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Abstract

Program understanding is emerging as a key concern in software engineering.

In a situation in which the only quality certificate of the running software ar-

tifact still is life-cycle endurance, customers and software producers are little

prepared to modify or improve running code. However, faced with so risky

a dependence on legacy software, managers are more and more prepared to

spend resources to increase confidence on — i.e., the level of understand-

ing of — their (otherwise untouchable) code. In fact the technological and

economical relevance of legacy software as well as the complexity of their

re-engineering entails the need for rigour.

Addressing such a scenario, this thesis advocates the use of direct source

code analysis for both the process of understanding and transformation of

software systems. In particular, the thesis focuses on the development and

application of slicing techniques at both the “micro” and “macro” structural

levels of software.

The former, deals with fine-grained structures of programs, slicing oper-

ating over elementary program entities, such as types, variables or procedure

identifiers. The latter, on the other hand, addresses architectural issues and

interaction modes across modules, components or services upon which a sys-

tem is decomposed. At the “micro” level this thesis delves into the problem

of slicing functional programs, a paradigm that is gaining importance and

was generally neglected by the slicing community. Three different approaches

to functional slicing are proposed, accompanied by the presentation of the

HaSlicer application, a software tool developed as a proof-of-concept for

some of the ideas discussed. A comparison between the three approaches,

their practical application and the motivational aspects for keeping investi-
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gating new functional slicing processes are also discussed.

Slicing at a “macro” level is the theme of the second part of this thesis,

which addresses the problem of extracting from source code the system’s co-

ordination model which governs interaction between its components. This

line of research delivers two approaches for abstracting software systems co-

ordination models, one of the most vital structures for software architectural

analysis. Again, a software tool – CoordInspector – is introduced as a

proof-of-concept.



Resumo

A compreensão de sistemas de software reveste-se de uma cada vez maior

importância no campo da engenharia de software. Numa situação em que a

única garantia de funcionamento dos diversos componentes de software re-

side apenas na metodologia de desenvolvimento adoptada, tanto clientes bem

como produtores de software encontram-se pouco preparados para modificar

ou melhorar os seus programas. No entanto, face a uma tão grande de-

pendência em relação ao código legado, os gestores estão cada vez mais re-

ceptivos a gastar recursos de forma a aumentar a confiança - i.e., o ńıvel de

compreensão - dos seus (de outra forma intocáveis) programas. De facto, a

relevância tecnológica e económica do software legado bem como a complex-

idade associada á sua reengenharia provocam uma urgente necessidade de

rigor.

Tendo este cenário como contexto, esta tese advoga o uso de uma análise

directa de código fonte com o objectivo de compreender e transformar sis-

temas de software. Em particular, esta tese debruça-se sobre o desenvolvi-

mento e a aplicação de técnicas de slicing aos ńıveis “micro” e “macro” das

estruturas de software.

A análise efectuada ao ńıvel “micro” lida com estruturas de programas de

pequena granularidade, onde o slicing opera sobre entidades elementares dos

programas, tais como tipos, variáveis ou identificadores de procedimentos.

Por outro lado, o ńıvel de análise “macro” aborda questões arquitecturais,

tais como as interacção entre módulos, componentes ou serviços sobre os

quais um sistema de software pode ser decomposto.

Ao ńıvel “micro”, esta tese aborda o problema de efectuar slicing a pro-

gramas funcionais, um paradigma que se reveste de uma cada vez maior im-
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portância e o qual tem sido negligenciado pela comunidade de slicing. Neste

sentido, esta tese apresenta três diferentes abordagens ao slicing funcional,

acompanhadas pela apresentação da aplicação HaSlicer, uma ferramenta

de software desenvolvida como prova de conceito para algumas das ideias

expostas. No decorrer da apresentação destas propostas de abordagem ao

slicing funcional, efectua-se ainda uma comparação entre os diversos pro-

cessos, as suas aplicações práticas bem como os aspectos motivacionais que

levaram á investigação de novos processos de slicing funcional.

As operações de slicing ao ńıvel “macro” constituem o tema da segunda

parte desta tese, onde se aborda o problema espećıfico da extracção de ar-

quitecturas de sistemas de software. Neste sentido, são desenvolvidas duas

abordagens distintas para a abstracção do modelo de coordenação de um

sistema de software, o que constitui uma das mais vitais estruturas para a

análise de sistemas de software. Mais uma vez, é apresentada uma ferramenta

de software – CoordInspector – como prova de conceito.
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Chapter 1

Introduction

1.1 Motivation and Objectives

1.1.1 Context and Motivation

By the end of the century program understanding and reverse engineer-

ing emerged as key concerns in software engineering, attracting an ever-

increasing attention both in Industry and Academia. Actually, the increas-

ing relevance and exponential growth of software systems, both in size and

quantity, lead to an equally growing amount of legacy code that has to be

maintained, improved, replaced, adapted and assessed for quality every day.

The high dependence of modern societies on such legacy systems and the

incredibly fast rate of evolution which characterises software industry, make

companies and managers willing to spend resources to increase confidence

on — i.e., the level of understanding of — their running code. In fact the

technological and economical relevance of legacy software, as well as the

complexity of its re-engineering and the (often exponential) costs involved,

justifies this technical “movida”, witnessed by the volume of publications,

projects and dedicated conferences, as well as by the number and diversity of

approaches, methods and tools announced. Moreover, such factors entail the

need for rigour, i.e., for precise engineering methods and solid foundations.

Such is the context for this thesis, which grew up while the author inte-

grated the research team of a broader project on program understanding and

1



2 CHAPTER 1. INTRODUCTION

re-engineering of legacy code supported by formal methods1. The project

aimed at combining program analysis techniques with theoretical results de-

veloped in the area of formal methods and program calculi to meet the chal-

lenges of this novel domain of application. Furthermore, it was organised

around two main research axes: the micro, algorithmic one, concerned with

program understanding and re-engineering at code level, and the macro, ar-

chitectural one, intended to pursue similar goals but at the level of system’s

macro structuring and software architectures.

Our own contribution to the Pure project, which directly leads to the

present thesis, focused mainly on the program analysis side, understood as

the broad range of techniques to extract, from source code, specific and rig-

orous knowledge, to be suitably represented and visualised, and to provide

a basis for systems analysis, classification and reconstruction. We have con-

centrated in a particular family of techniques, that of program slicing — a

decomposition technique to extract from a program, information relevant to

a given computation, originally proposed by Mark Weiser, 30 years ago, in

his PhD thesis [Wei79].

If slicing is the basic technique addressed in this thesis, our research

developed itself along the two axes mentioned above:

• At the micro level, we have considered the problem of slicing functional

programs, and developed a number of techniques and a prototype tool

for this programming paradigm. Actually, mainstream research in the

area targets imperative or object-oriented languages, and was devel-

oped around well characterised notions of computational variable, pro-

gram statement and control flow behaviour, which are alien to func-

tional programs.

• At the macro level, on the other hand, we addressed the problem of

extracting from source code, and through suitable slicing techniques,

1The Pure project, funded by Fct, the Portuguese Foundation for Science and Tech-
nology, under contract POSI/CHS/44304/2002, was hosted by the Theory and Formal
Methods group of the Informatics Department, at Minho University, from November 2004
to January 2007.



1.1. MOTIVATION AND OBJECTIVES 3

the underlying coordination model, which abstracts the behavioural in-

terplay between the various services, components, and the (more or

less explicit) independent loci of computation from which a system is

composed of.

Such an application area was, in fact, our original motivation for this

research because our own experience in industry2 singled out the reconstruc-

tion of software architectures as a difficult but highly relevant issue for the

working software developer.

By the expression software architecture we understand, following [BCK98],

the set of specific scoped models that expose particular aspects of parts (possi-

bly components, modules, services, processes) of the system and the interac-

tions between them. Or, according to norm ANSI/IEEE Std 1471-2000, which

is part of an on-going standardisation effort, the fundamental organisation of

a system, embodied in its components, their relationships to each other and

the environment, and the principles governing its design and evolution.

Several approaches have been proposed for reverse architectural analysis.

For example, in the context of model-driven engineering [Sch06], genera-

tors for Uml diagrams became rather popular. Class Diagram generators,

which extract class diagrams from object oriented source code, Module Di-

agram generators that construct box-line diagrams from system’s modules,

packages or namespaces, Uses Diagram generators which reflect the import

dependencies of the system and Call Diagram generators which expose the

direct calls between system parts, are but a few examples.

However, none of these techniques/tools make it possible to answer a

critical question about the dynamics of a system: how does it interact with

its own components and external services and coordinate them to achieve its

goals? From a Call Diagram, for example, one may identify which parts

of a system (and, sometimes, even what external systems) are called during

the execution of a particular procedure. However, no answers are provided to

questions like: Will the system try to communicate indefinitely if an external

2From April, 2003 to March, 2004 we have worked on software components and repos-
itories in a development project at Sidereus, S. A., in Porto. Reference [RB03] and the
last section of [BSAR05] report on research conducted in such a context.
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resource is unavailable? If a particular process is down, will it cause the entire

system to halt? Can the system enter in a deadlock situation? And what is

the sequence of actions for such a deadlock to take place?

This sort of questions belongs to what can be called the coordination ar-

chitectural layer, which captures the system’s behaviour with respect to its

network of interactions. The qualifier is borrowed from research on coordi-

nation models and languages [JMA96, Arb98], which emerged a decade ago

to exploit the full potential of parallel systems, concurrency and cooperation

of heterogeneous, loosely-coupled components.

It is not surprising that the questions above cannot be answered within

most of the models built from source code, because behavioural analysis is

placed at a much higher abstraction level than most of other architectural

structures. Actually, recovering a coordination model is a complex process

dealing with multiple activities, roles and primitives, which in turn are influ-

enced by multiple constrains, such as exceptional situations, interrupts and

failures.

On the other hand, however, the need for methods and tools to identify,

extract and record the coordination layer of running applications is becoming

more and more relevant as an increasing number of software systems rely on

non trivial coordination logic for combining autonomous services, typically

running on different platforms and owned by different organisations. This is

why this thesis adopts a coordination-driven view of software architecture,

which underlies, in the sequel, the use of the adjective architectural qualifying

analysis, slicing or extraction processes.

We claim that, if coordination policies can be extracted from source code

and made explicit, it becomes easier to understand the system’s emergent

behaviour (which, by definition, is the behaviour which cannot be inferred

directly from the individual components) as well as to verify the adequacy

of the software architecture (and of the code itself) with respect to expected

interaction patterns and constraints. We would like to regard this thesis,

especially its second part, as a step in that direction.
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1.1.2 Objectives

In the context detailed above, we defined the following research objectives

which guided the development of this thesis:

• Investigate slicing techniques, in particular their application to differ-

ent programming paradigms and potential to support re-engineering of

legacy code.

• Develop new slicing techniques specifically designed for application to

functional programs.

• Develop methods for extraction of architectural information from source

code, based on application of slicing techniques and aimed at recovering

the underlying, often implicit coordination policies.

• Test and validate the applicability of such methods and techniques

through the development of “proof-of-concept” prototypes.

Our research intersects, therefore, two well-established areas in Software

Engineering: slicing and coordination models in software architecture. The

former provides our basic tools for analysis, the latter a major application

challenge.

Therefore, the following two sections provide a brief introduction to both

areas, as a background for the thesis. Our specific contributions are detailed

in section 1.3 and traced back to the publications in which they were first

introduced. This last section also provides an overview of the thesis structure.

1.2 Background

1.2.1 Slicing

Slicing Techniques and Applications

Slicing was first proposed by Mark Weiser [Wei79, Wei84] as a technique

for program debugging [Wei82]. In a broad definition it stands for a de-

composition technique that extracts from a program those pieces (typically,
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statements) relevant to a particular computation. A slice, in Weiser’s original

definition, is then a reduced, executable program obtained from another pro-

gram by removing statements, such that it replicates part of the behaviour

of the original program. A classical way of formulating the question program

slicing is supposed to answer is as follows: what statements in the program

can potentially affect the value of a particular (set of) variable(s) at a partic-

ular execution point? The answer is typically given in terms of an executable

program whose execution is indistinguishable from the execution of the origi-

nal program whenever the observer concentrates his attention on the value(s)

of the variable(s) of interest (the slicing criterion). In Weiser’s view, pro-

gram slicing is an operation already being performed much before the term

had been coined, in fact it is an abstraction exercise that every programmer

has gone through, aware of it or not, every time he undertakes source code

analysis.

Weiser approach corresponds to what would now be classified as an exe-

cutable, backward, static slicing method. A dual concept is that of forward

slicing introduced by Horwitz et. al. [HRB88]. In forward slicing one is

interested on what depends on or is affected by the entity selected as the

slicing criterion. Note that, combining the two methods also gives interest-

ing results. In particular the union of a backward with a forward slice for

the same criterion n provides a sort of a selective window over the code,

highlighting the code region relevant for entity n. On the other hand, the

intersection of a backward slice for a given slicing criterion with a forward

slice with respect to another slicing criterion, retrieves what is called a chop

[RR95, JR94], exposing the program elements contain within the two slicing

criterions that may affect the second slicing criterion.

Another duality emerges between static and dynamic slicing. In the first

case, only static program information is used, which typically consists on

the source code of the program to be sliced and a slicing criterion. On the

second case [KL88, KL90], one also considers input values of the program,

leading frequently, due to the extra information used, to smaller and easier

to analyse slices, although with a validity restricted to the values employed.

References [Tip95], [BG96] and [HG98] provide comprehensive surveys and
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include extensive bibliographies.

What can be achieved by slicing, i.e. the isolation of a particular sub-

computation of interest inside an entire program, goes far beyond its ini-

tial purpose of error detection. In fact, program slicing techniques became

relevant to a large number of areas, such as, reverse engineering [CCM94,

SVM+93], program understanding [dLFM96, HHD+01], debugging [ADS93,

WL86], software integration [BHR95, HPR89], software maintenance [GL91,

CCLL94, CLM96], testing and test planning [HH99, HD95], among others.

On the other hand, since the publication of Weiser´s paper, a myriad of

slicing techniques, algorithms and variants have been proposed in the liter-

ature: slicing for declarative languages [RT96, Bis97], object oriented pro-

grams and multithreading [LH98, LH96, RH07, Kri03, NR00], conditional

slicing [CCL98], slicing for abstract interpretation [HLS05] and monadic slic-

ing [ZXS+04], just to mention but a fraction. Some of these approaches have

come to play an important role in the course of our own work, in particular

the so-called interprocedural slicing techniques [HRB88], as well as the exten-

sions to multithreading and the declarative and object-oriented paradigms

mentioned above.

Specifying the Slicing Problem

Most of the papers mentioned above give an informal definition of the mean-

ing of a program slice and focus on defining and computing different sorts

of program dependencies (e.g. related to data, control, etc.). As Martin

Ward puts it in a recent paper [WZ07], “this focus on dependency calcula-

tions confuses the definition of a slice with various algorithms for computing

slices”.

On the other hand, a number of attempts have been made to formally

characterise the slicing problem and frame it as some sort of transformation

inside suitable models for program semantics. Actually, as a slice always

corresponds to a fragment of a program and, being executable, to a program

itself, one may talk about the associated semantics also as a sub-object (i.e.,

a subset, a sub-domain, a sub- whatever-semantical-structure is taken) of the
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semantics of the original program. As early as [GL91] it was observed that

the set of slices of a given program, ordered by inclusion in the associates

semantics, form a semi-lattice where the meet operation corresponds to code

sharing.

Formalising the slicing problem makes it possible to compare and clas-

sify different forms of program slicing as done, for example, in [BDG+06],

and to assess how semantically sound are they as code decomposition tech-

niques. The latter problem is addressed in [Oli01b] which proposes to resort

to well-known program calculi laws (namely from the so-called mathematics

of program construction community [BM97]) to compose slices and recon-

struct a program proved by construction to be semantically equivalent to the

original one.

Slicing is often formalised as a program transformation in a restriction

(or projection) of the original program. The rationale underlying this char-

acterisation is that, if the original program is restricted to (i.e., observed

through) the variables of interest, then it should be semantically equivalent

to the corresponding slice computed by statement deletion.

In a landmark paper [HBD03], published in 2003, Harman, Binkley and

Danicic define a slice as a combination of a syntactic ordering (any com-

putable, transitive, reflexive relation on programs), intended to capture the

reduction of syntactic complexity, and a semantic equivalence on a projec-

tion of the program semantics. It should be noted that the authors go a

step forward to emphasise the essentially semantic character of the slicing

problem, and even coined the term amorphous slice to denote a slice which

is not required to preserve a projection of the syntax of the original program.

This makes the task of amorphous slice construction harder, but it also often

makes the result thinner and thereby preferable in applications where syntax

preservation is unimportant. In particular, amorphous slicing can be guided

by the original program syntax tree and does not require the construction of

control flow nor program dependence graphs.

From the point of view of formalising the slicing problem, however, what

is relevant is to retain the concept of slicing as a combination of two relations:

• a syntactic relation, corresponding to some form of syntactic pruning
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(e. g., statement deletion)

• a semantic relation, intending to show what subset of the original pro-

gram semantics has been preserved through syntactic pruning.

Whether such semantic relation is an equivalence (as in [HBD03] and

[GB03]) or a refinement (i.e., yielding a semantically less partial and more

deterministic program [BvW98]), is still a matter of controversy. As almost

all research on program slicing, the problem is being discussed in the context

of sequential, imperative programs.

A noteworthy approach has been put forward by Martin Ward in a series

of papers from [War03], to the recent detailed account in [WZ07]. Ward

claims that in practice semantic equivalence is too strong a requirement to

place on the definition of a slice. He proposes, instead, the notion of a

semi-refinement : program S is a semi-refinement of P if it is semantically

equivalent to P on all the domain of definition of P . This means that the

behaviour of S can be arbitrary out of such a domain. Note that a theory

of slicing based on semi-refinement allows for an infinite number of slices

for a given program, introducing slices that are actually larger than the

original program, something which is precluded by simple syntactic criteria.

Such a view of slicing as a program transformation is formalised, for se-

quential, non deterministic programs, in FermaT, a workbench for program

transformation supported by semi-automatic program manipulation (see in

[War02, WZH05] for details).

1.2.2 Software Architecture and Coordination

Software Architecture

The term architecture became popular in Software Engineering as a way to

refer to the high-level structure of a system, i.e. to its gross structure, main

guidelines and constraints in which it is based. However, if, in a concrete

development project, one enquires on what the systems’ architecture is after

all, the number of different answers will probably be equal to the number of
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people involved. Moreover each of the answers will be deeply influenced by

each one specific role within the project.

In a sense, the popularity of expression software architecture (statements

like “the architecture does not allow so and so” or “let’s stick to the origi-

nal client-server architecture” are quite common within development teams)

goes hand in hand with its informality and the lack of a precise, consensual

definition. Surprisingly enough, the set of concepts and models in this area

turn out to be extremely useful in practice.

Actually, software architecture emerged in the early nineties, as a proper

discipline in Software Engineering, from the need to explicitly consider, in

the development of increasingly bigger and more complex systems, built of

many components, the effects, problems and opportunities of the system’s

overall structure, organisation and emergent behaviour. The seminal work

of Shaw and Garlan [SG96], which put forward many of the concepts and

vocabulary still in use today, must be mentioned at this stage. But, let us

concentrate on possible definitions of software architecture, to highlight later

its view from a coordination perspective.

In a broad definition, the architecture of a system describes its funda-

mental organisation, which illuminates the top level design decisions, namely

• how is it composed and of which interacting parts?

• which are the interactions and communication patterns present?

• which are the key properties of parts the overall system relies and/or

enforces?

Other definitions stress,

• the systematic study of the overall structure of software systems [GS93];

• the structure of the components of a program/system, their interrela-

tionships, principles and guidelines governing their design and evolu-

tion over time. [GP94];
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• the fundamental organisation of a system, embodied in its components,

their relationships to each other and the environment, and the princi-

ples governing its design and evolution (norm ANSI/IEEE Std 1471-

2000);

• a set of architectural (or, if you will, design) elements that have a par-

ticular form; (...) we distinguish three different classes of architectural

element: processing elements, data elements and connecting elements

[PW92];

• the structure or structures of the system, which comprise software com-

ponents, the externally visible properties of those components, and the

relationships among them. [BCK03]

As a model, the software architecture abstracts away details of elements

that do not affect how they use, are used by, relate to or interact with other

elements. Therefore it focuses on the system structural elements and their

interfaces, their interactions and composition into larger subsystems.

Quickly this area of concern became a mature discipline in Software En-

gineering, part of main curricula and object of popular textbooks (of which

[BCK03] is a well-known example). In its rapid evolution along the last 15

years, it should be singled out both the classification of architectural styles

[MKMG97], characterising families of software organisation, after the pio-

neering work of David Garlan [GS93, AG97, Gar03], and the impact of several

proposals for so-called architecture definition languages. The latter provides

both a conceptual framework and a concrete syntax to describe architectures,

and often tools for parsing, displaying, analysing or simulating architectural

descriptions. Well-known representatives are, among others, Wright [All97],

Rapide [LAK+95], Darwin [MDEK95], C2 [MORT96], Piccola [SN99, NA03]

and ACME [GMW97].

Reference [Gar03] provides a comprehensive survey of the software ar-

chitecture and related tools. Interesting application areas include software

analysis and documentation [GS06], performance analysis [SG98], architec-

tural recovery from legacy code [HRY95, KC98, Bou99, MMCG02] and archi-
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tectural models for new computing paradigms, including mobility [WLF01,

GS04, Oqu04] and web-service applications [ZKG02].

Coordination

The increasing dependency of society and economy on software, allied to

their exponential growth, both in size and complexity, is pushing the adop-

tion of componentware and service oriented architectures. In despite of ev-

eryday publicity, the complexity associated to the design, implementation

and maintenance of component-based or service-oriented solutions cannot be

underestimated, especially if one is demanding for rigorous and flexible so-

lutions. The idea that, for example, a real service oriented system is just a

series of instructions invoking foreign components or services which perform

the entire complex work, is actually far from reality.

Problems arise because such systems have to deal with multiple loci of

computation, providing functionalities to multiple participants at the same

time, which in turn are influenced by multiple and different constraints, typ-

ically enforced by other services or components. Moreover, professional ser-

vice oriented systems often live in multithreaded environments, because users

have to be informed while the system is performing other tasks, or because

the latency introduced by relying on external services, instead of local com-

ponents, requires the developer to program asynchronous calls to external

services and proceed execution only, and if, the service returns. So, correct,

responsive service-oriented systems are required to be highly multithreaded

and complex to orchestrate, due to the myriad of external services they may

depend upon. To support their development, the software architecture should

be able to provide specific coordination knowledge, i.e., the structure and na-

ture of interactions among the different sub-systems in presence.

