
Relations as Executable Specifications: Taming
Partiality and Non-determinism Using Invariants

Nuno Macedo, Hugo Pacheco, Alcino Cunha
{nfmmacedo,hpacheco,alcino}@di.uminho.pt

Techn. Report TR-HASLab:03:2012

Jul. 2012

FATBIT: Foundations, Applications and Tools for Bidirectional
Transformation

(Project FCOMP-01-0124-FEDER-020532)

HASLab - High-Assurance Software Laboratory
Universidade do Minho

Campus de Gualtar – Braga – Portugal
http://haslab.di.uminho.pt

TR-HASLab:03:2012
Relations as Executable Specifications: Taming Partiality and Non-determinism
Using Invariants
by Nuno Macedo, Hugo Pacheco, Alcino Cunha

Abstract

The calculus of relations has been widely used in program specification and reason-
ing. It is very tempting to use such specifications as running prototypes of the de-
sired program, but, even considering finite domains, the inherent partiality and non-
determinism of relations makes this impractical and highly inefficient. To tame par-
tiality we prescribe the usage of invariants, represented by coreflexives, to characterize
the exact domains and codomains of relational specifications. Such invariants can be
used as pre-condition checkers to avoid runtime errors. Moreover, we show how such
invariants can be used to narrow the non-deterministic execution of relational specifi-
cations, making it viable for a relevant class of problems. In particular, we show how
the proposed techniques can be applied to execute specifications of bidirectional trans-
formations, a domain where partiality and non-determinism are paramount.

1 Introduction
The relational calculus provides a more natural way to specify programs than purely
functional formalisms: most so-called functions in computer science are actually partial,
and non-determinism is many times an essential characteristic of the program. In par-
ticular, since its first axiomatization by Tarski, a point-free (PF) version of the calculus
of relations has been used in a variety of areas of computer science [?, ?, ?] in order to
specify and reason about programs, due to its high simplicity and ease of manipulation.

However, relational specifications are frequently not amenable for execution: with
partiality the behavior of the program may become unpredictable and give rise to run-
time errors, while non-determinism may produce infinite runs without returning a sin-
gle valid value. For instance, consider the expression (idM id)◦◦(length◦Mhead◦):Nat→
[Nat], where head returns the first element of a list, length its length, and ◦ and M are
the converse and split of relations, respectively. Given a natural n , this expression cal-
culates a list with length n , whose first element is also n . This is not a total relation as
it is not defined for the value 0, since no list with length 0 could have the same 0 as its
head. We resort to the converse from the relational calculus to generate these lists: head◦

generates all lists with the input value at its head, while length◦ generates all lists with
the given length; both these operations are total and non-deterministic. The expression
(idM id)◦ is the converse of the duplication operation: it is a partial function that takes as
input tuples with two copies of the same element, and returns such element. In an un-
bounded execution, length◦ and head◦ would evaluate freely until they both return the
same list that could be consumed by (idM id)◦. Such execution may not even terminate,
since, for instance, head◦ could be generating all possible lists by increasing length.

If we are able to determine exactly the domain (and range)1 of an expression, such
mechanism can be used to predict the behavior of partial expressions by being used as
a pre-condition checker. In this case, we are able to calculate both the domain (n 6= 0)
and the range (length l = head l , which also implies that l is not empty) of this expres-
sion. Moreover, these domains can also be propagated down the expression to the inner
combinators, avoiding unnecessary computations. In this case, due to (idM id)◦, length◦

and head◦ must generate the same list, and this information can be used to narrow their
executions. In particular, given an input n , we can either restrict the values generated
by length◦ to those lists whose head is n or, dually, restrict head◦ to produce lists with
length n . This will result in an efficient and complete (in the sense that all values will
eventually be produced) non-deterministic evaluation.

In this paper, we propose a PF relational framework whose type system is enhanced
with the introduction of invariants (represented by coreflexives), allowing the definition
of more refined data-types, in order to address the abovementioned issues. To carry this
development, a powerful and simple calculus of invariants based on the relational PF
notation [?] is harnessed into a type-inference and type-checking algorithm that works
for many practical examples. The inferred invariants are also used to optimize the ex-
ecution of a relational expression, making them viable as running prototypes of the
specified program.

Our framework proves to be particularly useful in the area of bidirectional transfor-
mations, where partiality and non-determinism play an important role. In particular,
we put it to use in the specification of lenses [?], one of the most successful bidirectional
transformation approaches. Using invariants to precisely characterize the domain and

1By domain and range we refer to the exact set of values which a relation consumes and pro-
duces, respectively.

0

· ◦ · : (B → C)→ (A→ B)→ (A→ C) id : A→ A
· ∩ · : (A→ B)→ (A→ B)→ (A→ B) π1 : A× B → A
· ∪ · : (A→ B)→ (A→ B)→ (A→ B) π2 : A× B → B
· M · : (A→ B)→ (A→ C)→ (A→ B × C) i1 : A→ (A + B)
· O · : (B → A)→ (C → A)→ (B + C → A) i2 : B → (A + B)
> : A→ B ! : A→ 1
⊥ : A→ B · : B → (A→ B)
·◦ : (A→ B)→ (B → A)

Figure 1: PF relational combinators.

range of a lens, we can safely extend the class of expressible transformations, namely
by allowing unrestricted usage of duplication, a well-known problematic feature in
such frameworks. Also, propagation of such invariants allows us to efficiently execute
the non-deterministic update propagation function for a wider class of transformations
than before [?, ?].

Section ?? introduces the PF relational calculus that is at the core of our framework.
Section ?? presents our optimizations on invariant calculation and non-deterministic
evaluation. Section ?? shows how standard recursion patterns can also be supported.
In Section ?? we apply our framework in the specification of bidirectional transforma-
tions, obtaining non-deterministic lenses enhanced with invariants. Finally, Section ??
discusses related work and Section ?? draws the final conclusions and points directions
for future work.

2 Point-free Relational Calculus
Relation algebra [?, ?, ?] is a key ingredient in the formalization of our framework. It
generalizes the well-known PF functional calculus, and allows us to reason about par-
tiality and non-determinism using a powerful set of algebraic laws.

2.1 Syntax and Semantics
A relation R is said to have type A→ B if it is the subset of the Cartesian product A×B .
We write b R a if the pair (a, b) is in R. Relations can be built using the combinators
presented in Figure ??. The key combinator is composition, that given R : A → B and
S : B → C builds a relation S ◦ R : A → C , which is associative and has the identity
relation id : A→ A as neutral element (we thus have a category of relations). Relations
R : A → B and S : A → B can be combined using the standard intersection and union
operators. Every relation R : A→ B also possesses a well-defined converse R◦ :B → A.
For any two types A and B , > : A → B is the largest relation over those types (their
Cartesian product) and ⊥ : A → B the smallest (the empty relation). A special case of
> with final type 1 as range is denoted as ! : A → 1. For any value b ∈ B , the constant
relation b : A→ B always returns b.

We also have products and coproducts (or sums). For any two relations R : A → B
and S : A → C , the split combinator is defined as R M S : A → B × C . The left and

1

b JS ◦ RK a = ∃ c. b JSK c ∧ c JRK a a ′ JidK a = a ≡ a ′

b JR ∩ SK a = b JRK a ∧ b JSK a a ′ Jπ1K (a, b) = a ≡ a ′

b JR ∪ SK a = b JRK a ∨ b JSK a b′ Jπ2K (a, b) = b ≡ b′

(b, c) JR M SK a = b JRK a ∧ c JSK a (Left a ′) Ji1K a = a ≡ b
a JR O SK (Left b) = a JRK b (Left a ′) Ji2K b = False
a JR O SK (Right c) = a JSK c (Right b′) Ji1K a = False
a JR◦K b = b JRK a (Right b′) Ji2K b = a ≡ b
b J⊥K a = False 1 J!K a = True
b J>K a = True b′ JbK a = b ≡ b′

Figure 2: Semantics as predicates.

