in the same MDE environment,
and their complex interrelationship may not be decomposable into a set of bidirectional
relationships that can be maintained separately. As already shown in Section 6.2, the
solver-based framework over which bidirectional transformations were formalized can
be generalized to the multidirectional transformation scenario (Proposition 6.5).

To motivate the need for multidirectional transformation, consider the problem of
keeping the consistency between a feature model and a set of k valid configurations,
embodied by a multidirectional constraint maintainer fm2cf : FM IJ CF 1 IJ

... IJ CF k . For the sake of simplicity, assume that feature models FM consist of
named features, that may or not be mandatory, and configurations CF are simply a set
of selected features; the respective meta-models are depicted in Figure 7.10. The inter-
model constraint entailed by fm2cf can be decomposed into two parts fm2cf = mf∩of:
relation mf : FM ↔ CF 1↔ ...↔ CF k (MandatoryFeatures) expresses that mandatory
features match exactly the set of features appearing in every configuration; and relation
of : FM ↔ CF 1↔ ...↔ CF k (OptionalFeatures) expresses that the feature model
contains at least the union of all selected features. Note that due to the intention of
having features present in all configurations set as mandatory in the feature model,
relation mf cannot be decomposed into k bidirectional relations between FM and each
CF i .

This kind of multidirectional scenario is already informally foreseen in the QVT-R
standard, that admits an arbitrary number of transformation domains to be related in

162 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

name : String
Feature

(a) Meta-model CF.

name : String
mandatory: bool

Feature

(b) Meta-model FM.

Figure 7.10: Class diagrams for the CF and FM meta-models.

a QVT-R transformation. However, the proposed checking semantics is too inflexible
and only able to represent a restricted subset of consistency relations. In fact, none of
the above relations can be specified using the standard checking semantics. Moreover,
the standard hints at an enforcement semantics with very limited applicability. Namely,
from a consistency relation such as fm2cf, the standard only prescribes the derivation
of the following n transformations:

• −−−−→fm2cfFM : FM × CF 1 × ... × CF k ↔ FM , for propagating updates to the
configurations back to the feature model;

• −−−−→fm2cfCF i : FM × CF 1 × ...× CF k ↔ CF i , for any i ∈ [0..k], for propagating
updates to the feature model and the remaining configurations into a specific
target configuration.

That is, transformations may only propagate updates to a single target transformation
domain. In the multidirectional scenario this is a very restrictive view of the enforcement
semantics, as the user may wish to restore consistency in many ways depending on the
context, leading to different update propagation transformations. Consider, for instance,
the following interesting and alternative instantiations:

• −−−−→fm2cf(CF1,...,CF k) : FM × CF 1 × ...× CF k ↔ CF 1 × ...× CF k , which would
allow updates to the feature model to be propagated to more than one config-
uration. For example, if a feature is changed to mandatory it must be selected
in all configurations; this simple update could not be handled by the standard
transformations, since full consistency could not be restored by an update over a
single model.

• −−−−→fm2cf(FM ,CF1,...,CF i−1,CF i+1,...,CF k) : FM × CF 1 × ...× CF k ↔ FM × CF 1 ×
...× CF i−1 × CF i+1 × ...× CF k for any i ∈ [0..k], which would provide more
flexibility in the propagation of updates to a configuration, as all the remaining
artifacts are allowed to change. For example, if the name of a feature in a

7.4 MULTIDIRECTIONAL QVT-R TRANSFORMATIONS 163

configuration is changed, the natural way to recover consistency is to change the
name of that feature in all the remaining configurations and in the feature model.

The main goal of this section is to start shedding some light on this currently
unexplored multidirectional scenario. In particular, we explore the applicability of
QVT-R for multidirectional model transformation and discuss some semantic issues
that arise in this setting. To overcome its current limitations, we propose a simple
extension that enables the specification of interesting multidirectional transformations,
and discuss how to infer different kinds of consistency-restoring transformations from
the same multidirectional specification.

7.4.1 QVT-R Multidirectional Checking Semantics

The abstract syntax of QVT-R relations between n transformation domains Mi essen-
tially generalizes the one presented in Section 7.1.1 for the bidirectional scenario:

[top] relation R {

[variable declarations]

domain M1 a1 : A1 { πT1 } [{ πC1 }];

. . .

domain Mn an : An { πTn } [{ πCn }];

[when { ψ }]

[where { φ }]

}

Here, πi (the conjunction of πTi and πCi) denotes a domain pattern over an element
ai from domain Mi (for i ∈ [1..n]), while ψ and φ are still arbitrary pre- and post-
conditions. According to the standard, testing the consistency specified by top relations
consists of running n directional tests (denoted by the subscript domain identifier as
RMi , an extension of the bidirectional RJ and RI predicates), each validating one of
the transformation domains. Thus, the embedding of a top multidirectional QVT-R
relation R in a relational formula, denoted by RJI, consists of:

RJI ≡
∧

i ∈ [1..n]

RMi

The semantics of these RMi predicates generalizes that of the bidirectional case with
Mi as the target domain: if ψ holds, for all source domains elements aj such that πj

164 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

holds with j 6= i (the source candidates), there must exist a target domain element ai
such that πi and φ hold (the target candidate).

Back to our fm2cf running example, consider that we have a pair of configurations
(k = 2 and n = 3). How can the mf consistency relation be specified in QVT-R? As a
first attempt, let us consider the following specification:

// MandatoryFeatures

top relation mf {

n : String;

domain CF1 s1 : Feature { name = n };

domain CF2 s2 : Feature { name = n };

domain FM f : Feature { name = n,

mandatory = true };

}

The free variable n relates selected features in each configuration with mandatory
features in the feature model. Following the standard, the consistency relation will
consist of three predicates:

mf ≡ mfFM ∧ mfCF1 ∧ mfCF2

Given an embedding as typed relational constraints of the transformation domains, each
of these directional tests is then concretized as:

mfFM ≡ ∀ n : String, s1 : FeatureCF1 , s2 : FeatureCF2 |
n = nameCF1 ◦ s1 ∧ n = nameCF2 ◦ s2 ⇒

(∃ f : FeatureFM | n = nameFM ◦ f ∧ 〈f 〉 ∈ mandatoryFM)

mfCF1 ≡ ∀ n : String, f : FeatureFM , s2 : FeatureCF2 |
n = nameCF2 ◦ s2 ∧ n = nameFM ◦ f ∧ 〈f 〉 ∈ mandatoryFM ⇒

(∃ s1 : FeatureCF1 | n = nameCF1 ◦ s1)

mfCF2 ≡ ...

But let us concretely analyze the meaning of these predicates. Relation mfFM expresses
part of the intended behavior—if the two configurations have the same selected feature
then such feature is mandatory. However, the reverse implication requiring every
mandatory feature to be present in both configurations is not entailed by mfCF1 and
mfCF2 . Looking at mfCF1 , the selection of the s1 feature depends both on f and s2,
thus, if there are no selected features in cf2, mfCF1 will be trivially true due to the

7.4 MULTIDIRECTIONAL QVT-R TRANSFORMATIONS 165

empty range in the universal quantification. This problem persists whatever the domain
patterns (and pre- or post-conditions), and as a consequence, the intended specification
for mf cannot be realized by any QVT-R relation (with the standard semantics) between
features in the three models.

This problem could be easily solved if we could control the extent of the universal
quantifications in the semantics of mfCF1 and mfCF2 , namely to range only over the
feature model and ignore the remaining configurations

mfCF1 ≡ ∀ n : String, f : FeatureFM |
n = nameFM ◦ f ∧ 〈f 〉 ∈ mandatoryFM ⇒

(∃ s1 : FeatureCF1 | n = nameCF1 ◦ s1)

mfCF2 ≡ ∀ n : String, f : FeatureFM |
n = nameFM ◦ f ∧ 〈f 〉 ∈ mandatoryFM ⇒

(∃ s2 : FeatureCF2 | n = nameCF2 ◦ s2)

The conjunction of these predicates entails the missing part of the desired mf specifica-
tion, and hints at a possible extension to the standard checking semantics that largely
improves its expressiveness, as described in the next section.

Although mf could alternatively be interpreted as a bidirectional constraint main-
tainer FM IJ CF 1× ...×CF k between a feature model and a tuple of configurations,
in general the n models may be of different nature. In fact, as will be shown below,
of would still not be expressible. Moreover, the checking semantics prescribed by the
QVT-R standard could not be reproduced under such interpretation.

7.4.2 Extending the Standard Semantics

As the previous section makes clear, the standard QVT-R language is not suitable for
expressing many transformations of interest, namely those where the relationships
between the domains are not symmetric. In fact, this is already a problem in the bidirec-
tional setting (for example, how can plain subset relationships be expressed?), but is
aggravated in the multidirectional setting due to the explosion of possible dependencies
between transformation domains. In this section, we propose precisely to extend QVT-R
with a language of dependencies between transformation domains in order to express
the desired directionality of the checking semantics.

166 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

Checking dependencies Let σR denote the set of domains {M1, ...,Mn } in a QVT-R
relation R. A checking dependency S → t for R, where S ⊆ σR is a set of domains
and t ∈ σR a single domain (with (t 6∈ S)), states that the transformation domain
t depends on all the transformation domains in S . Formally, the semantics of a rule
R according to a dependency S → t , denoted by RS→t , prescribes that R should be
checked by universally quantifying over elements of all the domains in S and, when the
respective domain patterns and pre-condition hold, demanding an element satisfying
the respective domain pattern and post-condition to exist in the t domain. The set of
checking dependencies attached to a relation R will be denoted by R. The semantics of
a top relation R is now the conjunction of all dependency checks:

RJI ≡
∧

d ∈R
Rd

For example, to obtain the desired specification of the mf relation, it suffices to attach
to the above QVT-R specification the dependencies mf = {CF 1 CF 2 → FM ,FM →
CF 1,FM → CF 2}. This extension is conservative, in the sense that the standard
QVT-R semantics can still be specified by setting:

R =
⋃

i ∈ [0..n]

{(σR \Mi)→ Mi }

The of relation, stating that the selected features from both configurations should
be included in the set of all available features (mandatory or optional), which is also
not expressible under standard QVT-R semantics, can be represented by the following
QVT-R relation

// OptionalFeatures

top relation of {

n : String;

domain CF1 s1 : Feature { name = n };

domain CF2 s2 : Feature { name = n };

domain FM f : Feature { name = n };

}

associated with the checking dependencies of = {CF 1 → FM ,CF 2 → FM }. Note
that, at this point, we are just disregarding the dependencies implied by the QVT-R
standard. Expressing our dependency would require some sort of extended QVT-R

7.4 MULTIDIRECTIONAL QVT-R TRANSFORMATIONS 167

syntax.
Although at first sight this extension may seem too conservative, the fact is that from

these simple dependencies more complex ones can be built. In particular, multiple model
dependencies can be attained through the entailment {M1 → M2,M1 → M3}`{M1 →
M2 M3} (thus resulting in the expected mf(CF1,CF2)) while dependencies over unions
of models can be attained through {M1 → M3,M2 → M3} ` {M1 | M2 → M3} (from
which ofFM arises), where {M1 | M2 → M3} denotes the fact that the domain M3

depends on information from M1 and M2 independently.

Asymmetric bidirectionality This extension also improves the expressiveness of
QVT-R in the bidirectional setting. While the prevalent idea is that the QVT-R standard
forces checking semantics to be bidirectional (i.e., run the test in both directions) (Brad-
field and Stevens, 2012), this requirement may be too strong in some contexts. In fact,
some ambiguities in the standard allow different interpretations and ModelMorf (Tata
Research Development and Design Centre), the tool that allegedly follows the QVT-R
standard the closest, allows unidirectional checks. Consider the uml2rdbms trans-
formation. While in the bidirectional version, only extra classes not matched by any
relation are disregarded (insertion of a non-persistent class does not introduce inconsis-
tencies), in the unidirectional version any extra class not related to a table is disregarded
(insertion of a class, even if persistent, never causes inconsistencies). Clearly, this is
undesirable in uml2rdbms transformation, and would be as well in hsm2nhsm.

However, this is not always the case. Consider for instance the consistency relation
between UML class diagrams and UML sequence charts. One of the basic consistency
constraints between these models is that all classes mentioned in the sequence chart
must exist in the class diagram; however, not all classes in the class diagram must
be represented in the sequence chart. This kind of consistency relation would be
impossible to specify with QVT-R’s forall-there-exists bidirectional checks, unless the
classes which are mentioned in the sequence chart were somehow (artificially) marked
in the class diagram, so that a pattern to filter them out can be defined in the consistency
relations. Using the domain dependencies introduced for the multidirectional scenario,
this would be trivially solved: just introduce an asymmetric dependency from sequence
charts to class diagrams.

Relation invocations As in the bidirectional scenario, relation calls in the multidirec-
tional scenario must preserve the direction of the calling predicate. However, the QVT-R

168 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

syntax does not guarantee that every relation in a specification can be run in the same
direction, e.g., nothing prevents a relation R with σR = {CF 1, ...,CF

k ,FM } running
in the FM direction from calling another relation S with σS = {CF 1, ...,CF

k }, which
does not relate the FM transformation domain. The standard is omissive about these
situations. The newly introduced checking dependencies must also be taken into con-
sideration, e.g., should a relation R = {M1 → M2} be allowed to call another relation
S = {M2 → M1}? We think the answer should be no, and this situation should be
flagged as a typing error at static-time.

Notwithstanding, it is worth noting that the dependencies of R and S need not
be perfect matches. In fact, a relation R = D may be called in the direction Rd by
another relation with d ∈ S if D ` d , i.e., D entails d . In our restricted language this
will allow, for instance, the call RM1→M3 when R = {M1 → M2,M2 → M3}, since
{M1 → M2,M2 → M3} `M1 → M3. Since our dependencies are equivalent to Horn

clauses (disjunctions with a single positive literal) this “type-checking” can be done in
linear time.

7.4.3 QVT-R Enforcement Semantics

In Section 6.2 we showed that the same technique used to deploy least-change bidi-
rectional constraint maintainers over model finders could also be adapted to the mul-
tidirectional scenario. Under this technique, for any selection of target domains σRt ,
deploying a transformation

−→
R σRt requires only the definition of a suitable distance

function for the selected target transformation domains t .

Let us use the fm2cf example to explore the transformation space. Those with a
single output model can be trivially applied. For instance, assuming a model distance
∆FM ,

−−−−→
fm2cfFM :CF 1× ...×CF k↔FM would produce a feature model fm ′ consistent

with the input configurations (fm2cf (cf 1, ..., cf k , fm
′)) and closest to the original

feature model (minimizing distance ∆FM between fm and fm ′). Similarly for every
−−−−→
fm2cfCF i . As for the tuple returning transformations, a simple way to achieve the
combined distance of the target models is to add up the distance between every model,
as already exemplified at the end of Section 7.3.2. Of course, depending on the
defined order, changes in each domain may be assigned different weights (e.g., in
−−−−→
fm2cf(FM ,CF1,...,CF k) : FM × CF 1 × ... × CF k ↔ FM × CF 1 × ... × CF k changes
to configurations could be prioritized over those to feature models).

When applying a transformation, the user must be aware that not all update directions

7.5 DISCUSSION 169

are able to restore the consistency of the system. Consider, for instance, that a new
mandatory feature is introduced in the feature model. Then

−−−−→
fm2cfCF i , which updates a

single model, will clearly not be able to restore consistency of the MDE environment.
Instead, the user should apply

−−−−→
fm2cf(CF1,...,CF k) and update all configurations.

7.5 Discussion

Combining the QVT-R embedding presented in this chapter with the model finding
formalization from Chapter 6 results in a QVT-R bidirectional model transformation
technique, that supports both the standard checking semantics and a clear and precise
enforcement semantics based on the principle of least-change. It also supports meta-
models annotated with OCL constraints and the specification of allowed edit operations,
which allows its applicability to non-trivial domains and provides a fine-grained control
over the selection of the updated model. The main restriction is that recursion must
be non-circular (or well-founded), which is satisfied by most of the interesting MDE
scenarios.

Tool support for QVT-R transformations is scarce, ModelMorf and Medini being
the main existing functional tools. ModelMorf (Tata Research Development and Design
Centre) allegedly follows the QVT-R standard closely, since its development team
was involved in the specification of the standard (although its concrete semantics is
unknown). However, the development of the tool seems to have stopped. Medini (ikv++
technologies ag) is an Eclipse plugin for a subset of the QVT-R language. Although
popular, its (unknown) semantics admittedly disregards the semantics from the QVT-R
standard (it does not have a checkonly mode, for instance). To support incremental
executions, it stores explicit traces between elements of the two models. None of
these tools has support for OCL constraints on the meta-models. Other prototype tools
have been proposed but once again the implemented semantics are not completely
clear. Moment-QVT (Boronat et al., 2006) is an Eclipse plugin for the execution
of QVT-R transformations by resorting to the Maude rewriting system; de Lara and
Guerra (2009) have proposed the embedding of QVT-R in colored Petri nets. These
tools support only unidirectional transformations, in the sense that they ignore the
pre-state of the target model. As such, they are not able to retrieve information not
present in the source, leading to the generation of fresh new models every time the
transformation is applied. Once again, none supports OCL constraints on the meta-

170 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

model. Greenyer and Kindler (2010) have discussed the possible implementation of
QVT-R transformations in TGGs. While some TGGs tools prevent loss of information
by supporting incremental executions (Giese and Wagner, 2009) or partial matches
between domains (Greenyer et al., 2011; Hermann et al., 2013), this embedding focuses
only on the embedding of QVT-R specifications in the TGG architecture, disregarding
the consequences on the enforcement semantics. There is also work in progress on
providing execution functionalities to the Eclipse QVT Declarative project, which is
currently able to parse and edit QVT-R specifications, by the successive transformation
of such specifications into lower-level languages (Willink et al., 2013). However, the
impact of these transformations on the QVT-R semantics is still not clear.

A technique that follows an approach similar to ours is the JTL tool by Cicchetti et al.
(2010), although it does not support QVT-R, but rather a restricted “QVT-like” language.
Like ours, JTL generates models by resorting to a solver (the DLV solver), which is
able to retrieve some (unquantified) information from the original target. However, it is
not clear how the solver chooses which information to retrieve or how the new model is
generated. It also forces the totality of the transformation, returning inconsistent models
in case there is no consistent solution.