The concept of coordination is not that new in Computer Science. Actu-

ally, the coordination paradigm [JMA96, Arb98], claiming for a strict sepa-

ration between effective computation and its control, emerged, more than a

decade ago, from the need to exploit the full potential of massively parallel

systems. This entails the need for models able to deal, in an explicit way,
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with the concurrency of cooperation among a very large number of heteroge-

neous, autonomous and loosely-coupled components. Coordination models

[GC92, PA98, Arb03] make a clear distinction between such components and

their interactions, and focus on their joint emergent behaviour.

Traditionally, coordination models and languages have evolved around

the notion of a shared dataspace — a memory abstraction accessible, for

data exchanging, to all processes cooperating towards the achievement of a

common goal. The first coordination language to introduce such a notion was

Linda [ACG86]; many related models evolved later around similar notions

[JMA96, BCG97]. The underlying model was data-driven, in the sense that

processes can actually examine the nature of the exchanged data and act

accordingly. An alternative family of models, called event-driven or control-

driven, more suitable to systems whose components interact with each other

by posting and receiving messages which trigger some activity. A pioneer

model in this family is Manifold [AHS93], which implements the Iwim

model [Arb96]. Contrary to the case of the data-driven family where coor-

dinators directly handle data values, in these models processes are regarded

as black boxes and communicate with their environment by means of clearly

defined interfaces (often referred to as input and output ports).

Another typical distinction is drawn between endogenous and exogenous

coordination. The former treats glue code as a first-class modelling entity

that resides outside of any of the components it coordinates, while the later,

distributes control over the coordinated entities themselves, thus making im-

possible to single out a piece of code identifiable as the coordination module.

Reo [Arb03, Arb04] is a recent example of a model for exogenous coor-

dination, while Linda [ACG86], which provides a number of coordination

primitives to be incorporated within a programming language, remains a

prototypical example of an endogenous coordination language.

A Coordination-driven View of Software Architecture

Coordination models and architectural descriptions were born within dif-

ferent contexts, concerns and typical application domains. However their
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focuses are similar and recent trends in the software industry stresses the

relevance of such common underlying principles. Recall, for example, the

challenges entailed by the move from the programming-in-the-large paradigm

of two decades ago, to the recent programming-in-the-world where not only

one has to master the complexity of building and deploying a large ap-

plication in time and budget, but also of managing an open-ended struc-

ture of autonomous components, possibly distributed and highly hetero-

geneous. Or the related shift from the traditional understanding of soft-

ware as a product to software as a service [Fia04], emphasising its open,

dynamic re-configurable and evolutive structure. Terms like service orches-

tration and choreography, and the associated intensive research effort (see

[BGG+05, AF04, BCPV04, ZXCH07], among many others), stress the rel-

evance of main themes in both coordination and architectural research to

modern Software Engineering. In a sense, an early definition of coordination

which emphasises its goal of finding solutions to the problem of managing the

interaction among concurrent programs [Arb98], could be taken as a main

challenge to this Engineering domain. As Farhad Arbab puts it, in his inau-

gural lecture at Leiden University,

We have been composing software since the inception of pro-

gramming. Recognising the need to go beyond the success of

available tools is sometimes more difficult than accepting to

abandon what does not work. Our software composition mod-

els have served us well-enough to bring us up to a new plateau

of software complexity and composition requirements beyond

their own effectiveness. In this sense, they have become the

victims of their own success. Dynamic composition of be-

havior by orchestrating the interactions among independent

distributed subsystems or services has quickly gained promi-

nence. We now need new models for software composition,

on par with those commonly used in more mature engineering

disciplines, such as mechanical or electrical engineering. This

deficiency is one of the reasons why software engineering is

sometimes criticised as not-truly-engineering.
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Actually, coordination models [GC92, PA98, Arb03] aim at finding solu-

tions to the problem of managing the interaction among concurrent activities

in a system. For the last 15 years, the emergence of massive concurrent, het-

erogeneous systems and the growing complexity of interaction protocols and

concurrency relationships between different processes, often developed and

deployed in a distributed way, have brought coordination to a central place

in software development. Such development contributed to broadening its

scope of application and entailed the development of a number of specific

models and languages [Arb04].

Software architecture [GS93, PW92, FL97, BCK03, Gar03], on the other

hand, describes the fundamental assembly structure of a system, and, a now

mature discipline, plays a significant role in improving the dependability, doc-

umentation and maintainability of large, complex software systems [GS06].

Both of them tackle component interaction, abstracting away the details

of computation and focussing on the nature and form of interactions. Syn-

chronisation, communication, reconfiguration, creation and termination of

computational activities are, thus, primary issues of concern.

It should also be remarked that, despite remarkable progress in the rep-

resentation and use of software architecture, specification of architectural

designs remain, at present, largely informal. Typically, they rely on graphi-

cal notations with poor semantics, and often limited to express only the most

basic structural properties. Recent coordination models and languages, on

the other hand, present a higher degree of formality — see, for example, the

cases of Reo [Arb03, Arb04] or Orc [KCM06, MC07] — which stresses the

case for a coordination-driven view of systems’ architecture.

1.3 Contributions and Thesis Structure

The thesis contributions are organised in main two areas, corresponding,

respectively, to Parts I and II,

• Slicing techniques for the functional programming paradigm;

• Slicing-based approaches to the identification and extraction of archi-
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tectural, coordination specifications from source code.

The following enumeration details such contributions and relates each of

them both to the corresponding chapter and the publications in which it was

originally presented. Both Parts I and II end with a brief concluding chapter,

chapters 7 and 12 respectively, which also discuss some relevant related work.

• Slicing for functional programming:

– Specific techniques based on dependence graphs for functional

programs, a line of enquiry closely related to mainstream slic-

ing research for imperative languages. Basic results appeared in

[BSR06, RB06a] and are reported in chapter 2 of this thesis.

– An alternative approach to functional slicing by calculation, re-

sorting to a well-known calculus of functions and addressing low-

level programmatic entities. The approach first appeared in [RB06b]

and is the subject of chapter 5.

– A semantic based approach, which overcomes some limitations

of the calculational techniques and addresses higher-order lazy

functional languages. This was published in [RB07] and is detailed

here along chapter 6.

– An application of the graph-based approach to functional slicing

to the problem of software component discovery in the context of

Haskell programs. This case study appeared in [RB06a] and is

reported in chapter 4.

– A prototype tool, HaSlicer, developed as a proof-of-concept for

some of the slicing techniques proposed. This was not object of an

independent publication, but is mentioned in [RB06a]. The tool

is presented in chapter 3 and available from http://labdotnet.

di.uminho.pt/HaSlicer/HaSlicer.aspx.

• Slicing-based approaches to discovering and extracting coordination

specifications:
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– New graph structures to represent coordination related informa-

tion extracted from legacy code, and the algorithms to build them:

the Managed System Dependence Graph (MSDG) and the Coor-

dination Dependence Graph (CDG). These structures, introduced

in chapter 8, are at the base of two different methods for coordi-

nation discovery discussed in chapters 8 and 9.

– A technique for generating coordination specifications from the

CDG in Orc, which appeared in [RB08a] and is detailed in section

8.5 of chapter 8.

– A technique for generating coordination specifications from the

CDG in Ws-Bpel, first published in [RB08c] and discussed here

in section 8.6 of chapter 8.

– An alternative pattern-oriented discovery technique based on sub-

graph search over the CDG to detect instances of specific coordi-

nation patterns. This approach was proposed in [Rod08]. It is

detailed in chapter 9 and applied, in chapter 11, to a real case

study in the area of systems integration.

– A prototype tool, CoordInspector, developed as a proof-of-

concept for both approaches to coordination discovery. The tool

processes Common Intermediate Language (CIL) code, which makes

it potentially able to analyse systems developed in more than 40

programming languages. CoordInspector, discussed in chap-

ter 10, was first introduced in [RB08b]. It is available from http:

//alfa.di.uminho.pt/~nfr/Tools/CoordInspector.zip.
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Part I

Functional Program Slicing
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Chapter 2

A Graph-Oriented Approach

Mainstream research on program slicing targets imperative languages and,

therefore, it is oriented towards particular, well characterised notions of com-

putational variable, program statement and control flow behaviour. On the

other hand, slicing functional programs requires a completely different per-

spective.

In a functional program, functions, rather than program statements, are

the basic computational units and functional composition replaces statement

sequencing. Moreover there is no notion of assignable variable or global

state whatsoever. Even techniques like the use of the state monad [Wad92,

Mog91] just simulate an underlying state: what is really happening behind

the scenes, is that functions are being composed in a way that maintains

an artificial state. Besides, in modern functional languages encapsulation

constructs, such as Haskell [Bir98] modules or Ml [HM86] abstract data

types, provide powerful structuring mechanisms which cannot be ignored in

program understanding.

What are then suitable notions of slicing for functional programs? With

respect to what are functional slices computed? How is program data ex-

tracted and in which form should it be stored? Such are the questions set in

this chapter.

Although different approaches will be discussed later, namely in chapters

5 and 6, the questions just stated are addressed here from the point of view

21
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of traditional graph based approaches to the slicing problem. Moreover, our

approach regards an architectural view of functional programs, where one

is interested in high level code entities such as functions, modules and data

types rather than more fine grained entities like functional expressions upon

which functions are built upon. Focusing on this high level code entities, one

is concerned about analysing the different interactions these entities may

hold as well as the development of program transformation algorithms, like

slicing, which explore the discovered interactions.

2.1 Functional Dependence Graphs

Most slicing techniques are based on some kind of dependence graph, where

in general, nodes represent slicing units of program entities and different

kinds of edges are used to store a number of types of dependencies among

such units. Typical such structures are extracted from the program’s control

flow graph which is based on a precise notion of program statement. Such

program statements are usually regarded by graph based slicing techniques

as its slicing units and are often defined as expressions manipulating a shared

variable state.

Unlike programs from other paradigms, functional programs do not iden-

tify a precise and well defined notion of program statement. Rather, they

define a programming logic by using rich data structures, often recursive, and

by composing functional expressions in diverse and complex ways. Thus, one

needs to adapt the definition of whatever a dependence graph is, shift it to the

functional paradigm, and replace program statements by functional program

entities such as constructors, destructors, data types, functions and modules.

Such a program representation structure can form the basis of meaningful

slicing criteria, which leads us to defining a Functional Dependence Graph

(FDG) as a directed graph

G = (E,N) (2.1)

where N is a set of nodes and E ⊆ N × N a set of edges represented as a
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binary relation between nodes. A node N = (t, s, d) consists of a node type

t, of type NType, a source code location s, of type SrcLoc, and a description

d of type Descr.

A source code location is simply an index of the node contents in the

actual source code. The type SrcLoc is a product composed by the source file

name and the line-column code coordinates of a particular program element,

i.e.,

SrcLoc = SrcF ileName× SrcBgnLine× SrcBgnColumn×

SrcEndLine× SrcEndColumn
(2.2)

More interesting is the definition of a node type which captures the infor-

mation diversity mentioned above and is the cornerstone of FDG’s flexibility.

The type of a FDG node is given by the following union type

NType = Nm(module) | Nf (function) | Ndt(data type)

| Nc(constructor) | Nd(destructor)
(2.3)

Let us explain in some detail the intuition behind these types.

Nodes bearing the Nm (Module) type, represent software modules, which,

from the program analysis point of view, correspond to the highest level of

abstraction over source code. Note that Haskell has a concrete definition of

module, which makes the identification of Nm nodes straightforward. Mod-

ules encapsulate several program entities, in particular code fragments that

give rise to other FDG nodes. Thus, a Nm node depends on every other

node representing entities defined inside the module as well as on nodes cor-

responding to modules it may import.

Nodes of type Nf represent functions, i.e., abstractions of computational

processes which transform some kind of input information (eventually void)

into an output. Functions are the building blocks of functional programs,

which in most cases, decorate them with suitable type information, making

extraction simpler. More complex is the task of relating a function node to
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the nodes corresponding to computational entities in its body — data type

references, other functions or what we shall call below functional statements.

Constructor nodes (Nc) are used to explicitly represent the implicit con-

structors, usually one for each alternative in the defining sum type underlying

a typical data type declaration. These are especially relevant to functional

languages admitting several constructors for a given data type (such as the

ones associated to datatype declarations in Haskell).

Destructor nodes (Nd) store data type selectors, which are dual to con-

structors. Unlike constructor nodes, for which a data type must always have

a dependence to at least one of these nodes, destructor nodes may not be

present in a data type definition. Actually, in practice, what usually happens

is that the destruction of the data types values is made by pattern matching

clauses involving the constructors of the data type. In any of these situations

one can always capture a dependence between any program entity and a data

type by tracing the dependence between the program entity and a direct use

of one of its destructors or the indirect use, through pattern matching, of one

of its constructors.

Note that, similar notions to these constructor and destructor operators

may, however, be found in other contexts note necessarily functional. Recall,

for example, the C selector operator “.” which retrieves specific fields from

a struct value and class constructors from object oriented languages.

All sets of nodes in a FDG are interconnected by edges. In all cases an

edge from a node n1 to a node n2 witnesses a dependence relation of n2 on

n1. The semantics of such a relation, however, depends on the types of both

nodes. For example, an edge from a Nf (function) node n1 to a Nm (module)

node n2 means that the module represented by n2 depends on the function

associated to n1, that is, in particular, that the function in n1 is defined

inside the module in n2. On the other hand, an edge from a node n3 to n4,

both of type Nf , witnesses a dependence of the function in n4 on the one in

n3. This means, in particular, the latter is called by the former.

Table 2.1 introduces the intended semantics of edges with respect to the

types of nodes they connect. Also note that a FDG represents only direct

dependencies. For example there is no node in a FDG to witness the fact



2.2. THE SLICING PROCESS 25

Target Source Edge Semantic

Nm {Nm} Target node imports source node

Nm {Nf , Nc, Nd, Ndt } Source node contains target node defi-
nition

Nf {Nc, Nd, Ndt, Nf} Function is using target node function-
ality

Ndt {Ndt} Source data-type is using target data-
type

Ndt {Nc} Data-type is constructed by target
node

Ndt {Nd} Data-type is destructed by target node

Table 2.1: FDG edge description

Figure 2.1: The slicing process

that a module uses a function defined elsewhere. What would be represented

in such a case is a relationship between the external function and the internal

one which calls it. From there, the indirect dependence could be retrieved by

a particular slicing criterion. As it can be easily anticipated, slicing criteria

in this approach corresponds to nodes in a FDG.

2.2 The Slicing Process

Program slicing based on Functional Dependence Graphs is a five phase pro-

cess, as illustrated in Figure 2.1.

As expected, the first phase corresponds to the parsing of the source code

to produce an abstract syntax tree (AST) instance t. This is followed by an
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abstraction process that extracts the relevant information from t, construct-

ing a FDG instance g according to the different types of nodes found.

The third phase is where the actual slicing takes place. Here, given a

slicing criterion, composed by a node from t and a specific slicing algorithm,

the original FDG g is sliced, originating the sub-graph g′. Note that, slicing

takes place over the FDG, and that the result is always a sub-graph of the

original graph.

The fourth phase, is responsible for pruning the AST t, based on the sliced

graph g′. At this point, each program entity that is not present in graph g′,

is used to prune the correspondent syntactic entity in t, giving origin to a

subtree t′ of t. Finally, code reconstruction takes place, where the pruned

tree t′ is consumed to generate the sliced program by a process inverse to the

one of phase 1.

In the next section, a number of what we have called slicing combinators

is formally defined, as operators in the relational calculus [BH93], on top of

which the actual slicing algorithms, underlying phases three and four above,

are implemented. This provides a basis for an algebra of static program

slicing over graph structures. This formalisation of the functional slicing

algorithms helped considerably not only at verifying the correctness of the

algorithms, but also in deriving the implementation of the slicing algorithms,

as explained in chapter 3.

2.3 Slicing Combinators

Given that both the extraction and code reconstruction phases amount ba-

sically to a language engineering problem, we shall concentrate now on the

specification of the slicing algorithms. Actually, the combinators can be de-

fined over any directed graph G. Therefore, in the sequel, we shall abstract

from the node/edge type information as introduced above.

Let us consider first the forward slicing process, taking as slicing criteria

a single FDG node n.

A forward slice computed over a graph G from a node n consists of the G

sub-graph including all nodes which depend, either directly or indirectly, on



2.3. SLICING COMBINATORS 27

n. It is convenient to rephrase the definition of a graph G to the equivalent

form of a relation G : N ←− N , where nGm means node n depends on node

m. Thus we may express the forward slicing operation, represented by G⊗n,

as the least fixed point of the following equation

x = G · bne ∪ nextG x (2.4)

where nextG x = G · rngx and bne : N ←− N is the singleton coreflexive

associated to node n. Recall (from e.g. [Oli08]), that rng S denotes the

range of relation S. Therefore,

G⊗ n , µx . (G · bne ∪ nextG x) (2.5)

where µ is the least fixed point operator [Bac02].

Applying the rolling rule1 with g x = G · bne ∪ x and hx = nextG x,

yields

G⊗ n

⇐ {definition, rolling rule }

G · bne ∪ µx . (G · rng (G · bne ∪ x))

⇐ {rng preserves ∪ }

G · bne ∪ µx . (G · (rng (G · bne) ∪ rngx))

= {· distributes over ∪ }

G · bne ∪ µ(G · rng (G · bne) ∪ G · rngx))

= {definition}

G · bne ∪ µx . (nextG (G · bne) ∪ nextG x )

which may help to build up the correct intuition about the definition: in each

iteration a new level of descendent nodes is added to the incremental slice.

The transformation algorithm specified by G ⊗ n can be characterized

1In the fixed point calculus, the rolling rule — µ(g ·h) = g(µ(h · g)) — provides a way
of unfolding fixed point definitions [Bac02].
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Figure 2.2: Non-executable forward slice

as a static forward slicing operation. Static because it is only based on the

FDG instance, which is computed by just taking the program source code as

input. Although it may seem that the slices produced by this specification

are executable functional programs, such is not the case, because of the way

functions may depend on data types and how these data type dependencies

are captured in what respects to its constructor and destructor nodes.

Actually, non-executable forward slices are indeed produced by this spec-

ification whenever one performs a forward slice with respect to a function f

that makes use of a data-type constructor dt1 (or destructor) without making

any explicit reference to the use of the data type dt for which the constructor

(or destructor) belongs. Such a situation would lead to the construction of a

slice containing function f definition and the data type constructor used dc1,

not including the remaining definition of the used data type which is crucial

to obtain an executable slice. Figure 2.2 illustrates this case in FDG terms.

Although this forward slicing algorithm may produce non-executable slices,

it is still useful not only from a program understanding point of view but also

as a basis for other interesting program analysis operations. Such a notion

of forward slicing over FDG’s can be used to compute the components of a

data type effectively used in a program, by inspecting the union of all for-

ward slices obtained using every function that uses the data type as a slicing

criterion. With such an operation, one could, for instance, simplify the data

type in question by removing the parts not present in the computed slices.

In other cases, the detection of unused parts of a data type may well indicate

that the program is not working as expected and thus lead to an early error

discovery. We shall come later to the problem of specifying an executable

forward slice, but first we have to set the scene by introducing some other
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slicing operations that are needed for such a specification.

To begin with, consider the dual slicing operation: backward slicing, de-

noted by n⊕G, can be regarded as forward slicing over the converse FDG,

i.e.,

n⊕G , G◦ ⊗ n (2.6)

where R◦ denotes relational converse.

This time, the obtained slice may not be executable because it collects,

form the initial program, every program entity x that depends on the slicing

criterion n, without necessarily including in this collection every program

entity for which x depends upon to operate.

As an example of a program that may originate a non executable back-

ward slice, consider the case where a function f1 is dependent on a given

slicing criterion and also on another function f2 that does not depend on

this slicing criterion. In such a program, our backward slicing algorithm col-

lects the program entities visited by a reverse traversal over the dependencies

edges with origin in the slicing criterion. Clearly, the obtained backward slice

contains function f1 but not function f2 which is crucial for the execution of

f1 and thus to the slice to be qualified as executable.

Any of the combinators — ⊗ or ⊕ — can be taken as the “building

blocks” of an entire slicing algebra. For example, given two, not necessarily

distinct nodes, n and m, one may define what is called a chop limited by n

and m [JR94], as

chop(n,m) , (G⊗ n) ∩ (m⊕G) (2.7)

Figure 2.3 illustrates a chop limited by nodes labelled 3 and 7.

Note that a chop can be quite useful in program analysis. A typical

situation arises when an error is identified between two points in the source

code but its exact occurrence is not obvious. In such a case the corresponding

chop would isolate the relevant code between the two points.

By reusing the previous definitions, we can now define a combinator that
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(a) G (b) G⊗ 3 (c) 7⊕G (d) chop(3, 7)

Figure 2.3: Chopping with FDG

computes the whole influence area of a given program entity. Such a combi-

nator can be defined as the union of the forward and backward slices of the

given program entity node:

area(n) , (G⊗ n) ∪ (n⊕G) (2.8)

In practice, slicing a whole FDG often leads to very large slices, difficult

to manage and analyse. An expedite method to substantially reduce the size

of a slice consists of restricting the nodes in the computed sub-graph to a

specified subset of node types. For example, if the focus is placed on finding

dependencies between functions and modules, the calculated slice should be

a sub-graph restricted to nodes of type Nf or Nm. Following this approach,

slicing operators become parametric on a set T of node types of interest. This

means that the slicing criterion adds to the seed node a subset of NType to

specify the types of nodes allowed to appear in the slice. The definition in

equation (2.5) extends smoothly to this case. Let φT =∈T ·π1
2. Then,

G⊗T n , µx . (G · bne ∪ G · (rngx ∩ [[φT ]])) (2.9)

and, of course, n⊕T G = G◦⊗T n. In fact, the whole slicing algebra becomes

parametric on T . For example the inter-relations of a datatype with other

2In pointwise notation predicate φT reads φT n = π1(n) ∈ T , where π1 is the first
projection in a cartesian product.
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datatypes, constructors and selectors can be computed by a generic version

of the area combinator parametric on T = {Ndt, Nc, Nd}.
We are now able to define an executable forward slicing algorithm which

we shall call complete forward slicing. The difference between this algorithm

and the previously presented forward slicing operator is that, when faced with

a situation where a program entity depends upon a constructor or destructor

node, the new algorithm collects not only the constructor or destructor node

in question, but also the entire data type definition to which it belongs.

The result of applying this algorithm, with slicing criterion f , to the

example of Figure 2.2, is a slice exactly equal to the initial program. So, as

expected, obtaining executable slices comes to the price of increased length

and complexity.