J||||S ◦ R ||||K a = {b | c ← J||||R ||||K a, b ← J||||S ||||K c} J|||| id ||||K a = {a }
J||||R ∩ S ||||K a = {b | b ← J||||R ||||K a, b JSK a } J||||π1 ||||K (a, b) = {a }
J||||R ∪ S ||||K a = J||||R ||||K a ∪ J||||S ||||K a J||||π2 ||||K (a, b) = {b}
J||||R M S ||||K a = {(b, c) | b ← J||||R ||||K a, c ← J||||S ||||K a } J|||| i1 ||||K a = {Left a }
J||||R O S ||||K (Left b) = J||||R ||||K b J|||| i2 ||||K b = {Right b}
J||||R O S ||||K (Right c) = J||||S ||||K c J|||| ! ||||K a = {1}
J||||R◦ ||||K b = {a | a ← A, a JR◦K b} J|||| b ||||K a = {b}
J|||| > ||||K a = B J|||| ⊥ ||||K a = { }

Figure 3: Semantics as non-deterministic functions.

right components of a pair can be projected with π1 : A× B → A and π2 : A× B → B ,
respectively. Dually, for any two relations R : B → A and S : C → A, the either
combinator is defined as R O S : B + C → A. Left and right tagged elements can be
built with i1 : A→ A + B and i2 : B → A + B , respectively. Two derived combinators
are the product and sum bifunctors, defined respectively as R×S = R ◦π1 MS ◦π2 and
R + S = i1 ◦RO i2 ◦ S . Some of the laws ruling the PF relational calculus are presented
in the accompanying technical report Appendix ??.

The formal semantics of relational expressions as membership predicates is given
in Figure ??. Notice that, apart from composition, this semantics can be directly and
efficiently executed. If we assume that all types are finite, composition could also be
implemented but would obviously be very inefficient. An alternative semantics as non-
deterministic functions (functions returning sets of values) is more useful if we intend
to execute relational specifications. It can trivially be defined by set comprehension as
J||||R : A → B ||||K a = {b | b JRK a, b ← B }, but such definition is highly inefficient and
cannot be used in practice. Figure ?? presents an alternative optimized definition that
avoids the exhaustive search over B for all combinators but the converse. Again, this
semantics can be directly implemented, for example using the non-determinism monad
in a functional language like Haskell. However, given a value a , even if we are only
interested in just one of the results of J||||R ||||K a , there are still several concerns for efficiency
(besides the converse) that make such definition impractical. For example, in the left-
biased implementation of intersection we still need to iterate over all results of R until

2

a suitable value that also satisfies S is found.
The kernel of a relation is defined as ker R = R◦ ◦ R, while its counter-part, the

image, is defined as img R = R ◦R◦. A relation R is said to be reflexive if it is at least the
identity (id ⊆ R), and coreflexive if it is at most the identity (R ⊆ id). Coreflexives will be
denoted by upper-case Greek letters (Ψ,Φ,Ω, ...). Relations can be classified according
to the properties of their kernel and image. A relation is said to be total or surjective if its
kernel and image are reflexive, respectively, and injective or simple if its kernel or image
are coreflexive, respectively. Functions arise as the particular class of relations that are
total and simple. As a convention, the identifiers of relational expressions that happen
to be simple will begin with a lower-case. So, while R,S ,T , ... are typical identifiers for
relational expressions, f , g , h, ... will denote simple relations (partial functions).

2.2 Predicates as Coreflexives
Coreflexives act as filters of data and can be used to model predicates (and thus invari-
ants): values a for which a JΦK a satisfy the predicate Φ. We will often see them as
sets and denote predicate satisfiability using just set membership a ∈ JΦK ≡ a JΦK a .
Coreflexives have interesting algebraic properties that simplify their manipulation like,
for example, Φ◦ = Φ, Φ ◦ Φ = Φ, and Φ ◦ Ψ = Φ ∩ Ψ. Evaluation of coreflexives also
reduces to membership test as J||||Φ ||||K a = {a | a ∈ JΦK}, meaning that its evaluation is
typically efficient. The only problematic case is again composition, but as we will see
shortly most of the compositions appearing in coreflexives can be evaluated efficiently.
In particular, composition of coreflexives is just a conjunction of predicates.

A predicate on products can always be specified by a relation between its elements.
Any relation R : A → B can be lifted to a coreflexive [R] : A × B → A × B defined as
[R] = (π◦2 ◦R ◦ π1)∩ id. Another way to put it is to say that [R] is the largest coreflexive
Φ such that π2 ◦ Φ ⊆ R ◦ π1, since Φ ⊆ [R]⇔ π2 ◦ Φ ◦ π◦1 ⊆ R.

From this we can derive many interesting properties of this combinator, such as
[>] = id, [⊥] = ⊥, the cancellation rules π1 ◦ [R] = (id M R)◦ and π2 ◦ [R] = (R◦ M id)◦,
and [π2 ◦Φ◦π◦1] = Φ for any coreflexive on pairs Φ. For example, using this combinator
we can trivially specify the predicate stating that both components of a pair are equal
using the coreflexive [id] :A×A→ A×A. Given coreflexives Φ:A→ A and Ψ:B → B ,
their product is the coreflexive Φ × Ψ : A × B → A × B that holds for pairs whose left
element satisfies Φ and whose right element satisfies Ψ. It can alternatively be specified
as Φ×Ψ = [Ψ ◦ > ◦ Φ].

Coreflexives on sums are considerably simpler, since predicates on sums can always
be specified using the sum combinator. The coreflexive Φ + Ψ : A + B → A + B holds
for left values that satisfy Φ and for right values that satisfy Ψ.

Every coreflexive has a complement Φ : A → A such that a JΦK a ⇔ ¬(a JΦK a). A
useful combinator for coreflexives is the guard Φ? = (ΦOΦ)◦ :A→ A+A that tags the
input as a left or right value in a sum, depending on the result of testing Φ. Composed
with an either, it allows the representation conditionals, i.e., (R O S) ◦ Φ? applies R if
the input is in Φ, and S otherwise.

In this paper, we will use coreflexives to specify the invariants that characterize the
domain and range of a relation, thus type-inference will consist of the calculating the
domain/range of a relation, while type-checking will consist of membership tests on
those coreflexives. Given a relation R : A → B, its domain denoted as δR : A → A,
is the coreflexive δR = ker R ∩ id. Dually, its range, denoted as ρR : B → B , is the
coreflexive ρR = img R ∩ id. If R is total, its kernel is larger than id and thus δR =
ker R ∩ id = id, as expected, while if R is simple, its image is smaller than the identity

3

δid = id δΦ = Φ ρid = id ρΦ = Φ
δ⊥ = ⊥ δ> = id ρ⊥ = ⊥ ρ> = id
δ(R ∩ S) = R◦ ◦ S ∩ id δπ1 = id ρ(R ∩ S) = R ◦ S◦ ∩ id ρπ1 = id
δ(R ∪ S) = δR ∪ δS δπ2 = id ρ(R ∪ S) = ρR ∪ ρS ρπ2 = id
δ(R M S) = δR ∩ δS δi1 = id ρ(R M S) = [S ◦ R◦] ρi1 = id +⊥
δ(R O S) = δR + δS δi2 = id ρ(R O S) = ρR ∪ ρS ρi2 = ⊥+ id
δ(R◦) = ρR δ! = id ρb = b ∩ id ρ! = id1
δ(Φ?) = id δb = id ρ(Φ?) = Φ + Φ ρ(R◦) = δR
δ(R ◦ S) = δ(δR ◦ S) ρ(R ◦ S) = ρ(R ◦ ρS)

Figure 4: Domain and range of PF combinators.

and thus ρR = img R ∩ id = img R. These definitions simplify in a similar way for
surjective and injective relations.