Regarding standard QVT-R enforcement semantics, there has recently been an
attempt to formalize it by Bradfield and Stevens (2013), following previous work on
the checking semantics (Stevens, 2013; Bradfield and Stevens, 2012). As prescribed
in the standard, to enforce the forall-there-exists semantics, the procedure consists
of a creation phase of new target elements whenever a source element does not have
a matching target (or modification of existing ones, if keys are used), followed by a
deletion phase, to remove target elements that are no longer matching a source element.
These phases occur only at top-level relations, as when and where are assumed to be
predicates that top-level quantified elements must comply. This procedure does not take
into consideration additional constraints on the meta-model, in particular no specific
technique is proposed to fill-in mandatory attributes and associations of newly created
(or modified) elements, taking into account such meta-model constraints, and when and
where clauses (likewise to our technique, the usage of solvers is hinted as a possible
solution). Since it closely follows the standard, this semantics also suffers from the
problems already described in Section 7.3.

Two approaches have been proposed for the validation of QVT-R transformations
that also rely on solvers. Garcia (2008) proposes the use of Alloy Analyzer to verify the

7.5 DISCUSSION 171

correctness of QVT-R specifications, in order to guarantee that the output is well-formed
and avoid run-time errors. Cabot et al. (2012) propose inferring OCL invariants of
the forall-there-exists shape from QVT-R transformations (much like the checking
semantics), that allow the validation of QVT-R specifications under a set of properties.
It supports OCL constraints in the meta-model and recursive calls are translated to
recursive OCL specifications. However, these approaches are not focused on enforce
mode and its semantics, and do not analyze the behavior of the transformation for
concrete input models, which is the focus of our embedding. Although not the current
focus of our embedding, since it is based on model finding it would be straight-forward
to support functionalities dedicated to automatically check specific properties of model
transformations—like the fact that they are total, deterministic, or that they always
produce well-formed models.

To the best of our knowledge, there exists no previous work dedicated to the study
of multidirectional QVT-R transformations. Therefore, validation of our approach
would require the collection of reasonable and realistic case studies, in order to explore
the expressive power of our dependencies extension. It is important to emphasize
that such extension to QVT-R specifications is also useful to express asymmetric
problems heretofore undefinable in the bidirectional transformation scenario. This
issue has also be tackled by Stevens (2014) when studying bidirectional transformation
frameworks with tolerance for inconsistencies: in this case, having the check predicates
hold in both directions could be defined to yield perfect consistency, while holding in a
single direction would yield partial consistency. We have purposely left out subjective
considerations about the most adequate syntactic extensions to the QVT-R language
for expressing our proposed checking dependencies, and have focused primarily on the
multidirectional semantics. We are currently considering several syntactic extensions to
allow the specification of the checking dependencies in QVT-R.

The strength of our approach to QVT-R is that, as we believe is intended, the
consistency relation entailed by a QVT-R transformation is at the core of the bidirec-
tionalization procedure, giving rise to transformations that are correct by construction
and, thanks to the formalization from Chapter 6, to predictable least-change semantics.

172 CHAPTER 7: DEPLOYING QVT-R TRANSFORMATIONS

Chapter 8

Bidirectionalizing ATL
Transformations

In the previous chapter we provided least-change bidirectional transformation semantics
to a bidirectional model transformation language, by deploying it over model finding
procedures as formalized in Chapter 6. In particular, we focused on the QVT-R language
that was designed with the intent of allowing bidirectional transformation. Thus, since
QVT-R transformations embody the concept of constraint maintainer by having a
consistency relation at the core of bidirectional transformation, deriving a suitable
inter-model constraint from that specification allowed us to enforce transformations that
were correct and least-change by construction. However, not all model transformation
languages were designed with bidirectional concerns. Nonetheless, even if the focus of
such languages is to “simply” generate an output model from an input model, it is easy
to envision scenarios where bidirectional behavior would be useful. The original and
the generated models may be expected to coexist in the MDE environment, and in that
context, the unidirectional transformation entails an implicit traceability between the
two models: an update on the freshly generated output model could render it inconsistent
with the original input model. By being able to infer a backward transformation from
the unidirectional transformation, one could propagate the update of the output back
to the original input, restoring the consistency of the environment. Since such task is
outside the scope of unidirectional transformation languages, providing such languages
with bidirectional semantics is an active research topic.

The ATLAS Transformation Language (ATL) (Jouault and Kurtev, 2005) is a widely
used model transformation language created to answer the original QVT RFP, and

173

174 CHAPTER 8: BIDIRECTIONALIZING ATL TRANSFORMATIONS

thus shares some characteristics with the standardized QVT languages. Unlike QVT-
R, ATL has de facto standard operational semantics implemented as a plugin for the
Eclipse IDE1. However, it is unidirectional, in the sense that a transformation between
two domains M and N only specifies how to create an N model from an M model.
The prescribed method to obtain bidirectional transformations with ATL is to write
two unidirectional transformations. Unfortunately, this leads to obvious correctness
and maintenance problems that motivate the use of bidirectional transformation, since
the language provides no means to check that they are inverses of each other, nor to
automatically derive one from the other. Moreover, unlike QVT-R, ATL is not able to
natively retrieve information from the pre-state of the output model, and thus obtaining
real bidirectional behavior for non-bijective transformations would require the design
of complex unidirectional transformations that take as input both M and N models.
With that goal in mind, studies have been made on providing ATL transformations
with bidirectional semantics (Xiong et al., 2007; Sasano et al., 2011). The main
drawback of these approaches is that the bidirectional semantics that results from the
bidirectionalization process is not clear, resulting in backward transformations whose
relationship with the original specification is unclear.

Following the perspective that has been driving this part of the dissertation, we
advocate a different approach to the bidirectionalization of unidirectional transformation
languages: if we are able to derive the notion of consistency between the input and
output models from the unidirectional transformation, we are able to maintain this con-
sistency through the mechanisms from Chapter 6. Since ATL specifications are mainly
declarative (although there are some imperative constructs), the ATL language proves to
be a suitable case study. This approach is fundamentally different from those followed
in (Xiong et al., 2007; Sasano et al., 2011): instead of interpreting the bidirectional
transformations as lenses, providing backward semantics for unidirectional semantics,
we try to infer the consistency relation underlying the unidirectional transformation,
achieving least-change bidirectional semantics by maintaining such constraint.

This gives rise to the question: can inter-model consistency constraints be inferred

from unidirectional transformations and subsequently be deployed as constraint main-

tainers? In this chapter we try to explore this issue using the declarative subset of
the ATL transformation language as proof-of-concept. All the techniques explored
in Chapter 7 for the embedding of intra-model constraints, distance functions and

1http://www.eclipse.org/atl/.

http://www.eclipse.org/atl/

8.1 ATL LANGUAGE 175

multidirectional transformations still hold in this context; in this chapter we restrict
ourselves to the core problem of bidirectional inter-model constraints.

The contributions of this chapter are summarized as follows:

• we explore the best suited schemes for the embedding of unidirectional trans-

formations into our formalization of bidirectional constraint maintainers (Sec-
tion 8.2);

• we propose a translation from ATL transformations into relational inter-model
constraints (Section 8.3), whose constraint maintainers are able to keep models
generated by ATL transformations consistent.

These presentations are prepended by an introduction to the ATL language (Section 8.1)
and succeeded by a discussion of the overall results (Section 8.4).

8.1 ATL Language

ATL is a hybrid language with both declarative and imperative constructs. The authors
advocate that transformations should be declarative whenever possible, and imperative
specifications should only be used if specifying the transformation declaratively proves
to be difficult (Jouault and Kurtev, 2005). In this work we restrict ourselves to declar-
ative constructs, disregarding imperative ones (known in ATL as called rules and do

blocks)2.

ATL transformations are defined from a set of input transformation domains to a
set of output transformation domains. For the scope of this presentation we restrict
ourselves to a single output domain, although the presented concepts could be extended
to the multidirectional scenario much like was done for QVT-R in Section 7.4. Thus,
we address ATL transformations of the shape

−→
t :M → N for models m :M and n :N ;

we assume
−→
t to denote the standard ATL transformation. The main constituents of

ATL transformations are rules, the ATL equivalent to QVT-R relations, whose abstract
syntax is:

[[unique] lazy] rule R {

2Giving semantics to imperative constructs in relational logic is doable (see, for example, (Near and
Jackson, 2010) in the context of Alloy), but the need to explicitly represent all intermediate updates to the
models in execution traces would deem our solver based approach completely unfeasible, in particular in
presence of loops.

176 CHAPTER 8: BIDIRECTIONALIZING ATL TRANSFORMATIONS

from a : A (πM)

to b : B (φ)

}

In our context, rules are defined from a single input element a from the input domain
to a single output element b from the output domain. Candidate input elements are
selected by an OCL pattern πM over their properties, while output patterns consist of
bindings φ over the output element, which may refer to the input element. Roughly, the
execution semantics creates an output element for every input element that matches
πM . Input models are read-only and output models write-only, and thus transformations
are not able to take into consideration existing elements in the output model, not even
being able to “check-before-enforce” (although more recent work on incremental ATL
executions by Jouault and Tisi (2010) could eventually be used to address this issue).

Default rules are called matched rules and must be executed for all elements of
the input model (similarly to QVT-R top relations). Lazy rules, unlike matched rules,
are only executed if explicitly called from other rules (similarly to QVT-R non-top
relations). Lazy rules can either be unique or not: in unique lazy rules an input element
is always matched to the same output element, no matter how many times the rule is
called over that input element; in non-unique lazy rules a new output element is created
every time it is called. Our bidirectionalization technique focuses on matched rules and
unique lazy rules.

One particular characteristic of ATL is that output bindings may rely on implicit
traceability links between elements created by matched rules. Output elements may
be directly “assigned” input elements, in which case traces are used to retrieve the
corresponding output element. This is possible because execution is divided in two
phases: the first phase binds input elements to the input patterns and creates the output
elements, implicitly creating traces between them; the second phase applies the bindings
to the output elements, resorting to the traces created in the previous phase if necessary.
Since an input element cannot be matched by more than one rule (ATLAS group), there
is no ambiguity in the selection of the output element for each input element. Lazy
rules must be explicitly called and thus are not taken into consideration in implicit
resolutions.

Figure 8.1 presents an ATL version of the hsm2nhsm transformation using transitive
closure. Rule S2S relates every top-level state (filtered by an OCL pattern) in the HM

transformation domain to a state with the same name in the opposing domain NM ,

8.1 ATL LANGUAGE 177

module hsm2nhsm;
create NM : NHSM from HM : HSM;

// SMachineToSMachine
rule M2M {

from hm : HSM!SMachine
to nm : NHSM!SMachine (name <- hm.name)

}

// StateToState
rule S2S {

from hs : HSM!State (hs.container->isEmpty())
to ns : NHSM!State (

name <- hs.name,
machine <- hs.machine

)
}

// TransitionToTransition
rule T2T {

from ht : HSM!Transition
to nt : NHSM!Transition (

source <- ht.source->closure(container)->any(container->isEmpty()),
target <- ht.target->closure(container)->any(container->isEmpty()),
machine <- ht.machine

)
}

Figure 8.1: The hsm2nhsm ATL transformation.

while rule T2T maps every transition in HM to a transition in NM between the top-level
containers of its source and target states. These top-level containers are retrieved by
filtering the result of the closure operation over container by a select operation. Rule
M2M simply maps state machines in HM to state machines with the same name in NM .
Note how in T2T, HSM states from the HM input domain are being attributed to the
source and target of NHSM transitions in the NM output domain: the rule is taking
advantage of the implicit traces created by S2S between the states of HM and NM . A
similar situation occurs in S2S (and T2T) when binding the owner state machine: the
state machine of ns is directly assigned the state machine of hs, which is expected to
have been previously bound by M2M.

178 CHAPTER 8: BIDIRECTIONALIZING ATL TRANSFORMATIONS

8.2 Bidirectionalization Technique

To bidirectionalize unidirectional transformations following the technique from Chap-
ter 6, there is the need to derive a consistency relation T : M ↔ N from a forward
transformation

−→
t : M → N , and then use it to determine suitable (inverse) transforma-

tions according to the least-change semantics proposed in Section 6.1.

Since we are given the forward transformation
−→
t :M → N , one could imagine that

it would suffice to derive a suitable backward transformation
←−
t :M×N↔N , thus lifting

unidirectional transformations to the framework of lenses with t : M I N , in which
case each bidirectional transformation would be comprised of a pair of transformations
gett =

−→
t : M → N and Putt : M × N ↔M . This was attempted before by Sasano

et al. (2011) for ATL transformations. The lens framework is designed to deal with
transformations that are abstractions (i.e., surjective transformations), as implied by
the asymmetric nature of the two transformations: the view n can always be derived
solely from a source m as it contains less information. In particular, if a model n is
updated to an n′ that falls outside the range of gett , the behavior of Putt is undetermined.
Such well-behaved lens could be obtained in our least-change constraint maintainer
framework, by setting the forward transformation as an implicit consistency relation as
T (m, n) ≡ n = gett m.

Unfortunately, this imposes some undesirable limitations in the allowed usage sce-
narios. Consider a very simple example where World models consists of a set of named
persons, and Company models consists of a set of named employees having an (optional)
salary (Figure 8.2). Consider also a trivial ATL transformation

−−−−−→
employ : WD → CP

from World models to Company models that maps every person to an employee with
the same name and without a salary assigned (Figure 8.3). This transformation is clearly
not surjective since it only targets the subset of Company models where employees
have no assigned salary. Now, consider a model wd : WD with a single person p and
the corresponding model cp : CP created by getemploy. If the user updates cp to cp′ by
assigning a salary to p, there will be no valid wd′ such that cp ′ = getemploy wd

′, and thus
cp′ would be an invalid model. This limitation would greatly reduce the updatability of
the framework.

A possible solution to this problem would be to weaken the lens laws, as suggested
in (Sasano et al., 2011), by allowing Putt (m, n) to produce a source m′ whose view
n ′ = gett (m ′) is not n (breaking acceptability) as long as propagating n′ backward
producesm′ again, i.e., forcing only weak-acceptability PUTGETPUT to hold. However,

8.2 BIDIRECTIONALIZATION TECHNIQUE 179

name : String
Person

(a) Meta-model World.

name : String
salary : Int

Employee

(b) Meta-model Company.

Figure 8.2: Class diagrams of the World and Company meta-models.

module employ;
create CP : Company from WD : World;

// PersonToEmployee
rule P2E {

from p : World!Person
to e : Company!Employee (name <- p.name)

}

Figure 8.3: The employ ATL transformation.

even if the above update is now allowed, if the user updates the wd model (for example,
by inserting a new person) and wishes to propagate such change to the cp model, the
forward transformation getemploy would erase the previously assigned salary of p, since
it is not incremental. Embedding a unidirectional transformation in a lens framework
with such weakened laws presumes that once

−→
t is run to generate a new target model

from a source, subsequent updates can only be safely propagated backwards. (Chapter 4
provides a more thorough discussion on the consequences of non-surjectivity in lens
frameworks.)

To overcome this limitation we opt instead to embed unidirectional transformations
in the framework of constraint maintainers, likewise to QVT-R. The main idea is to
infer from

−→
t : M → N a consistency relation T : M ↔ N that does not consider

such unbound properties, in the sense that every model m is considered consistent not
only with

−→
t m, but also with any model that extends

−→
t m by assigning values to

properties not bound by
−→
t . This of course implies that

−→
t ⊆ T . From T a new forward

transformation
−→
T :M ×N ↔N and a backward transformation

←−
T :M ×N ↔M can

then be derived to propagate updates in both directions, using the least-change semantics
described in Section 6.1 (obviously satisfying both the correctness and hippocraticness
laws), resulting in a well-behaved exhaustive constraint maintainer T :M IJ N . Back
to the example from Figure 8.3, since

−−−−−→
employ does not bind the salary attribute of

employees in CP models, the WD with a single person p would be consistent with any

180 CHAPTER 8: BIDIRECTIONALIZING ATL TRANSFORMATIONS

CP with a single employee p, whatever the assigned salary (if any). Section 8.3 will
explore how to infer one such possible T from

−→
t .

The bidirectional framework obtained with this technique satisfies the following
properties. First, since

−→
t ⊆ T , the consistency relation trivially holds for pairs of

models (m, n) such that n =
−→
t m. Second, if

−→
t is surjective, applying either

−→
t or

−→
T to an updated source will yield the same updated target: in this case,

−→
t completely

defines the target elements, thus T only relates a model m to
−→
t m. In this case,

the pair of transformations
−→
t and

←−
T will form a well-behaved lens. In contrast, for

non-surjective transformations this is no longer the case. It is easy to see why by
considering the toy example from Figure 8.3: by updating a view cp =

−→
t wd to cp′

with the insertion of a salary, wd and cp′ will still be consistent by Employ, and thus
neither

−−−−−→
Employ nor

←−−−−−
Employ will update the models; applying

−−−−−→
employ however would

revert cp′ back to cp. In this case
−−−−−→
employ and

←−−−−−
Employ do not form a well-behaved lens,

satisfying only weak-acceptability. Thus, while the derivation of a constraint maintainer
T does not invalidate the use of

−→
t paired with

←−
T —the pair comprises a stable and

weakly-acceptable lens—due to its non-incrementality,
−→
t is better suited for batch

transformations when fresh models are created, at which point
−→
T and

←−
T can be used to

propagate updates and maintain consistency.

8.3 Inferring a Consistency Relation

As in the QVT-R case, the technique from Chapter 6 requires the derivation of a typed
relational constraint T from a unidirectional transformation T , in particular a formula
φT and any additional relation variables DT (sorts ST are assumed to be retrieved from
the transformation domains’ embedding). This section will propose a technique to derive
such inter-model constraint from ATL transformations. At first glance, the semantics of
an ATL transformation shares some similarities with the checking semantics of QVT-R
described in Section 7.2: pattern matching is used to filter candidate input elements,
and it resembles the forall-there-exists quantification pattern to relate input and output
elements. There are also some apparent differences: it is a directional semantics, in
the sense that the above forall-there-exists quantification in principle should only be
checked in the direction of the output model (the direction of the transformation), and
the existential quantifier should be unique, that is, for all candidate input elements,
there must exist exactly one output element built with the output bindings (matched

8.3 INFERRING A CONSISTENCY RELATION 181

rules create an output element for every input candidate). However, there are some
subtle differences: as the following example will show, the forall-there-exists semantics
cannot be realized using quantifiers, and explicit traceability links must be used instead;
furthermore, checks must be also performed in the opposite direction to avoid the
occurrence of spurious output elements.