Again, this operator of complete forward slicing can be formalised as

G ⊗ n , G ⊗ n ∪ (
⋃

u∈G⊗n
u ⊕{Nd,Nc,Ndt} G) (2.10)

One may argue that, even if computed by complete forward slicing, slices

may not be executable programs, since it may happen that the main function

is not present in the slice. This is usually taken as the entry point of the

compiled code and often regarded as a requirement in the definition of an

executable slice, at least in imperative settings. Nevertheless, we propose

that, in the context of functional programming, the suitable interpretation of

executable slice is that of a functional program, where each function defined

in it has access to every program entity it depends upon to operate. On the

contrary, if the calculated slices contained functions that depend on some

other sliced program entity (like a data type, or another function), then, one

would consider such slices as non executable.

Moreover there are other program analysis operations which, although

only indirectly regarded as members of the slicing family, can be defined over

a FDG. A typical example is testImport which, given a FDG G and two nodes

of type Nm, n1 and n2, such that n2Gn1 (i.e., module in n2 imports the one

in n1), returns true if there is at least an entity defined in n2 which depends

on an entity defined in n1. Otherwise one may conclude that the import
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statement is redundant, i.e., no services of the imported module are really

used. Of course nodes of type Nm are excluded from this test. Formally,

testImport(n1, n2) , top(dom (G◦m · bn1e),dom (G◦m · bn2e)) ∩ G = ∅

where Gm is the restriction of FDG G to nodes of type different from Nm

and top(S, T ), for coreflexives S and T , builds relation {(x, y), (y, x)| (x, x) ∈
S ∧ (y, y) ∈ T}.



Chapter 3

HaSlicer

This chapter introduces HaSlicer a prototype tool built as a proof-of-

concept for the ideas presented in the previous chapter.

Although functional languages have recently witnessed an enormous growth

in popularity, suitable tools for (functional) program comprehension are still

lacking. Also lacking are useful visualisations of program entities, upon which

programmers can support their understanding of the system aspects being

inspected.

HaSlicer is a step in such a direction: not only a tool able to perform

diverse kinds of slicing, but also to deliver a useful visualisation of the high-

level program entities under analysis, as well as of the calculated slices. Even

more, the tool was designed in a way that provides the user with a functional

framework upon which he can easily develop other FDG based operations,

as suggested above.

The first version of HaSlicer was released to the public in March 2006 as

a Web Application available from http://labdotnet.di.uminho.pt/HaSlicing/Ha-

Slicing.aspx. The second version of the tool, with improved slicing opera-

tions as well as better FDG navigation and visualisation possibilities, was

released in February 2007, again as a Web Application at http://labdot-

net.di.uminho.pt/HaSlicer/HaSlicer.aspx. This url still hosts the latest ver-

sion of HaSlicer.

Since February 2007, all programs submitted for analysis through the

33



34 CHAPTER 3. HASLICER

web, as well as the computed slices, have been recorded by the tool in a

specific server. A quick examination of the data submitted from February

2007 to October 2008, shows that HaSlicer has been used to analyse 190

programs, corresponding to 11325.7 KB of Haskell source code, distributed

through 1087 files. In 150 cases, out of the 190 submissions, slicing was

effectively carried on, while in the remaining cases the tool was mainly used

for visualising and navigating through the generated FDG.

3.1 The HaSlicer Prototype

HaSlicer is a faithful implementation of the processing schema of Figure

2.1, with each phase isolated in a different software component. The tool

implements the previously presented specifications for forward, backward and

complete forward slicing.

For the first phase, which consists of the parsing of the source code,

HaSlicer uses the Haskell parser from the GHC (Glasgow Haskell Com-

piler) libraries which delivers an abstract syntax tree (AST) as a Haskell

data type instance.

This choice of resorting to the built-in GHC Haskell parser brings,

however, some limitations to the range of Haskell programs that the tool

will be able to deal with. The specific limitation introduced by this parser

is its restriction to handle only “pure” Haskell programs, i.e., programs

that do not make any use of pre-processing instructions nor C-like foreign

functions calls. This may not seem to constitute such a great limitation to

the tool, given that most functional programs do not make use pre-processing

instructions nor use foreign functions calls. Nevertheless, in order to be

useful the tool must take into consideration all the libraries used by the

program under analysis and, in particular, the GHC libraries (or the libraries

from the compiler being used) which most often contain pre-processor and

foreign function calls. This problem is addressed in the following phase of

the analysis process implemented by HaSlicer.

The second phase consists of an extensive analysis of the parsed AST in

order to construct the corresponding FDG. For this, one could have used one



3.1. THE HASLICER PROTOTYPE 35

of the several program transformations and visitor pattern libraries available

in the literature [Vis01, LV03], in order to strategically consume the AST and

generate the correspondent FDG. However, the transformation of an AST to

a FDG contains specific details that greatly complicate its implementation

using one of the strategical traversal libraries. Among other implementation

details, this operation needs to have several values of temporal states cap-

turing the dependence’s in a given scope of the program, which must then

be combined in an overall dependency structure. Thus, we decided to im-

plement this transformation directly in Haskell, resorting to the language

constructs and some standard libraries.

The result of having performed this transformation directly in Haskell

is a component that makes heavy use of pattern matching and polymorphism

in order to extract not only the program entities but also every dependency

between them. This is one of the most important and difficult phases in the

entire process because of the great abstraction distance between the source

code, represented in the form of an AST, and the FDG model.

One of the most relevant issues that had to be resolved during the imple-

mentation of HaSlicer was the problem of capturing the imports between

functional modules, especially the imports of system libraries that one does

not usually have direct access to the source code. This is a critical issue, since

every program relies on some imports (even when not explicitly importing

anything, as Haskell programs import, by default, the prelude library), and

those dependencies are often quiet relevant from a program analysis point of

view. In particular the previous chapter formula for calculating the unneces-

sary imports of a module (or of an entire project), can only be implemented

if the code analysis is sensible about the several imports that are taking

place in the code being analysed. Moreover, every program analysis based

on dependencies between programmatic entities, like slicing operations, are

extremely sensible to the imports and the uses of the definitions from such

imports by the program under analysis. The main reason for this impact in

program analysis is the fact that, by using imported definitions, a program

may actually carry underlying and entirely new dependency graphs involving

the imports of the imported modules.
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To overcome this problem of having to deal with imports, HaSlicer was

given access to the source code of all GHC libraries as user defined code, each

time they are referred in some import from the program under scrutiny.

This decision, imposed a careful pre-processing of all the GHC libraries

in order to remove every foreign function call and other language extensions

that the GHC parser does not interpret. However, we are aware that in doing

so we, one may remove some dependencies between the libraries code entities

that should have been taken into consideration on the final FDG instance.

Because of this, it may be possible that some slices produced by HaSlicer

are not as accurate as one would like, in what respects to programs using

libraries containing language extensions. Nevertheless, this impact over the

precision of slices is largely reduced in practice, because, although HaSlicer

takes into consideration the libraries used, it does not outputs by default the

sliced libraries in the calculation of the final slice.

However, even by using the pre-processed libraries, this solution comes

with a performance problem i.e., HaSlicer has to analyse the same static

libraries, and produce the correspondent FDG’s, each time it is invoked on

a program that refers to those libraries. In order to overcome this, we have

introduced an incremental behaviour in the analysis of libraries. Thus, each

time a new library is imported in some program, the HaSlicer performs phases

one and two over the library, obtaining a FDG instance of that library which

is then stored permanently in a suitable XML format.

When analysing a program that refers to a library that happens to have

been referred to by another program previously analysed by the tool or by

some other module of the program under analysis, HaSlicer just reads the

previously stored FDG instance and merges it into the overall FDG of the

program.

Once computed the entire FDG of the program, that is the FDG of the

user defined modules and all the modules it imports, the program analysis

process demands a suitable visualisation of the obtained graph structure.

Here, several visualisation techniques were tried in order to give to the user

the best overview of the program entities in the graph as well as a good graph

navigation mechanism.
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Among other approaches, we have tried a static display of the graph

with tools like Graphviz, which delivered a plain display of the graph with

navigation capabilities1, and an elliptical display of the graph with smooth

navigation facilities, which is the technique used in the current version of

HaSlicer.

This kind of visualisation is currently implemented as a Java applet run-

ning on the client browser, but it can easily be adapted in the future to a

standalone program analysis application. It displays the graph in an ellip-

tical area where the nodes nearest to the centre of the display are enlarged

with respect to the ones in the peripheral zones of the ellipse, where nodes

are presented with smaller dimensions or even completely hidden. This is

illustrated in Figure 3.1. This visualisation structure is preserved during

the navigation process, where the user can drag the entire graph in order

to analyse particular parts of the FDG. Also concerning graph navigation

of large FDGs, HaSlicer is able to perform searches for particular nodes

in the graph by positioning a node that matches a particular string in the

centre of the displaying area.

The third phase of the slicing process is concerned with the pruning of

the FDG based on a slicing criterion. This slicing criterion usually consists

of a FDG node, though, as presented in the previous chapter, this definition

may vary depending on the algorithm used to perform the desired program

analysis.

This phase is entirely based on the specification of the slicing operators

introduced in the previous chapter. Actually, as these are entirely developed

in Haskell, the implementation is quite straightforward, amounting almost

to a direct translation process. For example, the relational calculus formula

G⊗ n , µx . (G · bne ∪ nextG x) (3.1)

is implemented as

fs :: Ord a => Rel a a -> a -> Rel a a -> Rel a a

1Version beta 1 available at http://labdotnet.di.uminho.pt/HaSlicing/HaSlicing.aspx
uses this kind of visualisation technique
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Node Colour Node Type

Nm

Nf

Ndt

Nc

Nd

Table 3.1: FDG edge codes

fs g n x = (g ‘comp‘ (singRel n)) ‘union‘

(g ‘comp‘ (rngRel x))

(|+|) :: Ord a => Rel a a -> a -> Rel a a

g |+| n = relFix $ fs g n

where relFix is the fixed point on relations. All other relational formulas

over FDG’s are implemented in a similar way.

The fourth phase consists of a pruning traversal of the abstract syntax

tree, obtained during the parsing phase, in order to remove every expression

that is not present in the sliced FDG.

The fifth, and final, phase concerns code reconstruction of the obtained

sub-AST from the previous phase. For this, HaSlicer uses the GHC pretty

printer that works over the same data type of the AST’s returned by the

parser. In order to be able to use this pretty printer, the AST pruning must

be performed in a way to deliver a reduced, but valid, AST instance.

Because of this use of GHC pretty printer, the sliced code may have a

different aspect from the original i.e., some tabs and white spaces may be

missing as well as some line breaks. Nevertheless, the code itself, i.e. the

functional expressions, is the same as the one present in the original code.

Figure 3.1 shows a snapshot of HaSlicer working over a Haskell pro-

gram. Note that the differently coloured nodes indicate different program

entity types according to Table 3.1.

Figure 3.2 reproduces the sub-graph corresponding to a slice over one of

the nodes of the graph in Figure 3.1. Once a slice has been computed, the
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user may retrieve the corresponding sliced code. The whole process can also

be undone or launched again with different criteria or object files. This and

other usability aspects of the tool are presented in the next section in the

format of a mini-tutorial.

Although its current version only accepts Haskell code, plug-ins for

other functional languages as well as for the Vdm [FLM+05] metalanguage

[FL98] are currently under development.

3.2 Working With HaSlicer

To illustrate HaSlicer in action, we will analyse an Haskell project

which extends the capabilities of HaSlicer to analyse VDM-SL code [FL98,

Jon86]. Note that this is a kind of “meta-analysis”, since one is using the

already implemented HaSlicer to analyse an extension to this same tool.

In particular, the module that one will analyse resorts to the calculation of

the FDG from a VDM-SL code file. The project is composed of 13 files con-

taining user defined modules and about 5000 lines of code. It is advisable for

the reader to follow this small tutorial while performing the correspondent

actions in HaSlicer.

The first step in using HaSlicer consists of submitting the source code

of the project to be analysed to the tool. In this particular case, the source

code for project VDM2FDG is available as sample 3 (file sample3.zip) from

the samples list in the tool.

Once this sample file is downloaded, the user has to submit it to the

tool by locally browsing the file and then clicking the Submit File button.

Here the user can either submit the source files as a zip file containing all

the project source code files, or every source code file separately. Once the

entire project source code is submitted to HaSlicer the user must select

the project main file from the drop down control labelled Main File. In the

case of the VDM2FDG project the user should select file SlicingVDM.hs,

and then click the Generate Graph button so that HaSlicer calculates

and presents the correspondent FDG instance.

Figure 3.1 shows the aspect of HaSlicer once the project is loaded and
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Figure 3.1: VDM2FDG loaded in HaSlicer

the FDG is computed and visualised. Note that only the nodes closest to

the main module entities are visible and that all others are hidden in the

periphery of the visualiser ellipse. This kind of visualisation technique has

proven to be very useful, especially when dealing with very large projects.

Just by looking at the FDG of the entire project, the analyst gets already

an overall view of the dependency layout of the entire system. He can also

navigate towards particular areas in the FDG. A useful functionality provided

by HaSlicer is the ability to search a particular node in the entire graph

by introducing the node name in the upper right utilities area.

Continuing the tool demonstration, suppose now that the user wants to

analyse the potential impact of changing function reduceDoc in the rest of

the project. In such a case, the user first has to locate the node corresponding

to function reduceDoc. For this, he could use the search utility of HaSlicer.

In return HaSlicer would display the node for function reduceDoc in the

centre of the display area, enabling the user to perform a preliminary visual
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Figure 3.2: Backward slice w.r.t reduceDoc

analysis of its immediate dependant entities.

After having visually examined the part of the system in question, should

he be interested in further calculating every possibly affected entity, he would

then perform a backward slice with respect to function reduceDoc. This can

be accomplished by using the upper left control in HaSlicer and select-

ing as Slice Type the option Backward Slicing, as Node Type the option

function, as Node Name the string reduceDoc and finally clicking the slice

button. The result of performing such a slice can be seen in Figure 3.2.

Once the slice is performed a link bellow the slice button appears so that the

analyst may download the code corresponding to the performed slice.

Now, we have the complete set of the entities that might be affected by

changing function reduceDoc. Note that, in this example, function showDoc,

defined in a different module from function reduceDoc, can also be affected

by a change in function reduceDoc which could not have been predicted by

a quick manual impact analysis. This and other complex dependencies can
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Figure 3.3: Forward slicer w.r.t showDoc

be calculated by HaSlicer, giving the analyst a visual scenario of what is

the impact of changing some code entity.

The impact analysis performed over function reduceDoc is useful not just

to indicate what can be affected, but also tp point out what certainly is not

going to be affected by a particular change in the code. This information

assures the programmer undertaking modifications on the code, that what-

ever he might change in the program, it will certainly not affect some other

clearly identified parts of the project.

Once accomplished a given program analysis, if desired, the user may nav-

igate back and inspect the entire graph of the submitted project by clicking

the button Show Entire Graph in the lower right side of the tool.

Suppose now that the VDM2FDG programmer has moved on to another

project, and that he realises that he needs some of the functionalities he had

developed for the first project. Let us assume that for the second project

the programmer needs to implement a pretty printer for documents which he
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already did for the first project with function showDoc. An unpractical, but

valid, solution would be to import the entire first project into the current

project, with, of course, the obvious disadvantages of possibly incurring in

name clashes and over charging the compiler with useless code. A better so-

lution would be to use HaSlicer in a similar way to the previous reduceDoc

case, but this time selecting the option Forward Dep Slice (due to previous

versions compatibility reasons, in HaSlicer the option Forward Dep Slice

corresponds to the previously presented complete forward slicing algorithm)

with respect to showDoc. Such a slice is displayed in Figure 3.3 and it is not

certainly trivial to compute manually. The code contained in this slice cor-

responds to the minimum subprogram from the original VDM2FDG project

that implements function showDoc. Finally, the programmer could use the

computed slice and import it in the second project, obtaining a much clearer

solution without any unnecessary code.
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Chapter 4

Component Discovery: A Case

Study in Functional Slicing

A fundamental problem in system’s re-engineering is the identification of co-

herent units of code providing recurrently used services or functionalities.

Such units, which are typically organised around a collection of data struc-

tures or inter-related functions, can be wrapped around an interface and

made available as software components in a modular architectural recon-

struction of the original system. Moreover they can then be made available

for reuse in different contexts.

This chapter introduces the use of software slicing techniques and its

supporting program representation structures to carry out a component’s

identification process. The potential of program transformation techniques,

like software slicing, for service or component identification is therefore quite

obvious. In practice, however, this requires a flexible definition of what is

understood by a slicing criterion, the ability to extract actual (executable)

code fragments, and, of course, suitable tools that make this all possible in

practice.

All these issues are addressed in this chapter where, however, our atten-

tion is restricted to functional programs [Bir98]. Such focus is explained not

only by the research context of previous work, but also because we deliber-

ately want to take an alternative path to mainstream research on component

45
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identification for which functional programming has been largely neglected.

Therefore our research questions include how can slicing techniques be used

in practice to accomplish component extraction, and what would be the most

suitable criteria for component identification applied to functional monolithic

code.

4.1 Component Discovery and Identification

There are basically two ways in which slicing techniques, and the HaSlicer

tool, can be used in the process of component identification: either as a

supporting procedure for manual component identification or as a basis for

an automatic discovery process in which the whole system is searched for

possible loci of services, and therefore potential components. In this section

both approaches are discussed.

4.1.1 User Driven Approaches

The first approach deals with manual component identification guided by

a process that iterates between analysing and slicing a suitable representa-

tion of the legacy code. In this context, the FDG seems to provide a suitable

representation model as it concentrates, in a single representation form, infor-

mation about the source code entities (and its dependencies) which constitute

the basic aggregation units of software components. Through its analysis,

the software architect can easily identify all the dependencies between the

code entities and look for certain architectural patterns and/or undesired

dependencies in the graph.

One of the most interesting operations in this category of manually driven

approaches, is component identification by service. The idea is to isolate a

component that implements a specific service which is provided by the overall

system.

Our approach to isolate such a service in a component, starts by following

a top-down approach to look for the top level functions that characterise the

desired service. This identification must be performed manually by direct in-
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spection of the source code or by analysing the FDG instance of the system.

We regard the latter as a better alternative for this task, because most of the

irrelevant code details are abstracted from the FDG, thus making it easier

to inspect which system functions are taking care of the foreign service invo-

cations. Even more, by using the FDG visualisation and search capabilities

of HaSlicer this task gets even further simplified.

Once the functions implementing the desired services are found, complete

forward dependency slicing is applied starting from the corresponding FDG

nodes. This produces a series of sliced files (one per top level function),

that have to be merged together in order to build the desired component.

Note that a complete forward slice collects all the program entities that each

top level function requires to operate correctly. Thus, by merging all the

complete forward slices corresponding to a particular service one gets the

least (derived) program that implements such a service. The problematic of

merging the computed software slices is treated in section 4.2.

An alternative user driven approach to component identification, resorts

to exploring the fact that many software systems are developed around data

type definitions. These systems are composed by a series of core data types

which are then decorated with functions and operations in order to deliver

the overall system behaviour. Although being developed around easily iden-

tifiable data types, it is not generally trivial in practice to isolate the parts of

the entire system that concern a particular data type. The are several rea-

sons behind the difficulty in disentangling the system parts dealing with each

data type, but the most important ones are the introduction of functions and

operations dealing with several data types instead of relying on other func-

tions retrieving the needed data type information as well as the evolution of

systems by the intervention of different development teams, which may not

always respect the original encapsulation design principles.

Another important reason to delve into this category of software systems

is that they are among the most frequent systems developed and still being

developed today. Just to name a few usual sub-categories and to give a

notion of the range of systems one is referring to here, consider for instance

Enterprise Resource Planning (ERP), Customer Relationship Management
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(CRM), Manufacturing Resource Planning (MRP) and other tightly data

dependent software’s.

Our approach to perform component identification over such data centric

systems is to manually select a particular data type from the set of systems

data types and isolate both the selected data type and every program entity

in the system that depends on it. Such an operation can be accomplished in

a two phase process based on forward and backward slicing.

The first phase consists in performing a backward slicing using as slicing

criterion the selected data type node from the FDG. This operation retrieves

a slice containing the selected data type and every program entity that de-

pends upon it, but as explained in chapter 2, the retrieved slice may not be

an executable one, thus not always suitable to be considered as a compo-

nent. This leads us to next phase, whose objective is to transform the slice

obtained in phase one to the minimal executable program that contains it.

In the second phase one calculates a list of the complete forward slices

with respect to every function contained in the slice obtained in phase one.

Finally the process ends by merging the slice from phase one with all the

slices from phase two (see section 4.2 for details).

One may wonder whether that this data type driven component discovery

can be applied to every software system, since almost every system delivers

functionality by using some kind of data type definition. This would indicate

that this approach could be transformed into a completely automatised one,

by applying it to all root data type definitions1 or even to every system data

type. Note, however that we have tried such an approach to a few software

systems and, in practice, this led in most cases to a very low number of

useful discovered components. The main reason for this resides in the fact

that many of the data types used by software systems do not encapsulate

real “functional” entities (i.e. meaningful system requirement subjects or

relations) but rather serve as auxiliary structured repositories of information

to be used internally in a myriad of ways. Thus, when applying such an

approach to these auxiliary data types, one obtains a piece of software that,

although being perfectly executable, does not deliver a real useful service or

1I.e., data type definitions that do not depend upon any other data type definition
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set of services.

4.1.2 Automatic Component Discovery

Another possibility for using slicing and its underlying data representation

structures, resorts to the application of such techniques to the automatic

isolation of possible components. In our experience, the use of automatic ap-

proaches was found particularly useful when employed at early stages of com-

ponent identification and especially for dealing with legacy software systems

for which one cannot immediately tell where to start looking for potential

components.

Such automatic procedures, however, must be used carefully, since they

may lead to the identification of both false positives and false negatives. This

means that there might be good candidates for components which are not

discovered by such techniques as well as situations in which several possible

components are identified which turn out to lack any practical or operational

interest. We shall come later in this section to the problems behind this false

positive and negative identification of components.

Before undertaking the implementation of an automatic component dis-

covery process, one must first understand what to look for, since there is

no universal way of stating which characteristics correspond to a potential

software component, nor what is the best way to have a system organised

in term of its constituents. In practice this means that one has to look for

components by indirect means, that certainly include the identification of

a number of characteristics that components usually present, but also some

filtering criteria.

A well known method used to characterise “interesting” software compo-

nents is based on the notion of coupling and cohesion [FP97, YC79, SvdMK+04].

Coupling is a metric to assess how mutually dependable two components

are, i.e., it tries to measure how much a change in one component affects

another one in a system. In practice coupling of a system’s software parts

can be measured in different ways, depending on how the software parts in

question interact among each other. Among the many ways available for this
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interactions to take place, one may list interactions using shared files in the

disk, shared memory spaces (e.g. Linda based systems), direct procedure

calls, distributed objects and web-services calls.