A relation R : A → B that is only defined for inputs satisfying Φ and always pro-
duces outputs satisfying Ψ (R ⊆ Ψ ◦ > ◦ Φ) will be typed as R : AΦ → BΨ, or just
R : Φ→ Ψ if the underlying types are irrelevant or clear from the context.

3 Optimizations
In the previous section, we have shown how the domain and range of a relation can
be specified. However, such specifications involve relational compositions that hinder
their efficient execution as pre- and pos-condition checkers of a relation. In this section
we will first show how the calculation of the domain and range can be optimized to
yield expressions more amenable to execution. Then, we will show how we can take
advantage of such domain and range expressions to optimize the semantics defined in
Figure ??.

3.1 Optimizing Domain and Range Calculation
For relational programs written using the PF combinators from Figure ??, their respec-
tive domains and ranges can be defined by induction as presented in Figures ?? and ??.
To avoid infinite reductions in compositions, the laws of Figure ?? should be priori-
tized. These laws detail how the domain and range of a combinator should be further
restricted in presence of a coreflexive.

The expressions resulting from these definitions are more amenable for execution
(and consequently, type-checking) than the default domain and range definitions be-
cause most of the compositions are eliminated. The remaining ones (except for the
range of the split combinator) fall in the special case R◦ ◦ U ◦ S , that, as shown in [?],
can be evaluated deterministically as a JR◦ ◦ U ◦ SK b = (R a) JU K (S b) if R and
S are functions. After applying the laws of Figures ?? and ??, we further simplify the
resulting expression using a rewrite system similar to one previously developed for the
optimization of PF functional expressions [?, ?]. Essentially, this rewrite system applies
some of the laws from Appendix ?? as unidirectional rewrite rules oriented from left to
right. This simplification phase can further eliminate problematic compositions. If the

4

δ(Φ ◦Ψ) = Φ ∩Ψ ρ(Ψ ◦ Φ) = Ψ ∩ Φ
δ(Φ ◦ id) = Φ ρ(id ◦ Φ) = Φ

δ(Φ ◦ >) =

{
⊥ if Φ = ⊥
(> ◦ Φ ◦ >) ∩ id otherwise ρ(> ◦ Φ) =

{
⊥ if Φ = ⊥
(> ◦ Φ ◦ >) ∩ id otherwise

δ(Φ ◦ ⊥) = ⊥ ρ(⊥ ◦ Φ) = ⊥
δ(Φ ◦ R◦) = ρ(R ◦ Φ) ρ(R◦ ◦ Φ) = δ(Φ ◦ R)
δ(Φ ◦ (R ∪ S)) = δ(Φ ◦ R) ∪ δ(Φ ◦ S) ρ((R ∪ S) ◦ Φ) = ρ(R ◦ Φ) ∪ ρ(S ◦ Φ)
δ(Φ ◦ (R ∩ S)) = (R◦ ◦ Φ ◦ S) ∩ id ρ((R ∩ S) ◦ Φ) = (R ◦ Φ ◦ S◦) ∩ id
δ(Φ ◦ π1) = Φ× id ρ(π1 ◦ [U]) = δU
δ(Φ ◦ π2) = id× Φ ρ(π2 ◦ [U]) = ρU
δ([U] ◦ (RMS))=(δS ◦R◦ ◦U ◦ ◦S ◦ δR) ∩ id ρ((R M S) ◦ Φ) = [S ◦ Φ ◦ R◦]
δ((Φ + Ψ) ◦ i1) = Φ ρ(i1 ◦ Φ) = Φ +⊥
δ((Φ + Ψ) ◦ i2) = Ψ ρ(i2 ◦ Φ) = ⊥+ Φ
δ(Φ ◦ (R O S)) = δ(Φ ◦ R) + δ(Φ ◦ S) ρ((ROS) ◦ (Φ + Ψ))=ρ(R ◦Φ) ∪ ρ(S ◦Ψ)

δ(Φ ◦ b) =

{
id if b JΦK b
⊥ otherwise ρ(b ◦ Φ) =

{
⊥ if Φ = ⊥
b ◦ Φ ◦ b◦ otherwise

δ(Φ◦!) =

{
id if 1 JΦK 1
⊥ otherwise ρ(! ◦ Φ) =

{
⊥ if Φ = ⊥
! ◦ Φ◦!◦ otherwise

δ((Φ + Ψ) ◦ Ω?) = (Φ ∩ Ω) ∪ (Ψ ∩ Ω) ρ(Ψ ? ◦Φ) = (Ψ ∩ Φ) + (Ψ ∩ Φ)

Figure 5: Domain and range of compositions.

final expression still contains some of those, our implementation can issue a warning
informing that its usage as an invariant checker may not be feasible.

This rewrite system is also used to perform the equality test Φ = ⊥ that occurs in
some of the definitions in Figure ??. However, since such test may not be not decidable,
i.e., the rewrite system may not be able to reduce into ⊥ an expression that is seman-
tically equivalent to ⊥, if we can not show that Φ is empty, the default definitions of
range and domain are applied instead. Still, for some cases when we can prove that
Φ 6= ⊥, the range of (for instance) ! ◦ Φ and > ◦ Φ can be further simplified to id.

3.2 Optimizing Non-deterministic Executions
The executable semantics of Figure ?? can be optimized by propagating the domains
and ranges of the outer expressions down to the inner expressions, in order to avoid
the computation of intermediate values that are valid for sub-expressions but are not
valid for the global expression. Figure ?? shows how this propagation can be per-
formed (A and B denote the set of all elements of the respective type), where input
values are assumed to have already passed the pre-condition test, i.e., for an evaluation
J||||R : Φ→ Ψ ||||K a , we assume that a ∈ Φ. For instance, in the evaluation of R ◦ S we now
narrow the evaluation of S to return only values in the domain of R (and vice-versa),
thus avoiding generation of values not accepted by R; since the split R M S is only de-
fined for values in the domain of both R and S , the domain invariant of each branch
takes the domain of the other, in order to disregard invalid values during execution. The
converse of expressions is presented in Figure ??, where each case is analyzed individu-
ally to achieve better efficiency. We omit the evaluation of the converse of idem-potent
combinators (id,Ω,>,⊥) and of combinators whose converse can be easily propagated