Consider again the simple transformation from Figure 8.3, and the following seman-
tics for the rule P2E with universal and uniqueness quantifications:

∀ p : PersonWD | (∃1 e : EmployeeCP | nameWD ◦ p = nameCP ◦ e)

Given an input model wd with two persons with the same name a, this semantics would
force a consistent output model cp with exactly one employee with name a. This is
obviously not the intended ATL semantics, as two employees with the same name would
be created by the ATL transformation, one for each input person. Obviously, relaxing
the uniqueness constraint of the existential quantifier will not solve the problem, as an
arbitrary number of employees would be allowed. The one-to-one mapping between
candidate input and generated output elements cannot be realized by quantifiers, but
requires an explicit traceability relation between them. Moreover, this directional check
does not guarantee that the only employees in the output model are the ones created
by the transformation, and some check in the opposite direction must be performed to
ensure that every employee originates from a person. As in the case of QVT-R relation
invocations (Section 7.2), such traceabilities must be represented through fresh relation
variables in the model finding problem: for a matching rule R from input elements A to
output elements B, a relation RCB :A↔B is created and axiomatized by an embedding
RJI. For instance, for P2E, this would result in the following embedding:

P2EJI ≡ ∀ p : PersonWD | (∃1 e : EmployeeCP |
〈p, e〉 ∈ P2ECB ∧ nameWD ◦ p = nameCP ◦ e) ∧

∀ e : EmployeeCP | (∃1 p : PersonWD |
〈p, e〉 ∈ P2ECB ∧ nameWD ◦ p = nameCP ◦ e)

This constraint ensures that there exists a traceability relation P2ECB : Person ↔
Employee between every person (since πWD is empty) to a unique employee with the
same name, and vice-versa. Note that this formalization also relates output elements
that fall outside the range of

−−−−−→
employ, namely those that have the attribute salary

defined.

182 CHAPTER 8: BIDIRECTIONALIZING ATL TRANSFORMATIONS

In general, the semantics of a matched rule R can be specified as follows:

RJI ≡ ∀ a : AM | πM ⇒ (∃1 b : BN | 〈a, b〉 ∈ RCB ∧ φ) ∧
∀ b : BN | (∃1 a : AM | 〈a, b〉 ∈ RCB ∧ πM ∧ φ)

This forces RCB to be an one-to-one relation between every candidate input element
and a single corresponding valid (according to φ) output element. The first expression
states that every a : AM that matches the pattern πM must be related to a single b : BN

with the bindings φ; the second expression states that every b : BN must be related to a
valid a : AM . The binding φ in a rule assigns to the output element values derived from
the input element: unlike in QVT-R target patterns, all variables in φ must be previously
assigned in the input pattern πM . As such, they are interpreted likewise to where

conditions in QVT-R. Although both invoked relations in QVT-R and matched rules in
ATL rely on derivation of trace relations, their axiomatization is considerably different;
this arises from the fact that, unlike in QVT-R, ATL traceabilities are one-to-one.

Implicit rule calls in the bindings, that are allowed in ATL, are translated as follows
in our embedding. Let a property of type B be bound to an expression e. If e has a
primitive type or is an output element, then e : B must hold, and e is directly translated
to the relational expression. If e denotes an input element of type A, we retrieve the
matching output element of typeB from the respective traceability relation RCB :A↔B

(notice that it is always possible to uniquely determine RCB : A ↔ B , since input
elements of a given type are restricted to be matched by a single rule (ATLAS group)).
Traceabilities can also be implicitly called over collections, as in the T2T transformation.
Currently these implicit calls are supported for collections that are sets, which are
directly representable in relational logic, in which case the above procedure is applied
to every element e in the set.

Regarding unique lazy rules, although their semantics also relies on explicit trace-
ability links, there is a subtlety that prevents their encoding in a similar way to (regular)
matched rules: only a subset of the input elements (those over which a unique lazy rule
has been called) will belong to the one-to-one traceability. Since this set is impossible
to calculate at static-time, these traceabilities can not be axiomatized by “forall-there-
exists” formulas like RJI. Thus, the semantics of these rules will be divided in two
parts. Given a unique lazy rule R from A to B , its embedding RJI that axiomatizes the
respective traceability RCB : A↔ B , will only enforce the correctness of the respective
traceability relation, with the existence and uniqueness checks being deferred to the
rule call:

8.4 DISCUSSION 183

RJI ≡ ∀ a : AM , b : BN | 〈a, b〉 ∈ RCB ∧ πM ⇒ φ

Then, when a call R (e) of the unique lazy rule R over an expression e : A occurs, the
following additional constraints is inserted, to ensure that the trace RCB between the
value of e and the returned matched element b exists and is unique:

∃1 b : BN | 〈e, b〉 ∈ RCB ∧ (∀ a : AM | STCB (a, b)⇒ a = e)

Where STCB denotes the union of all unique lazy traces in T . The first part of the
conjunction states that a is uniquely matched to a b by RCB, and the second that b is not
being matched to any other element by any other rule.

Finally, for the embedding T of an ATL transformation T with matched rules TT
and unique lazy rules ST , the formula denoting when two models are consistent is
defined as

φT =
∧

R∈TT
RJI ∧

∧
R∈ST

RJI

while the newly introduced variables amount to

DT =
⋃

R∈TT
RCB ∧

⋃
R∈ST

RCB

Once the inter-model constraint is derived, the corresponding transformations can
be deployed following the formalization over model finding presented in Chapter 6.

8.4 Discussion

In this chapter we applied our technique to the bidirectionalization of unidirectional
model transformations, using ATL as a case study. Rather than providing a fully-fledged
system, the intent of this presentation was to emphasize the flexibility of the model
finder-based approach.

Some previous work has been done toward the bidirectionalization of ATL. Xiong
et al. (2007) infer a synchronization procedure from a subset of the byte-code produced
by the ATL compiler, in the sense that both the input and output model can be updated in
order to restore consistency. However, it is not clear how the restrictions imposed on the
byte-code are reflected on the higher-level ATL language. Sasano et al. (2011) interpret
models as graphs and ATL declarative rules as UnCAL operations over said graphs,
which are bidirectionalized in the GRoundTram bidirectional graph transformation

184 CHAPTER 8: BIDIRECTIONALIZING ATL TRANSFORMATIONS

system (Hidaka et al., 2011). However, the supported subset of the ATL language
is much more limited than ours, namely matching rules cannot have input patterns
and output bindings must comply to a very limited OCL subset, excluding rule calls
(implicit or explicit). As discussed in Section 8.2, if we see our ATL bidirectional
transformations as lenses, the bidirectional properties from (Sasano et al., 2011) also
hold in our framework. None of these approaches are concerned with enforcing least-
change updates.

The relationship between ATL and QVT has previously been explored by Jouault and
Kurtev (2006). However, the focus of that work was on aligning the architecture of the
two languages, without any semantic considerations. They suggest that interoperability
could be attained by mapping both QVT-R (through the translation to QVT Core) and
ATL to QVT Operational, one of the languages proposed by OMG (2011a) that is
imperative and based on operational mappings. In fact, it has already been shown by
Stevens (2013) that the translation from QVT-R to QVT Core does not preserve the
semantics of the transformation.

Similar to the work by Cabot et al. (2012) where OCL invariants were inferred from
QVT-R transformations to validate their properties, Büttner et al. (2012) have developed
a technique for the verification of ATL transformations. As in the QVT-R scenario,
our underlying model finding framework could be naturally extended to support such
functionalities.

This chapter has shown that our model finding-based technique allows not only
the bidirectionalization of unidirectional model transformation languages, but does
so while providing clear and predictable semantics. Moreover, this deployment is
expected to be associated with the embedding of meta-models and their intra-model
constraints following the procedure from Section 6.1.2, guaranteeing that the generated
solutions are well-formed, and may also be extended in a straightforward manner to
support multiple input models, following techniques similar to the ones presented for
multidirectional QVT-R in Section 7.4.

Chapter 9

The Echo Framework

In the previous chapters we have been developing a technique for the deployment of
typical MDE tasks on top of model finding. Such technique relied on a relational
representation of the various artifacts—intra- and inter-model constraints, as well as
the distance functions—so that they could be processed by relational model finders
like Kodkod. However, to be useful in practice, this technique should be offered to the
user as backend, requiring from her only the management of artifacts in standard MDE
formats.

To that goal we have implemented Echo, a tool for model repair and transformation
based on model finding that aims at providing a seamless integration with the MDE
environment. Echo is deployed as an Eclipse plugin, developed on top of the popular
Eclipse Modeling Framework (EMF), with meta-models being specified in Ecore
with embedded OCL constraints. Its engine works by translating both meta-models
(annotated with OCL) and QVT-R and ATL transformations to Alloy (Jackson, 2012), a
lightweight formal specification language implemented over Kodkod, with support for
automatic model finding via SAT solving.

While less scalable that some of the existing tools, Echo is: more expressive,
allowing the annotation of meta-models with rich OCL constraints and the specification
of bidirectional model transformations; more flexible, being able to check and repair
both intra- and inter-model consistency, and providing control over repairs by letting
the user specify the allowed edit operations; correct, in the sense that resulting models
are always fully consistent; and minimal, in the sense that it follows the clear and
predictable principle of least-change according to the two metrics presented in Chapter 6,
GED and OBD. In fact, Echo has already proved effective in debugging existing

185

186 CHAPTER 9: THE ECHO FRAMEWORK

transformations, namely helping us unveiling several errors in the well-known object-
relational mapping that illustrates the QVT-R specification (OMG, 2011a), that were
explored in Section 7.2.

The goal of this chapter is to present and evaluate Echo, with a focus on the
translation of the MDE artifacts to relational logic. Alloy specifications can be subjected
to automated analysis through an embedding into Kodkod provided by the Alloy
Analyzer, with support for bounded model checking and model finding. Alloy has a type
system that supports overloading and sub-typing, which allows the detection of many
erroneous expressions that can render the specification trivially unsatisfiable (Edwards
et al., 2004) prior to dispatching the solver. This makes it more suitable for the
interactive development of specifications, while Kodkod is more suitable as an engine
for automated analysis. The object-oriented type system, associated with a graph
visualizer for the presentation of solutions provided by the Alloy Analyzer, brings Alloy
even closer to the MDE environment justifying our choice of Alloy over Kodkod. In fact,
this connection has already been previously explored, through the embedding of UML
class diagrams and OCL constraints into Alloy (Anastasakis et al., 2010; Kuhlmann
and Gogolla, 2012; Cunha et al., 2013). Alloy has also been used to reason about static
properties of QVT-R specifications (Garcia, 2008), while the possibility to use Kodkod
for intra-model consistency repair has also been explored (Kleiner et al., 2010; Straeten
et al., 2011).

This chapter unfolds as follows, presenting different components of Echo:

• we present an overview of the main capabilities of the Echo framework (Sec-
tion 9.1), that aims at supporting typical MDE tasks;

• we present Echo’s architecture (Section 9.2), with EMF artifacts at the interface
layer and model finding procedures at the core;

• we show how the typed relational constraints representing the artifacts are trans-
lated to Alloy specifications (Section 9.3), so that they can be effectively managed
by model finding procedures;

• we present a technique for the derivation of Alloy themes from the MDE environ-
ment (Section 9.4), improving the readability of the proposed repaired models;

• we evaluate the performance of Echo (Section 9.5).

Finally, Section 9.6 draws conclusions about Echo’s effectiveness.

9.1 ECHO OVERVIEW 187

9.1 Echo Overview

The focus of the Echo framework is to help users develop and keep their models
consistent in the context of MDE. It is able to manage both intra-model (i.e., the
conformity of a model with its meta-model) and inter-model consistency (i.e., the
relationship between several models entailed by bidirectional transformations, the focus
of this dissertation). In both cases, Echo is able to detect and repair inconsistencies.
Below is a more detailed list of Echo’s current capabilities.

Consistency check Concerning intra-model consistency, for a transformation domain
M defined by a meta-model possibly attached with OCL constraints, Echo can
automatically check whether a model m conforms to M , that is, m : M holds.
This can be done for newly created models or every-time the user updates an
existing model.

Model repair If the intra-model consistency of model m is broken, for example be-
cause some of the OCL constraints in M is violated, then Echo can automatically
suggest minimally repaired models m ′ : M , that is, it can find consistent models
m′ at minimum GED or OBD from m. Various alternatives for repaired models
are presented to the user in increasing distance to the original model, from among
which the user is able to choose the preferred one.

Model visualization To help the user decide which model she prefers, they can be
depicted as graphs by resorting to the Alloy Analyzer’s visualizer, as seen in
Figure 9.1. For better readability, an Alloy theme is automatically inferred from
the MDE environment (as described below in Section 9.4). A user-defined theme
can also be provided if desired.

Model generation To help kickstart model development, Echo can also be used to
generate a fresh minimal model m : M (notice that often models cannot be
empty due to meta-model constraints), or to generate scenarios for meta-model
validation, that is, models parameterized by particular scopes and/or additional
OCL constraints targeting specific configurations.

Inter-model consistency check Concerning inter-model consistency, given a QVT-
R or ATL transformation T between M and N and two models m : M and
n : N , Echo can automatically check whether m and n are T -consistent, that is,

188 CHAPTER 9: THE ECHO FRAMEWORK

Figure 9.1: A snapshot of Echo, with DBS and CD models depicted in EMF and in the
Alloy visualizer.

T (m, n) holds, following the standard-compliant checking semantics presented
in Section 7.2 for QVT-R and the one proposed for ATL in Section 8.3.

Inter-model consistency repair Given a transformation T between M and N and two
models m :M and n :N such that ¬T (m, n), Echo can perform a minimal update
to one of the models selected by the user in order to recover consistency, for
example produce n ′ :N such that T (m, n ′). This repair follows the enforcement
semantics satisfying the principle of least-change proposed in Chapter 6, under
GED or OBD. Likewise to intra-model consistency recover, the user is able to
choose the desired repaired model from among all minimal consistent models.

Batch transformation Finally, given a transformation T between M and N and a
model m :M , Echo can produce a fresh minimal model n :N such that T (m, n)

(likewise for the opposite direction). These batch transformations are useful at
early phases of model-driven software development, when the user has developed
a source model, from which she wishes to derive a first version of the target
model. Afterward, consistency-restoring updates can be performed to any of the
models, by resorting to the same transformation.

While also available as a command-line application, Echo’s main distribution
platform is as a plugin for the Eclipse IDE, which automates the features just pre-
sented. Echo’s environment consists of a set models, conforming to OCL-annotated

9.2 ARCHITECTURE 189

meta-models, and a set of inter-model constraints specified by QVT-R and ATL trans-
formations. Each model is thus restricted by the intra-model constraint entailed by
the meta-model and any number of inter-model constraints simultaneously. The Echo
plugin was designed to be used in an online setting (Hu et al., 2008), in the sense that
the consistency tests are automatically applied as the user is editing the models and,
thus, updates are expected to be incremental, leaving the original models as unmodified
as possible. Every time the user updates a model, the system automatically checks
its consistency in relation to the other artifacts. If a model is flagged as inconsistent,
the plugin displays an inconsistency error and proposes possible fixes, all within the
Eclipse’s standard environment. As there may be more than one consistent model
at minimal distance, Echo presents all possible models in succession using the Alloy
Analyzer’s visualizer, allowing the user to choose the desired one, at which time the
update is effectively applied to the model instance. If none of the minimal solutions is
chosen, Echo presents models at increasingly higher distances from the original.

9.2 Architecture

As should be expected, the consistency checking and repair tasks are implemented
using the technique presented in Chapter 6, given the embedding of QVT-R and ATL
transformations presented in Chapter 7 and Chapter 8, respectively. Model generation
and batch transformations are obtained using the same technique, given empty models
as the initial state. Nonetheless, this solving layer of the tool is hidden from the user,
that is expected to handle only artifacts and tools that are familiar to MDE practitioners.

To that purpose, Echo is deployed as plugin for the Eclipse IDE. It is built on top
of the Eclipse Modeling Framework (EMF)1, and resorts to the Model Development

Tools (MDT) component to parse OCL formulas and to the Model-to-Model Trans-

formation (MMT) component to parse QVT-R (through the QVT Declarative project)
and ATL specifications. EMF prescribes Ecore—Eclipse’s version of MOF—for the
specification of meta-models, while model instances are presented as XMI resources.
The left-hand side of Figure 9.1 depicts a DBS model instance in the Eclipse editor. To
enhance the meta-models with additional constraints, we follow the technique proposed
by MDT, of embedding the OCL constraints in meta-model annotations. These are
translated to relational logic following the technique previously developed in (Cunha

1http://www.eclipse.org/modeling/.

http://www.eclipse.org/modeling/

190 CHAPTER 9: THE ECHO FRAMEWORK

family operations
base =, <>, oclIsKindOf, oclAsType, @pre,

allInstances, if-then-else, oclIsNew
integer +, -, >, <, <=, >=
boolean and, or, not, implies, true, false

set size, includes, includesAll, excludes,
excludesAll, isEmpty, notEmpty, union, -,
intersection, including, excluding, asSet

iterators exists, forAll, one, any,
collect, select, reject, closure

QVT opposite

Table 9.1: Supported OCL operations.

et al., 2013). Table 9.1 summarizes the currently supported operations from the OCL
standard library (OMG, 2012) (operation oclIsNew may only be used in controlled
contexts, as will be explained in Section 9.3.5). The QVT standard extends the OCL
language with the insertion of the opposite keyword that allows the navigation of
associations in the opposite direction.

Currently, least-change is obtained though the external iterative mechanism pro-
posed in Section 6.3.1. The two model metrics presented there are supported: GED,
derived for every provided meta-model, and OBD, derived for meta-models with
user-defined edit operations specified by OCL pre- and post-conditions. A source of
ambiguity in operations defined in OCL concerns frame conditions, the problem of
detecting which portions of the model are modified by an operation. Assuming that
everything that is not mentioned in the post-condition is not changed is generally a
reasonable assumption, but this is not trivial to infer from declarative specifications.
Given the lack of OCL statements focusing on frame conditions, we introduce “modifies”
clauses, through which the user must explicitly specify which elements of the model
may be modified by the operation—the remainder are assumed to remain unchanged.
This mechanism is similar to those introduced by behavioral interface specification
languages, like the Java Modeling Language (JML) (Leavens et al., 2006). For in-
stance, the operation setName from Class could be defined by the following OCL
specification:

9.2 ARCHITECTURE 191

context Class::setName(n : String)

post name

self.name = n;

post frame_class_name

Class.allInstances()->forAll(c | c.name@pre = c.name or c = self)

modifies Class::name

Here, the modifies keyword states that only the attribute name in Class is modified by
operation setName. This specification gives rise to the TsetNameU formula presented
at Section 6.3.1.