Once identified the particular interaction types one is interested in, cou-

pling can be measured by the number of dependencies a software compo-

nent has with respect to other systems parts outside the component. With

HaSlicer, one can compute such a metric based on the diverse kinds of

dependencies captured in the FDG. We will come later on this section to the

specific details for calculating coupling metrics with the FDG.

It is widely accepted that, in general, a software component should not be

dependent on any parts of the system where it is being used. On contrary, it is

the “glue” code of the system that should be dependent on the components

being used. Since, coupling measures the dependencies of the component

towards the rest of system, the minimisation of this metric seems to be useful

as a search criterion in the automatic discovery of software components.

On the other hand, cohesion measures how internally related are the

entities of a specific component. Like in the coupling case, cohesion may be

accessed based on several kinds of interactions the component presents, not

to the outside entities, but inside himself. Again, HaSlicer seems to be a

good alternative to compute such a metric from computed FDGs.

Generally, components with low levels of cohesion are usually difficult to

debug and to detect the specific logic behind undesirable behaviour. The

reason for this characteristics relies on the fact that other entities of such

components, especially functions, are weakly related, thus opening space for

errors to “hide” themselves in rarely used areas of the code. This indicates

that, in general, one can use the maximisation of the cohesion metric as a

quality measure in the discovery of components.

The conjunction of these two metrics leads to a discovery criteria which

explores the FDG to look for specific clusters of functions, i.e., sets of strongly

related functions, with reduced dependencies on any other program entity

outside this set. Such function clusters cannot be identified by program slic-

ing techniques, but the FDG is still very useful in determining these clusters.

In fact these metrics can be computed on top of the information represented
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in the FDG. The HaSlicer framework, in particular, can be used to compute

their combined value through the implementation of the following operator.

coupling(G,F ) , ]{(x, y) | ∃x, y. yGx ∧ x ∈ F ∧ y 6∈ F} (4.1)

cohesion(G,F ) , ]{(x, y) | ∃x, y. yGx ∧ x ∈ F ∧ y ∈ F} (4.2)

ccanalysis(G,F ) , (coupling(G,F ), cohesion(G,F )) (4.3)

Where G is a FDG, ] denotes the cardinal of a set and F is the set of functions

under scrutiny.

This definition, however, leads us to another problem: what sets of func-

tions F should be considered as potential candidates for further inspection

of component quality. A complete evaluation of all functions defined in the

system is certainly out of the question, since the amount of cases to be in-

spected turns the process infeasible from a practical computational point of

view. This was, however, implemented as a quality control for the different

improvements made to the automatic component discovery.

Experimental result confirmed that one has always to limit the size of the

sets of functions under scrutiny, since the closer they get to the size of the

set of all functions defined in the system, the better the results achieved for

coupling and cohesion. Ultimately, the set of all functions in the system gets,

of course, the maximum level of cohesion and the minimum level of coupling,

thus making it the “best” candidate for a software component.

Therefore, the maximum size of the sets of functions to be inspected be-

comes a relevant parameter in this process. It may vary depending on the

size and specific details of the system under analysis. By limiting the overall

size of components under search one is already reducing, in an exponential

way, the amount of time the discovery process takes to point out potential

component candidates. However, the algorithm can be improved by resort-

ing to Haskell lazy evaluation. The following recursive definitions of the

previous coupling and ccanalysis operators reflect such improvements.
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coupling(G, {}) , 0 (4.4)

coupling(G, {f} ∪ F ) , if ∃x /∈ F. fGx then 1 + coupling(G,F ) (4.5)

else coupling(G,F )

ccanalysis(G,F ) , let x = coupling(G,F ) (4.6)

in if x < mc then (x, cohesion(G,F ))

else ⊥

Note that now formula ccanalysis returns ⊥ whenever the coupling value

exceeds a user defined level mc. Even more, by unfolding the definition of

coupling, the Haskell implementation improves since in every recursive step

of the calculation it inspects if the accumulated value exceeds the maximum

coupling value, eventually making the process to end.

In practice, the introduction of this upper bound for the coupling value

is quite useful since most of the times one is looking for components with

very small values of coupling, typically close to 0. There is also space to

apply a similar improvement to the computation of the cohesion metric.

Nevertheless, this seems to be less effective because it is based on a lower

bound for cohesion which implies that the algorithm has to proceed until

achieving such lower bound, which, as expected, is most of the times a large

value.

Once such function clusters are identified, the process continues by ap-

plying complete forward slicing on every function in the cluster and merging

the resulting code.

The problem of false negatives, i.e., the existence of software components

inside a system which are not discovered by this method, is most of the

times explained by the fact that such components are larger than the size of

the maximum component to be found. Has expected, this can be solved by

increasing the minimum size of the components to find.

On the other hand, the problem with false positives, i.e., software parts

that are pointed out by this process as software components which turn out
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not be real software components, is most often related to non considered

dependencies between program entities. In fact this is not a problem of the

method but of its implementation which was carried out using HaSlicer.

The problem is that HaSlicer only captures dependencies that arise from

the semantics of the basic programming language (i.e., Haskell) and it does

not take into consideration other sources of dependencies like file sharing,

memory share, foreign function calls, etc. Thus, such false components may

have dependencies to other system parts that were taken into consideration,

therefore leading to a miscalculation of the cohesion and coupling metrics.

One way to overcome this problem, is to manually feed the dependencies

in the system that HaSlicer cannot compute, before the discovery process

takes place. This can easily be accomplished by using the HaSlicer accom-

panying framework, n particular the functions dedicated to the manipulation

of the FDG instance.

Although the main focus of this case-study is to introduce an automatic

discovery process, based on coupling and cohesion, note that these metrics

can also be of use for assessing the quality of component based systems. In

such a scenario, the program analyst is given a system where the components

are already identified so that he can compute and assess the values of coupling

and cohesion for the identified components. In case the coupling and cohesion

values do not lie between the acceptable values for the system in question,

then the dependencies responsible for such diversion should be inspected,

eventually using HaSlicer again.

4.2 Isolating Software Components

After a software component is identified by one of the approaches introduced

above, the corresponding isolation process takes place. For most cases, as

depicted in Figure 4.1, this process is divided in two phases, consisting of the

extraction of the component code fragments and their merging, respectively.

The specific details of the first phase vary according to the technique em-

ployed, but it often resorts to using different slicing techniques as explained

in the two previous sections.
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Figure 4.1: Component isolation process

The second phase consists in merging the code fragments identified in

phase one, so that one gets a single and unified piece of software, executable

and reusable in other contexts. Due to the details of this operation, the merg-

ing problem goes far beyond syntactic code cut and paste. In particular, we

must take into consideration that the code fragments to be merged are scat-

tered across different files, whose structure and existence must be preserved

in order to keep the physical modularity structure of the component. Even

more, there are certainly overlapping definitions in each version of the same

file which have to be resolved in order to accomplish an executable software

component.

The merge of the different slices, that constitute the component to be

isolated, can be performed manually by combining the different versions of

the same module in each slice. Nevertheless, for cases where there is a great

overlapping of programming entities across slices, such a process, although

not complex, can become quite time consuming and resort to a try-failure
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iteration for merging the different modules in a compilable version. Moreover,

in cases where the size of the component being isolated is really big, the time

to perform each compilation of the manually merged slices can take up to

minutes, thus turning this approach uninteresting.

A better choice for merging this set of slices, can be indirectly accom-

plished by the use of HaSlicer. Actually, although this functionality is not

directly available from the tool user interface, one can still use the underlying

framework to merge FDG instances. Recall, from the previous chapter, that

each slice is obtained by an FDG instance corresponding to the sliced pro-

gram representation. Therefore, it is easy to use the HaSlicer framework

to invoke the complete forward slicing operation over the target system and

store the FDG instances in a list, which later can be consumed to compute

the desired component.

HaSlicer represents FDG’s internally as sets of pairs of nodes. So,

slice merging is achieved simply by set union of the corresponding FDGs,

without having to worry about overlapping nor duplicate program entities

representations, since, by definition, set structures do not allow repetitions of

elements. Finally, once computed the FDG associated to the merged slices,

one just has to call the FDG program construction function, contained in

the HaSlicer framework, to transform it into the code corresponding to

the desired isolated software component.

Once accomplished the isolation process, another question arises: in what

direction should such system be reorganised to make it use the identified

service as a (now) independent component? This would require an operation

upon the FDG which is, in a sense, dual to slicing. It consists of extracting

every program entity from the system, but for the ones already collected in

the computed slices.

Such operation, which is, at present, only partially supported by HaSlicer,

produces typically a program which cannot be immediately executed, but

may be transformed in that direction. This amounts to identify potential

broken function calls in the original code and re-direct them to the new

component’s services.
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Figure 4.2: FDG for the toy bank account system

4.3 Component Discovery with HaSlicer

To illustrate the component discovery process introduced in this chapter, we

present a brief case-study on top of a Haskell implementation toy bank

account system. The entire code is given in appendix A. The corresponding

FDG, as computed by HaSlicer, is depicted in Figure 4.22. Note that, for

a clearer presentation of the function clusters that will constitute the com-

ponents to be found, dependencies from functions to data-types are omitted.

If one tries to apply an automatic component discovery method to this

code, based, for example, in the combined cohesion-coupling metric, the num-

ber of cases to consider soon becomes very large. Even more, considering all

of the cases in the powerset of the functions set, will lead to the previously

mentioned problem: the set containing all functions is certainly the one with

better results for coupling and cohesion but it is certainly not the case for

identifying a useful component decomposition. Thus, one can use the above

mentioned strategy for optimizing the discovery process based on limiting

2The reader is invited to try this example at http://alfa.di.uminho.pt/~nfr/
PhdThesis/ToyBank.hs
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Functions clusters Cohesion Coupling

getAccAmount findAcc existsAcc

insertAcc updateAcc removeAcc 7 0

getCltName findClt existsClt

insertClt updateClt removeClt 7 0

Table 4.1: Cohesion and coupling metric

the size (in terms of program entities contained) of the components as well

as on the coupling value. For this particular example, given that the entire

program is composed of 13 functions, one has chosen to look for components

with less than 10 functions and with a limit of coupling set to 0. The results

of applying such a component discovery criteria to the example are listed in

Table 4.1.

Clearly, two components have been identified (corresponding to the light

green area of the FDG in Figure 4.2): a component for handling Client

information and another one for managing Accounts data. As explained, the

process continues by applying complete forward dependency slicing over the

nodes corresponding to the functions in the identified sets, followed by slice

merging.

One of the advantages of this automatic component discovery method

is that it helps significantly in early stages of program comprehension, that

usually precede other more sophisticated layers of analysis. In this example,

for instance, one could ignore completely what the code is supposed to do or

what the entities upon which the program executes are. But, after having

performed this automatic analysis, one could clearly identify not only the

main entities, Clients and Accounts, but also the functionality defined around

each one. In this sense, we believe that this process can play a major role in

(functional) program comprehension by giving a first logical division of the

program parts that together implement the entire program behaviour.
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Chapter 5

Slicing by Calculation

This chapter is an attempt to reframe slicing of functional programs as a

calculational problem in the algebra of programming [BM97]. More specif-

ically, to compute program slices by solving an equation on the program

denotational domain.

The main motivation for investigating this alternative approach to func-

tional program slicing, is that the graph-based method discussed in previous

chapters is unable to slice inside what we could be called high level program

entities, i.e., functions, data-types, constructors and destructors. So, the

computed slices never go inside a function definition, or any other high level

program entity, even though they may contain components which are not

relevant according to the slicing criterion.

Slicing over high level entities, as done before, has the disadvantage that,

for programs containing large functions, the slices tend to be rather large.

The main reason for this is that, even in cases where only a single clause1 of

a large function is of relevance to the slice, the process will make the entire

function to be showed up in the final slice. Even more, since the slicing

process is defined as a recursive fixed point calculation, the unnecessarily

collected function clauses will contribute with spurious dependencies that

will trigger the inclusion of further unnecessary program entities.

The approach presented in this chapter takes a completely different path

1We use the term functional clause to refer to a function definition over a particular
kind of input
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from the traditional approaches to slicing. Instead of extracting program in-

formation to build an underlying dependencies’ structure, we resort to stan-

dard program calculation strategies, based on the so-called Bird-Meertens

formalism. The slicing criterion is specified either as a projection or a hid-

ing function which, once composed with the original program, leads to the

identification of the intended slice.

The process is driven by the denotational semantics of the target program,

as opposed to more classical syntax-oriented approaches documented in the

literature. To make calculation effective and concise we adopt the pointfree

style of expression [BM97] popularised among the functional programming

community.

This approach seems to be particularly suited to the analysis of functional

programs. Actually, it offers a way of going inside function definitions and, in

some cases, to extract new functions with a restricted input or output. Note

that with approaches based on dependencies’ graphs, as the ones presented in

the previous chapters, one usually works at an “external” level, for example

collecting references to an identifier or determining which functions make use

of a particular reference. Here, however, we take a completely different path.

5.1 A Glimpse on the Laws of Functions

Composition. In order to maintain this thesis as self contained as possi-

ble, this section provides a brief review of the algebra of functions, recalling

the basic constructions and laws that will be used throughout this chapter

(see [BM97, Bac03]). We begin mentioning some functions which have a

particular role in the calculus: namely, identities denoted by idA : A ←− A

or the so-called final functions !A : 1←− A whose codomain is the singleton

set denoted by 1 and consequently map every element of A into the (unique)

element of 1. Elements x ∈ X are represented as points, i.e., functions

x : X ←− 1, and therefore function application f x can be expressed by

composition f · x.

Functions can be glued in a number of ways which bare a direct corre-

spondence with the ways programs may be assembled together. The most
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obvious one is pipelining which corresponds to standard functional composi-

tion denoted by f · g for f : C ←− B and g : B ←− A. Functions with a

common domain can be glued through a split 〈f, g〉, the universal function

associated to cartesian product of sets as shown in the following diagram:

Z
f

||xxxxxxxxx
g

##FFFFFFFFF

〈f,g〉
��

A A×Bπ1
oo

π2
// B

Actually, the product of two sets A and B can be characterised either

concretely (as the set of all pairs that can be formed by elements of A and

B) or in terms of a universal specification. In this case, we say set A× B is

defined as the source of two functions π1 : A←− A×B and π2 : B ←− A×B,

called the projections, such that for any other set Z and arrows f : A←− Z

and g : B ←− Z, there is a unique arrow 〈f, g〉 : A × B ←− Z, called

the split of f and g, that makes the diagram above to commute. This can

be expressed in quite concise way through the following equivalence which

entails both an existence (⇒) and a uniqueness (⇐) assertion:

k = 〈f, g〉 ≡ π1 · k = f ∧ π2 · k = g (5.1)

Such an abstract characterisation turns out to be more generic and suitable

for conducting calculations than the usual pointwise formulation. Let us

illustrate this claim with a very simple example. Suppose we want to show

that pairing projections of a cartesian product has no effect, i.e., 〈π1, π2〉 =

id. If we proceed in a concrete way we first attempt to convince ourselves

that the unique possible definition for split is as a pairing function, i.e.,

〈f, g〉 z = 〈f z, g z〉. Then, instantiating the definition for the case at hands,

conclude

〈π1, π2〉 〈x, y〉 = 〈π1 〈x, y〉, π2 〈x, y〉〉 = 〈x, y〉
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Using the universal property (5.1) instead, without any reference to points:

id = 〈π1, π2〉 ≡ π1 · id = π1 ∧ π2 · id = π2

Equation

〈π1, π2〉 = idA×B (5.2)

is called the reflection law for products. Similarly the following laws (known

respectively as × cancellation, fusion and absorption) are derivable from

(5.1):

π1 · 〈f, g〉 = f , π2 · 〈f, g〉 = g (5.3)

〈g, h〉 · f = 〈g · f, h · f〉 (5.4)

(i× j) · 〈g, h〉 = 〈i · g, j · h〉 (5.5)

The same applies to structural equality :

〈f, g〉 = 〈k, h〉 ≡ f = k ∧ g = h (5.6)

Finally note that the product construction applies not only to sets but also

to functions, yielding, for f : B ←− A and g : B′ ←− A′, function f × g :

B × B′ ←− A × A′ defined as the split 〈f · π1, g · π2〉. This corresponds to

the following pointwise definition: f × g = λ 〈a, b〉 . 〈f a, g b〉.

Notation BA is used to denote function space, i.e., the set of (total)

functions from A to B. It is also characterised by a universal property: for

all function f : B ←− A× C, there exists a unique f : BC ←− A, called the

curry of f , such that f = ev · (f × C). Diagrammatically,
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A

f

��

A× C

f×idC

��

f

##GGGGGGGGG

BC BC × C ev
// B

i.e.,

k = f ≡ f = ev · (k × id) (5.7)

Dually, functions sharing the same codomain may be glued together

through an either combinator, expressing alternative behaviours, and in-

troduced as the universal arrow in a datatype sum construction.

The sum A + B (or coproduct) of A and B corresponds to their disjoint

union. The construction is dual to the product one. From a programming

point of view it corresponds to the aggregation of two entities in time (as

in a union construction in C), whereas product entails an aggregation in

space (as a record). It also arises by universality: A + B is defined as the

target of two arrows ι1 : A + B ←− A and ι2 : A + B ←− B, called the

injections, which satisfy the following universal property: for any other set

Z and functions f : Z ←− A and g : Z ←− B, there is a unique arrow

[f, g] : Z ←− A + B, usually called the either (or case) of f and g, that

makes the following diagram to commute:

A
ι1 //

f
##FFFFFFFFF A+B

[f,g]

��

B
ι2oo

g
{{xxxxxxxxx

Z

Again this universal property can be written as

k = [f, g] ≡ k · ι1 = f ∧ k · ι2 = g (5.8)
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from which one infers correspondent cancellation, reflection and fusion re-

sults:

[f, g] · ι1 = f , [f, g] · ι2 = g (5.9)

[ι1, ι2] = idX+Y (5.10)

f · [g, h] = [f · g, f · h] (5.11)

Products and sums interact through the following exchange law

[〈f, g〉, 〈f ′, g′〉] = 〈[f, f ′], [g, g′]〉 (5.12)

provable by either product (5.1) or sum (5.8) universality. The sum combi-

nator also applies to functions yielding f + g : A′ +B′ ←− A+B defined as

[ι1 · f, ι2 · g].

Conditional expressions are modelled by coproducts. In this chapter we

adopt the McCarthy conditional constructor written as (p → f, g), where

p : B←− A is a predicate. Intuitively, (p → f, g) reduces to f if p evaluates

to true and to g otherwise. The conditional construct is defined as

(p → f, g) = [f, g] · p?

where p? : A+ A←− A is determined by predicate p as follows

p? = A
〈id,p〉 // A× (1 + 1) dl // A× 1 +A× 1

π1+π1 // A+A

where dl is the distributivity isomorphism. The following laws are useful to

calculate with conditionals [Gib97].

h · (p → f, g) = (p → h · f, h · g) (5.13)

(p → f, g) · h = (p · h → f · h, g · h) (5.14)
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(p → f, g) = (p → (p → f, g), (p → f, g)) (5.15)

Recursion. Recursive functions over inductive datatypes (such as finite

sequences or binary trees) are induced by their genetic information, i.e., the

specification of what is to be done in an instance of a recursive call. Consider,

for example, the pointfree specification of the function which computes the

length of a list len : N ←− A∗. A∗ is an example of an inductive type:

its elements are built by one of the following constructors : nil : A∗ ←− 1,

which builds the empty list, and cons : A∗ ←− A × A∗, which appends

an element to the head of the list. The two constructors are glued by an

either in = [nil, cons] whose codomain is an instance of polynomial functor

FX = 1 + A × X. The algorithmic contents of function len are exposed in

the following diagram:

1 +A× N
[0,succ·π2] // N

1 +A×A∗
in=[nil,cons] //

id+id×len

OO

A∗

len

OO

where the “genetic” information is given by [0, succ · π2]: either return 0

or the successor of the value computed so far. Function len, being entirely

determined by its “gene” is said its inductive extension or catamorphism and

represented by ([[0, succ · π2]]).

Catamorphisms extend to any polynomial functor F and possess a number

of remarkable properties, e.g.,

([in]) = id (5.16)

([g]) · in = g · F ([g]) (5.17)

f · ([g]) = ([h]) ⇐ f · g = h · F f (5.18)

([g]) · T f = ([g · F (f, id)]) (5.19)

where T is the functor that assigns to a set X the corresponding induc-
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tive type for F (in the example above, TX = X∗). Laws above are called,

respectively, cata-reflection, -cancellation, -fusion and -absorption.

5.2 Slicing Equations

Algebra of Programming. In his Turing Award lecture J. Backus [Bac78]

was among the first to advocate the need for programming languages which

exhibit an algebra for reasoning about their own objects, leading to the de-

velopment of program calculi directly based on, actually driven by, type

specifications. Since then this line of research has witnessed significant ad-

vances based on the functorial approach to data types [MA86] and reached

the status of a program calculus in [BM97], building on top of a discipline of

algorithm derivation and transformation which can be traced back to the so-

called Bird-Meertens formalism [Bir87, Mal90, MFP91] and the foundational

work of T. Hagino [Hag87] on induction and coinduction.

In this chapter we intend to build on this collection of programming laws

to solve what we shall call slicing equations. Pointwise notation, as used

in classical mathematics, involving operators as well as variable symbols,

logical connectives, quantifiers, etc, is however inadequate to reason about

programs in a concise and precise way. This justifies the introduction of

a pointfree program denotation in which elements and function application

are systematically replaced by functions and functional composition. The

translation of the target program into an equivalent pointfree formulation

is well studied in the program calculi community and shown to be made

automatic to a large extent. In [Oli01a, VO01] its role is compared to one

played by the Laplace transform to solve differential equations in a linear

space. The remaining of this section provides a quick introduction to the

pointfree algebra of functional programs.

5.2.1 Slicing Equations

Our starting point is a very simple idea: to identify the “component” of a

function Φ : A ←− B affected by a particular argument or contributing to
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a particular result all one has to do is to pre- or post-compose Φ with an

appropriate function, respectively. In the first case the contribution of an

argument is propagated through the body of Φ, forgetting about the role of

other possible arguments: σ is a called a hiding function and equation

Φ · σ = Φ′ (5.20)

captures the forward slicing operation. In such a scenario, one regards Φ′ as

the forward slice of Φ with respect to slicing criterion σ.