5

J||||R ◦ S : Φ→ Ψ ||||K a = {b | c ← J||||S : Φ→ δR ||||K a, b ← J||||R : ρS → Ψ ||||K c}
J||||R ∩ S : Φ→ Ψ ||||K a = {b | b ← J||||R : Φ ∩ δS → ρ(Ψ ◦ S ◦ a) ||||K a }
J||||R ∪ S : Φ→ Ψ ||||K a = J||||R : Φ→ Ψ ||||K a ∪ J||||S : Φ→ Ψ ||||K a
J||||R M S : Φ→ [U] ||||K a = {(b, c) | b ← J||||R : Φ ∩ δS → ρ(U ◦ ◦ S ◦ a) ||||K a,

c ← J||||S : Φ ∩ δR → ρ(U ◦ b) ||||K a }
J|||| id : Φ→ Ψ ||||K a = J||||Ψ ||||K a J||||π1 : [U]→ Ψ ||||K (a, b) = J||||Ψ ||||K a
J||||Ω : Φ→ Ψ ||||K a = {a ′ | a ′ ← J||||Ω ||||K a, a ′ JΨK a ′} J||||π2 : [U]→ Ψ ||||K (a, b) = J||||Ψ ||||K b
J|||| i1 : Φ→ Ψ + Ω ||||K a = {Left a ′ | a ′ ← J||||Ψ ||||K a } J|||| ⊥ : Φ→ Ψ ||||K a = { }
J|||| i2 : Φ→ Ψ + Ω ||||K b = {Right b′ | b′ ← J||||Ω ||||K b} J|||| > : Φ→ Ψ ||||K a = {b | b ← B , b JΨK b}
J||||R O S : Φ + Ω→ Ψ ||||K (Left b) = J||||R : Φ→ Ψ ||||K b J|||| b : Φ→ Ψ ||||K a = J||||Ψ ||||K b
J||||R O S : Φ + Ω→ Ψ ||||K (Right c) = J||||S : Ω→ Ψ ||||K c J|||| ! : Φ→ Ψ ||||K a = J||||Ψ ||||K 1

Figure 6: Optimized non-deterministic evaluation.

J|||| !◦ : Φ→ Ψ ||||K 1 = {a | a ← A, a JΨK a } J|||| b◦ : Φ→ Ψ ||||K b = {a | a ← A, a JΨK a }
J||||π◦1 : Φ→ [U] ||||K a = {(a, b) | b ← J||||U ||||K a } J||||π◦2 : Φ→ [U] ||||K b = {(a, b) | a ← J||||U ◦ ||||K b}
J|||| i◦1 : Φ +⊥ → Ψ ||||K (Left a) = J||||Ψ ||||K a J|||| i◦2 :⊥+ Φ→ Ψ ||||K (Right b) = J||||Ψ ||||K b
J|||| (R M S)◦ : [U]→ Ψ ||||K (b, c) = {a | a ← J||||R◦ : ρU → ρ(Ψ ◦ S◦ ◦ c) ||||K b}
J|||| (R O S)◦ : Φ→ Ψ + Ω ||||K a = J|||| i1 ◦ R◦ : Φ→ Ψ ||||K a ∪ J|||| i2 ◦ S◦ : Φ→ Ω ||||K a

Figure 7: Optimized non-deterministic evaluation of converses.

(R ◦S ,R∩S ,R∪S) and thus can be executed by the definitions in Figure ??. The proof
of the semantic equivalence between the two versions for some combinators is shown
in Appendix ??, in the sense that J||||R : Φ → Ψ ||||K = J||||Ψ ◦ R ◦ Φ ||||K. The remaining can be
proven by a similar technique.

The evaluation of the primitive combinators is, for most cases, fairly obvious, since
it consists in their standard definition, with a membership test for the desired invariant.
Note however that all invariant tests occur at the primitives, meaning that infeasible
values are not passed through higher-order combinators. Nevertheless, redundant val-
ues can still be generated, even if they produce a valid output. For instance, in the
expression b ◦ >, >will generate all possible values, even though they will all be trans-
formed into the same value by b. In many of such cases, the rewrite system already
presented can be used to remove redundant value generation. In this case, b ◦ >would
be reduced to b.

The most interesting narrowing cases are those of the meet and the converse of split
(which is itself a meet). For these cases, with the definition from Figure ??, the R branch
would execute independently of the invariants of S and its output would be tested in
S . Naturally, the unconstrained evaluation of R can be very inefficient and may process
and generate infeasible values that are not in the domain or range of S , respectively.
Using invariants, we restrict R to the domain of S and constrain the values generated
by R to only those that would also be produced by S . For instance, in the execution of
the converse of the split J|||| (R M S)◦ ||||K (a, b), instead of having J||||R◦ ||||K a running freely, it is
restricted to produce values that would also be produced by J||||S◦ ||||K b, as specified by its

6

post-condition ρ(Ψ◦S◦◦b). Again, a right-biased implementation would be equivalent.

4 Recursive Relations with Invariants
In this section, we investigate the construction of expressions and the calculation of
invariants for recursive types. Most user-defined data types can be defined as fixed
points of regular functors. Given a base functor, the inductive type generated by its
least fixed point will be denoted by µF . A regular functor is either the identity functor
Id (denoting recursive invocation), the constant functor A, the lifting of the sum ⊕ and
product bifunctors ⊗ , or the composition of functors � . For example, for lists we
have [A] = µL, where L = 1⊕ (A⊗ Id), and for naturals N = µN, where N = 1⊕ Id.
Associated with each data type µF we have also two unique functions inF :F µF → µF
and outF : µF → F µF , that are each other’s inverse. The list constructors can be
defined as nil = inL ◦ i1 and cons = inL ◦ i2, (thus nil O cons = inL), and for naturals
as zero = inN ◦ i1 and succ = inN ◦ i2. They allow us to encode and inspect values
of the given type, respectively. The application of out results on a one-level unfolding
to a sums-of-products representation capable of being processed with PF combinators.
For a functor F and a function f : A → B , the functor mapping F f : F A → F B
is a function that maps f over the instances of the type argument, and can be defined
inductively over the structure of the functor. Since in and out are bijections, they are
total and surjective, we have that:

δ(Φ ◦ in) = out ◦ Φ ◦ in
δ(out ◦ Φ) = in ◦ Φ ◦ out

ρ(in ◦ Φ) = in ◦ Φ ◦ out
ρ(out ◦ in) = out ◦ Φ ◦ in

Instead of defining expressions by general recursion, we resort to well-known recur-
sion patterns, namely folds (catamorphisms) and unfolds (anamorphisms), that encode
the recursion patterns of iteration and coiteration, respectively. The fold (|R|)F :µF → A
consumes values of a recursive type µF according to an algebra R :F A→ A, while the
dual unfold bd(S)ceF : A → µF produces elements of a recursive type µF according to a
coalgebra S :A→ F A, and are the unique relations that make the hereunder diagrams
commute:

µF

(|R|)F
��

outF // F µF

F (|R|)F
��

A F A
R

oo

µF F µF
inFoo

A

bd(S)ceF

OO

S
// F A

F bd(S)ceF

OO

As expected, these recursion patterns preserve the simplicity of their argument alge-
bras or coalgebras [?]. Forward and backward (converse) evaluation is not problematic,
because we can proceed recursively by unfolding their definitions:

(|R|)F = R ◦ F (|R|)F ◦ outF bd(S)ceF = inF ◦ F bd(S)ceF ◦ S

The main problem, however, is the optimization of domain/range calculation for folds
and unfolds due to the nonexistence of a normal form to express invariants over recur-
sive types. For some simple cases, we can rely on the following laws [?]:

7

F ρR ⊆ δR ⇒ δ(|R|) = id

R : F Φ→ Φ⇒ (|R|)F : id→ Φ

F δS ⊆ ρS ⇒ ρbd(S)ce = id

S : Φ→ F Φ⇒ bd(S)ceF : Φ→ id

Focusing on the left column (the other is dual for unfolds), the first law states that a
fold is total if the range of its algebra is contained in its own domain (in particular, total
algebras yield total folds); the second law states a simple consistency condition needed
to establish the range of a fold. Whenever these laws do not apply, we resort to the
general definitions of domain and range presented in Section ??, and then apply the
rewrite system briefly presented in Section ??, enriched with laws to handle recursive
patterns, namely fusion2:

S ◦ (|R|)F = (|T |)F ⇐ S ◦ R = T ◦ F S bd(S)ceF ◦ R = bd(T)ceF ⇐ S ◦ R = F R ◦ T

Fusion laws transform the composition of a relation with a recursion pattern into a
single recursion pattern. As explained before, we issue a warning if the rewrite system
yields expressions whose evaluation may be problematic.