To promote inter-operability, EMF processes models into an abstract syntax, which
are persisted as XMI resources. Thus, as a model-to-model transformation tool over
EMF, Echo is only able to directly process models represented in XMI, much like
the other MMT components (like those with support for QVT-R and ATL). Echo’s
core engine can also be used directly as a library, in which case models are expected
to be already parsed into the EMF’s abstract syntax. Nonetheless, EMF has a wide
support for domain-specific languages presented in a concrete syntax, which can be
directly harnessed by Echo. The currently prescribed mechanism to convert models
from concrete to abstract syntax is through Xtext2, a language processing framework
that provides parser generators as well as full integration with the Eclipse IDE through
custom code editors. As an example, to parse QVT-R transformations, Echo translates
QVT-R specifications following the QVT standard’s concrete syntax to EMF’s abstract
syntax by relying on the MMT functionalities built over Xtext.

The plugin processes these artifacts as typed relational constraints, which are then
translated into Alloy so that they can be deployed as model finding procedures. The
following translations, summarized at Figure 9.2, are at the core of Echo:

Ecore→ TRC embeds Ecore meta-models into typed relational constraints, following
the technique proposed by Cunha et al. (2013) adapted as exposed in Section 6.1.2;

OCL→ TRC translates the OCL constraints over the meta-model (and OCL expres-
sions that may occur in QVT-R/ATL transformations) to typed relational con-
straints, following the technique proposed by Cunha et al. (2013);

QVT-R→ TRC embeds QVT-R transformations into typed relational constraints as
presented in Chapter 7;

2http://www.eclipse.org/xtext/.

http://www.eclipse.org/xtext/

192 CHAPTER 9: THE ECHO FRAMEWORK

Kodkod

Chapter 7 Chapter 8 Section 6.1 (Cunha et al, 2013)

TRC

Section 9.3

AlloyXMI XMISection 9.3.5Section 9.3.5

OCLEcoreQVT-R ATL Δ

Section 6.3

Figure 9.2: Echo’s architecture.

ATL→ TRC embeds ATL transformations into typed relational constraints as pre-
sented in Chapter 8;

TRC↔ Alloy embeds typed relational constraints into Alloy specifications, as will
soon be presented in Section 9.3;

XMI↔ Alloy converts XMI model instances to and from Alloy, as will soon be
presented in Section 9.3.5.

9.3 Embedding TRCs in Alloy

In the previous chapters it has been shown how meta-models, inter-model constraints
and metric distances can be embedded in typed relational constraints and subsequently
deployed as model finding problems. This section explores the last deployment step,
that of translating typed relational constraint into Alloy specifications, which in turn are
translated to relational model finding problems in Kodkod by the Alloy Analyzer.

9.3.1 A Brief Introduction to Alloy

Alloy is a rich and flexible language; in this section we focus only on concepts deemed
essential for the scope of this dissertation.

Alloy specifications are developed in modules, that consist of paragraphs: signature
declarations, constraints and commands. A signature declaration introduces a set
of elements sharing a similar structure and properties. In Alloy such elements are

9.3 EMBEDDING TRCS IN ALLOY 193

uninterpreted, immutable and indivisible, and are thus referred to as atoms. A signature
declaration may also introduce fields, i.e., relations that connect its atoms to those of
other (or the same) signatures. These are represented as sets of tuples of atoms in
instances. Alloy is not restricted to binary relations, and it is not uncommon to have
fields that relate three or more signatures. A signature that extends other signatures
inherits their fields. It can also be contained in another signature, in which case it is
simply a subset of the parent signature.

Signatures may be annotated with multiplicity keywords to restrict their cardinality,
namely some (at least some elements), lone (at most one element), and one (exactly
one element). The range signature in a field declaration can also be annotated with
such multiplicities, to restrict the number of atoms that can be connected to each atom
of the source signature. If that number is arbitrary, the special multiplicity keyword
set should be used. Alloy’s multiplicity tags draw similarities with the binary relation
taxonomy presented in Section 2.4.

Facts specify properties that must hold in every instance. These may call functions

and predicates, that are essentially containers for reusable expressions. Commands are
used to perform particular analyses, by invoking the underlying solver. Run commands
try to find instances for which the specified properties hold, while check commands try
to find counter-examples that refute them. Commands can be parametrized by scopes
for the declared signatures, thus bounding the search-space for the solver. If no scope is
specified a default of 3 is assumed.

Figure 9.3 depicts a possible (incomplete) specification of the CD class diagram
meta-model in Alloy. Signatures Package, Class and Attribute declare the corre-
sponding classes and introduce (binary) fields to represent the classes’ attributes and
associations. Alloy does not have a primitive boolean type, so boolean attributes are
usually represented by subset signatures containing the elements that have the attribute
set to true. This is the case of the persistent attribute of Class, here represented by
the Persistent subset signature. The run command instructs the analyzer to search
for instances conforming to the acyclic predicate, setting a specific scope for each of
the signatures. This is similar to the scope s : S ⇀ T that must be provided to deploy
typed relational constraints as model finding problems (Section 6.1).

Formulas in Alloy are defined in relational logic. Everything in Alloy is a relation,
i.e., a set of tuples of atoms (with uniform arity). Signatures are unary relations (sets)
containing the respective atoms and scalar values (including quantified variables) are

194 CHAPTER 9: THE ECHO FRAMEWORK

module CD

abstract sig NamedEntity {
name : one String

}

sig Package extends NamedEntity {
classes : set Class

}
sig Attribute extends NamedEntity {}
sig Class extends NamedEntity {

attribute : set Attribute,
general : lone Class

}
sig Persistent in Class {}

pred acyclic {
all self:Class | self not in self.^general

}

run { acyclic }
for 3 Class, 3 Attribute, 1 Package, 3 String

Figure 9.3: A (static) specification of CD in Alloy.

just singleton sets. This uniformity of concepts leads to a very simple semantics. The
relational logic operators also favor a navigational style of specification that is appealing
to software engineers, as it resembles object-oriented languages.

When the relational logic formalism was defined in Chapter 2, we were careful to
define a language close to both Kodkod and Alloy. Thus, the embedding of relational
formulae into Alloy is rather straightforward: the similarities can be inspected by
comparing the acyclic predicate in Figure 9.3 back with ACYCLICGEN in Section 2.1.
The key operator in Alloy is the dot join composition that allows the navigation through
fields and amounts to relational composition. For example, if c is a Class, c.name
denotes its name (a scalar) and c.general accesses its super-class (a set containing at
most one Class). The direction of the navigation operator in Alloy is the same as the
one in OCL, and opposed to the composition from relational logic. Besides composition,
relational expressions can also be built using the union (+), intersection (&), difference
(-), and cartesian product (->) operators. In particular, singleton tuples can be defined
by taking the cartesian product of two (or more) scalars. Relations can also have their
domain restricted to a given set (<:) and likewise for the range (:>). Binary relational
expressions can also be reversed (∼), extended with the transitive closure (^), or with

9.3 EMBEDDING TRCS IN ALLOY 195

the reflexive transitive closure (*). Relational expressions may also be created by set
comprehension. Finally, there are some primitive relations pre-defined in Alloy: univ
denotes the universe, i.e., the set of all atoms, none denotes the empty set, and iden the
binary identity relation over the universe.

Alloy has limited support for integers: the pre-defined Int signature contains all
available integers. In commands, the scope of Int determines the available number
of bits to represent them (in two’s complement notation). This reflects the bitwise
representation of integers down in the SAT solver already mentioned in Section 6.3.1.
Integers can be added and subtracted with the functions plus and minus, respectively.
The default semantics for integer operations is wrap around: for example, if the scope
for Int is 3, plus[3,1] is -4. However, a technique that suppresses solutions where
overflow occurs has been proposed by Milicevic and Jackson (2012), which has been
implemented in the Alloy Analyzer as an optional Forbid Overflow feature. Every
relation expression can have its cardinality determined with the # operator.

Atomic formulas are built from relational expressions using inclusion (in), equality
(=), or cardinality checks (besides lone, some, and one, keyword no can also be used
to check whether a relational expression is empty). Formulas can be combined with
conjunction (&&), disjunction (||), implication (=>), possibly associated with an else

formula, equivalence (<=>), and negation (not). Besides the universal (all) and ex-
istential (some) quantifiers, Alloy also supports lone (property holds for at most one
atom), one (property holds for exactly one atom), and no (property holds for no atom)
quantifiers.

9.3.2 Embedding Intra-model Constraint TRCs

In our framework, a transformation domain M is assumed to be embedded in a typed
relational constraint 〈φM ,SM ,DM〉 following the technique presented at Section 6.1.2
for translating meta-models and a translation inspired by the one proposed in (Cunha
et al., 2013) for the embedding of OCL constraints into relational logic. This section
explores how such intra-model constraint can be deployed in Alloy.

Since Alloy instances are built from immutable atoms, well-known idioms have
been developed to capture the evolution of models. The local state idiom (Jackson,
2012) is one such idiom, where a special signature is introduced to represent each
meta-model, whose atoms will denote different models (or different states of a model).
To each field (representing an association or an attribute) an extra column of this type

196 CHAPTER 9: THE ECHO FRAMEWORK

is added, to allow its value to change in different models. The translation proposed
in (Cunha et al., 2013) follows this idiom, but was extended to allow the set of atoms
present in each model state to vary. For a signature A, we will refer to this field as the
signature’s state field and denote it by A_ to avoid overloading. Boolean attributes are
encoded similarly: a binary field captures which objects have the attribute set to true in
each model.

To produce Alloy specifications that follow typical design patterns, typed relational
constraints are also interpreted under the local state idiom. The main difference is that,
while in two typed relational constraints M 1 and M 2 representing a transformation
domain M , every relation R : A1↔ ...↔An is duplicated as RM1 and RM2 , in Alloy’s
local state idiom it only gives rise to a single field R : A1 -> . . . An -> M whose
atoms M denote the state of the transformation domain: given two atoms M1,M2 : M

representingM 1 andM 2 respectively, the valuations of RM1 and RM2 are retrieved by
R.M1 and R.M2 respectively. This allows the derivation of a single Alloy module from
a meta-model M, no matter how many typed relational constraints are derived from it.
Sorts SM (along with the hierarchy entailed by vS) can be directly translated to Alloy
signatures. Enumerations are translated to abstract “static” signatures (in the sense that
they are present in every model, having no state field), while enumeration literals are
singleton signatures that extend that signature.

Figure 9.4 presents the embedding of the CD typed relational constraint (Figure 6.2)
in Alloy. The SCD sorts NamedEntity, Package, Class and Attribute are directly
translated to signatures, as well as the class hierarchy denoting NamedEntity as the
abstract super-class. An extra signature CD is also created to denote the different CD
typed relational constraints: each declared relation RCD from DCD is assigned the
extra CD domain during translation. For each sort A, the set ACD denoting the elements
present in each CD state is captured by the state field A_ of signature A.

Formula φCD is translated to a predicate CD_Constraint that takes as an argument
a CD state: for an atom CD1 : CD, CD_Constraint[CD1] tests whether model CD1
conforms to φCD . Translation of this formula is rather straightforward since our
relational formalism is already quite close to that of Alloy. The notable difference is that
the formula is also translated under the local state idiom, having the model state passed
as the predicate parameter applied to each field call. The embedding of the relations
multiplicity takes advantage of the connection between the terminology for binary
relations presented at Section 2.4 and Alloy’s multiplicity keywords (e.g. A one -> B

9.3 EMBEDDING TRCS IN ALLOY 197

sig CD {}
abstract sig NamedEntity {
NamedEntity_ : set CD
name : String -> CD

}
sig Package extends NamedEntity {
Package_ : set CD,
classes : Class -> CD

}
sig Class extends NamedEntity {
Class_ : set CD,
attributes : Attribute -> CD,
general : Class -> CD,
persistent : set CD

}
sig Attribute extends NamedEntity {

Attribute_ : set CD
}

pred CD_Constraint [cd:CD] {
(all c : Class_.cd | not (c in c.^(general.cd))) &&

name.cd in NamedEntity_.cd -> one String &&
classes.cd in Package_.cd one -> Class_.cd &&
attributes.cd in Class_.cd one -> Attribute_.cd &&
general.cd in Class_.cd -> lone Class_.cd &&
persistent.cd in Class_.cd

NamedEntity_.cd = Package_.cd + Class_.cd + Attribute_.cd
}

Figure 9.4: Meta-model CD embedded in Alloy.

amounts to surjective and injective relations).

9.3.3 Embedding Inter-model Constraint TRCs

A typed relational constraints T representing an inter-model constraint can be em-
bedded in a similar manner as the just presented meta-models: ST creates signatures,
relations DT are lifted to the local state idiom and formula φT results in a predicate
that receives as input the model states to be compared. In this section we follow the
embedding of a QVT-R typed relational constraint into an Alloy module to provide an
idea of the final specification, in particular that of the cd2dbs embedding presented at
Figure 7.6.

Formula φT consists of formulae RI and RJ for top QVT-R relations and RI and

198 CHAPTER 9: THE ECHO FRAMEWORK

RJ for QVT-R relations that are invoked from other QVT-R relations, while the variables
RB and RC introduced by DT for every relation R that is called by another, give rise
to the definition of new fields. Figure 9.5 presents part of the embedding of cd2dbs
in Alloy3. The top-level embedding of C2TI is represented by predicate Top_C2T_DS.
Fields P2S_DS and A2C_DS called in Top_C2T_DS represent the relation variables P2SB
and A2CB, and are defined as fields in the CD signature. Their valuation is defined by
the embedding of P2SI and A2CI, the former embodied by predicate Sub_P2S_DS in
Figure 9.5. The checking semantics of the whole cd2dbs transformation is represented
by the predicate cd2dbs that forces all related predicates to hold.

In the presence of recursion, as in the hsm2nhsm example (Figure 7.7), predicates
take the following shape:

pred Sub_S2S_NM [hm:HM,nm:NM] {

S2S_NM[hm,nm] = { s:State_.hm,t:State_.nm |

all sm : SMachine_.hm, tm : SMachine_.nm |

sm->tm in M2M_NM[hm,nm] => s in sm.states.hm =>

t in sm.states.tm &&

(no s.container.hm => s->t in TS2S_NM[hm,nm]

else s->t in SS2S_NM[hm,nm]) }

}

pred Sub_SS2S_NM [hm:HM,nm:NM] {

SS2S_NM[hm,nm] = { s:State_.hm,t:State_.nm |

s.container.hm->t in S2S_NM[hm,nm] }

}

As discussed in Section 7.2, the constraint over HSM models forcing the constainer
association to be acyclic ensures that this recursive definition is well-behaved.

9.3.4 Embedding Metrics

Regarding enforcement semantics, Echo employs the principle of least-change by im-
plementing the external iterative mechanism defined in Section 6.3.1. As a consequence,
the distance function is also embedded in a typed relational constraint ∆ that must also
be translated into Alloy.

3In practice, the inter-model constraint is translated as a single predicate representing φcd2dbs;
Figure 9.5 is structured to promote readability.

9.3 EMBEDDING TRCS IN ALLOY 199

sig CD {
. . .
P2S_DS : DS -> Package -> Schema,
A2C_DS : DS -> Class -> Table,
P2S_CD : DS -> Package -> Schema,
A2C_CD : DS -> Class -> Table,
. . .

}

pred Top_C2T_DS [cd:CD,ds:DS] {
all p:Package_.cd, s:Schema_.ds | P2S_DS[cd,ds,p,s] =>

(all c:Class_.cd, n:String |
n in c.name.cd && c in persistent.cd && p in c.namespace.cd =>
(some t:Table_.ds |

s in t.schema.ds && n in t.name.ds && c->t in A2C_DS[cd,ds]))
}

. . .

pred Sub_P2S_DS [cd:CD,ds:DS] {
P2S_DS[cd,ds] = { p : Package_.cd, s: Schema_.ds | p.name.cd = s.name.ds }

}

. . .

pred cd2dbs [cd:CD,ds:DS]{
Top_P2S_DS[cd,ds] && Top_P2S_CD[cd,ds] &&
Top_C2T_DS[cd,ds] && Top_C2T_CD[cd,ds] &&
Sub_P2S_DS[cd,ds] && Sub_P2S_CD[cd,ds] &&
Sub_A2C_DS[cd,ds] && Sub_A2C_CD[cd,ds]

}

Figure 9.5: Part of the Alloy specification for cd2dbs.

The first proposed metric is GED. Note that an Alloy instance is isomorphic to a
labelled graph whose nodes are the atoms, and edges tuples in fields (technically to
hypergraphs, since fields are n-ary). With this mechanism, φd

∆	CD

can be computed as
d = Delta_CD[cd,cd’], given the definition:

fun Delta_CD [cd,cd’:CD] : Int {

#((Class_.cd - Class_.cd’) + (Class_.cd’ - Class_.cd)).plus[

#((name.cd - name.cd’) + (name.cd’ - name.cd)).plus[

. . . // symmetric difference of remainder fields

]]

}

200 CHAPTER 9: THE ECHO FRAMEWORK

Assuming cd’ represents an updated version of cd, this function sums up, for every
signature and field, the size of their symmetric difference between both models. Here
the state of cd and cd’ embody the variables DCDs and DCD t that are introduced by
D∆	CD

to represent the original model and the target model, respectively. Under the
local state idiom, bounding the state of cd to the a concrete state amounts to assigning
concrete values to the fields under cd; those under cd’ shall remain free so that the
model finder finds a valid assignment for them. To avoid Alloy’s standard wrap around
semantics for integers, model finding is executed with the option Forbid Overflow

set (Milicevic and Jackson, 2012).
Regarding OBD, the edit operations, specified by the user in OCL using pre- and

post-conditions, are automatically converted to Alloy using the translation procedure
defined in (Cunha et al., 2013). Essentially, each operation will originate an Alloy
predicate that specifies when it can hold between two models. The resulting Alloy
predicate takes as arguments the pre- and post-states of the affected model, the receiver
element of the edit operation (denoted by argument self of the appropriate context
class), as well as the stated operation parameters. For example, the result of translating
TsetNameU to Alloy is the following:

pred setName[self:Class,n:String,cd,cd’:CD] {

self.(name.cd’) = n;

all c:Class_.cd’ | c.(name.cd) = c.(name.cd’) or c = self

// frame conditions inferred from modifies

Class_.cd’ = Class_.cd

Attribute_.cd’ = Attribute_.cd

general.cd’ = general.cd

classes.cd’ = classes.cd

. . .