The dual problem corresponds to backward slicing: an output, selected

through some sort of projection π, is traced back through the body of Φ. The

equation combining the projection function and the function under analysis

would then be

π · Φ = Φ′ (5.21)

But, how far can this simple idea be pushed in order to actually compute

functional slices? The simplest case arises whenever Φ is canonical, i.e.,

defined as an either or a split. In the first case one gets Φ = [f, g] : A ←−
B1 +B2. The slicing criterion is simply an embedding, e.g., ι1 : B1 +B2 ←−
B1 and the forward slice becomes

[f, g] · ι1 = f (5.22)

Dually, for 〈f, g〉 : A1×A2 ←− B, one may compute a backward slice, by

post-composition with a projection, e.g., p1 : A1 ←− A1 × A2 and conclude

π1 · 〈f, g〉 = f (5.23)

The dual cases of computing a forward slice of a function with a multi-

plicative domain or a backward slice of a function with a additive codomain,

amounts to composing Φ with the relational converses of a projection or an
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embedding, respectively, leading to the following relational composition Φ·π◦1
or ι◦1 · Φ.

From a formal point of view this entails the need to pursue calculation

in the relational calculus [BH93]. For the language engineer, however, this

means that, in the general case, there is no unique solution to the slicing

problem: one may end with a set of possible slices, corresponding to different

views over the “theoretical”, relational, non executable, slice.

We will not explore this relational counterpart in this thesis. Instead our

aim is to discuss how far one can go keeping within the functional paradigm in

analysing slicing of a particularly important class of functions: the inductive

ones. I.e., functions whose domain is the carrier of an initial algebra for a

regular functor, usually called an inductive type. In this thesis, however, we

will further restrict ourselves to structural recursive functions, i.e., specified

by catamorphisms [BM97], i.e., Φ = ([f ])T : A ←− µT, where µT is the

inductive type for functor T and f : A←− TA is the recursion gene algebra.

Such will be our case-study through the following section.

5.3 Slicing Inductive Functions

This section is organised around four different slicing cases whose target is

always an inductive function Φ : A ←− µT. Each subsection discusses one

of these cases: product backward, sum forward, sum backward and product

forward slicing. In order to facilitate the understating of the application of

each slicing operation to real practical cases, we provide a simple example

for each one.

5.3.1 Product Backward Slicing

Product backward slicing fits in what we call a “well-behaved” case, i.e.,

the codomain of Φ is a product and, therefore, the slicing criterion is just an

appropriate projection function. Even more, as Φ is recursive, the solution to

the slicing problem should be a new gene algebra f ′ such that πk · Φ = ([f ′]),

as explained in the following diagram:
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Ak
∏
iAiπk

oo µT
Φ

oo

Φ′=([f ′])

uu

TAk

f ′

OO

T
∏
iAi

f

OO

Tπk

oo TµT

inT

OO

TΦ
oo

Solving the slicing equation Φ′ = πk · Φ reduces, by the fusion law for

catamorphisms, to verifying the commutativity of the leftmost square. This

becomes quite clear through an example.

Example. Consider the problem of identifying a slice in the following func-

tional version of the Unix word-count utility (wc), with the -lc flag, which

calculates both the number of lines and characters of a given file. We assume

that the file contents are passed to our function as a list of Char values.

wc :: [Char] -> (Int, Int)

wc [] = (1, 0)

wc (h:t) = let (lc, cc) = wc t

in if h == ’\n’ then (lc+1, cc+1)

else (lc, cc+1)

This definition can easily be translated into the following catamorphism

([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

where p = ((′\n′ ==) ·π1) and FX = 1+String×X is the relevant functor.

Our goal is to identify a slice of wc which isolates the parts of the program

involved in the computation of the number of lines, and thus eliminating

everything else. The number of lines is given by the first component of

the pair returned by the original wc program. Thus, it is expectable that a

function which selects the first element of a pair constitutes a good candidate
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for a slicing criterion. Indeed we shall use π1 as the slicing criterion function

which reduces the slicing problem to solving the following equation:

([f ′])F = π1 · ([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

This is solved within the functional calculus, as follows

([f ′])F = π1 · ([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

⇐ {cata-fusion}

f ′ · F π1 = π1 · [〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]

⇔ {absorption-+, cancelation-×, natural-id, definition of ×}

f ′ · F π1 = [1, [succ · π1 · π2, π1 · π2] · p?]

⇔ {definition of ×, cancelation-×}

f ′ · F π1 = [1, [succ · π2 · (id× π1), π2 · (id× π1)] · p?]

⇔ {absorption-+, p = p · (id× π1), definiton of ×, cancelation.×}

f ′ · F π1 = [1, [succ · π2, π2] · (id× π1 + id× π1) · (p · (id× π1))?]

⇔ {predicate fusion}

f ′ · F π1 = [1, [succ · π2, π2] · p? · (id× π1)]

⇔ {natural-id, absortion-+, F definition}

f ′ · (id+ id× π1) = [1, [succ · π2, π2] · p?] · (id+ id× π1)

⇔ {id+ id× π1 is surjective}

f ′ = [1, [succ · π2, π2] · p?]

Such a calculation leads to the identification of the gene algebra for the in-

tended slice. The slice, on its turn, can easily be translated back to Haskell

as follows

wc = foldr (\c -> if c == ’\n’ then succ else id) 1

or, going pointwise,

wc’ :: [Char] -> Int

wc’ [] = 1
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wc’ (h:t) = let lc = wc’ t

in if h == ’\n’ then lc+1

else lc

Note that, a similar approach, using π2 as a slicing criterion, allows to

isolate the character count computation inside wc.

5.3.2 Sum Forward Slicing

This is another “well-behaved” case, because where the slicing criterion re-

duces to an embedding. The slicing problem, however, has to be rephrased

so that the domain of Φ becomes a sum. This is shown in the following dia-

gram where the slicing criterion is σ = inT · ιk, i.e., the relevant embedding

composed with the initial algebra inT (which is an isomorphism).

A µT
Φ=([f ])

oo TµT =
∑
i UiinT

oo Ukιk
oo

σ=inT·ιk

vv

Φ′

zz

The computation of Φ′ proceeds by the cancellation law for catamor-

phisms, as illustrated in the following example.

Example. To illustrate a sum forward slicing calculation, consider a pretty

printer for a subset of the Xml language. We start with a data type encoding

Xml expressions:

data XML = SimpElem String [XML]

| Elem String [(Att, AttValue)] [XML]

| Text String

type Att = String

type AttValue = String

from which functor FX = S × X∗ + S × AS × X∗ + S is inferred, where

String and [(Att, AttValue)] are abbreviated to S and AS, respectively.

Then consider the pretty printer program:
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pXML (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++

(concat . map pXML $ xmls) ++

"</" ++ e ++ ">" ++ nl

pXML (Elem e atts xmls) = "<" ++ e ++ concat (map pAtts atts)

++ ">" ++ nl ++

(concat . map pXML $ xmls) ++

"</" ++ e ++ ">" ++ nl

pXML (Text t) = t ++ nl

pAtts (att, attvalue) = " " ++ att ++ "=\"" ++

attvalue ++ "\""

nl = "\n"

whose pointfree definition reads

pXML = ([[[pSElem, pElem], id ? nl]])F

pSElem = ob ? π1 ? cb ? nl ? concat · π2 ? oeb ? π1 ? cb ? nl

pElem = ob ? π1 · π1 ? concat ·map pAtts · π2 · π1 ? cb ? nl ?

concat · π2 ? oeb ? p1 · π1 ? cb ? nl

pAtts = ” ” ? π1 ? ” = \”” ? π2 ? ” \ ””

where

nl = ” \ n”

ob = ” < ”

cb = ” > ”

oeb = ” < /”

f ? g = ++ · 〈f, g〉

++ (x, y) = (++) x y

Note that operator ? is a right associative operator and ++ denotes the

uncurried version of the (++) Haskell function for list concatenation.

The above pointfree definition may seem complex, but it becomes clear

when the corresponding diagram is depicted:
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XML
outF //

pXML=([f ])F

��

(S ×XML∗ + (S ×AS)×XML∗) + S

(id×([f ])∗F +(id×id)×([f ])∗F )+id

��
A (S ×A∗ + (S ×AS)×A∗) + S

f=[[pSElem,pElem],id ? nl]
oo

Now let us suppose one wants to compute a slice with respect to con-

structor SimpElem of the XML data type. This amounts to isolate the parts

of the pretty printer that deal with SimpElem constructed values.

To begin with, one has to define a slicing criterion to isolate arguments

of the desired type. This is, of course, given by ι1 · ι1 composed with the

initial algebra of the underlying functor, i.e., σ = inF · ι1 · ι1. The calculation

proceeds by cancellation in order to identify the impact of σ over pXML.

pXML · σ

⇔ {definition of pXML, definition of σ}

([[[pSElem, pElem], id ? nl]])F · inF · (ι1 · ι1)

⇔ {cata-cancelation}

[[pSElem, pElem], id ? nl] · FpXML · (ι1 · ι1)

⇔ {definiton of F}

[[pSElem, pElem], id ? nl]·

((id× pXML∗ + (id× id)× pXML∗) + id) · (ι1 · ι1)

⇔ {definition of +, cancelation-+}

[[pSElem, pElem], id ? nl] · (ι1 · (ι1 · (id× pXML∗))

⇔ {cancelation-+ (twice)}

pSElem · (id× pXML∗)

⇔ {definition of pSElem, result (5.24), constant function }

ob ? π1 · (id× pXML∗) ? cb ? nl ? concat · π2 · (id× pXML∗) ?

oeb ? π1 · (id× pXML∗) ? cb ? nl

⇔ {definition of ×, cancelation-×}

ob ? π1 ? cb ? nl ? concat · pXML∗ · π2 ? oeb ? π1 ? cb ? nl
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The calculation above makes use of the following equality

(f ? g) · h = f · h ? g · h (5.24)

which is proved as follows:

(f ? g) · h

⇔ {definition of ?}

++ · 〈f, g〉 · h

⇔ {fusion-×}

++ · 〈f · h, g · h〉

⇔ {definition of ?}

f · h ? g · h

The computed slice is a specialised version of function pXML, to deal with

values built with SimpleElem. Such function can now be directly translated

to Haskell, yielding the following program

pXML’ (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++

(concat . map pXML \$ xmls) ++

"</" ++ e ++ ">" ++ nl

5.3.3 Sum Backward Slicing

The sum backward case is similar to the product backward case in the sense

that both retrieve backward slices. This time, however, the co-domain of the

original function Φ :
∑

iAi ←− µT is a sum: therefore, each slice will be a

function which produces values over a specific summand of the output type.

This complicates the picture: we simply cannot project such a value from

the output of Φ.

Let us take a different approach: if projecting is impossible, we may still

hide, i.e., use the universal ! : 1←− Ak to reduce to 1 the output components
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one wants to get rid of. Hiding functions are constructed by combining +,

× and identities with !. Note that in this formulation the slicing criterion

becomes negative — it specifies what is to be discarded. As we are dealing

with inductive functions, the problem is again to find the gene for the slice,

as documented in the following diagram.

∑
i<k Ai + 1k +

∑
i>k Ai

∑
iAiσ=

∑
i<k id+!k+

∑
i>k id

oo µT
Φ=([f ])

oo

Φ′=([f ′])
qq

T(
∑
i<k Ai + 1k +

∑
i>k Ai)

f ′

OO

T
∑
iAiTσ

oo

f

OO

TµT
TΦ

oo

inT

OO

This sort of slicing is particularly useful when the codomain of original

Φ is itself an inductive type, say for a functor G. In such a case one has to

compose Φ with the converse of the G-initial algebra in order to obtain an

explicit sum in the codomain, i.e.

σ = (
∑
i<k

id+!k +
∑
i>k

id) · outG

Such is the case discussed in the following example.

Example. Consider a program which generates the DOM tree of the (sim-

plified) Xml language introduced in the previous example. Let F be the

corresponding polynomial functor. Note that DOM trees themselves are val-

ues of an inductive type for a functor GX = N+N×X∗, as one may extract

from the following Haskell declaration:

data DT a = Leaf NType a

| Node NType a [DT a]

data NType = NText | NElem | NAtt

with N abbreviating Ntype × a. Suppose the program to be sliced is dtree :

µG ←− µF, which is written, in pointfree, style as follows:

dTree = cata g

g = either (either g1 g2) (Leaf NText)
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g1 = uncurry (Node NElem)

g2 = uncurry (Node NElem) . split (p1 . p1)

(g3 . p2 . p1 <++> p2)

g3 = map (Leaf NAtt . uncurry (++) . (id >< ("="++)))

where >< is the Haskell implementation of the × point-free operator, and

<++> the implementation of the ? operator.

Our aim is to calculate a slice with respect to values of type Node, i.e.,

to isolate the program components which interfere with the production of

values of this type. To do so, the slicing criterion must preserve the right

hand side of data type DT and slice away everything else (in this case just the

left hand side). Thus, we end up with the slicing function σ = (! + id) · outG.

The situation is illustrated as follows:

1 +N ×DT ∗ N +N ×DT ∗
!+idoo DT

outGoo µF
([f ])F=dTreeoo

F(1 +N ×DT ∗)

[[g′1,g
′
2],g′3]

OO

F(N +N ×DT ∗)

[[g1,g2],g3]

OO

F(!+id)
oo F(DT ∗)

f

OO

FoutG

oo FµF

inF

OO

FdTree
oo

The process proceeds by calculating the new genes g′1, g
′
2 and g′3 which

define the desired slice.

[[g′1, g
′
2], g′3] · (id× (! + id) + id× (!× id) + id) = (! + id) · [[g1, g2], g3]

⇔ {absortion-+, fusion-+}

[[g′1 · (id× (! + id)), g′2 · (id× (!× id))], g′3 · id] =

[[(! + id) · g1, (! + id) · g2], (! + id) · g3]

Let us concentrate in the first component of this equality (the remaining

cases follow obviously a similar pattern). Thus, our goal is to find g′1 such

that

g′1 · (id× (! + id)) = (! + id) · g1 (5.25)
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Note, however, that using the right distributivity isomorphism, g1 can be

further decomposed as follows

S × (N +N ×DT ∗) distr //

g1

��

S ×N + S × (N ×DT ∗)

[h1,h2]ttiiiiiiiiiiiiiiiii

N +N ×DT ∗

and similarly for g′1 = [h3, h4] · distr, one gets the following diagram

S × (1 +N ×DT ∗) distr //

g′1
��

S × 1 + S × (N ×DT ∗)

[h3,h4]ttiiiiiiiiiiiiiiiii

1 +N ×DT ∗

Then, a substitution in (5.25) yields

[h3, h4] · distr · (id× (! + id)) = (! + id) · [h1, h2] · distr

⇔ {definition of distr, fusion-+}

[h3, h4] · (id×! + id× id)) · distr = [(! + id) · h1, (! + id) · h2] · distr

⇔ {absorption-+}

[h3 · (id×!), h4 · (id× id)] · distr = [(! + id) · h1, (! + id) · h2] · distr

Hence

h3 · (id×!) = (! + id) · h1 and h4 · (id× id) = (! + id) · h2

Let us focus again the first equality (the other case is similar), that is, diagram

S × 1
h3 // 1 +N ×DT ∗

S ×N

id×!

OO

h1 // N +N ×DT ∗
!+id

OO
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In the most general case, functions to a sum type are conditionals. Therefore,

we may assume that h3 = p → ι1 · e1, ι2 · e2 and h1 = q → ι1 · d1, ι2 · d2,

respectively. Then,

(p→ ι1 · e1, ι2 · e2) · (id×!) = (! + id) · (q → ι1 · d1, ι2 · d2)

⇔ {conditional fusion}

p→ ι1 · e1 · (id×!), ι2 · e2 · (id×!) = q → (! + id) · ι1 · d1, (! + id) · ι2 · d2

⇔ {cancelation-+, natural id}

p→ ι1 · e1 · (id×!), ι2 · e2 · (id×!) = q → ι1·!, ι2 · d2

which amounts to

p · (id×!) = q

e1 · (id×!) = !

e2 · (id×!) = d2

What can be concluded from here? That p : B ←− S is derived from

q : B←− S ×N as follows

p(s) = false ≡
∨
n

q(s, n) = false

Finally e2 : N ×DT ∗ ←− S comes from d2 : N ×DT ∗ ←− S × N . But

what is the relation between them? Actually, abstracting from the second

argument of d2 gives rise to a powerset valued function

γ : S → P(N ×DT ∗)

γ(s) = {d2(n, s) | n ∈ N ∧ p(n, s)}
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Therefore e2 is just a possible implementation of γ. This means that

the slice is not unique: we are back to the relational world. It should be

stressed, however, that the advantage of this calculation process is to lead

the program analyst as close as possible of the critical details. Or, putting

it in a different way, directs the slice construction until human interaction

becomes necessary to make a choice.

5.3.4 Product Forward Slicing

At first sight this is an awkward case as far as inductive functions are con-

cerned. One may resort to outT to unfold the inductive type, as we did in the

sum forward case, but this leads always to a polynomial functor with sums

as the main connective. So what do we mean by product forward slicing?

Suppose the relevant functor is, say, FX = 1 + A × B ×X + B ×X2. Our

aim is to compute a slice of Φ : A ←− µF corresponding to discarding the

contribution of the B component.

Our first guess is to adopt the strategy of the previous case and define

the slicing criterion as a hiding function:

inF · (id + id×!× id+!× id) : µF ←− FµF

However, this is a wrong approach to the problem, because the hiding

function changes the signature functor. The expression above would become

correct if formulated in terms of functor F′X = 1+A×1×X+1×X2. In such

a case, expression id+ id×!× id+!× id becomes a natural transformation from

F to F′. However, during the calculational process the relational converse of

this natural transformation would be required and making progress would

depend, to a great extent, on the concrete definition of Φ.

Therefore, let us try a different solution: instead of getting rid of com-

ponent B, by composition with !, we replace each concrete values by a mark

still belonging to B. For that we resort, for the first time in this calculational

approach, to the classical semantics of Haskell in terms of pointed complete
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partial orders. The qualificative pointed means there exists for each type X

a bottom element ⊥X which can be used for our purposes as illustrated in

the following diagram:

µT

outT

��
A µT

Φ
oo

∑
i

∏
j Ui,jinT

oo TµT =
∑
i

∏
j Ui,j

σ=
∑

i(
∏

j<k id×⊥k×
∏

j>k id)
oo

σ

ww

Care should be taken when calculating functional programs in an order-

theoretical setting. In particular, as embeddings fail to preserve bottoms, the

sum construction is no longer a coproduct and the either is not unique. The

set-theoretical harmony, however, can be (almost) recovered if one restricts

to strict functions (details can be checked in, e.g., [MFP91]). Such is the

case of the example below, whose derivation is, therefore, valid.

Example. Let us return to the pretty printer example. Suppose we want

to slice away every recursive call in this function. Such a slice could be par-

ticularly interesting, for instance in the understanding of what is happening

in each recursive iteration.

The calculation of this slice can be achieved by the following slicing cri-

teria σ = inF · ((id×⊥+ (id× id)×⊥) + id) · outF, which “reduces” to the

bottom value ⊥ every recursively computed value. The calculation proceeds

as follows.

pXML · σ

⇔ {definition of pXML, definition of σ}

([[[pSElem, pElem], id ? nl]])F · inF·

((id×⊥+ (id× id)×⊥) + id) · outF
⇔ {cata-cancelation}

[[pSElem, pElem], id ? nl] · FpXML·

((id×⊥+ (id× id)×⊥) + id) · outF
⇔ {definiton of F, Functor-+, Functor-×, natural-id}
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[[pSElem, pElem], id ? nl]·

((id× (⊥ · pXML∗) + (id× id)× (⊥ · pXML∗)) + id) · outF
⇔ {absorption-+, natural-id}

[ [pSElem · (id× (⊥ · pXML∗), pElem · ((id× id)× (⊥ · pXML∗)],

id ? nl ] · outF

The calculation continues by evaluating the impact of σ upon each parcel.

We shall concentrate on the psElem function, given that other cases demand

a similar treatment. Then,

pSElem · (id× (⊥ · pXML∗)

⇔ {definition of psElem}

ob ? π1 ? cb ? nl ? concat · π2 ? oeb ? π1 ? cb ? nl·

(id× (⊥ · pXML∗))

⇔ {constant function, result (5.24)}

ob ? π1 ? cb ? nl ? concat · π2 · (id× (⊥ · pXML∗)) ? oeb ?

π1 ? cb ? nl

⇔ {definition of ×, cancelation-×}

cb ? π1 ? cb ? nl ? concat · (⊥ · pXML∗) · π2 ? oeb ?

π1 ? cb ? nl

The above expression explicitly points out with ⊥, the places where input

information is missing. Given these specific critical points, it is up to the user

to decide how to deal with them, given the overall context of the expression.

In this particular case, we have decided to remove all the elements of the

concatenation polluted with this mark, giving rise to the following slice.

pXML (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++

"</" ++ e ++ ">" ++ nl

Note, however, that in general, unlike product backward slicing which

always yields executable solutions, in this case the final slice may not be
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executable. This does not come to a surprise, since we are filtering input

that can be critical to the overall computation of the original function.



Chapter 6

Semantic-based Slicing

The slicing method described in the initial chapter of this thesis is oriented

to “macro” entities (functions, modules, data types, etc) of a program, there-

fore, extending to the functional paradigm a notion of slicing typical of the

imperative program analysis. Of course, in the latter setting, the relevant

program entities can be as localised as computational variables, leading to

the identification of quite fine-grained slices. Chapter 5 introduced a different

approach to enable slicing to cut through those “macro” entities. Its applica-

bility, however, is somewhat limited and any sort of automated support will

heavily depend on suitable support for algebraic rewriting. Furthermore, we

seek for more expressive power in the definition of slicing criteria, i.e., in-

stead of resorting to slicing functions to serve as “indirect” slicing criteria,

one would like to state where and what specific functional expressions are to

be.

This chapter goes a step forward in the direction of what may be called

“low-level” slicing: the aim is to allow slicing criteria to be by any functional

expression within the code, together with its precise occurrence point inside

the program.

By the beginning of this work we thought that the development of low-

level higher-order lazy functional slicing would be a more or less straightfor-

ward engineering problem, easily solved through some combination of parsing

and syntax tree traversal operations. We have even tried to implement low-

83



84 CHAPTER 6. SEMANTIC-BASED SLICING

level functional slicing in HaSlicer resorting to techniques similar to the

ones used for performing high-level entity slicing.

However, all attempts to build such a tool resorting to a direct imple-

mentation of these operations invariantly ended by the discovery of some

particular case where the resulting slices did not correspond to the expected

ones. Moreover, by performing minor changes in the implementations in or-

der to correctly cover some special cases, one often ended up introducing new

problems and special cases.

Soon, however, we realised that the problem complexity had been under-

estimated from the outset. This goal led to a completely different approach

to functional slicing which builds on both the language semantics (as the cal-

culational approach in the previous chapter did), and the evaluation strategy.

The latter happens to play a significant role in the whole process.