We now give some examples of recursive expressions that are already supported
in our framework. We begin with (id M id)◦ ◦ (length◦ M head◦), the example from the
introduction, where head = π1 ◦ cons◦ and length = (|inN ◦ (id + π2)|). The domain of
head is inL ◦ (⊥+ id) ◦ outL, meaning that the list can not be empty, while length : id→ id
by applying the above laws for folds, since its algebra has type F id→ id. The range of
the whole expression can be computed as follows:

ρ((id M id)◦ ◦ (head◦ M length◦))
= {-Range definition: Fig. ?? -}

ρ((id M id)◦ ◦ ρ(head◦ M length◦))
= {-Range definition: Fig. ?? -}

ρ((id M id)◦ ◦ [length◦ ◦ head])
= {-Range definition: Fig. ?? -}

δ([length◦ ◦ head] ◦ (id M id))
= {-Domain definition: Fig. ??, Simplifications: Appendix ?? -}

(head◦ ◦ length) ∩ id

Returning to point-wise, this means that l ∈ J(head◦ ◦ length)∩ idK⇔ head l ≡ length n ,
as expected. On the other hand, its domain is inL ◦ (⊥ + id) ◦ outL (the proof can be
found in Appendix ??), and thus, (id M id)◦ ◦ (length◦ M head◦) : inL ◦ (⊥+ id) ◦ outL →
(head◦ ◦ length) ∩ id.

Another example of a catamorphism is the unzip : [A × B] → [A] × [B] function,
that splits a list of pairs into two lists of left and right elements. Since the algebra of
unzip is a total function g = (nilM nil)O ((cons ◦π1×π1)M (cons ◦π2×π2)), the domain
of the catamorphism is id. As for its range, our rewrite system performs a calculation
equivalent to the following:

ρunzip
= {-Definitions: range -}

(unzip ◦ unzip◦) ∩ id
= {-Simplifications: unzip is simple, Liftify: range of unzip is a product -}

[π2 ◦ unzip ◦ unzip◦ ◦ π◦1]

2We implement the “guessing step” required for fusion using the technique from [?].

8

= {-Catamorphism fusion: π1 ◦ g = nil O (cons ◦ (π1 × id)) ◦ F π1 -}
[(|nil O (cons ◦ (π1 × id))|) ◦ (|nil O (cons ◦ (π2 × id))|)◦]

= {-Definitions: map -}
[(map π1) ◦ (map π2)◦]

= {-Simplifications: map converse, map fusion (see below) -}
[map (π1 ◦ π◦2)]

= {-Simplifications: Appendix ?? -}
[map >]

Here, map f = (|inL ◦ (id + (f × id))|)) is the mapping that applies f to all elements
of a list, whose converse and fusion properties are defined as (map f)◦ = map f ◦

and map f ◦ map g = map (f ◦ g). The resulting range [map >] means that unzip
always produces lists with the same length but unrelated elements. Maps of coreflexives
are themselves coreflexives, and represent a special shape of invariants over recursive
types. For instance, the domain of in (and dually the range of out) over map invariants
can be calculated as δ(map Φ ◦ inL) = id + (Φ×map Φ).

The reasoning about anamorphisms follows the same rationale and is omitted.

5 Application Scenario: Bidirectional Transforma-
tions

Lenses [?] are one of the most successful bidirectional transformation approaches. A
lens, denoted by S Q V , is a bidirectional transformation between sources of type S
and views of type V that comprises two functions: a forward transformation Get : S →
V that abstracts a source into a view; and a backward transformation Put : V × S → S
that takes an updated view and the original source to return an updated source. A
lens is well-behaved if it satisfies the round-tripping properties Get ◦ Put ⊆ π1 (denoted
acceptability or PUTGET) and Put ◦ (Get M id) ⊆ id (denoted stability or GETPUT). A
lens is also said to be total if Get and Put are total functions. Due to these laws, the
Get of a total well-behaved lenses must be a surjective function (where any value of V
must be the view of some source) and obviously total. For this reason, many interesting
transformations (such as the split combinator) are not admissible as total well-behaved
lenses since they are not surjective.

In fact, when designing a bidirectional transformation language there is a well-
known tradeoff between the expressiveness allowed by its syntax and the robustness
enforced by the totality and round-tripping laws. Some approaches [?, ?] compromise
the expressiveness; others ignore the totality requirement [?, ?, ?]; others maintain total-
ity, but weaken the round-tripping laws [?]; some relax both totality and round-tripping
laws [?, ?, ?, ?]; finally, it also possible to avoid compromising the laws by developing
a more refined type system, as proposed in the original lens framework [?]: in order to
preserve totality, a powerful semantic type system with invariants was used to specify
the exact domain and range of lenses, which allowed the definition of duplication and
conditional combinators as total well-behaved lenses. Unfortunately, to retain decid-
ability in the type system, the expressiveness was still restricted by forcing composed
lenses to agree not only on types but also on invariants. For example, in such a scenario,
duplication could be followed by a merge combinator that only accepts pairs with two
equal values, but not by a generic projection that works for whatever pair.

Consider the composition of two transformations f : AΦ → BΨ and g : BΓ → CΩ,
where Ψ is more restrictive then Γ, as depicted in the following diagram:

9

A

Φ

B

ΓΨ

C

ΩΩ'?
f g

g'?

Since the range of f and the domain of g do not match, the Put of a composed lens would
only be defined for Ω′, i.e., the values in the range of g for which the values produced
by its backward transformation are within the range of f . To support such generalized
composition, we will use the techniques proposed in this paper to: 1) perform invariant
inference to discover the exact range Ω′ of the (global) transformation; 2) specify a non-
deterministic Put, whose optimization can be efficiently narrowed to the Put of a lens
g ′ : BΨ Q CΩ′ that only generates values satisfying Ψ.

Using the relational calculus, it is quite simple to specify a generic non-deterministic
Put that is the largest relation that satisfies the round-tripping proprieties. Any trans-
formation3 f : A → B can be lifted to a total, well-behaved non-deterministic lens
bf c : δf Q ρf , with Getf = f and Putf = (π2 O (f ◦ ◦ π1)) ◦ [f ◦]?. This specifica-
tion of Putf trivially satisfies the round-tripping laws (a formal proof can be found in
Appendix ??), because it explicitly tests if the view was modified using the coreflexive
[f ◦], as (v , s) ∈ J[f ◦]K ⇔ v ≡ f s . For that case, it returns the original source; other-
wise, it runs Get backwards to recover all possible sources that could have originated
that view. Thus, Putf is also the largest non-deterministic relation that keeps the lens
well-behaved. Although trivial, the lens resulting from this lifting cannot be used in a
practical bidirectional framework. Of course, we could use the semantics of Figure ?? to
evaluate the invariants δf and ρf and perform type-checking, but as explained in Sec-
tion ??, due to composition the resulting algorithm would be undecidable. Similarly, for
the backward transformation, we could use the semantics of Figure ?? to perform eval-
uation. Even (reasonably) assuming that the user only wants a single updated source,
and relying on lazy evaluation, the efficiency problem would be even worse, due to the
central role played by the converse in the definition.