// remaining frame conditions

}

The body of the predicate consists of the translation of the pre- and post-conditions
from the OCL specification. Pre-conditions (if any) are evaluated over the pre-state
model cd, while post-conditions refer to the respective post-model cd’, except in the
case of operations and properties marked by the tag @pre which are still evaluated
in the pre-state. Frame conditions for all classes and associations not included in the
modifies clause introduced in Section 9.2 are also automatically inferred by the tool.

Given the operation specifications, we constrain models to form a sequence, where

9.3 EMBEDDING TRCS IN ALLOY 201

each step corresponds to the application of an edit operation:

open util/ordering[CD]

fact {

all cd:CD, cd’:cd.next | {

some c:Class_.cd,n:String | setName[c,n,cd,cd’] or

some c:Class_.cd,n:String | addAttribute[c,n,cd,cd’] or

. . .

// remaining operation predicates

}

}

The Alloy module ordering imposes a total order on all atoms of the given signature
(in this case, CD), and declares a binary relation next that captures such order. The
presented fact restricts the possible values of next, by requiring each state cd and
subsequent state cd.next to be related by one of the specified operations. Since every
CD atom is required to be ordered under edit operations, a solution with d + 1 CD atoms
entails φd

∆U
CD

, while the intermediary CD states embody the extra variables that are
declared by D∆U

CD
.

9.3.5 Executing the Semantics

Executing the transformation requires representing concrete models (i.e., binding the
valuation of the fields regarding the original model) and setting adequate scopes. Since
Alloy has no specific constructs to denote model instances, singleton signatures are
used to denote specific objects and facts to fix the valuation of fields. For example, a CD
model CP1 denoting the company example that has been used through the dissertation
can be specified as depicted in Figure 9.6.

To check whether the CD1 model M is consistent with a DBS model DS1 the command
check { cd2dbs[CD1,DS1] } is issued, with the scope of each signature being set to
the number of elements of the respective class in each of the two models. Regarding
enforce mode with GED minimization, if CD1 and DS1 happened not to be consistent,
in order to determine a new CD model CD2 the command

run { cd2dbs[CD2,DS1] && Delta_CD[CD1,CD2] = d }

is issued with increasing d values (starting at 0). In this case, the scope of each signature
is set to the number of elements of the respective class plus d, to allow complete freedom

202 CHAPTER 9: THE ECHO FRAMEWORK

one sig CD1 extends CD {}
one sig P extends Package {}
one sig C1,C2,C3 extends Class {}
one sig A1 extends Attribute {}
fact {

Package_.CD1 = P &&
Class_.CD1 = C1 + C2 + C3 &&
Attribute_.CD1 = A1 &&
name.CD1 = P->"Company" + C1->"Person" + C2->"Employee" +

C3->"Employer" + A1->"name" &&
classes.CD1 = P->C1 + P->C2 + P->C3 &&
general.CD1 = C2->C1 + C3->C1 &&
persistent.CD1 = C2 + C3 &&
attributes.CD1 = C1->A1

}

Figure 9.6: A model instance in Alloy.

in the choice of edit operations. Alloy requires the definition of the bitwidth available
to represent integer atoms in a two’s complement encoding. For a concrete d value,
this is calculated by rounding up 1 + log2(d+ 1). Since the distance function for GED
only adds up the symmetric difference between relations (which is positive), if the
bitwidth is sufficient to represent d, it will also be sufficient to represent the clauses of
the addition. Since we are dealing with exact scopes, the class hierarchy must also be
taken into consideration. For instance, for a HSM solution with one CompositeState
and one State, the scope of State must be set to 2. This iterative process, with the
calculation and increment of both d and the scope, is performed automatically by Echo,
being is opaque to the user.

Regarding enforce mode with OBD minimization, the command

run { cd2dbs[CD2,DS] && CD1 = first && CD2 = last }

is issued with increasing scopes d (plus one) for signature CD. Singleton fields first
and last denote the first and last atoms of the next total order: they are constrained
to be the original and updated model, respectively, meaning that the latter should be
obtained from the former using d edit operations. The scope of the remaining signatures
is inferred from the operations specified in the meta-model, allowing a finer control
over the scopes of the model finder, since the system will be aware of the behavior of
all possible update steps. This requires the creation of elements by the operations to
be detected, which is by itself an ambiguous issue in OCL-specified operations. For
our technique, we assume that every new element created by an operation is identified

9.3 EMBEDDING TRCS IN ALLOY 203

with the oclIsNew() operation in the post-condition and inside a one quantification (a
predicate which holds for exactly one element (OMG, 2012, p. 170)). With oclIsNew()

tags inside other quantifiers we would not be able to precisely measure the scope
increment. For instance, consider the operation addAttribute(n:String) from the
Class class. Its post-condition would contain, among others, the following constraint:

self.attributes->one(a | a.oclIsNew() and a.name = n)

This in turn would be translated to Alloy as:

a not in self.(attributes.cd) &&

self.(attributes.cd’) = self.(attributes.cd) + a &&

a.(name.cd’) = n

The user is required to specify an upper-bound for d that limits the search for
consistent targets. If several consistent models are found at the minimum distance our
tool warns the user and allows her to see the different alternatives. If the user then
desires to reduce the range of produced solutions, she can, for example, add extra OCL
constraints to the meta-model or narrow the set of allowed edit operations to target a
specific class of solutions. Section 7.3.2 already presented a concrete example of how
such narrowing can be done.

9.3.6 Optimizing Alloy Models

The major caveat of model finding approaches is scalability. While we are aware
that our technique will never be as efficient as syntactic approaches (even if more
expressive), in this section we present some optimizations that enable its application
to many realistic examples. Although a novel contribution, the reader uninterested in
Alloy technical details may skip this section as it does not affect the semantics of the
proposed technique.

As presented in Section 7.2, QVT-R semantics relies heavily on nested forall-

there-exists quantifications. These introduce inefficiency, since the complexity of the
generated formulas may prevent skolemization and other optimizations performed by
Kodkod (the underlying relational model finder that supports Alloy) when translating to
SAT. As such, the main goal of our optimization procedure is to eliminate (or reduce the
scope of) as many quantifiers as possible, sometimes taking advantage of meta-model
knowledge not readily available to Kodkod.

204 CHAPTER 9: THE ECHO FRAMEWORK

(all x:none | R) ≡ true ∀-EMPTY

(some x:none | R) ≡ false ∃-EMPTY

(all x:A | true) ≡ true ∀-TOP

(all x : A | false) ≡ no A ∀-BOTTOM

(some x : A | true) ≡ some A ∃-TOP

(some x:A | false) ≡ false ∃-BOTTOM

(all x:A | R) ≡ R[x := A], if one A ∀-ONE-POINT

(some x:A | R) ≡ R[x := A], if one A ∃-ONE-POINT

(all x:A | x in B => R) ≡ (all x:A&B | R) ∀-TRADING

(some x:A | x in B && R) ≡ (some x:A&B | R) ∃-TRADING

(all x:A | x in B) ≡ A in B ⊆-DEF-SET

(all x:A | x.R in x.S) ≡ A<:R in S ⊆-DEF-REL

Figure 9.7: Quantifier elimination and restriction.

Figure 9.7 presents the equivalence laws used by our system (as rewriting rules
oriented from left to right) to eliminate or reduce the scope of quantifiers. Among the
most effective, we have the one point rules, that require as side-condition that the set
over which the quantified variable ranges is a singleton. Using knowledge about the
meta-model, this condition is many times trivial to check, namely when such set is the
result of a navigation expression over a mandatory attribute. Figure 9.8 presents some
additional laws that are used to eliminate redundant expressions, again using knowledge
about the meta-model.

To simplify the application of such rules, navigation expressions are kept normal-
ized in the shape x.R, where x is typically a quantified variable and R an arbitrary
composition of binary relations or their inverse. Such normalization can be done by
application of associativity and inverse laws concerning the relational composition
operator, such as R.x ≡ x.∼R or (∼(R.S)) ≡ (∼S).(∼R). Moreover, in this normal-
ization we attempt to isolate the nearest quantified variable in a membership check
using the rule y in x.R ≡ x in y.(∼R) to potentiate the application of trading rules.
Finally, whenever possible, we also replace multiplicity checks by their navigational
equivalent, for example using the law some x.R ≡ x in x.R.(∼R).

As an optimization example, consider the most simple QVT-R relation from cd2dbs,
P2S, in the direction of DS . By applying QVT-R semantics the following formula

9.3 EMBEDDING TRCS IN ALLOY 205

R&S ≡ R, if R in S ∩-SUBSET

R&S ≡ S, if S in R ∩-SUBSET

R:>A ≡ R, if univ.R in A ρ-SUBSET

A<:R ≡ R, if R.univ in A δ-SUBSET

Figure 9.8: Redundancy elimination.

would result from our embedding in Alloy:

all p:Package_.cd, n:String | n in p.(name.cd) =>

some s:Schema_.ds | n in s.(name.ds)

Although simple, this formula already contains 3 quantifications whose range is loosely
restricted (for instance, n is freely quantified over all strings). Figure 9.9 shows how this
formula can be simplified using the above rules. To understand how the side-conditions
can be easily checked using meta-model knowledge, consider the name attribute in
the Package class of the CD meta-model. As we have seen in Section 9.3.2, when
embedding this meta-model in Alloy this attribute is encoded as a relation of type
Package -> String -> CD (to be used always as a binary relation in the context of
particular CD model—in our optimization example the model cd), constrained by the
following multiplicity and inclusion dependency fact:

all cd:CD | name.cd in package.cd -> one String

From this we can deduce that p.(name.cd) in String, the side-condition required for
the first application of rule ∩-Subset, that one p.(name.cd), the side-condition to the
application of ∀-One-Point, and that the domain of name.cd is a subset of package.cd,
formally (name.cd).univ in package.cd, in the final application of δ-Subset.

This optimization procedure essentially attempts to apply the point-free transform
to translate relational logic formulae to the point-free notation, briefly presented in
Section 2.4. Such notation is well-know for its amenability to proof and optimization
through simple equational reasoning (Oliveira, 2009), and transformation of Alloy
formulas to such style has been explored before (Frias et al., 2004; Macedo, 2010),
as means to perform unbounded verification proofs. In this case, its application to
optimization is particularly effective, since it takes advantage of the fact that formulas
originating from our embedding follow a very specific pattern, and information about
the meta-model is readily available to speed-up side-condition checks.

206 CHAPTER 9: THE ECHO FRAMEWORK

all p:Package_.cd, n:String | n in p.(name.cd) =>

some s:Schema_.ds | n in s.(name.ds) (∀-TRADING)

all p:Package_.cd, n:String&(p.(name.cd)) |

some s:Schema_.ds | n in s.(name.ds) (∩-SUBSET)

all p:Package_.cd, n:p.(name.cd) |

some s:Schema_.ds | n in s.(name.ds) (NORMALIZATION)

all p:Package_.cd, n:p.(name.cd) |

some s:Schema_.ds | s in n.∼(name.ds) (∃-TRADING)

all p:Package_.cd, n:p.(name.cd) |

some s:(Schema_.ds)&(n.∼(name.ds)) | true (∃-TOP)

all p:Package_.cd, n:p.(name.cd) |

some (Schema_.ds)&(n.∼(name.ds)) (∩-SUBSET)

all p:Package_.cd, n:p.(name.cd) |

some n.∼(name.ds) (NORMALIZATION)

all p:Package_.cd, n:p.(name.cd) |

n in n.∼(name.ds).(name.ds) (∀-ONE-POINT)

all p:Package_.cd |

p.(name.cd) in p.(name.cd).∼(name.ds).(name.ds) (⊆-DEF-REL)

(Package_.cd)<:(name.cd) in (name.cd).∼(name.ds).(name.ds) (δ-SUBSET)

(name.cd) in (name.cd).∼(name.ds).(name.ds)

Figure 9.9: Optimization example.

Finally, some other optimizations, not related to quantifier elimination, are also
performed during the translation of the MDE artifacts into Alloy. For example, when
embedding meta-models in Alloy, fields are not created for associations marked as
opposite of another existing association. Instead, when a call to an opposite association
occurs in a formula (e.g. namespace.cd), it is just replaced to a call on its opposite
using the inverse operator (e.g. ∼(classes.cd)). This further reduces the overall
amount of variables and constraints during SAT solving.

Note that our tool performs these optimizations only once, when the meta-models
and transformations are loaded and embedded into Alloy, and not every time the
transformation is run after an update. As such, the time spent on the optimizations
(which is almost negligible anyway) does not affect the performance of the least-change
update propagation procedure.

9.4 VISUALIZING MODEL INSTANCES 207

9.4 Visualizing Model Instances

As just described, the user is able to choose the desired repaired model from the range
of all minimal consistent solutions. Performing such choice over the concrete XMI files
would not be user-friendly (even with the standard Eclipse’s XMI editor), so instead
we resort to the graph visualizer of the Alloy Analyzer, where perceiving models is
as easy as grasping graphs. However, in order to be better understandable by the user,
these graphs must be presented in a shape that resembles its model structure. The Alloy
visualizer allows the definition of custom themes, and our tool automatically determines
one such theme using the information available from the Ecore meta-models. Alloy’s
magic theme functionality (Rayside et al., 2007) also tries to infer a suitable theme from
an Alloy specification through a set heuristics. However, while some of the visualization
properties determined by our technique are similar to those inferred by the magic theme,
the extra information available in the meta-model, and knowledge about the underlying
encoding of the transformations, proves to be an advantage and eliminates the need of
said heuristics.

The most evident feature of the inferred theme is hiding the extra Alloy fields
required by the underlying enforcing mechanism but irrelevant for the user, in particular
the auxiliary fields used to represent relation calls (the RB, RC, RCB, or RCB relation
variables that emerge from the skolemization). Our enforcing mechanism also requires
that both the original source and target models, as well as the updated target model,
coexist in a single Alloy instance (essentially, the transformation domainsM ,N and
M ′, for a repair onM). Presenting them together to the user would be very confusing,
so we opted to project the instance over the transformation domains, focusing first
on the updated model, but allowing the user to visualize the others if she so desires
(Alloy’s magic theme would try to infer such projections (Rayside et al., 2007), but our
experiments showed that it would fail to pick the desired one in this particular case).
This projection allows us to omit the signature’s state fields AM denoting the elements
belonging to each model state. To better highlight the differences between the original
and the repaired models, the elements inserted or removed by the repair are painted in
a different color (green), while the preserved elements are painted gray. Calculating
the GED between Alloy instances already requires calculating the symmetric difference
between their elements (and links). Since the Alloy visualizer allows subset signatures
to be drawn differently, that component of the ∆	 metric is reused to that end. Elements
belonging to different classes are distinguished by shape.

208 CHAPTER 9: THE ECHO FRAMEWORK

Like with the default magic theme (Rayside et al., 2007), enumeration literals are
hidden and fields whose target type is an enumeration are presented as node labels
rather than as edges to the enumeration literals. However, we need not use heuristics
to detect enumerations, as their existence can be detected directly in the Ecore meta-
model. Following the same reasoning, Alloy fields that originated from attributes in the
meta-model are also presented as node labels rather than as edges to the attribute’s value
node, to minimize the number of visual elements. As a consequence of the projected
model states, sets end up also being represented by node labels.

Finally, we are also able to determine a suitable spanning tree for the graph, that
defines its dominant hierarchical structure. In our context, these are represented by the
containment associations of the meta-model, which define the overall structure of the
model instances, the remaining associations depicting only references between existing
elements. In the Alloy visualizer spines are defined by tagging such fields as influencing

the layout.

Figure 9.1 shows two models: the left-one conforms to the DBS meta-model and
is depicted with the standard Eclipse XMI editor; the right-one conforms to the CD

meta-model and is depicted with the embedded Alloy visualizer, using the theme
automatically inferred by our technique. Note how the graph is adapted to the CD

meta-model: different classes are shaped differently, while the attribute name and the
set persistent are presented as labels rather than edges. All information not relevant
to the presentation of the model is hidden. The class diagram is a variation of the very
simple company model that has been used throughout the dissertation. The left-hand
side represents a relational schema that is cd2dbs-consistent with the class diagram.
The Employee table has a salary column, whose matching attribute in the CD model
is painted green (in contrast to the other elements painted gray). This means that this
attribute has just been inserted by Echo in order to restore consistency between the two
models.

Figure 9.10 presents models kept consistent by the hsm2nhsm transformation. The
original HSM model was a simple state machine depicted at Figure 7.5a, with the
hsm2nhsm-consistent collapsed NHSM model from Figure 7.5b. It is worth noting that
in this example HSM and NHSM are two different meta-models, and thus the different
shape assigned to elements of similarly named classes. At some point, the NHSM model
was updated with the insertion of a transition from Active to Idle, breaking the
consistency between the models. When propagating the update, Echo proposes three

9.5 EVALUATION 209

(a) NHSM model. (b) Possible HSM model. (c) Possible HSM model.

Figure 9.10: hsm2nhsm-consistent models as presented in Echo.

minimal solutions. Figure 9.10 presents two of them: set the composite state Active
as the source of the new transition or choose instead one of its sub-states, in this case,
Waiting. In the third minimal repair (not shown) the sub-state Running is set as the
source of the new transition.

9.5 Evaluation

At the time of writing, no benchmark for the assessment of bidirectional transformation
tools has been proposed, although some efforts in that direction are beginning to be
made (Anjorin et al., 2014). Thus, to assess the scalability of our technique we devised
a class of synthetic examples of the familiar cd2dbs transformation, with the intention
of achieving linear increases both in model size (number of nodes and edges when seen
as a graph) and required update distance.

In this context, the shape of the CD class diagram of dimension n consists of a
spine of n non-persistent classes (identified as class i at level i), each with a persistent
sub-class (identified as class i′ at level i), which have themselves a single attribute (with
the same name i′ as the owning class). Thus, a CD model of dimension n has 5n+ 2

nodes and 8n edges when interpreted as a graph. As an example, Figure 9.11 depicts
the CD model for n = 3, the number of nodes being the number of model elements
(10) and string literals (7), while the number of edges is the number of association links
(14) and attribute assignments (13), the latter shown as node labels in Figure 9.11. The
corresponding DS models, to be cd2dbs-consistent, must contain a table with a single

210 CHAPTER 9: THE ECHO FRAMEWORK

Figure 9.11: Synthetic CD model with n = 3.

Figure 9.12: Synthetic DBS model with n = 3 and d = 2.

column for each persistent class i′, that is, 3n+ 2 nodes and 4n+ 1 edges. Since the
CD and DS models coexist when solving the problem, the total size of the environment
is the sum of the respective sizes, with the exception of string literals which are shared.
These models were generated using Echo’s model generation feature, using extra OCL
constraints to parametrize the shape of the generated solutions.