In such a context, we decided to target in this chapter functional programs

with higher-order constructs sharing a lazy strategy evaluation. Note that, as

it will be shown in section 6.5, the strict version of the proposed technique

can be easily derived from the lazy one. Additionally, the removal of higher-

order constructs represents a trivial simplification of the method introduced

here. Thus, our working restrictions do not constraint in a significant way

the applicability of this approach.

6.1 The Functional Language

In order to introduce our method in a generic, language-independent way, we

start by defining a prototypical higher-order lazy functional language, which

abstracts several functional programming language implementations.

The choice of the language syntax had to fulfil two main requisites. The

language could not be excessively broad since this would introduce an unnec-

essary notational burden in the representation. On the other hand it could

not be excessively small because this would make translations from/to real

functional languages too complex to achieve.

Thus, a trade-off was found in the form of language FL, whose syntax is

given in Figure 6.1. FL notation is basically that of the λ-Calculus enriched
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z ::= λx.e

| C x1 · · · xa a ≥ 0

e ::= z

| e x

| x

| let xn = en in e n > 0

| case e of {Cj x1j · · ·xaj -> ej}nj=1 n > 0, a ≥ 0

prog ::= x1 = e1, . . . , xn = en

Figure 6.1: The FL syntax

with let and case statements. It introduces the domain z ∈ U of values,

the domain e ∈ E of expressions, the domain prog ∈ P of programs and the

domain of x ∈ V of variables. Note that values are also expressions by the

first rule in the definition of expressions.

A very important detail about the FL language is that functional appli-

cation cannot occur between two arbitrary functional expressions, but only

between an expression and a variable previously defined. In practice this

implies that at evaluation time, the argument expression must have been

previously added to the heap so that it can be used on a functional appli-

cation. This requisite may seem strange for now, but it is necessary to deal

correctly with the semantics upon which we define the slicing process. In

particular, this rule ensures that when evaluating an application one does

not have to address the creation of new heap closures.

However, this way of defining functional application requires some care

when converting concrete functional programs to FL. In practice, the trans-

lation is achieved by the introduction of a new free variable within a let

expression and the subsequent substitution of the expression by the newly

introduced variable. As an example of such a transformation, consider the

following Haskell program that removes every negative value from a list of

integers

removeNegative :: [Int] -> [Int]
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removeNegative = filter (> 0)

Note that function filter is being directly applied to another function,

a predicate function. The definition has then to be rephrased into

removeNegative :: [Int] -> [Int]

removeNegative = let x = (> 0) in filter x

Of course, to accommodate real functional languages, some other straight-

forward syntactic translations are in demand. These include the substitution

of if then else conditionals by case expressions with the respective True

and False values or the substitution of where constructions by let expres-

sions.

Some of these syntactic transformations have been implemented, as a

proof-of-concept, in a front end for Haskell. This means that not only

Haskell programs can be taken as input to the slicing process, but also

that, on slicing completion one is able to reconstruct the slice exactly like

the original program, but for the removal of the sliced expressions. These

transformations amount to an expression rewriting process with the partic-

ularity that one keeps track of the transformations performed as well as the

expressions involved in each one.

Finally, we have to uniquely identify the functional expressions and sub-

expressions of a program, such that the slicing process may refer to these

identifiers in order to specify what parts of the program belong to a specific

slice. Moreover, these identifiers are also needed for identifying the expres-

sions involved in each syntactic transformation so that the above mentioned

translation can be performed as an isomorphism.

Expression and sub-expression identifiers are collected in a set L, and

introduced in language FL by expression labelling as shown in Figure 6.2,

where a ≥ 0 and n > 0.

For the moment, one may look at labels from L as simple unique iden-

tifiers of functional expressions. Later, these labels will be used to capture

information about the source language representation of the expression they

denote, so that, by the end of the slicing process, one becomes able to recon-

struct the slice’s source code.
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z ::= (λx : l1.e) : l

| (C x1 : l1 · · ·xa : la) : l

e ::= z

| e (x : l′) : l

| x : l

| let xn = en : ln in e : l

| case e of {(Cj x1j : l1j · · ·xaj : laj) : l′ -> ej}nj=1 : l

prog ::= x1 = e1, . . . , xn = en

Figure 6.2: Labelled FL syntax

6.2 Slicing and Evaluation

Dynamic slicing of functional programs is an operation that largely depends

on the underlying evaluation strategy for expressions. This can be exempli-

fied in programs where strict evaluation introduces non termination whereas

a lazy strategy produces a result. As an example, consider the following

functional program.

fact :: Int -> Int

fact 0 = 1

fact k = k * fact (k-1)

ssuc :: Int -> Int -> Int

ssuc r y = y + 1

g :: Int -> [Int] -> [Int]

g x z = map (ssuc (fact x)) z

If we calculate the slice of the above program with respect to expression g

(-3) [1,2], taking into consideration that the program is being evaluated

under a strict strategy, the evaluation will never terminate and the intended

slice is never computed.

On the other hand, under a lazy evaluation strategy, this same evaluation

is possible, because succ is not strict over its arguments, and therefore (fact
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x), which introduces the non terminating behaviour, is not computed. Thus,

under lazy evaluation, slicing is now feasible and one would expect, for this

particular case, to obtain the following slice:

ssuc :: Int -> Int -> Int

ssuc r y = y + 1

g :: [Int] -> [Int]

g z = map (ssuc (fact x)) z

Note that, strictly speaking, the computed slice is not executable. Actu-

ally, this would require a definition of function fact in order to the entire

sliced program to be interpreted or compiled. This possibility of retrieving

non executable slices, was a deliberate choice. Actually, in a functional frame-

work, if one calculates executable slices (without using any further program

transformation), it often happens that such slices take enormous proportions

when compared to the original code. Nevertheless, and because the expres-

sions to be sliced away do not interfere with the selected slicing criterion, a

suitable program transformation for this case is to substitute the expression

in question by some special value of the same type. In Haskell, for in-

stance, and because types have a complete partial order structure, one could

use the bottom value (usually denoted by ⊥) of the type in question to signal

the superfluous expressions. These and other possible code transformations

that target the execution of slices are, however, drifting from the main focus

of this chapter and will not be considered in the sequel.

The approach to low level slicing of functional programs proposed here is

mainly oriented (but see section 6) to lazy languages. An important aspect

which motivated this choice was that slicing has never been treated under

such an evaluation strategy (combined with higher-order constructs). More-

over, intuition suggests, as in the example above, that lazy slices tend to be

smaller than their strict counterparts.

Therefore, our starting point was a lazy semantics for FL, which is pre-

sented in Figure 6.3. This semantics is strongly based on the lazy semantics

introduced by Launchbury in [Lau93], but for the increased expressiveness

of FL. Thus, FL amounts to the Launchbury language with the extensions
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for both user defined data types (constructors) and case expressions, as pre-

sented in Figure 6.3. As it will be made clear in the following sections,

these two syntactic constructs play an important role in the definition of the

semantics as well as on the different semantic based operations to be defined.

In the lazy semantics presented in Figure 6.3, expression Γ ` e ⇓ ∆ ` z
states that expression e under heap Γ evaluates to value z producing heap ∆

as a result. As expected the expressions comply with the FL language and

the heap structure used is a mapping from variables to expressions, where

the latter may not be completely evaluated.

Γ ` λy.e ⇓ Γ ` λy.e Lamb

Γ ` C x1 · · ·xa ⇓ Γ ` C x1 · · ·xa Con

Γ ` e ⇓ ∆ ` λy.e′ ∆ ` e′[x/y] ⇓ Θ ` z
Γ ` e x ⇓ Θ ` z

App

Γ ` e ⇓ ∆ ` z
Γ[x 7→ e ] ` x ⇓ ∆[x 7→ z ] ` ẑ

Var

Γ[xn 7→ en] ` e ⇓ ∆ ` z
Γ ` let {xn = en} in e ⇓ ∆ ` z

Let

Γ ` e ⇓ ∆ ` Ck x1 · · ·xak
∆ ` ek[xi/yik] ⇓ Θ ` z

Γ ` case e of {Cj y1 · · · yaj
-> ej}nj=1 ⇓ Θ ` z

Case

Figure 6.3: Lazy semantics for FL
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In Figure 6.3 and throughout this chapter the following syntactic ab-

breviations are used: ẑ stands for α−conversion of every bound variable in

expression z to fresh variables, [xi 7→ ei] for [x1 7→ e1, . . . , xi 7→ ei], Γ[xi 7→ ei]

expresses the update of mapping [xi 7→ ei] in heap Γ and e[xi/yi] the substi-

tution e[x1/y1, . . . , xi/yi].

The semantics presented in Figure 6.3 entails lazy evaluation in the sense

that lambda terms are allowed as values of computations and expressions

(closures) are added to the heap (rule Let) without further evaluation. Lazi-

ness also takes place, when, by rule App, one substitutes the lambda variable

by the application expression variable without further evaluating the expres-

sion in the heap which corresponds to the variable in the expression. The

use of closures as well as the keeping of the evaluated values for each variable

in the heap provides the semantics with a sharing mechanism which much

improves its performance.

6.3 Lazy Forward Slicing

Let us start by analysing the lazy print problem, a simplified version of the

more general problem of higher-order lazy functional slicing. The calculation

of this particular kind of slice is completely based on the lazy evaluation

coverage of a program, without taking any extra explicit slicing criterion.

This means that a lazy print calculation amounts to extracting the program

fragments that have some influence on the lazy evaluation of an expression

within that program. For an example, consider the following trivial Haskell

program where g receives a pair, whose first element is a list of integers and

the second is an integer, and delivers the sum of all elements in the list.

fst :: (a, b) -> a

fst (x, y) = x

sum :: [Int] -> Int

sum [] = 0

sum (h:t) = h + (sum t)
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g :: ([Int], Int) -> Int

g z = sum (fst z)

The lazy print of this program with respect to the evaluation of g ([], 3)

is

fst :: (a, b) -> a

fst (x, ) = x

sum :: [Int] -> Int

sum [] = 0

g :: ([Int], Int) -> Int

g z = sum (fst z)

Note that the second clause of function sum (sum (h:t) = h + (sum t))

is sliced from the original program, because, for the slicing criterion in ques-

tion (g ([], 3)), the evaluation of the result does not depend on the func-

tional expression of the sum function clause dealing with non-empty lists.

Furthermore, variable y in function fst is never used, which indicates that

it can also be sliced away from the original program.

Automating this calculation entails the need for deriving an augmented

semantics from the lazy semantics presented in Figure 6.3. This augmented

semantics, which is presented in Figures 6.4 and 6.5, extends Launchbury

semantics with an extra output value of type set of labels (S), for the eval-

uation function ⇓. The purpose of this set S is to collect all the labels from

the expressions that identify what constitutes the lazy print of a given eval-

uation. Note that, instead of using an alpha conversion in the original rule

Var , we introduce a fresh variable in rule Let to avoid variable clashing.

The lazy print semantics uses two auxiliary functions, namely ϕ : P L←
E×V and L : P L← E. Function ϕ collects the labels from all the occurrences

of a variable in an expression and function L returns all the labels in an

expression.

The intuition behind this augmented semantics is that operationally it

collects all the labels from the expressions as they are evaluated by the se-

mantic rules. The only exception to this behaviour, is rule Let , which does
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Con

Γ ` (λy : l1.e) : l ⇓{l1,l} Γ ` (λy : l1.e)

Lamb

Γ ` (C x1 : l′1 · · ·xa : l′a) : l′ ⇓{l′k,l′} ∆ ` (C x1 : l′1 · · ·xa : l′a) : l′

where k ∈ {1, . . . , a}

Figure 6.4: Lazy print semantics for values

not collect all the expression labels immediately but rather relegates the label

collection to a later stage in the evaluation. This behaviour of rule Let is

explained by the fact that there is not sufficient information available when

this rule is executed to decide which variable bindings will be needed in the

remainder of the evaluation towards the computation of the final result. A

possible solution for this problem is to have a kind of memory associating

pending labels and expressions such that, if an expression really gets to be

used, then not only such expression labels, but also the pending labels that

were previously registered in the memory, are included in the lazy print eval-

uation labels set.

A straightforward implementation of such a memory mechanism is the

heap that we are already using as a memory device for registering variables

and their associated expressions. Thus, by extending the heap from a map-

ping between variables and expressions to a mapping from variables to pairs

of expressions and sets of labels, makes us able to capture the “pending

labels” introduced by the Let rule.

A problem is spotted however in slices computed on top of the lazy print

semantics given in Figures 6.4 and 6.5. As an example, consider the following

fragment which calls some complex and very cohesive functions funcG and

funcH which, however, do indeed contribute to the computation of values in

x and y:
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App
Γ ` e ⇓S1 ∆ ` (λy : l1.e

′) : l2 ∆ ` e′[x/y] ⇓S2 Θ ` z
Γ ` e (x : l′) : l ⇓S1∪S2∪{l′,l} Θ ` z

Var
Γ ` e ⇓S1 ∆ ` z

Γ[x 7→ < e, L > ] ` x : l ⇓S1∪L∪{l} ∆[x 7→ < z, ε > ] ` z

Let
Γ[yn 7→ < en[yn/xn], {ln} ∪ ϕ(e, xn) ∪ ϕ(en, xn) ∪ L(en) > ] `

e[yn/xn] ⇓S1 ∆ ` z
yn fresh

Γ ` let {xn = en : ln} in e : l ⇓S1∪{l} ∆ ` z

Case

Γ ` e ⇓S1 ∆ ` (Ck x1 : l?1 · · ·xak
: l?ak

) : l]k

∆ ` ek[xi/yik] ⇓S2 Θ ` z
Γ ` case e of {(Cj y1 : l′1 · · · yaj

: l′aj
) : l\j -> ej}nj=1 : l ⇓S Θ ` z

where S = S1 ∪ S2 ∪ {l?nj
| 1 ≤ n ≤ a}∪

{l′nj
| 1 ≤ n ≤ a} ∪ {l]k, l

\
j, l}

Figure 6.5: Lazy print semantics for expressions

f z w = let x = funcG z w

y = funcH x z

in (x, y)

When computing the lazy print of such a program, no matter what values

are chosen for z w, the returned slice is always the following

f z w =

(x, y)

The interpretation of such a slice may suggest that the variables intro-

duced by the let expression do not have any effect on the result of the overall

function. However, this completely contradicts what one already knew about
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the behaviour of functions funcG and funcH, i.e., that they do contribute to

the calculation of the final tupple result, thus, they should be part of the

slice.

The reason for such a deviating behaviour induced by the lazy print se-

mantics is behind rule Con definition. In particular, this problem arises

because C x1 : l1 · · · xa : la expressions are considered primitive values in the

language, thus making rule Con to simply collect the outer labels of such

expressions without evaluating the arguments of the constructor involved.

This explains the odd behaviour of the above example, where function f

returns a pair which falls into the C x1 : l1 · · ·xa : la representation in FL.

Therefore, the only semantic rule applied during the lazy print calculation

was the Con rule which does not evaluate the constructor (Pair) arguments

and their associated expressions. Hence, one may now understand why the

only labels that the semantics yielded during the evaluation are the ones

visible at the time of application of the Con rule.

A possible approach to solve this problem of “extra laziness” induced by

the semantics, would be to evaluate every data constructor parameter in a

strict way. This, however, would throw away most of the laziness in the

language, since the evaluation would become strict on every data type.

A much more effective solution is to divide the slicing calculation into two

phases. The first phase uses the semantics in Figures 6.4 and 6.5, applying it

until a value, possibly containing constructors with unevaluated expressions,

is retrieved. The second phase takes both the value and the heap returned

by the first phase and evaluates them under a semantics which is similar to

the one used in the first phase except for rule Con which is substituted by

the one in Figure 6.6.

This way, strict evaluation over constructor values is introduced, though

it only takes place after a resulting value has been obtained using the com-

plete lazy semantics. Note that most of the computation is still being made

in a completely lazy framework and only a final strict evaluation step is

performed.
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Con
Γ[xk 7→ < ek, Lk > ] ` xk ⇓S1 ∆ ` zk

Γ[xk 7→ < ek, Lk > ] ` (C x1 : l′1 · · ·xa : l′a) : l′ ⇓S

∆ ` (C x1 : l′1 · · · xa : l′a) : l′

where k ∈ {1, . . . , a}
S = Lk ∪ {l′k, l′} ∪ S1

Figure 6.6: Con rule for strict evaluation of the result value

6.4 Adding a Slicing Criterion

Despite the relevance that lazy print may have in, e.g., program understand-

ing, a further step towards effective slicing techniques for functional pro-

grams requires the explicit consideration of slicing criteria. In this section,

we present an approach where a slicing criterion is specified by sets of pro-

gram labels.

The slicing process proceeds as in the previous case, except that now,

one is interested in collecting the program labels affected not only by a given

expression, as before, but simultaneously by the expressions associated to

the labels introduced by the user as a slicing criterion.

A first and straightforward approach to implement a slicer to achieve

this goal takes into account the set of collected labels on both the output

and the input of the evaluation function ⇓. Therefore, the semantic rule for

λ-expressions changes to the one displayed in Figure 6.7. This extra rule

enables the semantics to evaluate expressions taking into account a set of

labels Si supplied as a slicing criterion and its impact on the resulting slice

Sf . Putting it in another way, each rule has to compute the resulting set

of labels Sf considering the effect that the expressions denoted by the input

labels in Si may have in the slice being computed.

Soon, however, it becomes difficult to specify the remainder semantic rules

taking into account the impact of the receiving set of labels. The problem of

specifying these rules is that, in many cases, there is not enough information

in the rule being specified to enable the decision of including a certain label
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Lamb

Si,Γ ` (λy : l1.e) : l ⇓ Γ ` (λy : l1.e) : l, Sf

where Sf = Si ∪
⋃
{ϕ(e, y) | l1 ∈ Si} ∪ {l | l1 ∈ Si}

Figure 6.7: Improved semantics

or not.

For instance, in the App rule one may not immediately decide whether

to include or not label l1 in the resulting label set. The reason for this is that

one has no means of knowing in advance whether a particular expression in

the heap will ever become part of the slice. If such an expression is to be

included into the slice, somewhere along the remainder of the slicing process,

then label l1 will also belong to the slice as well as all the labels that l1 affects

by the evaluation of the first premise of rule App.

In order to overcome this problem, one should look for some independence

from the slicing process over the partial slices that are being calculated by

each semantic rule. Thus, instead of calculating partial slices on the appli-

cation of every rule, we compute partial dependencies between labels. This

entails the need for a further modification in the rules which now have to

compute maps of type P L ← L, called lmap’s, rather than sets of labels.

The intuition behind lmap’s is that all labels in their codomains depend on

their corresponding labels from the lmap domain. The resulting semantics

is presented in Figures 6.8 and 6.9 where in rule Let variable yn is a fresh

variable.

In the sequel the following three operations over lmap’s are required:

an application operation, resorting to standard finite function application,

defined by

F (x) =

F x if x ∈ dom F ,

{} otherwise.

a lmap multiplication ⊕, defined as
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Lamb

Γ ` (λy : l1.e) : l ⇓F Γ ` (λy : l1.e) : l

where F = [l1 7→ ϕ(e, y) ∪ {l}]

Con

Γ ` (C x1 : l1 · · · xa : la) : l ⇓F Γ ` (C x1 : l1 · · ·xa : la) : l

where k ∈ {1, . . . , a}
F = [lk 7→ l]

Figure 6.8: Higher-order slicing semantics for values

(F ⊕G)(x) = F (x) ∪G(x)

and, finally, a range union operation urng, defined as

urng F =
⋃

x∈dom F

F (x)

Again, this semantics suffers from the problem identified in the lazy print

specification i.e., the semantics is “too lazy”. Once more, to overcome such

undesired effect one applies the strategy taken earlier, therefore introducing

a new rule (Fig. 6.10) to replace the original Con rule, and the slicing process

gets similarly divided into two phases.

By changing the output of the evaluation function from a set to a lmap

of labels, we no longer have the desired slice of the program by the end of

the evaluation. Instead, what is returned is a lmap specifying the different

dependencies between all expressions that were needed to evaluate the pro-

gram under analysis. Based on this lmap value the desired slice can then be

computed as the transitive closure of the dependencies lmap starting by the

set of labels identifying the expressions form our slicing criteria.

Furthermore, splitting the slicing process into a dependencies calculation

and the computation of a slice for the set of pertinent labels (i.e. the slicing
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App
Γ ` e ⇓F ∆ ` (λy : l1.e

′) : l2 ∆ ` e′[x/y] ⇓G Θ ` z
Γ ` e (x : l′) : l ⇓H Θ ` z

where H = F ⊕G⊕ [l′ 7→ {l, l1}]

Var
Γ ` e ⇓F ∆ ` z

Γ[x 7→ < e, L > ] ` x : l ⇓G ∆[x 7→ < z, ε > ] ` z
where G = F ⊕ [l 7→ L]

Let
Γ[yn 7→ < en[yn/xn], {ln, l} ∪ ϕ(e, xn) ∪ ϕ(en, xn) > ] `

e[yn/xn] ⇓F ∆ ` z
Γ ` let {xn = en : ln} in e : l ⇓G ∆ ` z

where G = F ⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

Case

Γ ` e ⇓F ∆ ` (Ck x1 : l?1 · · ·xak
: l?ak

) : l]k ∆ ` ek[xi/yik] ⇓G Θ ` z
Γ ` case e of {(Cj y1 : l′1 · · · yaj

: l′aj
) : l\j -> ej}nj=1 : l ⇓H Θ ` z

where G = F ⊕G⊕ [l?m 7→ ϕ(ek, ym) ∪ {l′m, l
\
k}|1 ≤ m ≤ ak]⊕

[l\k 7→ {l}]⊕ [l′m 7→ ϕ(ek, ym) ∪ {l\k}|1 ≤ m ≤ ak]

Figure 6.9: Higher-order slicing semantics for expressions

criterion), makes easier the calculation of slices that only differ on the slicing

criterion used. For such cases, one can rely on a common dependencies lmap

and the whole process amounts to the calculation of the transitive closure of

redefined sets of labels.

6.5 Strict Evaluation

Slicing under strict evaluation is certainly easier. A possible semantics, as

considered in Figures 6.11 and 6.12, can be obtained by a systematic simpli-
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Con
Γ[xk 7→ < ek, Lk > ] ` xk ⇓Fk

∆ ` zk

Γ[xk 7→ < ek, Lk > ] ` (C x1 : l′1 · · ·xa : l′a) : l′ ⇓G

∆ ` (C x1 : l′1 · · · xa : l′a) : l′

where k ∈ {1, . . . , a}
G = Fk ⊕ [l′k 7→ l′]

Figure 6.10: Con rule for strict evaluation of the result value

fication of the semantics used in the lazy case. Of course, this is not the only

possibility. To make comparison possible between the lazy and strict case,

however, we chose to keep specification frameworks as similar as possible,

although we are aware that many details in the strict side could have been

simplified. For example, strict semantics can always return slices in the form

of sets of labels instead of calculating maps capturing dependencies between

code entities.