Both these problems can be handled by the optimizations presented in the previous
sections. Our lens language allows any simple (or simplicity-preserving) PF combina-
tor to be used to specify the forward transformation. Although unconstrained converse
is not allowed (since it is not simple in general), we include the converses of the injec-
tions that are partial functions useful for “destructing sums”. Thus, the domain and
range of the transformations can be trivially calculated, and except particular ranges of
splits, type checking is decidable. As for the backward transformation, by applying the
rules already presented in Figure ??, the generic definition can be efficiently executed.
Our language supports transformations including splits, conditionals, and converses of
injections, that are not supported by most existing lens frameworks. In particular, the
duplication operator id M id : A → A × A yields a lens bid M idc : id Q [id] (whose
backward transformation only accepts pairs with equal components) that can be freely
composed with other lenses irrespective of their invariants. Recursive expressions are
also supported as they preserve the simplicity of their algebras.

To give an example of the performed optimizations, consider the transformation
f = π1 M id. Using the algorithm of Section ??, we can infer its range and domain and
lift it to the lens bπ1 M idc : id Q [π◦1] that only accepts views (x , (y , z)) where x ≡
y . Should the duplicated value be updated, the optimized backward transformation

3By transformation we mean a simple relation.

10

would execute as follows:

J|||| (π2 O (f ◦ ◦ π1)) ◦ [f ◦] ? :[π◦1]× id→ id ||||K ((a, (a, y)), (x , y))
= {-Optimized semantics: R ◦ S (Fig. ??); Domain/Range (Fig. ??) -}

{c | b ← J|||| [f ◦] ? :[π◦1]× id→ id + [π◦1]× id ||||K ((a, (a, y)), (x , y)),

c ← J||||π2 O (f ◦ ◦ π1) : [f ◦] + [f ◦]→ id ||||K b}
= {-Optimized semantics: Φ?; ((a, (a, y)), (x , y)) ∈ J[f ◦]K) -}

{c | c ← J|||| (π2 O (f ◦ ◦ π1)) : [f ◦] + [f ◦]→ id ||||K (Right ((a, (a, y)), (x , y)))}
= {-Optimized semantics: R O S (Fig. ??) -}

{c | c ← J|||| (f ◦ ◦ π1) : [f ◦]→ id ||||K ((a, (a, y)), (x , y))}
= {-Optimized semantics: R ◦ S , π1 (Fig. ??); Domain/Range (Fig. ??) -}

{c | k ← J|||| [π◦1] ||||K (a, (a, y)), c ← J|||| f ◦ : id→ id ||||K k }
= {-(a, (a, y)) ∈ J[π◦1]K -}

{c | c ← J|||| (π1 M id)◦ : id→ id ||||K (a, (a, y))}
= {-Optimized semantics: (R M S)◦ (Fig. ??); Domain/Range (Fig. ??) -}

{c | c ← J||||π◦1 : id→ ρ(a, y) ||||K a }
= {-ρ(a, y) = ρa × ρy = [ρa ◦ > ◦ ρy]; Optimized semantics: π◦1 (Fig. ??) -}

{(a, l) | l ← J|||| ρa ◦ > ◦ ρy ||||K a }
= {-Simplifications: Appendix ??; Semantics: R ◦ S , Φ (Fig. ??); a ∈ JρaK -}

{(a, y)}

Note how the invariants only need to be evaluated for the primitives. Although the
semantics of π◦1 is non-deterministic, id forces a single result. Simplifications are applied
to convert the invariant over pairs into the lift form.

Recursive specifications can also be lifted to lenses. For instance, the transformation
tailM length can be lifted to the lens btailM lengthc : id Q [succ◦ length], whose backward
transformation only accepts values such that (l ,n) ∈ J[succ◦length]K⇔ length l+1 ≡ n .
In this case, J||||Put ||||K (([2, 3], 3), [1, 2, 3]) = { [1, 2, 3]} since the view did not change, while
J||||Put ||||K (([2, 0], 3), [1, 2, 3]) = { [0, 2, 0], [1, 2, 0], [2, 2, 0], ...}, generating all possible lists
with [2, 0] as tail. Since bunzipc : id Q [map >] is an injective relation, its backward
transformation is simple; therefore, even if the view lists are updated, Putunzip always
returns a single result that is the zip of the view pair.

6 Related Work
Although our calculus of invariants was inspired in [?], our typing rules impose a
stronger restriction. In our case, a relation R : Φ→ Ψ is exactly defined only for values
of Φ and only produces values in Ψ, while in [?] invariants represent pre- and post-
conditions, i.e., R ◦Φ ⊆ Ψ ◦R, meaning that there may exist values outside Φ for which
R is defined but whose behavior is unpredictable. It follows that all typing rules of [?]
are applicable to our framework.

Functional logic programming languages like Curry [?] focus on the non-deterministic
evaluation of specifications written in a functional programming style. While such lan-
guages focus on the evaluation of the specifications, our approach provides a better
understanding of the program and its behavior during executing, resorting to a calcu-
lus of invariants.

The universal resolving algorithm (URA) [?] has been developed to compute the
inverses of functional programs. Like our evaluation algorithm, it is complete (it lazily

11

enumerates all possible values) but not always terminating (since recursive types may
admit infinitely many values). Nevertheless, unlike in URA, we are able to optimize
expressions before evaluation using the relational calculus. This allows to cut many
intermediate infeasible values, making value generation for most invariants much more
efficient.

Regarding bidirectional transformations, our framework can be seen as a domain-
specific language over inductive types similar to the one for lenses over generalized
trees first developed by Foster et al [?]. They devise a complex set-based type system
with invariants to precisely define the domains for which their combinators are well-
behaved. However, combining lenses requires matching on invariants rather than on
types, which is too restrictive. A dual approach is followed in [?], where composition
requires matching on equivalence relations that relax the lens domains.

Our application of the relational PF calculus to bidirectional transformations builds
up from [?, ?], where we have developed a language of functional PF combinators allow-
ing only surjective transformations over inductive types. In this paper, we extend such
language to support typical non-surjective combinators such as splits and injections.
Unlike the data abstraction approach from [?], our lens language allows arbitrary type
constructors and deconstructors without extending the language with ad-hoc primi-
tives and surjectivity tests.

Most bidirectional transformation approaches rely on more standard and decidable
type systems, at the cost of a more limited expressiveness [?, ?], by allowing partial
lenses [?, ?, ?] or by assuming both partiality and weaker round-tripping laws [?, ?, ?, ?].
More closely related to our approach, some frameworks derive the backward trans-
formations by calculation, but are less expressive than ours. In [?], Put is derived by
inverting injective forward transformations through algebraic reasoning, while [?] bidi-
rectionalizes a restricted first-order language (namely, without duplication) based on a
notion of view-update under constant complement. They also calculate an automata
that matches the exact domain of the transformations, and acts similarly to our invari-
ants. The lens language for graph transformations proposed in [?] processes view inser-
tions using URA, exploring all possible right inverses for the forward transformation.

7 Conclusion
In this paper, we have presented mechanisms for the efficient execution of expressions
in a PF relational language over data-types with invariants. By defining a careful se-
mantics that uses invariants to narrow evaluation, we attain a viable non-deterministic
implementation. In retrospect, our handling of product invariants in lifted form made
the difference from previous approaches to domain and range calculation, and ended
up being a key component of our framework.