To introduce inconsistencies, new columns are inserted in the DS model that impose
repairs on the CD model. The smallest inconsistency consists of inserting in table n′ a
column (n− 1)′. To solve this inconsistency, the minimal update is to move attribute
(n − 1)′ in the CD model to the (n − 1) non-persistent class, so that it is shared by
both class n′ and class (n− 1)′. This has a cost ∆ = 2 for GED and ∆ = 1 for OBD.

9.5 EVALUATION 211

n nodes edges variables
2 18 27 449
3 25 39 763
4 32 52 1063
5 39 63 1469
6 46 75 1941
7 53 87 2479
8 60 99 3083
9 67 111 3753

10 74 123 4489

Table 9.2: Scalability tests size for enforce mode with GED and d = 1.

Increasingly distant updates d < n can be attained by inserting in every table i′ such
that i > n− d every column j′ such that n− d 6 j < i, resulting in updates ∆ = 2d

for GED and ∆ = d for OBD in the CD model. Thus, an inconsistency at distance d
introduces d(d+1)

2
nodes and d(d+ 1) edges. As an example, Figure 9.12 presents the

DS model for n = 3 with inconsistencies for d = 2.

All tests were run using Echo over Alloy 4.2 with the MiniSat solver, on a 1,8 GHz
Intel Core i5 with 4 GB memory running OS X 10.8. We performed experiments for
models up to n = 10 and update distance up to d = 3, when applicable. Table 9.2
summarizes the total size of both models for n up to 10 given an update d = 1. The
last column represents the number of variables present in the SAT problem generated
by Kodkod when repairing the consistency between both models. All tests were run
multiple times as to get the average performance values.

Figure 9.13 compares execution times (shown in log scale) of runs with and without
the optimizations presented in Section 9.3.6. Figure 9.13a compares checkonly runs,
and the gains are very significant. For n = 10 the optimized version takes only 7% of
the time spent by the non-optimized version, with average gains of 45%. Checkonly
runs do not require the measurement of model distances, so the choice of the metric does
not affect the performance. Figure 9.13b compares enforcement runs using GED and
OBD again with and without formula simplifications, for a fixed d = 1. The optimized
versions are in average 29% and 56% more efficient than the non-optimized versions,
for GED and OBD respectively, but again the difference grows fast, and for n = 10 the
optimized versions take only 7% of the execution time of the non-optimized ones for

212 CHAPTER 9: THE ECHO FRAMEWORK

both GED and OBD. As already mentioned in Section 9.3.6, optimizing Alloy formulas
may take some time, but since this optimization is performed only once at static-time
(when the transformations are translated to Alloy), it does not affect the time effectively
spent in the repair. The gain from enforcement executions using GED to those using
OBD is also significant (in average the first takes 75% of the time of the second, and
around 40% for n = 10), but these results should be analyzed with caution, as they
occur in a controlled scenario where GED repairs require only twice as much solving
iterations than the ones with OBD. In practice, OBD can be much faster than GED
if each atomic operation is more complex, combining multiple insertions/deletions of
nodes and edges, allowing inconsistencies to be repaired with smaller distances.

Figure 9.14 depicts the execution times of checkonly and enforcement modes
(with optimizations), using both GED and OBD, respectively, as the dimension n of
the model increases, and for different fixed update distances d. Execution times for
d = 0, i.e., consistency checks, take up to 8s for n = 10. While these values are not
competitive against other existing techniques for consistency checking, they are due
to the lack of support for instances of Alloy: partial solutions must be encoded by
additional singleton signatures and constraints in the model. The performance in this
case could be significantly improved by embedding the technique directly in Kodkod
or by using Alloy extensions with support for partial instances, like the one proposed by
Montaghami and Rayside (2012), as our current studies show (Cunha et al., 2014). The
impact on running times of the increasing d is intrinsic to our iterative technique, since
every ∆ step requires a new model finding run. This is better depicted in Figure 9.15
that presents the same data but in relation to increasing distance ∆, for fixed model
dimensions n.

Although not ready to handle industrial-size models, Echo’s greatest strength lies
in its ability to allow the user to quickly and simply analyze and debug transformation
specifications. In fact, a great challenge in model transformation is to guarantee that the
behavior of the specified artifacts reflects the intention of the user: with a predictable
least-change semantics and quick provision of feedback to the user, Echo excels in
these tasks. In this context, the size of the models is not as crucial—as put by the
small scope hypothesis advocated by the Alloy creators (Jackson, 2012), most problems
on specifications may be flagged by small instances. This is attested by the fact
that we were able to detect heretofore undetected problems in the standard’s cd2dbs
transformation, as presented in Section 7.2. Nonetheless, despite the size of the models,

9.6 DISCUSSION 213

2 4 6 8 10
102

103

104

105

n

t(
m
s)

RAW
OPT

(a) Checkonly.

2 4 6 8 10
103

104

105

n

t(
m
s)

GED/RAW
GED/OPT
OBD/RAW
OBD/OPT

(b) Enforcement (d = 1) for GED and OBD.

Figure 9.13: Performance for optimized (OPT) and non-optimized (RAW) implementa-
tions.

2 4 6 8 10
102

103

104

105

n

t(
m
s)

∆ = 0

∆ = 2

∆ = 4

∆ = 6

(a) GED.

2 4 6 8 10

103

104

105

n

t(
m
s)

∆ = 0

∆ = 1

∆ = 2

∆ = 3

(b) OBD.

Figure 9.14: Performance over model size n, for fixed ∆ values.

the complexity introduced by the meta-models and inter-model constraints could alone
render solving unfeasible—in fact, without the optimizations presented in Section 9.3.6
that was precisely the case. In the future we intend to develop functionalities dedicated
to automatically check specific properties of model transformations—like the fact that
they are total, deterministic, or that they always produce well-formed models—to fully
exploit this facet of Echo, as discussed in Section 7.5. As our technique is already
based on model finding, these extensions are rather straight-forward to implement.

9.6 Discussion

The chapter exposed the development of an Eclipse plugin that enables the deployment
of MDE tasks in a standard environment over the techniques based on model finding

214 CHAPTER 9: THE ECHO FRAMEWORK

0 2 4 6

103

104

105

∆

t(
m
s) n = 2

n = 4

n = 6

n = 8

n = 10

(a) GED.

0 1 2 3

103

104

105

∆

t(
m
s)

n = 2

n = 4

n = 7

n = 10

(b) OBD.

Figure 9.15: Performance over model distance ∆, for fixed n values.

presented in Chapter 6.
Being solver-based, the main drawback of the proposed tool is performance. Im-

proving it is the main goal of our future work: we intend to explore incremental solving
techniques to speed-up the execution of successive commands with increasing scope,
and to define mechanisms to infer which parts of target model can be fixed a priori

in order to speed-up solving. In particular, we are currently analyzing the impact of
embedding our technique directly in Kodkod, which has support for partial instances,
and adapting it to rely on Max-SAT solvers instead, through the use of target-oriented
solving techniques (Cunha et al., 2014). Consistency checking in particular can be
extremely improved, since all free variables are already bounded (except those that may
be introduced by the inter-model constraint). In fact, as the embedding of meta-models
in Alloy hints (Figure 9.4), the need to essentially duplicate the hierarchy facts in the
local state idiom undermines one of the main advantages of an Alloy embedding (its
type system).

Nonetheless, even in its present status the tool is already fully functional4, much due
to the development of optimization techniques. In particular, it already proved effective
in debugging existing transformations, namely helping us unveiling several errors in
the well-known object-relational mapping that illustrates QVT-R specification. In the
future we plan to further explore the debugging aspect of the tool by providing means
to automatically verify and validate correctness properties of model transformations.

4Download and more information about Echo is available at http://haslab.github.io/echo
and in the tool demo (Macedo et al., 2013a).

http://haslab.github.io/echo

Chapter 10

Conclusion

This chapter summarizes the main contributions of this thesis and presents some remarks
on its development. It finalizes by pointing some directions for future work.

10.1 Main Contributions

Throughout this dissertation we aimed at addressing the two limitations of existing
bidirectional model transformation frameworks presented at Chapter 1: the lack of
support for datatype invariants and for update minimization criteria for non-tree-like
data structures. These were studied in both the asymmetric scheme of lenses and the
symmetric scheme of constraint maintainers.

• We explored the viability of an invariant-constrained lens framework whose
bidirectional transformations are total and well-behaved within provided data
constraints (Chapter 4). The general scheme was combinatorial and relied on
multi-valued backward transformation that passed on all valid solutions to the
succeeding lenses, with expected performance limitations. To tame this issue, two
effective constraint-aware instantiations of this scheme were developed that relied
on syntactic bidirectionalization procedures: one where invariants and backward
transformations are defined as general relational expressions and another in
the specific domain of spreadsheet formulas under normalized and manageable
invariants;

• We explored the viability of a least-change lens framework whose bidirectional
transformations produce minimal updates according to parametrizable metrics

215

216 CHAPTER 10: CONCLUSION

over the data domains (Chapter 5). The preservation of least-change under
composition was extensively studied, with several criteria under which it is well-
behaved being proposed. Two dual approaches were explored: one where the
backward transformations select single minimal values and another where all
minimal values are returned, each better suited under different metrics;

• We proposed the formalization of invariant-constrained least-change constraint
maintainers on top of relational model finding procedures (Chapter 6). Rather
than syntactically deriving consistency-restoring transformations, at the core of
this approach are embeddings of the meta-models and model transformations into
intra- and inter-model relational constraints that are to be solved by off-the-shelf
model finders. Mechanisms were explored to implement least-change behavior
on top of such relational model finders. The nature of this approach renders it
prone to be generalized into other MDE tasks, and we have done so for model
repair, model synchronization and multidirectional model transformation;

• We provided the embedding of two concrete model transformation languages into
relational constraints, so that they could be managed by the above mentioned con-
straint maintainer formalization: QVT-R, a multidirectional declarative language
(Chapter 7) and ATL, a unidirectional language (Chapter 8). The former allowed
us to address some problems and ambiguities known to affect the bidirectional
semantics of QVT-R, while the latter allowed us to reason about the bidirectional-
ization of inherently unidirectional model transformation languages. Since the
technique is generalizable to multidirectional transformations, we explored the
potential of multidirectional QVT-R transformations, which have heretofore been
widely disregarded. We conclude that the language would need to be extended if
it is to support realistic multidirectional scenarios;

• We have deployed the constraint maintainer formalization as an Eclipse plu-
gin, using Alloy and the underlying relational model finder (Chapter 9). The
implementation aimed at providing a seamless integration with a standard MDE
environment. Being an Eclipse plugin, Echo is developed on top of the popular
EMF, with meta-models being specified in Ecore with embedded OCL constraints
and inter-model constraints as QVT-R or ATL transformations. Thus, Echo
fully supports the execution of correct and least-change QVT-R bidirectional
transformations. Being solver-based scalability is its main drawback, and thus

10.2 FINAL REMARKS 217

techniques to improve performance were explored.

10.2 Final Remarks

Relational logic As the unifying formalism underlying the frameworks proposed in
this dissertation, relational logic has proven to be sufficiently expressive and flexible to
address the issues we initially set out to study. In the proposed lens frameworks, this
allowed us to support partial and multi-valued backward transformations, which proved
essential to achieve well-behaved combinatorial techniques; in the constraint maintainer
framework this allowed us to naturally support non-bijective consistency relations. The
timely development of the toolchain of relational model finders Alloy/Kodkod also
proved to be fundamental, providing means to quickly validate the properties of the lens
frameworks and ending up being used as the base over which the constraint maintainer
framework was effectively deployed. Furthermore, since relations are first-class citizens
in this formalism, they provide a natural way to represent graph-like data structures
(like models).

Multi-valued transformations Backed up by the expressive power of relational
logic, multi-valued transformations were at the core of the proposed lens and con-
straint maintainer frameworks. While in the constraint maintainer setting this was a
simple consequence of the adoption of model finders under the assumption that may
be multiple valid solutions, in the lens frameworks multi-valued transformations were
required to preserve the well-behavedness in purely combinatorial approaches. As
should be expected, this imposes a great toll on the efficiency of the framework. The
constraint-aware instantiations of invariant-constrained lenses somehow tamed this
issue by reducing multi-valuedness to a minimum while forfeiting the combinatorial
approach; due to the complexity of the task and the embryonic stage of our studies on
least-change lenses, we fell short of defining similar techniques for least-change lenses.

QVT-R language While the QVT-R language is the most well-known model trans-
formation language with clear bidirectional concerns, reasoning about the bidirectional
behavior of QVT-R transformations has proven to be an arduous task. This is prob-
ably reflected in the slow adoption of this standard by the MDE community and in
the lack of tool support, contrasting with the other standards proposed by the MDA

218 CHAPTER 10: CONCLUSION

initiative. Although we do believe that some of the characteristics of QVT-R are
attractive—the specification of a bidirectional transformation through declarative con-
sistency relations—there is still room for improvement. The great limitations that arose
when the multidirectional scenario was addressed, and even the lack of support for
simple subset consistency relations in the bidirectional scenario, make this claim even
more evident.

10.3 Future Work

Model metrics The distance functions have proved to be essential on controlling the
behavior of least-change bidirectional transformations. However, at certain points, they
have also proven not to be sufficiently flexible to address interesting examples. This
was more evident in the least-change lens framework, where the compositionality of
simple examples failed for typical distance functions. To assess the feasibility of said
framework, a more in-depth study of model metrics is in order, e.g. using distance
functions that entail lexicographic orders. Likewise in the constraint maintainer setting.
While we believe that providing both a meta-model independent and automatically
inferred metric (GED) and another one parametrizable by the user (OBD) results in
an interesting combination, there have been scenarios where we could benefit from
more expressive metrics, namely by assigning varied weights to the insertion/removal
of particular nodes/edges (GED) or edit operations (OBD). We are currently exploring
other ways through which target-oriented model finders can be used to control the
generation of solutions (Macedo et al., 2014a).

Performance While the solver-based approach to constraint maintainers imposes a
clear threshold on the efficiency of the technique, there are a number of techniques that
can be explored to improve the current performance of Echo. Concretely, we intend
to explore incremental solving techniques to speed-up the execution of successive
commands with increasing scope, and to define mechanisms to infer which parts of
target model can be fixed a priori in order to speed-up solving. In particular, we
are currently analyzing the impact of embedding our technique directly in Kodkod,
which has support for partial instances, and adapting it to rely on Max-SAT solvers
instead, through the use of target-oriented solving techniques (Cunha et al., 2014).
The connection between bidirectional transformation and other MDE tasks outlined at

10.3 FUTURE WORK 219

Chapter 6 could also allow the combination of some successful model repair techniques
with our solver-based approach, like the incremental model repair technique proposed
by Reder and Egyed (2012) and that has shown to be extremely efficient.

Transformation validation Embodying the intentions of the user in the specification
of a bidirectional model transformations is still a challenge, has been made evident
by the problems detected on the bidirectional semantics of QVT-R. One of the main
advantages of Echo is its ability to quickly provide useful feedback to the user and
act as a debugger for the specified transformations. In the future we plan to further
explore this debugging aspect of the tool by providing means to automatically verify
and validate correctness properties of model transformations. While some techniques
for the validation of QVT-R (Garcia, 2008; Cabot et al., 2012) and ATL (Büttner et al.,
2012) transformations have been proposed, our embedding of the transformations into
relational constraints and subsequent deployment over model finders renders such tasks
rather straight-forward to implement and extend.

220 CHAPTER 10: CONCLUSION

Appendix A

Relation Algebra Laws

Inclusion ⊆

R = S ≡ R ⊆ S ∧ S ⊆ R =-DEF

f ⊆ g ≡ f = g ≡ g ⊆ f ⊆-FUNCTIONAL

R ⊆ S ∧ S ⊆ T ⇒ R ⊆ T ⊆-TRANSITIVITY

Composition ◦

R ⊆ S ∧ T ⊆ U ⇒ R ◦ T ⊆ S ◦U ◦-MONOTONICITY

R ⊆ S ⇒ R ◦ T ⊆ S ◦ T
R ⊆ S ⇒ T ◦ R ⊆ T ◦ S

f ◦ R ⊆ S ≡ R ⊆ f ◦ ◦ S SHUNTING

R ◦ f ◦ ⊆ S ≡ R ⊆ S ◦ f

S ◦ R ⊆ T ≡ δS ◦ R ⊆ S ◦ ◦ T ⇐ img S ⊆ id SHUNTING (SIMPLE)

R ◦ S ◦ ⊆ T ≡ R ◦ δS ⊆ T ◦ S ⇐ img S ⊆ id

Meet ∩

X ⊆ (R ∩ S) ≡ (X ⊆ R) ∧ (X ⊆ S) ∩-UNIVERSAL

221

222 CHAPTER A: RELATION ALGEBRA LAWS

R ⊆ S ⇒ R ∩ T ⊆ S ∩ T ∩-MONOTONICITY

R ⊆ S ⇒ R ∩ T ⊆ S ∩-SMALLER

R ∩ R = ⊥ ∩-COMPLEMENT

(R ∩ S) ◦ T = (R ◦ T) ∩ (S ◦ T)⇐ R ◦ img T ⊆ R ∨ S ◦ img T ⊆ S

(R ∩ S) ◦ f = (R ◦ f) ∩ (S ◦ f) ∩-DISTRIBUTIVITY

T ◦ (R ∩ S) = (T ◦ R) ∩ (T ◦ S)⇐ ker T ◦ R ⊆ R ∨ ker T ◦ S ⊆ S

Join ∪

R ∪ S ⊆ T ≡ R ⊆ T ∧ S ⊆ T ∪-UNIVERSAL

(R ∪ S) ◦ T = (R ◦ T) ∪ (S ◦ T) ∪-DISTRIBUTIVITY

T ◦ (R ∪ S) = (T ◦ R) ∪ (T ◦ S)

R ⊆ S ⇒ R ⊆ S ∪ T ∪-LARGER

R ∪ R = > ∪-COMPLEMENT

R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T) ∩/∪-DISTRIBUTIVITY

R ∪ (S ∩ T) = (R ∪ S) ∩ (R ∪ T)