Lamb

Γ ` (λy : l1.e) : l �F Γ ` (λy : l1.e) : l

where F = [l1 7→ ϕ(e, y) ∪ {l}]

Con

Γ ` (C x1 : l1 · · ·xa : la) : l �F Γ ` (C x1 : l1 · · ·xa : la) : l

where k ∈ {1, . . . , a}
F = [lk 7→ l]

Figure 6.11: Strict slicing semantics for values

Moreover, in the strict case there is no need to capture pending labels

in the heap, since let expressions are evaluated as soon as they are found.

This leads to a simplification of the heap from a mapping between variables

and pairs of expressions and set of labels to a mapping between variables and

values.
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App
Γ ` e �F ∆ ` (λy : l1.e

′) : l2 ∆ ` e′[z1/y] �G Θ ` z
Γ[x 7→ z1] ` e (x : l′) : l �H Θ ` z

where H = F ⊕G⊕ [l′ 7→ {l, l1}]

Var (whnf)
Γ ` z �F ∆ ` z

Γ[x 7→ z] ` x : l �G ∆[x 7→ z ] ` z
where G = F

Let
Γ ` en �F ∆ ` zn Γ[yn 7→ zn] ` e[zn/xn] �G ∆ ` z

yn fresh
Γ ` let {xn = en : ln} in e : l �H ∆ ` z

where H = F ⊕G⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

Case

Γ ` e �F ∆ ` (Ck x1 : l?1 · · ·xak
: l?ak

) : l]k ∆ ` ek[xi/yik] �G Θ ` z
Γ ` case e of {(Cj y1 : l′1 · · · yaj

: l′aj
) : l\j -> ej}nj=1 : l �H Θ ` z

where G = F ⊕G⊕ [l?m 7→ ϕ(ek, ym) ∪ {l′m, l
\
k}|1 ≤ m ≤ ak]⊕

[l\k 7→ {l}]⊕ [l′m 7→ ϕ(ek, ym) ∪ {l\k}|1 ≤ m ≤ ak]

Figure 6.12: Strict slicing semantics for expressions

In what concerns the semantic rules, only the App and Let need to be

changed, along with some minor adaptation of other rules that deal with the

modified heap.

Another decision taken in the strict slicing semantics specification was

to keep value sharing i.e., sharing of values that are stored in the heap.

Nevertheless, one can easily derive a slicing semantics without any sharing

mechanism, for which case one could probably remove the heap from the

semantics.

Finally, note that now, due to the eager strategy, there is no need to

introduce a new Con rule to force the evaluation of unevaluated expressions
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inside result values. Therefore, unlike the two previously presented versions

of lazy slicing, strict slicing is accomplished in a single evaluation phase.

6.6 Comparison

All slicing algorithms presented in this chapter were introduced as (evaluators

of) a specific semantics. Such an approach provides an expressive setting

on top of which one may reason formally about slices and slicers. This is

illustrated in this section to confirm the intuition that, in general, under the

same slicing criterion, lazy slices are always smaller than strict slices.

In the case of the lazy print semantics, such a proof amounts to showing

that the set of labels returned by the lazy print is a subset of the set of labels

yielded by an hypothetical strict print semantics.

But, since both the higher-order lazy slicing semantics and the strict one

do not return sets of labels but maps of dependencies, one has to restate

the proof accordingly. This can be achieved in two ways: either including

the final transitive closure calculation in the slicing process, or introducing

a partial order over the dependency lmap’s that respects subset inclusion.

We chose the latter alternative, and introduce the following partial order

over lmap’s, which refines the standard definition order on partial functions.

F � G⇔ dom(F ) ⊆ dom(G) ∧ (∀x ∈ dom(F ).F (x) ⊆ G(x))

Now, the property that “lazy slices are smaller than strict slices” can be

formulated as follows.

If Γ ` e ⇓F ∆ ` z and Γ ` e �G Θ ` z then F � G

The proof proceeds by induction over the rule-based semantics. First note

that the property is trivially true for all identical rules in both semantics.

Such are the cases of rules Lamb, Con and Case for which the resulting

lmap’s are equal. The proof for the remaining cases follows.
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Case App: Evaluation of expressions under these rules takes the follow-

ing form, according to the evaluation strategy used.

Γ ` e ⇓F ∆ ` (λy : l1.e
′) : l2 ∆ ` e′[x/y] ⇓G Ψ ` z

Γ ` e (x : l′) : l ⇓H Θ ` z
App

where H = F ⊕G⊕ [l′ 7→ {l, l1}]

Γ ` e �I Θ ` (λy : l1.e
′) : l2 Θ ` e′[z1/y] �J Φ ` z

Γ[x 7→ z1] ` e (x : l′) : l �K Φ ` z
App

where K = I ⊕ J ⊕ [l′ 7→ {l, l1}]

By induction hypothesis one has that F � I. By definition of rule Let ,

which is the only rule that changes the heap, one has that L(∆)∪ urng F =

L(Θ)∪ urng I, where function L is overloaded to collect all the labels of the

expressions in a heap. It follows that

L(∆) ∪ urng F = L(Θ) ∪ urng I

⇒ {Induction Hypothesis}

L(∆)�L(Θ) ⊆ urng I

⇒
{Defintion of ⊕, noting that every possible label that G
may collect from heap ∆ is already in I}

G � I ⊕ J

⇒ {Induction Hypothesis}

F � I ∧G � I ⊕ J

⇒ {Definition of ⊕}

F ⊕G � I ⊕ J

⇒ {Definition of ⊕}

F ⊕G⊕ [l′ 7→ {l, l1}] � I ⊕ J ⊕ [l′ 7→ {l, l1}]

⇒ {Defintion of G and H}

G � H
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Case Let : Evaluation of expressions under these rules takes the following

format, according to the evaluation strategy used (note that yn is a fresh

variable in both rules).

Let

Γ[yn 7→ < en[yn/xn], {ln, l} ∪ ϕ(e, xn) ∪ ϕ(en, xn) > ] ` e[yn/xn] ⇓F ∆ ` z
Γ ` let {xn = en : ln} in e : l ⇓G ∆ ` z

where G = F ⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

Let

Γ ` en �H Θ ` zn Γ[yn 7→ zn] ` e[zn/xn] �I Φ ` z
Γ ` let {xn = en : ln} in e : l �J Φ ` z

where J = H ⊕ I ⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

By induction hypothesis and because L(en) ⊆ urng H one has that F �
H ⊕ I. It follows that

G = F ⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

⇒ {F � H ⊕ I}

G � H ⊕ I ⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

⇒ {Definition of K}

G � K

Case Var : Evaluation of expressions under these rules takes the follow-

ing form, according to the evaluation strategy used.

Γ ` e ⇓F ∆ ` z
Γ[x 7→ < e, L > ] ` x : l ⇓G ∆[x 7→ < z, ε > ] ` z

Var

where G = F ⊕ [l 7→ L]

Γ ` z �H ∆ ` z
Γ[x 7→ z] ` x : l �I ∆[x 7→ z ] ` z

Var

where I = H
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By induction hypothesis one has that F � H. Since the only way to

add entries to the heap is via the rule Let , and because, in strict semantics,

such rule increments the dependencies lmap with every label from the newly

introduced expressions, it follows that increments to the strict evaluation

lmap will contain every mapping that is pending on the modified higher-

order slicing heap. Thus, even though it may happen that at the time of

evaluation of the Var rule, one may have I � G, in the overall evaluation

tree the dependency lmap for the lazy evaluation is always smaller or equal

to the strict evaluation lmap.



Chapter 7

Contributions and Related

Work

This chapter sums up the main contributions of the first part of this thesis,

devoted to the development of techniques for slicing functional programs.

In a final section, this research is put in perspective with respect to the

literature.

7.1 Contributions and Future Work

The first part of this thesis introduced in detail three new and different

techniques for slicing functional programs namely, functional slicing using

Functional Dependence Graphs (FDG), a calculational approach based on

algebraic program calculus, and a semantics based approach addressing high-

order lazy functional programs. Besides describing the processes behind each

of these strategies, we also characterized each technique in terms of its ab-

straction level (from “macro” entities to arbitrary expressions) as well as of

the different kinds of slicing criteria employed in each case.

In what respects to the abstraction level, the first technique presented,

slicing using FDG’s, targets high level functional program entities. Here,

the term high level program entities, refers to functional modules, functions,

data-types, data-type constructors and data-type destructors. On the other

105
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hand the other slicing strategies presented in chapter 5 and 6 extend the

previous approach by addressing low-level functional program entities, i.e.

the functional expressions and sub-expressions upon which the functional

algorithms are built upon.

Under the overall motto of functional slicing, the aim of the FDG based

approach was twofold. On the one hand a specific dependence graph struc-

ture, the FDG, was introduced as the core infrastructure for slicing techniques

and other source code analysis operations. On the other hand, slicing algo-

rithms were expressed through simple combinators described in a language

independent way and shown to provide a basis for an algebra of generic slicing

over high level program entities.

What makes FDG a suitable structure for our purpose is parameterisation

by an ontology of node types and differentiated edge semantics. This makes

possible to capture in a single structure the different levels of abstraction

a program may possess, although we have not explored this possibility to

the limit, which would be the representation of functional expressions. This

way a FDG may capture not only high level views of a software project like

the ones presented here (e.g., how modules or data-types are related), but

also low level views (down to relations between functional statements inside

function’s bodies). Moreover, as different program abstraction levels are

stored in a single structure, it becomes easy to jump across views according

to what the analyst needs. This allows a programmer to take a high level

perspective of the entire solution, by inspecting its module view, and then

drilling down to a specific module in order to inspect its constituents. It

would be interesting to develop this up to a point allowing the user to inspect

the code behind each graph node.

This approach was supported by the development of a proof-of-concept

tool – HaSlicer – described in chapter 3.

HaSlicer is a fully functional slicer targeting functional programs writ-

ten in Haskell, featuring a user-friendly graph visualisation of the high

level program entities contained in the analysed code, and allowing the user

to easily navigate through the underlying dependencies graph in a smooth

way. It should also be stressed the elliptical display of the graph, and the



7.1. CONTRIBUTIONS AND FUTURE WORK 107

possibility of navigating in a scalable way through the entire graph.

Future work in HaSlicer includes the improvement of the user interface,

for instance by using context menus once a node is clicked and offering to

the user the possibility of performing the available operations for the node

in question; the development of further navigation utilities (e.g., hiding and

displaying specific parts of the graph); the implementation of more operations

over the source code (such as the computation of the most used/unused

program entities and the modules that are imported but not used). Moreover,

given the high isolation scope of the FDG construction algorithm for each

analysed functional module, we believe that a suitable parallelisation of the

FDG construction exploiting this aspect, would increase the performance of

HaSlicer in the analysis of bigger functional systems.

As a case-study we have shown how functional slicing techniques and

tools can be used to identify and isolate software components entangled in

(functional) legacy code. Both manual user oriented techniques for com-

ponent discovery and a fully automatic approach based on the notions of

software coupling and cohesion were discussed. The latter approach seems

to have a particular interest as an architecture understanding technique in

the earlier phases of the re-engineering process. HaSlicer has proven to be

an interesting tool for isolating the discovered components which quite of-

ten appear, not as completely autonomous units, but rather with some weak

dependencies to other components that have to be carefully analysed.

An interesting area for future research is the adaptation of graph cluster-

ing techniques, already available in the literature, to the discovery of com-

ponents over FDG instances. Actually, we have already carried out some

experiences with adjacency matrixes algorithms which pointed to a signifi-

cant reduction in the time to compute component candidates. Furthermore,

the automatic discovery of components could be parameterised, by allow-

ing the user to define in which set of modules he is interested in looking

for components, which limit values should cohesion and coupling have and

which specific program entities should be considered for a particular compo-

nent. All these parameterisations would deeply affect the performance and

quality of the identified components. Finally, it would also be interesting to
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extend the FDG in order to capture other kinds of inter program entities

dependencies, such as file, database and memory space share dependencies.

Chapter 5 introduced a completely different approach to functional slicing

in which identification is formulated as an equation in an algebraic calculus

of programs [BM97]. This seems a promising technique, although of limited

scope.

The approach uses as slicing criteria specific functions that select part of

the input or output information. Thus, although being sound by construc-

tion, this technique lacks some flexibility in the definition of slicing criteria,

which in some cases can become quite non-trivial to define. Even more, the

slicing criteria is also limited to operate over the input or output values of

functions, thus making it difficult to define slicing criteria referring specific

functional (sub-)expressions. In theory one could always divide a function

definition and embed a slicing function between the resulting definitions in

order to slice over specific sub-expressions of a function. Nevertheless, in

practice this splitting operation often becomes too difficult to achieve.

In order to overcome the problems faced on the calculation approach, we

developed a semantic based slicing process, introduced in chapter 6. This

strategy applies to low level slicing of functional programs, highlighting a

strong relationship between the slicing problem and the underlying evaluation

strategy. In particular, this technique is able to perform slicing over higher-

order lazy functional programs, and unlike the calculational approach, one

may refer to particular program (sub-)expressions in order to define suitable

slicing criteria. A functional implementation of this slicing process was also

implemented in Haskell.

Although the whole of chapter 6 focus on forward slicing, we strongly

believe that a correct inversion of the dependencies lmap’s, followed by a

transitive closure calculation, will capture the backward cases.

The generalisation of slicing techniques to the software architecture level

is the subject of the second part of this thesis. In particular we seek to make

them applicable, not only to architectural specifications (as in [Zha98b]),

but also, directly, to the source code level of large heterogeneous software

systems, i.e., systems implemented in multiple languages and consisting of
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many thousands of lines of code spread over several files.

7.2 Related Work

7.2.1 Functional Slicing

Although specific research in slicing of functional programs is sparse, the

work of Reps and Turnidge [RT96] should be mentioned as sharing the same

objectives. The authors perform slicing by composing projection functions

with the functions being sliced. The approach they take to analyse the

impact of such composition is based on regular tree grammars, which must be

previously supplied. This way, slicing strictly depends on the actual program

syntax given by the regular tree grammars, whereas in our approach such

dependence is restricted to a pre-processing phase.

Another work slightly related to ours is [ZXG05] where a functional frame-

work is used to formalise the slicing problem in a language independent way.

Nevertheless, their primary goal is not to slice functional programs, but to use

the functional motto to slice imperative programs given a modular monadic

semantics.

The work of Vidal, et al [Vid03], where forward slicing of declarative pro-

grams is presented based on partial evaluation, shares a similar objective, but

departures from a pure dynamic background, given by the partial evaluation

based technique, and focus on the low level functional code entities whilst

ours departures from a complete static approach with a focus in high level

functional entities and their interactions.

Perhaps the work closer to ours comes from the Programmatica project

tools [Hal03], which includes an Haskell slicer based on a similar notion of

slicing. However, such tool does not deal with the problem of module im-

ports nor does it possess suitable visualisation techniques of both the inter-

mediate structure and the results of the program transformation algorithms.

Moreover, the slicing criterion is limited to some code entities, whilst in our

approach it can be any node form the FDG.
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7.2.2 Component Discovery

The methodology for component identification is based on the ideas first pre-

sented by Schwanke et al [SH94] [Sch91], where component design principles

like coupling and cohesion are used to identify highly cohesive modules. In

our own component identification and isolation strategy, documented as a

case-study in chapter 4, we diverge from the existing approaches, by target-

ing the functional paradigm, and by making use of the lazy properties of

Haskell in order to obtain answers in an acceptable time. This was never

addressed before, to best of our knowledge.

A second difference between our approach to component identification

and other techniques, which are usually included in the boarder discipline of

software clustering [Wig97], is that we are working with functional languages

with no aggregation units other then the module itself. In contrast to this,

most of the software clustering algorithms are oriented to the OO paradigm,

and as a consequence, they are often based on the notion of a class which is

itself an aggregation construct. Thus, we had to cope with a much smaller

granularity of programming units to modularise.

7.2.3 Slicing by Calculation

The requirement that programs should be first translated to a pointfree nota-

tion may seem, at first sight, a major limitation of the slicing by calculation

technique described in chapter 5. However, automatic translators have been

developed within the author’s own research group [Cun05]. Note, however,

that not only this sort of translators, but also general purpose rewriting sys-

tems able to make program calculation a semi-automatic task, are needed to

scale up this approach to non academic case-studies. Fortunately this is an

active area of research within the algebra of programming community.

Although specific research in slicing of functional programs is sparse, the

work of Reps and Turnidge [RT96] should be mentioned as somewhat related

to ours. The idea of composing projection functions to slice other functions

comes from their work, but the approach they take to analyse the impact

of such composition is completely different from ours. They resort to regu-
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lar tree grammars, which must be previously given in order to compute the

desired slices. This way, their approach strictly depends on the actual pro-

gram syntax. Moreover, they limit themselves to functions dealing with lists

or dotted pairs. Another work slightly related to ours is [ZXG05] where a

functional framework is used to formalise the slicing problem in a language

independent way. Nevertheless, their primary goal is not to slice functional

programs, but to use the functional motto to slice imperative programs given

a modular monadic semantics.

The approach outlined in this chapter is just a first attempt to perform

slicing by mean of algebraic calculation. Thus there are plenty of points to

proceed with this line of investigation, from which we would like to emphasise

the following

• To extend the calculational process to functions defined by hylomor-

phims [BM97], with inductive types acting as virtual data structures,

and

• To analyse the feasibility of this process applied to the dual picture of

coinductive functions, i.e., functions to final coalgebras.

This last extension may lead to a method for process slicing, with pro-

cesses encoded in coinductive types (see, e.g., [Sch98] or [Bar01]), with pos-

sible applications to the area of reverse engineering of software architectures

(in the sense of e.g., [Zha98b]).

Finally, it would be of outermost interest to take the relational challenge

seriously and look for possible gains in calculational power by moving to a

category of relations [FŠčedrov90, BH93] as a preferred semantic universe.

Being based on the solid framework of the functional calculus, the slicing

process presented in this chapter is, by definition, a correct one. This is

an aspect of great importance, since most of the slicing processes developed

so far demand difficult, post development, verifications of its correctness.

Even more, most of the evaluations are performed by means of automated

testing, thus providing only partial results. Although being a sound process

by construction, one should be aware that when such process is automated
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by means of mechanical algebraic calculational systems, the correctness of

the solution relies on the correctness of the mechanical system.

An important aspect of the calculational approach presented, at least

to the extent investigated here, is that one can only define slicing criteria

either at the input or at the output of functions. Certainly these criteria

will then influence and even modify the inner expressions of the function

definition it is being applied to. But, there is no way to define slicing criteria

directly involving inner function expressions, within particular occurrences

inside a function definition. This is exactly the problematic addressed in

the next chapter, i.e., how to perform slicing on higher-order lazy functional

programs having arbitrary functional expressions as a slicing criterion.

7.2.4 Semantic Based Slicing

While we regard our semantic based slicing work as a first incursion on higher-

order lazy functional slicing, there is a number of related works that should

be mentioned.

In [RT96] Reps and Turnidge provide a static functional slicing algorithm

but, in contrast to our approach, theirs target first-order strict functional

programs. Besides considering a different language class (first-order) and a

different evaluation strategy (strict), the authors define slicing criteria by

means of projection functions, a strategy similar to the one addressed in our

calculational approach which we regard as a too rigid scheme when compared

to our own approach resorting to a sub-expression labelling mechanism.

Reference [OSV04] presents a strategy to dynamically slice lazy func-

tional languages. Nevertheless, they leave higher-order constructs as a topic

for future work, and base their approach on redex trails. This leads to a

slicing criterion definition (which consists of a tuple containing a function

call with full evaluated arguments, its value in a particular computation, the

occurrence of the function call and a pattern indicating the interesting part

of the computed value) which is much more complex to be used in practice

than our own. The latter, by pointing out a specific (sub)expression in the

code, represents a more natural way for the analyst to encode the relevant
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aspects of the code that he/she wants isolated.

Perhaps the work most related work to our semantic based slicing is

[Bis97], where the author presents an algorithm for dynamic slicing of strict

higher-order functional languages followed by a brief adaptation of the algo-

rithm to lazy evaluation. A major difference with the approach proposed by

Wiggerts is that, recursive calls must be explicitly declared in the language

and there is no treatment of mutual recursive functions which, as pointed out

by the author, results in a considerable simplification of the slicing process.

Again, we believe that our definition of the slicing criterion is more precise

than the one used in [Bis97], which consists of the value computed by the

program in question (even though more flexible slicing criteria are briefly

discussed).

Finally, it should be emphasised that a slicing criterion, like the one pro-

posed in our semantic approach, that permits to choose any (sub)expression

of the program under analysis, deeply influences and augments the complex-

ity of the slicing process, especially under a lazy evaluation framework like

the one we have addressed. In fact, this aspect is the main reason for the

evolution of the slicing algorithm from a one phase process, like the one pre-

sented in section 6.3, to a two phase process where one must first keep track

of internal (sub)expression lazy dependencies before calculating the final slice

with respect to the relevant (sub)expressions.
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Chapter 8

Recovering Coordination

Specifications

8.1 Introduction to Part II

As argued in the introduction, the systematic, tool-supported discovery of

coordination policies from legacy code and the reconstruction of the corre-

sponding specifications, is a main issue in program analysis. Actually, its

role in software re-engineering became more and more important as software

solutions evolve to a new level of reuse and dependency on foreign services

and components. Faced with such a scenario, there is an urgent need of

having tools and models to assist on the disentangling of the coordination

structure of software systems.

The second part of this thesis is a step to tackle such a problem. Our

approach is based on first building an extended system dependence graph,

to provide a structural and easy-to-manipulate representation of program

data, and then resorting to slicing techniques over such a graph to extract

the relevant coordination policies.

Two alternatives are considered here to address the problem of discov-

ering and extracting coordination data from legacy code, once a specific

dependence graph structure, to be referred as the coordination dependence

graph in the sequel, has been built.

117
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• The first one, proceeds by systematically translating the data recorded

in the coordination dependence graph into a specific software orches-

tration language. The outcome is, therefore, a high-level specification

of the recovered coordination policies. We have used Orc, a recent

general purpose orchestration language purposed by J. Misra and W.

Cook [MC06] for this task. Orc scripts can be animated to simulate

such specifications and study alternative coordination policies. Ap-

pendix B provides a brief introduction to Orc, its syntax and informal

semantics.

• An alternative approach inspects the entire coordination dependence

graph for the identification of graph patterns which are known to en-

code particular coordination schemes. For each instance of one of these

such patterns, discovered in the graph, the corresponding fragment of

source code is identified and returned.