In the context of bidirectional transformations, we identify an open problem in the
composition of lenses with (explicit or implicit) invariants that is responsible for the
latent partiality found in most practical BX frameworks. We have proposed to allevi-
ate this problem by modeling lenses using the relational calculus and their particular
domains using invariants. Applying our proposed non-deterministic calculus and se-
mantics, we were able to implement an expressive PF BX language that supports du-
plication, conditional choice and recursion patterns, whose backward transformations
emerge naturally from the lens laws.

Although we are already able to handle many interesting recursive transformations,
there is still a lot of room for improvement in the algorithm for recursive invariant

12

inference. Namely, likewise the lifted form for products, we are currently researching
possible normal forms for such invariants that are more amenable for calculation and
optimization.

We also intend to explore mechanisms for a better control of the non-determinism
through user-defined quality measures as additional invariants on the domains. In par-
ticular, we are studying ways to take advantage of the shrink operator proposed in [?],
which narrows the output of non-deterministic PF relations, by selecting the “best” val-
ues defined by a given order.

Acknowledgements
This work is funded by ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by National
Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Founda-
tion for Science and Technology) within project FCOMP-01-0124-FEDER-020532. Nuno
Macedo is sponsored by the Fundação para a Ciência e Tecnologia (Portuguese Foun-
dation for Science and Technology) under grant SFRH/BD/69585/2010. Exchange of
ideas with J. N. Oliveira (HASLAB) is gratefully acknowledged.

A Some Laws of the PF Relational Calculus

A.1 Composition

R ◦ id = R R ◦ > = ρR ◦ > > ◦ R = > ◦ δR
k ◦ R = k ◦ δR ! ◦ R =! ◦ δR R ◦ ⊥ = ⊥

A.2 Converse

id◦ = id >◦ = > (R◦)◦ = R
(R ◦ S)◦ = S◦ ◦ R◦ (R ∩ S)◦ = R◦ ∩ S◦ (R ∪ S)◦ = R◦ ∪ S◦

A.3 Meet and Join

R ⊆ S ⇔ R ∩ S = R R ⊆ S ⇔ R ∪ S = S
(R ∩ S) ◦ f = R ◦ f ∩ S ◦ f (R ∪ S) ◦U = R ◦U ∪ S ◦U
f ◦ ◦ (R ∩ S) = f ◦ ◦ R ∩ f ◦ ◦ S U ◦ (R ∩ S) = U ◦ R ∩U ◦ S

A.4 Split and Either

π◦1 ◦ R ∩ π◦2 ◦ S = R M S R ◦ i◦1 ∪ S ◦ i◦2 = R O S
π1 M π2 = id i1 O i2 = id
π1 ◦ (R M S) = R ◦ δS (R O S) ◦ i1 = R
π2 ◦ (R M S) = S ◦ δR (R O S) ◦ i2 = S

13

πi ◦ π◦i = id i◦i ◦ ii = id
π1 ◦ π◦2 = > i◦1 ◦ i2 = ⊥
(R M S) ◦ f = (R ◦ f) M (S ◦ f) U ◦ (R O S) = U ◦ R OU ◦ S
π◦1 ◦ R = R M> R ◦ i◦1 = R O⊥
π◦2 ◦ R = > M R R ◦ i◦2 = ⊥ O R
(R × S) ◦ (U MV) = R ◦U M S ◦V (R O S) ◦ (U + V) = R ◦U O S ◦V
(R M S)◦ ◦ (U MV) = R◦ ◦U ∩ S◦ ◦V (R O S) ◦ (U OV)◦ = R ◦U ◦ ∪ S ◦V ◦
R ◦ δS M S ◦ δR = R M S

A.5 Coreflexives

Φ ◦Ψ = Φ ∩ Ψ Φ◦ = Φ Φ ∩ Φ = ⊥
R ∩ > ◦ Φ = R ◦ Φ R ∩ Φ ◦ > = Φ ◦ R R ◦ S ⊆ id⇒ R ◦ Φ ◦ S ⊆ id

B Calculations from the Examples

B.1 Domain of head

δhead
= {-Definitions: head, cons (Sect. ??) -}

δ(π1 ◦ i◦2 ◦ out)
= {-Domain (Fig. ??) -}

δ(i◦2 ◦ out)
= {-Domain/Range (Fig. ??) -}

δ((⊥+ id) ◦ out)
= {-Domain (Sect. ??) -}

in ◦ (⊥+ id) ◦ out

B.2 Domain of (id M id)◦ ◦ (head◦ M length◦)

δ((id M id)◦ ◦ (head◦ M length◦))
= {-Domain/Range (Fig. ??) -}

δ([id] ◦ (head◦ M length◦))
= {-Domain (Fig. ??) -}

(δ(length◦) ◦ head ◦ length◦ ◦ δ(head◦)) ∩ id
= {-length, head are surjective; Simplif.: App. ?? -}

(head ◦ length◦) ∩ id
= {-Def.: head (Sect. ??) -}

(length ◦ (π1 ◦ cons◦)◦) ∩ id
= {-Def.: cons (Sect. ??); Simplif.: App. ?? -}

(length ◦ in ◦ i2 ◦ π◦1) ∩ id
= {-Def.: catamorphism (Sect. ??) -}

(in ◦ (id + π2) ◦ (id + (id× length)) ◦ i2 ◦ π◦1) ∩ id
= {-Simplif.: π2 ◦ (R M S), (R O S) ◦ i2 (App. ??) -}

14

(in ◦ i2 ◦ length ◦ π2 ◦ π◦1) ∩ id
= {-Simplif.: π2 ◦ π◦1 , R ◦ > (App. ??) -}

(in ◦ i2 ◦ ρlength ◦ >) ∩ id
= {-length is surjective; Simplif.: R ◦ > (App. ??) -}

(in ◦ ρi2 ◦ >) ∩ id
= {-Range (Fig. ??); Simplif.: R ◦ >, Φ ◦ > ∩ R (App. ??) -}

ρ(in ◦ (⊥+ id))
= {-Def.: range (Sect. ??); Simplif.: ⊥+ id ⊆ id (App. ??) -}

in ◦ (⊥+ id) ◦ out

C Proof of Semantic Equivalence of Optimizations
The optimized semantics from Figures ?? and ?? is equivalent to the default semantics
from Figure ?? if J||||R : Φ→ Ψ ||||K = J||||Ψ ◦ R ◦ Φ ||||K.

C.1 Composition

J||||R ◦ S : Φ→ Ψ ||||K a
= {-Optimized semantics: R ◦ S (Fig. ??) -}

{c | b ← J||||S : Φ→ δR ||||K a, c ← J||||R : ρS → Ψ ||||K b}
= {-Inductive step for R and S -}

{c | b ← J|||| δR ◦ S ◦ Φ ||||K a, c ← J||||Ψ ◦ R ◦ ρS ||||K b}
= {-Default semantics: R ◦ S (Fig. ??) -}

J||||Ψ ◦ R ◦ ρS ◦ δR ◦ S ◦ Φ ||||K a
= {-Simplif.: Φ ◦Ψ = Φ ∩ Ψ (App. ??) -}

J||||Ψ ◦ R ◦ δR ◦ ρS ◦ S ◦ Φ ||||K a
= {-Simplif.: R ◦ δR, ρR ◦ R (App. ??) -}

J||||Ψ ◦ R ◦ S ◦ Φ ||||K a

C.2 Split

J||||R M S : Φ→ [U] ||||K a
= {-Optimized semantics: R M S (Fig. ??) -}

{(b, c) | b ← J||||R : Φ ∩ δS → ρ(U ◦ ◦ S ◦ a) ||||K a, c ← J||||S : Φ ∩ δR → ρ(U ◦ b) ||||K a }
= {-Inductive step for R and S -}