Inverse ◦

R ⊆ S ⇒ R◦ ⊆ S ◦ ◦-MONOTONICITY

(R◦)◦ = R ◦-INVOLUTION

(R ◦ S)◦ = S ◦ ◦ R◦ ◦-COMPOSITION

223

(R ∩ S)◦ = R◦ ∩ S ◦ ◦-MEET

(R ∪ S)◦ = R◦ ∪ S ◦ ◦-JOIN

Domain δ | Range ρ

ker R = R◦ ◦ R ker-DEF

img R = R ◦ R◦ img-DEF

δR = (R◦ ◦ R) ∩ id δ-DEF

ρR = (R ◦ R◦) ∩ id ρ-DEF

δ(R ◦ S) = δ(δR ◦ S) δ-COMPOSITION

ρ(R ◦ S) = ρ(R ◦ ρS) ρ-COMPOSITION

δ(R◦) = ρR δ/ρ-INVERSE

ρ(R◦) = δR

δ(R ∪ S) = δR ∪ δS δ/ρ-JOIN

ρ(R ∪ S) = ρR ∪ ρS
δ(R ∩ S) = (R◦ ◦ S) ∩ id δ/ρ-MEET

ρ(R ∩ S) = (R ◦ S ◦) ∩ id

R ⊆ S ⇒ δR ⊆ δS δ-MONOTONICITY

R ⊆ S ⇒ ρR ⊆ ρS ρ-MONOTONICITY

ρR ◦ R = R ρ-NEUTRAL

R ◦ δR = R δ-NEUTRAL

Coreflexives Φ

Φ ⊆ id Φ-DEF

R ⊆ S ◦ Φ ◦ T ⇒ R ⊆ S ◦ T Φ-LARGER

R ◦ S ⊆ T ⇒ R ◦ Φ ◦ S ⊆ T Φ-SMALLER

224 CHAPTER A: RELATION ALGEBRA LAWS

Φ ◦Ψ = Φ ∩Ψ Φ-COMPOSITION

Φ ◦ Φ = Φ Φ-REFLEXIVITY

Φ◦ = Φ Φ-INVERSE

ρΦ = Φ = δΦ Φ-DOMAIN/RANGE

R ◦ Φ ⊆ S ≡ R ◦ Φ ⊆ S ◦ Φ Φ-SHUNTING

Φ ◦ R ⊆ S ≡ Φ ◦ R ⊆ Φ ◦ S

Empty ⊥ | Universal >

⊥ ⊆ R ⊥-DEF

R ◦ ⊥ = ⊥ = ⊥ ◦ R ⊥-COMPOSITION

R ∪ ⊥ = R ⊥-NEUTRAL

R ∩ ⊥ = ⊥ ⊥-ABSORPTION

R ⊆ > >-DEF

R ∪ > = > >-ABSORPTION

R ∩ > = R >-NEUTRAL

> ◦ δR = > ◦ R δ-ELIMINATION

ρR ◦ > = R ◦ > ρ-ELIMINATION

Product M

X ⊆ R M S ≡ π1 ◦X ⊆ R ∧ π2 ◦X ⊆ S M-UNIVERSAL

R M S = (π◦1 ◦ R) ∩ (π◦2 ◦ S) M-DEF

π1 ◦ (R M S) = R ◦ δS ∧ π2 ◦ (R M S) = S ◦ δR M-CANCELLATION

π1 ◦ (f M g) = f ∧ π2 ◦ (f M g) = g

π1 M π2 = id M-REFLECTION

225

(R M S) ◦ T = (R ◦ T) M (S ◦ T)⇒ R ◦ img T ⊆ R ∨ S ◦ img T ⊆ S M-FUSION

(R M S) ◦ f = (R ◦ f) M (S ◦ f)

(R M S) ◦ Φ = (R ◦ Φ) M (S ◦ Φ)

(R M S)◦ (T MU) = (R◦ ◦ T) ∩ (S ◦ ◦U) M-INVERSE

δπ1 = id = δπ2 π-DOMAIN

δ(R M S) = δR ∩ δS M-DOMAIN

ρπ1 = id = ρπ2 π-RANGE

ρ(R M S) = (π◦1 ◦ R ◦ S ◦ ◦ π2) ∩ id M-RANGE

R M S = ⊥ ⇐ R = ⊥ ∨ S = ⊥ M-EMPTY

Sum O

X = R O S ≡ X ◦ i1 = R ∧X ◦ i2 = S O-UNIVERSAL

R O S = (R ◦ i1◦) ∪ (S ◦ i2◦) O-DEF

(R O S) ◦ i1 = R ∧ (R O S) ◦ i1 = S O-CANCELLATION

i1 O i2 = id O-REFLECTION

T ◦ (R O S) = (T ◦ R) O (T ◦ S) O-FUSION

(R O S) ◦ (T OU)◦ = (R ◦ T ◦) ∪ (S ◦U ◦) O-INVERSE

δi1 = id = δi2 i-DOMAIN

ρi1 = i1 O⊥ i-RANGE

226 CHAPTER A: RELATION ALGEBRA LAWS

ρi2 = ⊥ O i2

δ(R M S) = (i1 ◦ δR) O (i2 ◦ δS) O-DOMAIN

ρ(R M S) = ρR ∪ ρS O-RANGE

R O S = ⊥ ≡ R = ⊥ ∧ S = ⊥ O-EMPTY

Division /

R ◦ S ⊆ T ≡ R ⊆ T / S /-DEF

(R ∩ S) / T = (R / T) ∩ (S / T) /-DISTRIBUTIVITY

R / (S ∪ T) = (R / S) ∩ (R / T)

R / S = R ◦ S ◦ /-COMPLEMENT

R / id = R /-NEUTRAL

R /⊥ = > /-ABSORPTION

> / R = >

(S / R) ◦ R ⊆ S /-CANCELLATION

S ⊆ (S ◦ R) / R

(R / S) / T = R / (T / S) /-ASSOCIATIVITY

(R / S) ◦ f = R / (f ◦ ◦ S) /-FUSION

f ◦ ◦ (R / S) = (f ◦ ◦ R) / S

Bibliography

R. Abraham and M. Erwig. GoalDebug: A spreadsheet debugger for end users. In
Proceedings of the 29th International Conference on Software Engineering (ICSE 2007),
pages 251–260. IEEE, 2007.

S. M. Abramov and R. Glück. The universal resolving algorithm: Inverse computation in
a functional language. In Proceedings of the 5th International Conference on Mathematics

of Program Construction (MPC 2000), volume 1837 of LNCS, pages 187–212. Springer,
2000.

Y. Adachi. Intellisheet: a spreadsheet system expanded by including constraint. In
Proceedings of the 2002 IEEE CS International Symposium on Human-Centric Computing

Languages and Environments (HCC 2001), pages 173–179. IEEE, 2001.

K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On challenges of model transforma-
tion from UML to Alloy. Software and System Modeling, 9:69–86, 2010.

A. Anjorin, A. Cunha, H. Giese, F. Hermann, A. Rensink, and A. Schürr. Benchmarx.
In Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT

2014), volume 1133 of CEUR Workshop Proceedings, pages 82–86. CEUR-WS, 2014.

ATLAS group. ATL user guide. http://wiki.eclipse.org/ATL/User_Guide.

J. Backus. Can programming be liberated from the von Neumann style?: a functional
style and its algebra of programs. Communications of the ACM, 21:613–641, 1978.

R. Balzer. Tolerating inconsistency. In Proceedings of the 13th International Conference

on Software Engineering (ICSE 1991), pages 158–165. IEEE / ACM, 1991.

F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Transactions

on Database Systems, 6(4):557–575, 1981.

227

http://wiki.eclipse.org/ATL/User_Guide

228 Bibliography

D. M. J. Barbosa, J. Cretin, J. N. Foster, M. Greenberg, and B. C. Pierce. Matching
lenses: alignment and view update. In Proceedings of the 15th ACM SIGPLAN inter-

national conference on Functional programming (ICFP 2010), pages 193–204. ACM,
2010.

R. S. Bird and O. de Moor. Algebra of programming. Prentice Hall International series
in computer science. Prentice Hall, 1997. ISBN 978-0-13-507245-5.

A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a language for
updatable views. In Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems (PODS 2006), pages 338–347. ACM, 2006.

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt. Boomerang: re-
sourceful lenses for string data. In Proceedings of the 35th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (POPL 2008), pages 407–419. ACM,
2008.

A. Boronat, J. A. Carsí, and I. Ramos. Algebraic specification of a model transformation
engine. In Proceedings of the 9th International Conference on Fundamental Approaches

to Software Engineering (FASE 2006), volume 3922 of LNCS, pages 262–277. Springer,
2006.

C. Brabrand, A. Møller, and M. I. Schwartzbach. Dual syntax for XML languages.
In Proceedings of the 10th International Symposium on Database Programming Languages

(DBPL 2005), pages 27–41, 2005.

J. Bradfield and P. Stevens. Recursive checkonly QVT-R transformations with general
when and where clauses via the modal mu calculus. In Proceedings of the 15th In-

ternational Conference on Fundamental Approaches to Software Engineering (FASE 2012),
volume 7212 of LNCS, pages 194–208. Springer, 2012.

J. Bradfield and P. Stevens. Enforcing QVT-R with mu-calculus and games. In
Proceedings of the 16th International Conference on Fundamental Approaches to Software

Engineering (FASE 2013), volume 7793 of LNCS, pages 282–296. Springer, 2013.

P. Buneman, S. Khanna, and W. C. Tan. On propagation of deletions and annotations
through views. In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems (PODS 2002), pages 150–158. ACM, 2002.

Bibliography 229

F. Büttner, M. Egea, J. Cabot, and M. Gogolla. Verification of ATL transformations
using transformation models and model finders. In Proceedings of the 14th International

Conference on Formal Engineering Methods (ICFEM 2012), volume 7635 of LNCS, pages
198–213. Springer, 2012.

J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. Verification and validation of declarative
model-to-model transformations through invariants. Journal of Systems and Software,
83(2):283–302, 2012.

I. Cervesato. The Deductive Spreadsheet. Cognitive Technologies. Springer, 2013. ISBN
978-3-642-37746-4.

A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio. JTL: A bidirectional and
change propagating transformation language. In Proceedings of the Third International

Conference on Software Language Engineering (SLE 2010), volume 6563 of LNCS, pages
183–202. Springer, 2010.

E. F. Codd. A relational model of data for large shared data banks. Communications of

the ACM, 13(6):377–387, 1970.

A. Cunha and J. Visser. Transformation of structure-shy programs with application
to XPath queries and strategic functions. Science of Computer Programming, 76(6):
516–539, 2011.

A. Cunha, A. Garis, and D. Riesco. Translating between Alloy specifications and UML
class diagrams annotated with OCL. Software and System Modeling, 2013.

A. Cunha, N. Macedo, and T. Guimarães. Target oriented relational model finding. In
Proceedings of the 17th International Conference on Fundamental Approaches to Software

Engineering (FASE 2014), volume 8411 of LNCS, pages 17–31. Springer, 2014.

J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva. Bidirectional transfor-
mation of model-driven spreadsheets. In Proceedings of the 5th International Conference

on Theory and Practice of Model Transformations (ICMT 2012), volume 7307 of LNCS,
pages 105–120. Springer, 2012.

K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Terwilliger. Bidi-
rectional transformations: A cross-discipline perspective. In Proceedings of the 2nd

230 Bibliography

International Conference on Theory and Practice of Model Transformations (ICMT 2009),
volume 5563 of LNCS, pages 260–283. Springer, 2009.

U. Dayal and P. A. Bernstein. On the correct translation of update operations on
relational views. ACM Transactions on Database Systems, 7(3):381–416, 1982.

J. de Lara and E. Guerra. Formal support for QVT-Relations with coloured Petri nets. In
Proceedings of the 12th International Conference on Model Driven Engineering Languages

and Systems (MoDELS 2009), volume 5795 of LNCS, pages 256–270. Springer, 2009.

Z. Diskin. Algebraic models for bidirectional model synchronization. In Proceedings

of the 11th International Conference on Model Driven Engineering Languages and Systems

(MoDELS 2008), volume 5301 of LNCS, pages 21–36. Springer, 2008.

Z. Diskin. Model synchronization: Mappings, tiles, and categories. In Proceedings

of the 3rd International Summer School on Generative and Transformational Techniques in

Software Engineering (GTTSE 2011), volume 6491 of LNCS, pages 92–165. Springer,
2011.

Z. Diskin, Y. Xiong, and K. Czarnecki. From state- to delta-based bidirectional model
transformations: the asymmetric case. Journal of Object Technology, 10:6: 1–25, 2011.

J. Edwards, D. Jackson, and E. Torlak. A type system for object models. In Pro-

ceedings of the 12th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE 2004), pages 189–199. ACM, 2004.

H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Information preserving
bidirectional model transformations. In Proceedings of the 10th International Conference

on Fundamental Approaches to Software Engineering (FASE 2007), volume 4422 of LNCS,
pages 72–86. Springer, 2007.

J. N. Foster. Bidirectional Programming Languages. PhD thesis, University of Pennsylva-
nia, December 2009.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems, 29(3), 2007.

Bibliography 231

J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient lenses. In Proceedings of the 13th

ACM SIGPLAN International Conference on Functional programming (ICFP 2008), pages
383–396. ACM, 2008.

P. J. Freyd and A. Scedrov. Categories, allegories, volume 39 of Mathematical Library.
North-Holland, 1990. ISBN 978-0-444-70368-2.

M. F. Frias. Fork Algebras in Algebra, Logic and Computer Science, volume 2 of Advances

in Logic. World Scientific, 2002. ISBN 978-981-02-4876-5.

M. F. Frias, C. L. Pombo, and N. Aguirre. An equational calculus for Alloy. In
Proceedings of the 6th International Conference on Formal Engineering Methods (ICFEM

2004), volume 3308 of LNCS, pages 162–175. Springer, 2004.

D. Fylstra, L. Lasdon, J. Watson, and A. Waren. Design and use of the Microsoft Excel
Solver. Interfaces, 28(5):29–55, 1998.

M. Garcia. Formalization of QVT-Relations: OCL-based static semantics and Alloy-
based validation. In Proceedings of the Second Workshop on MDSD Today, pages 21–30.
Shaker Verlag, 2008.

A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood. Transformation: The
missing link of MDA. In Proceedings of the 1st International Conference on Graph

Transformation (ICGT 2002), volume 2505 of LNCS, pages 90–105. Springer, 2002.

H. Giese and R. Wagner. From model transformation to incremental bidirectional model
synchronization. Software and System Modeling, 8(1):21–43, 2009.

G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent
views. ACM Transactions on Database Systems, 13(4):486–524, 1988.

J. Greenyer and E. Kindler. Comparing relational model transformation technologies:
implementing Query/View/Transformation with triple graph grammars. Software and

System Modeling, 9(1):21–46, 2010.

J. Greenyer, S. Pook, and J. Rieke. Preventing information loss in incremental model
synchronization by reusing elements. In Proceedings of the 7th European Conference on

Modelling Foundations and Applications (ECMFA 2011), volume 6698 of LNCS, pages
144–159. Springer, 2011.

232 Bibliography

E. Guerra and J. de Lara. An algebraic semantics for QVT-Relations check-only
transformations. Fundamenta Informaticae, 114(1):73–101, 2012.

Á. Hegedüs, Á. Horváth, I. Ráth, M. C. Branco, and D. Varró. Quick fix generation for
DSMLs. In Proceedings of the 2011 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC 2011), pages 17–24. IEEE, 2011.

S. J. Hegner. An order-based theory of updates for closed database views. Annals of

Mathematics and Artificial Intelligence, 40:63–125, 2004.

F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, and Y. Xiong. Correctness
of model synchronization based on triple graph grammars. In Proceedings of the 14th

International Conference on Model Driven Engineering Languages and Systems (MoDELS

2011), volume 6981 of LNCS, pages 668–682. Springer, 2011.

F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, Y. Xiong, S. Gottmann,
and T. Engel. Model synchronization based on triple graph grammars: correctness,
completeness and invertibility. Software and System Modeling, pages 1–29, 2013.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidirectional-
izing graph transformations. In Proceeding of the 15th ACM SIGPLAN International

Conference on Functional Programming (ICFP 2010), pages 205–216. ACM, 2010.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano. GRoundTram: An integrated
framework for developing well-behaved bidirectional model transformations. In
Proceedings of the 26th IEEE/ACM International Conference on Automated Software Engi-

neering (ASE 2011), pages 480–483. IEEE, 2011.

M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric lenses. In Proceedings of

the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL 2011), pages 371–384. ACM, 2011.

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing struc-
tured documents based on bidirectional transformations. Higher-Order and Symbolic

Computation, 21(1–2):89–118, 2008.

Z. Hu, A. Schürr, P. Stevens, and J. F. Terwilliger. Dagstuhl seminar on bidirectional
transformations (BX). SIGMOD Record, 40(1):35–39, 2011.

Bibliography 233

Z. Huzar, L. Kuzniarz, G. Reggio, and J.-L. Sourrouille. Consistency problems in
UML-based software development. In Proceedings of the UML Modeling Languages

and Applications 2004 Satellite Activities, volume 3297 of LNCS, pages 1–12. Springer,
2004.

ikv++ technologies ag. Medini QVT. http://projects.ikv.de/qvt/.

D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, revised
edition, 2012. ISBN 978-0-262-01715-2.

M. Johnson, R. Rosebrugh, and R. Wood. Algebras and update strategies. Journal of

Universal Computer Science, 16(5):729–748, 2010.

F. Jouault and I. Kurtev. Transforming models with ATL. In Proceedings of the Satellite

Events at the MoDELS 2005 Conference (MoDELS 2005), volume 3844 of LNCS, pages
128–138. Springer, 2005.

F. Jouault and I. Kurtev. On the architectural alignment of ATL and QVT. In Proceedings

of the 2006 ACM Symposium on Applied Computing (SAC 2006), pages 1188–1195. ACM,
2006.

F. Jouault and M. Tisi. Towards incremental execution of ATL transformations. In
Proceedings of the 3rd International Conference on Theory and Practice of Model Trans-

formations (ICMT 2010), volume 6142 of LNCS, pages 123–137. Springer, 2010.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation tool.
Science of Computer Programming, 72(1–2):31–39, 2008.

M. Kassoff, L.-M. Zen, A. Garg, and M. R. Genesereth. PrediCalc: a logical spreadsheet
management system. In Proceedings of the 31st International Conference on Very Large

Data Bases (VLDB 2005), pages 1247–1250. ACM, 2005.

S. Kawanaka and H. Hosoya. biXid: a bidirectional transformation language for
XML. In Proceedings of the 11th ACM SIGPLAN International Conference on Functional

Programming (ICFP 2006), pages 201–214. ACM, 2006.

A. Keller. Choosing a view update translator by dialog at view definition time. In
Proceedings of the 12th International Conference on Very Large Data Bases (VLDB 1986),
pages 467–474. Morgan Kaufmann publishers, 1986.

http://projects.ikv.de/qvt/

234 Bibliography

A. Keller and J. D. Ullman. On complementary and independent mappings on databases.
In Proceedings of the Annual SIGMOD Meeting (SIGMOD 1984), pages 143–148. ACM,
1984.