{(b, c) | b ← J|||| ρ(U ◦ ◦ S ◦ a) ◦ R ◦ Φ ∩ δS ||||K a, c ← J|||| ρ(U ◦ b) ◦ S ◦ Φ ∩ δR ||||K a }
= {-Default semantics: R ◦ S , Φ (Fig. ??); Simplif.: Φ ◦Ψ = Φ ∩ Ψ (App. ??) -}

{(b, c) | b Jρ(U ◦ ◦ S ◦ a)K b, b ← J||||R ◦ δS ◦ Φ ||||K a, c Jρ(U ◦ b)K c, c ← J||||S ◦ δR ◦ Φ ||||K a }
= {-Def.: range (Sect. ??); Default semantics: R ◦ S ,k (Fig. ??) -}

{(b, c) | b JU ◦ ◦ SK a, b ← J||||R ◦ δS ◦ Φ ||||K a, c JU K b, c ← J||||S ||||K a, a JδR ◦ ΦK a }
= {-Default semantics: R ◦ S (Fig. ??); c JU K b ∧ c ← J||||S ||||K a ⇒ b JU ◦ ◦ SK a -}

{(b, c) | b JU ◦K c, b ← J||||R ◦ δS ◦ Φ ||||K a, c JU K b, c ← J||||S ||||K a, a JδR ◦ ΦK a }
= {-Default semantics: R ◦ S , Φ (Fig. ??); Def.: lift (Sect. ??) -}

{(b, c) | (b, c) J[U]K (b, c), b ← J||||R ◦ δS ◦ Φ ||||K a, c ← J||||S ◦ δR ◦ Φ ||||K a }
= {-Default semantics: R M S (Fig. ??) -}

{(b, c) | (b, c) J[U]K (b, c), (b, c)← J|||| (R ◦ δS ◦ Φ) M (S ◦ δR ◦ Φ) ||||K a }

15

= {-Default semantics: R ◦ S , Φ (Fig. ??) -}
J|||| [U] ◦ ((R ◦ δS ◦ Φ) M (S ◦ δR ◦ Φ)) ||||K a

= {-Simplif.: (R M S) ◦ f (App. ??) -}
J|||| [U] ◦ ((R ◦ δS) M (S ◦ δR)) ◦ Φ ||||K a

= {-Simplif.: R ◦ δS M S ◦ δR (App. ??) -}
J|||| [U] ◦ (R M S) ◦ Φ ||||K a

C.3 Converse of Projections

J||||π◦1 : Φ→ [U] ||||K a
= {-Optimized semantics: π◦1 (Fig. ??) -}

{(a, b) | b ← J||||U ||||K a, a JΦK a }
= {-Insert variable (One-point) -}

{(a ′, b) | a ′ ← A, b ← B , (a ′, b) J[U]K (a ′, b), a JΦK a, a ′ ≡ a }
= {-Default semantics: π1 (Fig. ??) -}

{(a ′, b) | a ′ ← A, b ← B , (a ′, b) J[U]K (a ′, b), a JΦK a, a Jπ1K (a ′, b)}
= {-Default semantics: R ◦ S , R◦ (Fig. ??) -}

{(a ′, b) | a ′ ← A, b ← B , (a ′, b) J(Φ ◦ π1 ◦ [U])◦K a }
= {-Default semantics: R◦ (Fig. ??), Simplif.: (R ◦ S)◦,Φ◦ (App. ??) -}

J|||| [U] ◦ π◦1 ◦ Φ ||||K a

D Proof of Put Correctness
The generic Putf = (π2 O (f ◦ ◦ π1)) ◦ [f ◦]? from Section ?? is correct if it is stable,
acceptable and total.

D.1 Stability

Putf ◦ (Getf M id)
= {-Def.: Put (Sect ??) -}

(π2 O (f ◦ ◦ π1)) ◦ [f ◦] ? ◦(f M id)
= {-Def.: Φ?; (R O S) ◦ (P OQ)◦ = (R ◦ P◦) ∪ (S ◦Q◦) -}

((π2 ◦ [f ◦]) ∪ (f ◦ ◦ π1 ◦ [f ◦])) ◦ (f M id)
= {-Join distributivity; [R] cancellations -}

((f M id)◦ ◦ (f M id)) ∪ (f ◦ ◦ (id M f
◦
)◦ ◦ (f M id))

= {-(R M S)◦ ◦ (P MQ) = (R◦ ◦ P) ∩ (S◦ ◦Q) -}
(f ◦ ◦ f ∩ id) ∪ (f ◦ ◦ (f ∩ f))

⊆ {-Domain of f in Φ ; R ∩ R = ⊥ -}
Φ ∪ (f ◦ ◦ ⊥)

= {-⊥ is below anything -}
Φ

16

D.2 Acceptability

Getf ◦ Putf
= {-Def.: Put (Sect. ??) -}

f ◦ (π2 O f ◦ ◦ π1) ◦ [f ◦] ?
= {-Either fusion -}

(f ◦ π2 O f ◦ f ◦ ◦ π1) ◦ [f ◦] ?
⊆ {-Range of f in Ψ -}

(f ◦ π2 O Ψ ◦ π1) ◦ [f ◦] ?
= {-Def.: Φ?; (R O S) ◦ (P OQ)◦ = (R ◦ P◦) ∪ (S ◦Q◦) -}

f ◦ π2 ◦ [f ◦] ∪ Ψ ◦ π1 ◦ ([f ◦] ∩ id)
= {-[R] cancellations -}

f ◦ (f M id)◦ ∪ Ψ ◦ (id M f ◦)◦

⊆ {-Split fusion; Range of f in Ψ -}
(Ψ M f ◦)◦ ∪ Ψ ◦ (id M f ◦)◦

= {-Split fusion; Join distributivity -}
Ψ ◦ ((id M f ◦)◦ ∪ (id M f ◦)◦)

= {-R M (P ∪ Q) = (R M P) ∪ (R MQ) -}
Ψ ◦ (id M (f ◦ ∪ f ◦))◦

= {-R ∪ R = >; Def.: π1 = (id M>)◦ -}
Ψ ◦ π1

D.3 Totality
The transformation Getf : Φ→ Ψ is trivially total for Φ = δf and Ψ = ρf . For Putf , the
proof is as follows:

Ψ× Φ

= {-R ∪ R = id -}
(Ψ× Φ) ◦ ([f ◦] ∪ [f ◦])

= {-Join distributivity -}
(Ψ× Φ) ◦ [f ◦] ∪ (Ψ× Φ) ◦ [f ◦]
⊆ {-Coreflexives smaller than id -}

[f ◦] ∪ (Ψ× id) ◦ [f ◦]
= {-Domain coreflexives (Fig. ??) -}

δ[f ◦] ∪ δ((Ψ× id) ◦ [f ◦])
= {-Domains (Fig. ??) -}

δ(π2 ◦ [f ◦]) ∪ δ(Ψ ◦ π1 ◦ [f ◦])
= {-Domains (Fig. ??); Φ = δf -}

δ(π2 ◦ [f ◦]) ∪ δ(f ◦ ◦ π1 ◦ [f ◦])
= {-Domains (Fig. ??); (R O S) ◦ (P OQ)◦ = (R ◦ P◦) ∪ (S ◦Q◦) -}

δ((π2 O f ◦ ◦ π1) ◦ [f ◦])
= {-Def.: Put (Sect. ??) -}

δPutf

17