M. Kleiner, M. D. D. Fabro, and P. Albert. Model search: Formalizing and automating
constraint solving in MDE platforms. In Proceedings of the 6th European Conference on

Modelling Foundations and Applications (ECMFA 2010), volume 6138 of LNCS, pages
173–188. Springer, 2010.

M. Konopasek and S. Jayaraman. The TK! Solver Book: A Guide to Problem-Solving in

Science, Engineering, Business, and Education. Osborne/McGraw-Hill, 1984.

M. Kuhlmann and M. Gogolla. From UML and OCL to relational logic and back. In
Proceedings of the 15th International Conference on Model Driven Engineering Languages

and Systems (MoDELS 2012), volume 7590 of LNCS, pages 415–431. Springer, 2012.

J. A. Larson and A. P. Sheth. Updating relational views using knowledge at view
definition and view update time. Information Systems, 16(2):145–168, 1991.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral
interface specification language for java. ACM SIGSOFT Software Engineering Notes,
31(3):1–38, 2006.

D. Liu, Z. Hu, and M. Takeichi. Bidirectional interpretation of XQuery. In Proceedings

of the 2007 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program

Manipulation (PEPM 2007), pages 21–30. ACM, 2007.

N. Macedo. Translating Alloy specifications to the point-free style. Master’s thesis,
Universidade do Minho, 2010.

N. Macedo and A. Cunha. Automatic unbounded verification of Alloy specifications
with Prover9. CoRR, abs/1209.5773, 2012.

N. Macedo and A. Cunha. Implementing QVT-R bidirectional model transformations
using Alloy. In Proceedings of the 16th International Conference on Fundamental Ap-

proaches to Software Engineering (FASE 2013), volume 7793 of LNCS, pages 297–311.
Springer, 2013.

N. Macedo and A. Cunha. Least-change bidirectional model transformation with
QVT-R and ATL. Software and System Modeling, 2014.

Bibliography 235

N. Macedo, H. Pacheco, and A. Cunha. Relations as executable specifications: taming
partiality and non-determinism using invariants. In Proceedings of the 13th Inter-

national Conference on Relational and Algebraic Methods in Computer Science (RAMiCS

2012), volume 7560 of LNCS, pages 146–161. Springer, 2012.

N. Macedo, T. Guimarães, and A. Cunha. Model repair and transformation with Echo.
In Proceedings of the 28th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2013), pages 694–697. IEEE, 2013a.

N. Macedo, H. Pacheco, A. Cunha, and J. N. Oliveira. Composing least-change lenses.
Electronic Communications of the EASST, 57, 2013b.

N. Macedo, A. Cunha, and T. Guimarães. Exploring scenario exploration. Submitted,
2014a.

N. Macedo, A. Cunha, and H. Pacheco. Towards a framework for multi-directional
model transformations. In Proceedings of the Workshops of the EDBT/ICDT 2014 Joint

Conference (EDBT/ICDT 2014), volume 1133 of CEUR Workshop Proceedings, pages
71–74. CEUR-WS, 2014b.

N. Macedo, H. Pacheco, A. Cunha, and N. R. Sousa. Bidirectional spreadsheet formulas.
In Proceedings of the 2013 IEEE Symposium on Visual Languages and Human Centric

Computing (VL/HCC 2014). IEEE, 2014c.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization
transformation based on automatic derivation of view complement functions. In Pro-

ceedings of the 12th ACM SIGPLAN International Conference on Functional Programming

(ICFP 2007), pages 47–58. ACM, 2007.

L. Meertens. Designing constraint maintainers for user interaction. Manuscript available
at http://www.kestrel.edu/home/people/meertens, 1998.

T. Mens and P. V. Gorp. A taxonomy of model transformation. Electronic Notes in

Theoretical Computer Science, 152:125–142, 2006.

A. Milicevic and D. Jackson. Preventing arithmetic overflows in Alloy. In Proceedings of

the 3rd International Conference on Abstract State Machines, Alloy, B, VDM, and Z (ABZ

2012), volume 7316 of LNCS, pages 108–121. Springer, 2012.

http://www. kestrel. edu/home/people/meertens

236 Bibliography

V. Montaghami and D. Rayside. Extending Alloy with partial instances. In ABZ, volume
7316 of LNCS, pages 122–135. Springer, 2012.

A. D. Morgan. On the syllogism, part III (1958). In P. L. Heath, editor, On the syllogism:

and other logical writings, Rare masterpieces of philosophy and science. Routledge,
1966.

S.-C. Mu and J. N. Oliveira. Programming from Galois connections. In Proceedings

of the 12th International Conference on Relational and Algebraic Methods in Computer

Science (RAMiCS 2011), volume 6663 of LNCS, pages 294–313. Springer, 2011.

S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bi-directional updating. In
Proceedings of the 2nd Asian Symposium on Programming Languages and Systems (APLAS

2004), volume 3302 of LNCS, pages 2–20. Springer, 2004.

J. P. Near and D. Jackson. An imperative extension to Alloy. In Proceedings of the 2nd

International Conference on Abstract State Machines, Alloy, B and Z (ABZ 2010), volume
5977 of LNCS, pages 118–131. Springer, 2010.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-

Order Logic. Springer, 2012. ISBN 978-3-540-43376-7.

J. N. Oliveira. Transforming data by calculation. In Proceedings of the 2nd International

Summer School on Generative and Transformational Techniques in Software Engineering

(GTTSE 2007), pages 134–195, 2007.

J. N. Oliveira. Extended static checking by calculation using the pointfree transform. In
Revised Tutorial Lectures of the International LerNet ALFA Summer School, volume 5520
of LNCS, pages 195–251. Springer, 2009.

OMG. MOF 2.0 Query/View/Transformation Specification (QVT), Version 1.1, January
2011a. Available at http://www.omg.org/spec/QVT/1.1/.

OMG. OMG Unified Modeling Language (UML), Version 2.4.1, August 2011b. Available
at http://www.omg.org/spec/UML/2.4.1/.

OMG. OMG Object Constraint Language (OCL), Version 2.3.1, January 2012. Available
at http://www.omg.org/spec/OCL/2.3.1/.

http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/2.3.1/

Bibliography 237

OMG. OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, June 2013.
Available at http://www.omg.org/spec/MOF/2.4.1/.

H. Pacheco. Bidirectional Data Transformation by Calculation. PhD thesis, Universidade
do Minho, 2012.

H. Pacheco and A. Cunha. Generic point-free lenses. In Proceedings of the 10th Inter-

national Conference on Mathematics of Program Construction (MPC 2010), volume 6120
of LNCS, pages 331–352. Springer, 2010.

H. Pacheco and A. Cunha. Calculating with lenses: optimising bidirectional transfor-
mations. In Proceedings of the 2011 ACM SIGPLAN Workshop on Partial Evaluation and

Program Manipulation (PEPM 2011), pages 91–100. ACM, 2011.

H. Pacheco, A. Cunha, and Z. Hu. Delta lenses over inductive types. Electronic

Communications of the EASST, 49, 2012.

H. Pacheco, N. Macedo, A. Cunha, and J. Voigtländer. A generic scheme and properties
of bidirectional transformations. CoRR, abs/1306.4473, 2013.

H. Pacheco, Z. Hu, and S. Fischer. Monadic combinators for “putback” style bidi-
rectional programming. In Proceedings of the 22th ACM SIGPLAN Workshop on Partial

evaluation and Program Manipulation (PEPM 2014), pages 39–50. ACM, 2014.

B. C. Pierce. Types and programming languages. MIT Press, 2002. ISBN 978-0-262-
16209-8.

J. Puissant, R. Straeten, and T. Mens. Resolving model inconsistencies using automated
regression planning. Software and System Modeling, pages 1–21, 2013.

D. Rayside, F. S.-H. Chang, G. Dennis, R. Seater, and D. Jackson. Automatic vi-
sualization of relational logic models. Electronic Communications of the EASST, 7,
2007.

A. Reder and A. Egyed. Computing repair trees for resolving inconsistencies in design
models. In Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering (ASE 2012), pages 220–229. ACM, 2012.

I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and K. Nakano. Toward bidirectional-
ization of ATL with GRoundTram. In Proceedings of the 4th International Conference

http://www.omg.org/spec/MOF/2.4.1/

238 Bibliography

on Theory and Practice of Model Transformations (ICMT 2011), volume 6707 of LNCS,
pages 138–151. Springer, 2011.

D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. IEEE Computer,
39(2):25–31, 2006.

A. Schürr. Specification of graph translators with triple graph grammars. In Proceedings

of the 20th International Workshop on Graph-Theoretic Concepts in Computer Science (WG

1994), volume 903 of LNCS, pages 151–163. Springer, 1994.

S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of model-
driven software development. IEEE Software, 20(5):42–45, 2003.

S. Sendall and J. Küster. Taming model round-trip engineering. In Proceedings of the

Workshop on Best Practices for Model-Driven Software Development, 2004.

P. Stevens. A landscape of bidirectional model transformations. In Proceedings of the 2nd

International Summer School on Generative and Transformational Techniques in Software

Engineering (GTTSE 2007), volume 5235 of LNCS, pages 408–424. Springer, 2007.

P. Stevens. Bidirectional model transformations in QVT: semantic issues and open
questions. Software and System Modeling, 9(1):7–20, 2010.

P. Stevens. A simple game-theoretic approach to checkonly QVT relations. Software

and System Modeling, 12(1):175–199, 2013.

P. Stevens. Bidirectionally tolerating inconsistency: Partial transformations. In Pro-

ceedings of the 17th International Conference on Fundamental Approaches to Software

Engineering (FASE 2014), volume 8411 of LNCS, pages 32–46. Springer, 2014.

R. V. D. Straeten, J. P. Puissant, and T. Mens. Assessing the Kodkod model finder
for resolving model inconsistencies. In Proceedings of the 7th European Conference on

Modelling Foundations and Applications (ECMFA 2011), volume 6698 of LNCS, pages
69–84. Springer, 2011.

A. Tarski and S. R. Givant. A Formalization of Set Theory Without Variables, volume 41 of
AMS Colloquium Publications. American Mathematical Society, 1987. ISBN 978-0-
8218-1041-5.

Bibliography 239

Tata Research Development and Design Centre. ModelMorf. http://www.tcs-trddc.
com/trddc_website/ModelMorf/ModelMorf.htm.

J. F. Terwilliger, A. Cleve, and C. Curino. How clean is your sandbox? - towards
a unified theoretical framework for incremental bidirectional transformation. In
Proceedings of the 5th International Conference on Theory and Practice of Model Transfor-

mations (ICMT 2012), volume 7307 of LNCS, pages 1–23. Springer, 2012.

E. Torlak and D. Jackson. Kodkod: A relational model finder. In Proceedings of the

13th International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS 2007), volume 4424 of LNCS, pages 632–647. Springer, 2007.

K. Voigt. Structural Graph-based Metamodel Matching. PhD thesis, University of Desden,
2011.

J. Voigtländer. Bidirectionalization for free! (pearl). In Proceedings of the 36th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2009),
pages 165–176. ACM, 2009.

J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang. Combining syntactic and semantic
bidirectionalization. In Proceeding of the 15th ACM SIGPLAN International Conference

on Functional Programming (ICFP 2010), pages 181–192. ACM, 2010.

M. Wang, J. Gibbons, K. Matsuda, and Z. Hu. Gradual refinement. In Proceedings of

the 10th International Conference on Mathematics of Program Construction (MPC 2010),
volume 6120 of LNCS, pages 397–425. Springer, 2010.

E. D. Willink, H. Hoyos, and D. S. Kolovos. Yet another three QVT languages. In
Proceedings of the 6th International Conference on Theory and Practice of Model Transfor-

mations (ICMT 2013), volume 7909 of LNCS, pages 58–59. Springer, 2013.

Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. Towards automatic model
synchronization from model transformations. In Proceedings of the 22nd IEEE/ACM

International Conference on Automated Software Engineering (ASE 2007), pages 164–173.
ACM, 2007.

Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei. Supporting automatic
model inconsistency fixing. In Proceedings of the 7th joint meeting of the European Soft-

http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm

240 Bibliography

ware Engineering Conference and the ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering (ESEC/FSE 2009), pages 315–324. ACM, 2009.

Index

Alloy

theme, 207
visualizer, 207

Alloy, 10, 28, 185, 192–206
Alloy Analyzer, 186, 187, 207

ATL, 9, 173–184
ATL rule

lazy, 176
matched, 176
unique lazy, 176

biased selector, 58
bidirectionalization, 33–34, 58, 178

combinatorial, 33
constraint-aware, 52, 58
constraint-oblivious, 58
semantic, 33
syntactic, 33

calculus of binary relations, 15, 28
cardinality constraints, 136
checking dependencies, 165–167
compositionality, 111
constraint maintainer, 6, 9, 32, 40

correct, 6, 36, 38
hippocratic, 38
invariant-constrained, 118–120, 122,

127, 128
least-change, 42, 43, 119, 122, 128,

131

multidirectional, 127–129, 161
total, 39
well-behaved, 38

distance function, 43, 130
graph-edit, 133–137, 159, 160, 199
operation-based, 131–133, 159, 161,

200
product, 135, 168
stable, 43

division, 93

Echo, 10, 185–214
Eclipse, 10, 188, 189
Eclipse Modeling Framework, 10, 189, 191
Ecore, 189

fork algebra, 29

image, 26
inter-model constraint, 2, 180, 187, 197
intra-model constraint, 2, 117, 118, 187,

195
invariant, 25

clause, 72
normalized product, 61, 62
spreadsheet, 72

kernel, 26
Kodkod, 28, 114, 136

least-change, 5–6, 42, 87, 89, 114, 159

241

242 Index

lens, 3, 32, 40, 178

acceptable, 5, 36

history-ignorant, 37

invariant-constrained, 8, 48, 54–56

least-change, 8, 87, 89–95

perfect complement, 100

regular, 36

safe, 39

stable, 5, 36

total, 39, 40

very well-behaved, 36

weakly-acceptable, 37, 48

well-behaved, 37

local state idiom, 195

logic

many-sorted, 16

order-sorted, 19–20

relational, 10, 15–28

maximum satisfiability problems, 137

model binding, 115

valid, 116

model finding, 9, 114–116, 120, 130

target-oriented, 122–123

model generation, 187

model repair, 114, 123–124, 187

least-change, 123, 124, 130

Model-driven Architecture, 7, 141

model-driven engineering, 2

multi-valued function, 25

normalized traceability, 78

OCL, 10, 189, 190

point-free

transform, 28, 205

point-free notation, 15, 28, 205

preorder, 27

stable, 42, 122, 129

QVT, 7, 143, 174

QVT Core, 143

QVT Operational, 143

QVT Relations, 7, 112, 141–171

QVT-R relation, 144

top, 145

reflexive transitive closure, 18

relation

anti-symmetric, 27

binary, 25–28

coreflexive, 26, 61–62

domain, 26

empty, 20

endo-, 26

equivalence, 27

identity, 17

injective, 27

n-ary, 16, 26

range, 26

reflexive, 26

simple, 27

surjective, 27

symmetric, 27

total, 27

transitive, 27

universal, 20

relation algebra, 15, 28

relation bounds, 116

relational expression, 16–18, 21

Index 243

relational formula, 18–19
round-tripping properties, 36–38

SAT solving, 136–137
scope, 120, 193, 201, 202
shrink, 93
skolemization, 132
sort, 16, 19
synchronizer, 124–127

invariant-constrained, 126
least-change, 126

transformation
batch, 188
bidirectional, 1, 2, 31–44
exhaustive, 40–41, 55–58, 91–92
model, 2
monotonic, 101
multidirectional, 127, 161–169
quasi monotonic, 103
quasi strictly increasing, 98
selective, 40, 54–55, 90–91
strictly increasing, 96
unidirectional, 2, 173

transitive closure, 18, 147
Triple Graph Grammars, 113
typed relational constraint, 117

view-update problem, 3, 32

244 Index

	Introduction
	Bidirectional Model Transformation
	Goals and Contributions
	Overview

	I Preliminaries
	Relational Logic
	Syntax
	Static Semantics
	Dynamic Semantics
	Binary Relation Properties
	Discussion

	Bidirectional Transformation
	Basic Concepts
	Bidirectional Transformation Properties
	Round-tripping Properties
	Totality
	Exhaustive Bidirectional Transformations
	Disambiguating Updates

	Discussion

	II Lens Framework
	Invariant-constrained Lenses
	Invariant-constrained Lens Framework
	Selective Invariant-constrained Lenses
	Exhaustive Invariant-constrained Lenses
	Constraint-Aware Frameworks

	Relational Framework
	Relational Invariant Language
	Executing Constrained Relational Expressions

	Spreadsheet Framework
	Domain-specific Invariants
	Executing Constrained Domain-specific Expressions

	Discussion

	Least-change Lenses
	Least-change Lens Framework
	Defining Least-change Lenses
	Reasoning about Least-change Lenses

	Criteria for Composing Least-change Lenses
	Selective Composition
	Exhaustive Composition

	Discussion

	III Maintainer Framework
	Maintaining Constraints
	Constraint Maintaining with Model Finding
	Model Finding
	Embedding Constraints
	Target-oriented Model Finding

	Beyond Bidirectional Transformation
	Deploying Preference Orders
	Least-change as Iterative MF
	Internal TO-MF

	Discussion

	Deploying QVT-R Transformations
	QVT Relations
	Basic Concepts
	QVT-R Transformation Examples

	Checking Semantics
	Standard Checking Semantics
	Relation Invocations

	Enforcement Semantics
	Standard Enforcement Semantics
	Least-change Enforcement Semantics

	Multidirectional QVT-R Transformations
	QVT-R Multidirectional Checking Semantics
	Extending the Standard Semantics
	QVT-R Enforcement Semantics

	Discussion

	Bidirectionalizing ATL Transformations
	ATL Language
	Bidirectionalization Technique
	Inferring a Consistency Relation
	Discussion

	The Echo Framework
	Echo Overview
	Architecture
	Embedding TRCs in Alloy
	A Brief Introduction to Alloy
	Embedding Intra-model Constraint TRCs
	Embedding Inter-model Constraint TRCs
	Embedding Metrics
	Executing the Semantics
	Optimizing Alloy Models

	Visualizing Model Instances
	Evaluation
	Discussion

	Conclusion
	Main Contributions
	Final Remarks
	Future Work

	Relation Algebra Laws
	Bibliography
	Index of Concepts