This chapter introduces the construction of the coordination dependence

graph and the extraction of coordination specifications according to the first

of the two approaches mentioned above. Alternative generation of such spec-

ifications in WS-BPEL [JE07, Mig05] is also discussed.

The second approach to coordination recovery, based on the identification

of particular graph patterns, is discussed in chapter 9. This turns out to be

a more robust alternative when in presence of highly complex coordination

policies.

Both approaches are generic in the sense that they do not depend upon

the programming language or platform in which the original system was

developed. Actually, they can be implemented to target any language with

basic communications and multi-threading capabilities.

However, a prototype tool, intended to serve as a “proof-of-concept” for

the methods proposed in the second part of this thesis, was developed to

analyse Common Intermediate Language (CIL) source code, the language

interpreted by the .Net Framework for which every Microsoft .Net compliant

language compiles to.
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The presentation of this tool, which we have called CoordInspector,

is made on chapter 10.

Finally, chapter 11 reports on the application of these methods to a con-

crete project of software integration.

8.2 Recovering Coordination Specifications:

An Overview

The building blocks of the (more-or-less explicit) coordination layer of a soft-

ware system are the calls to communication primitives. These are used to

invoke functionality exposed by third-party entities or simply for the ex-

change of information with foreign resources. Altogether, it is from them

and the programming logic involved in their use, that the system coordina-

tion layer is constructed. The notion of a communication primitive, is to be

understood here in the broad sense of any possible mean that a system or

component can use to communicate or control another component or system.

Direct foreign calls to well referenced components such as web-services calls,

RMI or .Net Remoting calls to distributed objects are typically examples

but, by no means, the only ones.

The specific combination of communication primitives is what allows soft-

ware systems to control and interact, in complex ways, with other systems,

processes, databases and services in order to achieve particular goals. Thus,

it is reasonable to expect that any coordination discovery strategy should

start by identifying such primitive communication statements in the source

code, together with the specific program context in which they are embedded.

Depending on the type of communication primitives chosen to base the

coordination discovery process upon, one will obtain different kinds of ab-

stracted coordination layers at the end of the discovery process. I.e., if one

chooses to base the discovery process over inter-thread communication prim-

itives, than, at the end, one will obtain the orchestration specification of the

system’s threading layer. Similarly, web-service communication primitives

with lead to a Service Interaction layer discovery, and interaction policies.
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COM, CORBA and RMI primitives with lead to the identification of dis-

tributed objects.

In order to cope with such variety of coordination layers, our approach is

parametric on the communication primitives as well as on the calling mode.

For the latter we distinguish between synchronous and asynchronous com-

munication calls, since this distinction plays an utmost important role in

determining the coordination model. This classification of the calling mode

is, of course, open and can be refined or extended to cope with other possi-

bilities.

Figure 8.1: The overall strategy

The overall strategy underlying our approach to recover coordination

specifications from source code is illustrated in Figure 8.1. As we have already

mentioned, it is based on a notion of coordination dependence graph, abbre-

viated to CDG in the sequel, proposed here as a specialisation of standard

program dependence graphs [FOW87] used in classical program analysis.

The process starts by the extraction of a comprehensive dependence

graph, denoted in the sequel by the acronym MSDG (after Managed Sys-

tem Dependence Graph), from source code. Its construction, which extends

an algorithm proposed in [HRB88], is detailed in section 8.3.

Once the MSDG has been built, one proceeds by identifying the vertices

containing primitive communication calls in their statements. We call this
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operation the labelling phase, and as pointed out earlier, the operation is

parametric on both the communication primitives as well as on the calling

mode.

The result of this phase is another graph structure retaining only coor-

dination relevant data with respect to the set of rules specifying the com-

munication primitives to look for. This structure is called the Coordination

Dependence Graph (to be abbreviated to CDG in the sequel). As explained,

it is computed from the MSDG in a two stage process, presented in sec-

tion 8.4. First nodes matching rules encoding the use of specific interaction

or control primitives are suitably labelled. Then, by backwards slicing, the

MSDG is pruned of all sub-graphs found irrelevant for the reconstruction of

the program coordination layer. Note the first stage is parametric on the

type of interaction mechanisms used in the program under analysis. Section

8.4 details the CDG construction.

Once the CDG has been generated, it is used to guide the generation of a

model of the system’s coordination logic. This can take the form of a formal

specification in Orc, as discussed in section 8.5, or of a WS-BPEL script, as

explained in section 8.6.

8.3 The Managed System Dependence Graph

The fundamental information structure underlying the coordination anal-

ysis methods proposed in the next chapter is a comprehensive dependence

graph, to be referred in the sequel as the Managed System Dependence Graph

(MSDG), which records all elementary entities and relationships that may

be inferred from code by suitable program analysis techniques.

A MSDG is an extension of the concept of System Dependence Graph

(SDG) to cope with object-oriented features, as considered in [LH96, LH98,

Zha98a]. Our own contribution was the introduction of new representations

for a number of program constructs not addressed before, namely, partial

classes, partial methods, delegates, events and lambda expressions.

A MSDG is defined over three types of nodes, representing program en-

tities: spatial nodes (subdivided into classes Cls, interfaces Intf and name
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spaces Nsp), method nodes (carrying information on method’s signature MSig,

statements MSta and parameters MPar) and structural nodes which represent

implicit control structures (for example, recursive references in a class or a

fork of execution threads). Formally,

Node = SNode + MNode + TNode

SNode = Cls + PtCls + Intf + Nsp

MNode = MSig + MSta + MPar

TNode = {4,O, ◦}

where + denotes set disjoint union. Nodes of type SNode contain just an

identifier for the associated program entity. Other nodes, however, exhibit

further structure. For example, a MSta node includes the statement code

(or a pointer to it) and a label to discriminate among the possible types of

statements in a method, i.e.,

MSta = SType× SCode

Stype = {mcall, cond,wloop, assgn, · · ·}

where, for instance, mcall stands for any statement containing a call to a

method and cond for a conditional expression. Similarly, a MSig node, which

in the graph acts as the method entry point node, records information on

both the method identifier and its signature, i.e., MSig = Id× Sig.

Several kinds of program dependencies can be represented as edges in a

MSDG. Formally, an edge is a tuple of type

Edge = Node× DepType× (Inf + 1)× Node

where DepType is the relationship type and the third component represents,

optionally, additional information which may be associated to it. The main
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kinds of dependency relationships as follows:

The first and most basic type of dependency that a MSDG captures is

control flow dependency, formally referred by cf. This kind of dependency

represents the possibility of the program execution control of flowing from

one statement to another. In well structured programming languages this

type of dependency can be straightforwardly computed solely based on the

semantics of the control flow language primitives (WHILE, IF THEN ELSE, FOR,

etc). Moreover, it is based on these control flow dependencies that the other

MSDG dependencies are computed upon.

Data dependencies, of type dd, connect statement nodes which refer to

common variables in particular conditions. Formally,

〈v, dd, x, v′〉 ∈ Edge⇔ definedIn(x, v) ∧ usedIn(x, v′)

where x is a statement variable and notation definedIn(x, v) (respectively,

usedIn(x, v)) stands for x is defined (respectively, used) in node v (respec-

tively, v′). A variable is considered to be defined in a statement if its value

is potentially modified in that statement. On the other hand, a variable is

considered to be used in a statement if its value may influence the result of

the statement in question.

The third type of dependencies captured are control dependencies, of type

ct. These serve to connect control statements (e.g., loops or conditionals)

or method calls to their possible continuations. Control dependencies are

also used to capture dependencies between method signature nodes (which

represent the entry-points on a method invocation) and each of the statement

nodes, within the method, which are not under the control of another control

statement. Formally, these conditions add the following assertions to the

invariant of type Edge:

〈v, ct, g, v′〉 ∈ Edge⇐ v ∈ {MSta(t,−)| t ∈ {mcall, cond,wloop}} ∧ v′ ∈ MSta

〈v, ct,−, v′〉 ∈ Edge⇐ v ∈ MSig ∧ v′ ∈ MSta
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where g is either undefined, in which case v represents a statement not con-

taining a predicate (a method for instance), or the result of evaluating the

statement guard contained in the control node.

8.3.1 Method Invocation

Method parameters are handled through special nodes, of type MPar, rep-

resenting input (respectively, output) actual and formal parameters in a

method call or declaration. The special nodes introduce auxiliary variables

that mediate parameter exchange between a method call and the actual

method implementation. Formally,

MPar = PaIn + PaOut + PfIn + PfOut

A method call, on the other hand, is represented by a mc dependence from

the calling statement with respect to the method signature node. Formally,

〈v,mc, vis, v′〉 ∈ Edge⇔ v ∈ MSta ∧ SType v = mcall ∧ v′ ∈ MSig

where vis stands for a visibility modifier in set {private, public, protected,

internal}.
Specific dependencies are also established between nodes representing for-

mal and actual parameters. Moreover, all of the former are connected to the

corresponding method signature node, whereas actual parameter nodes are

connected to the method call node via control edges.

In an object oriented framework, one has to cater for the possibility that

a method, modifying not only its parameter variables, but also some class

or instance variables. To deal with such situations, we follow the approach

taken in [LH98], where formal vertices are introduced for each of the class or

instance variables that are modified within the method, and, from the calling

function side, the corresponding actual vertices are inserted. With respect

to edges, a method call is represented by method call edges between vertices
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containing method calls and the method entry vertex of the called method,

parameter-in edges between actual-in and formal-in vertices, parameter-out

edges between formal-out and actual-out vertices. All formal vertices are

connected to the method entry vertex and all actual vertices are connected

to the calling vertex via control edges.

Figure 8.2: Method dependence graph

Whenever the called method introduces a direct or indirect data depen-

dency between its formal-in and formal-out vertices, such dependencies are

reflected in the calling side by introducing transitive dependence edges be-

tween the actual-in and actual-out vertices.

As an example of a method call consider the graph presented in Figure

8.2 representing a call to a function (Add) that receives two integers and

returns its sum. In this graph, solid thick arrows represent control edges,

solid thin arrows with filled ends define parameter-in edges, solid thin arrows

with empty ends define parameter-out edges, dashed arrows represent data

edges, dashed and pointed arrows define transitive edges and pointed arrows

represent method call edges. Note that the two transitive dependencies,

between the actual parameter vertices, bypass the need of inspecting the sub-

graph corresponding to function Add in order to access the data dependencies

between the actual parameter vertices.

Summing up, these add the following assertions to the MSDG invariant:
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〈v, pi,−, v′〉 ∈ Edge⇔ v ∈ PaIn ∧ v′ ∈ PfIn

〈v, po,−, v′〉 ∈ Edge⇔ v ∈ PaOut ∧ v′ ∈ PfOut

〈v, ct,−, v′〉 ∈ Edge⇐ v ∈ MSig ∧ v′ ∈ (PaIn ∪ PaOut)

〈v, ct,−, v′〉 ∈ Edge⇐ v ∈ MSta ∧ SType v = mcall ∧ v′ ∈ (PfIn ∪ PfOut)

〈v, dd,−, v′〉 ∈ Edge⇐ v ∈ PaIn ∧ v′ ∈ PaOut ∧

∃〈u,dd,−,u′〉 . (u ∈ PfIn ∧ u′ ∈ PfOut)

8.3.2 Properties

Properties are a special program construct found in C] and other .Net lan-

guages that encapsulates the access to class variables. Given the semantic

similarity to Java’s get and set methods, in a MSDG properties are repre-

sented as normal get and set methods, where the methods formal-in and out

vertices are inferred from the property type. A property invocation from a

calling class is represented as a (already described) method call.

8.3.3 Objects and Polymorphism

As in [LH98], we represent references to objects individually i.e., each ref-

erence to an object in a statement is represented by a tree depicting all

the object variables. A difference in our representation of objects from the

approach taken in [LH98] concerns the representation of recursively defined

classes. Instead of using a k-limiting solution (which proceeds by expand-

ing the object tree to a level k) we use the special vertex, depicted as ◦, to

represent recursive references in classes.

For dynamically typed references to objects, we build the object trees for

every possible object type the reference may hold. Each of these trees root

vertices are then connected to the corresponding object reference vertex by

control edges.
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8.3.4 Partial Classes and Partial Methods

Partial classes, available for instance in C] 2.0, enable a class to be defined

in two different partial classes (each possibly defined in a separate file) that

are combined in compile time to generate a single class. The representation

of such classes in a MSDG is trivially solved by using a partial class node

type, formally PtCls, and a partial class dependency edge, formally pd, that

connects a vertex representing the class and the two partial class vertices.

The graph representation of partial methods is not as straightforward

as the partial classes’ case, since its semantics is not the mere sequential

composition, in a single method, of both partial methods definitions. In fact,

partial methods work in a way similar to event subscriptions were, if a partial

method has its declaration in a partial class and an implementation in the

other, then everything works as if it was a normal method i.e., the method

is executed in all its calls. On the other hand, if a partial class declares a

partial method and there is no implementation of it in any of the partial

classes, then every call to the method is removed at compile time.

In order to represent this behaviour we introduce a method call depen-

dency edge between the declaration of the partial method and its implemen-

tation. Furthermore, every node containing a call to the partial method is

connected to the partial method signature and not the implementation. This

assures that every call to a partial method must first pass by its declaration

which assures the correctness of slicing over this kind of program constructs.

Just like the compile time behaviour which removes every call to the partial

method if this has no implementation available, every node containing a call

to a partial method without implementation is also removed from the MSDG.

8.3.5 Delegates, Events and Lambda Expressions

Delegates, events and lambda expressions are programming constructs not

available in Java nor in C++, so previous object-oriented graph representa-

tions [LH98, WR03, KMG, Zha98a] do not cover such entities.

Delegates can be seen as the C] (and other .Net languages) type-safe

version of C and C++ function pointers, allowing the definition of higher-
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order functions. A delegate defines a type of a function whose values are

treated like objects, thus possibly defining class member types as well as

being able to be exchanged between methods.

In what concerns to the graph representation of delegates, from the sub-

scriber side, i.e., a class that instantiates an object delegate member with

a method, the object tree that it refers to is updated with a control edge

between the object delegate member and the sub-graph of the method being

passed. From the subscribed side, i.e., the class with the delegate (type)

definition that invokes the subscribed method, one adds a method vertex

representing the delegate type as well as formal-in and out vertices for the

arguments and return values of the delegate. Moreover, we create actual-in

and out vertices connected to the method vertex which is connected to the

formal-in and out vertices of the actual subscriber function. Every call to

the delegate inside the subscribed class is represented by a method call edge

to the method vertex introduced by the delegate type.

This way, the method vertex introduced by the delegate type definition

acts like a proxy, dispatching its calls to the objects and corresponding meth-

ods that subscribed the delegate. This approach takes into consideration

particular objects and, thus, it permits slicing to take place over the sub-

scribing methods. As an example of the representation of delegates, see for

instance vertex S36 in the MSDG presented in appendix D, whose code is

available in appendix C.

In what concerns its graph representation, the difference between dele-

gates and events is that events can be subscribed by more than one method,

while delegate subscriptions override each other, thus making only the last

subscription to count. Given this similarity, one applies the same approach

taken for delegates in the representation of events, with the detail that, in the

event representation, one may have more than one method call edge between

the proxy method of the subscribed and the actual method to be called in

the subscriber.

Unlike pure functional lambda expressions, C] lambda expressions have

a state and can perform like any other method. In their graph representa-

tion, the only difference between lambda expressions and delegates is that
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lambda expressions, and anonymous delegates as well, do not have an iden-

tifying name. Thus, in a MSDG, lambda expressions are represented as

normal delegates with the exception that their entry vertex is labelled with

an automatically generated identifier.

8.3.6 Concurrency

Structural nodes TNode are introduced to cope with concurrency (case of !

and # ) and to represent recursively defined classes (case of ◦).
A ! - node captures the effect of a spawning thread: it links an incoming

control flow edge, from the vertex that fired the fork, and two outgoing edges,

one for the new execution flow and another for the initial one. Dually, a

thread join is represented by a # - node with two incoming edges and an

outgoing one to the singular resumed thread.

To deal with dependencies between different thread program statements,

we follow the ideas in [Kri03, NR00] using interference dependence edges,

formally referred by id.

To illustrate this strategy for representing concurrency in the graph, con-

sider the C] program in Figure 8.3. The program spawns a new thread to

calculate a sum, sends a message to the user reporting the sum calculation,

waits for the sum thread to finishes and presents the result to the user. Figure

8.4 represents the MSDG calculated for the concurrent code, with triangu-

lar vertices representing thread spawning and join. Note that the spawning

thread triangular vertex has an outgoing edge to an object vertex. Such

connections between spawning thread vertices and object vertices serve to

specify the exchange of objects and variables references between threads.

8.3.7 Class and Interface Dependence

Class inheritance and the fact that a class owns a particular method is

recorded as follows

〈v, cl, vis, v′〉 ∈ Edge⇔ v ∈ Cls ∧ v′ ∈ MSig
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namespace ConsoleMultithreadTest {
class Program {

public static void Main(string[] args) {
Sum sum = new Sum(1, 2);
ThreadStart ts = new ThreadStart(sum.Add);
Thread t = new Thread(ts);
t.Start();
Console.WriteLine("Calculating result...");
t.Join();
Console.WriteLine("Result = {0}", sum.result);

}
}

class Sum {
public int x, y, result;

public Sum(int a, int b) {
this.x = a; this.y = b;

}

public void Add() {
Thread.Sleep(3000);
result = x + y;

}
}

}

Figure 8.3: Fragment of a concurrent program

A similar strategy is adopted for interface and namespace nodes.

8.4 The Coordination Dependence Graph

As discussed above, the purpose of a MSDG is to collect structure and repre-

sent a large amount of program data upon which more fine-grained analysis

can be carried on. This is achieved by extracting from a MSDG, sub-graphs

specifically focused on the collection of entities relevant to the particular sort

of analysis one is interested in. The Coordination Dependence Graph (abbre-

viated to CDG in the sequel) is one of such structures, specifically oriented

towards the recovery of coordination data. Its construction amounts basi-

cally to a selective pruning of the MSDG, to remove all the information not
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Figure 8.4: MSDG for code fragment in Figure 8.3

directly relevant for a particular set of constraints which specify the coordi-

nation relevant entities considered non relevant for coordination analysis.

This filtering is guided by the specification of a set of constraints defining

all the coordination relevant primitives and entities to be looked for. By tun-

ing such constraints appropriately, different kinds of coordination information

can be captured. This gives to the analyst an additional freedom degree to

focus analysis in a particular type of implementation of coordination policies

(e.g. web-services calls) or in a specific set of programming language con-

structs known to be used, in the system under analysis, to implemented such

policies.

These constraints are given by rules, specified as follows:
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CRule = RExp× (CType× CDisc× CRole)

CType = {webservice, rmi, remoting, · · ·}

CDisc = {sync, async}

CRole = {provider, consumer}

where RExp is a regular expression [Stu07] used to retrieve a particular code

fragment, CType is the type of communication primitive types (extensible to

other classes of communication primitives), CDisc is the calling mode (either

synchronous or asynchronous) and, finally, CRole characterises the code frag-

ment role with respect to the direction of communication. In C], for example,

the identification of invocations of web-services can be captured by the fol-

lowing rule, which identifies the primitive synchronous framework method

SoapHttpClientProtocol.Invoke, typically used to perform remote invo-

cations of web-services:

Regex = “System.Web.Services.Protocols.SoapHttpClientProtocol.Invoke\(\w\); ”

R = (Regex, (webservice, sync, consumer))

In this particular example, our rule R identifies calls to web-services that

do not take any arguments1. This behaviour is captured by the used regex

which only matches single argument calls to function Invoke, whose API

defines that the first argument corresponds to the web-service method to

be called and the remaining, to the arguments to be passed to the remote

method. Furthermore, the rule defines that the tokens matched by the regex

are to be considered as synchronous calls to web-services from a consumer

perspective.

However, note that, apart from this specific coordination oriented set of

rules, the CDG can be used to highlight other programmatic aspects other

1A rule for identifying calls to web-services with a variable number of arguments is
presented in chapter 11
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than coordination related ones.

Given a set of rules, the CDG calculation, starts by testing all the MSDG

vertices against the regular expressions in the rules. If a node of type MSta

or MSig matches one of these regular expressions, it is labelled with the

information in the rule’s second component. The types of the resulting,

labelled nodes are, therefore,

CMSta = MSta× (CType× CDisc× CRole)

CMSig = MSig × (CType× CDisc× CRole)

Corresponding to the annotation of statement and signature nodes selected

by the specified constraints. Note that, because of this labelling process, the

type of a CDG node becomes the following union

CNode = Node + CMSta + CMSig

Once completed this labelling stage, the method proceeds by abstracting

away the parts of the graph which do not take part in the coordination layer.

This is a major abstraction process accomplished by removing all non-labelled

nodes, but for the ones verifying the following conditions:

1. method call nodes (i.e., nodes v such that v ∈ MSta with SType v =

mcall) for which there is a control flow path (i.e., a chain of cf depen-

dence edges) to a labelled node.

2. vertices in the union of the backward slice of the program with respect

to each one of the labelled nodes.

The first condition ensures that the relevant procedure call nesting struc-

ture is kept. This information will be useful to nest, in a similar way, the

generated code on completion of the discovery process. The second condition

keeps all the statements in the program that may potentially affect a pre-

viously labelled node. This includes, namely, MSta nodes whose statements
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contain predicates (e,g., loops or conditionals) which may affect the parame-

ters for execution of the communication primitives and, therefore, play a role

in the coordination layer.

This stage requires a slicing procedure over the MSDG, for which we

adopt a backward slicing algorithm similar to the one presented in [HRB88].

It consists of two phases:

• The first phase marks the visited nodes by traversing the MSDG back-

wards, starting on the node matching the slicing criterion, and follow-

ing ct, mc, pi, and dd labelled edges. The second phase consists of

traversing the whole graph backwards, starting on every node marked

on phase 1 and following ct, po, and dd labelled edges.

• By the end of phase 2, the program represented by the set of all marked

nodes constitutes the slice with respect to the initial slicing criterion.

Except for cf labelled edges, every other edge from the original MSDG

with a removed node as source or target, is also removed from the final

graph. The same is done for any cf labelled edge containing a pruned node

as a source or a sink. On the other hand, new ct edges are introduced to

represent what were chains of such dependencies in the original MSDG, i.e.

before the removal operation. This ensures that future traversals of this graph

are performed with the correct control order of statements. As an example of

a CDG calculation from an MSDG instance, considered the graph presented

in appendix D, where the CDG corresponds to the graph obtained by the

removal of the gray nodes.

The construction of the CDG follows, actually, a quite generic algorithm

which prunes a MSDG according to a specific set of constraints which are

validated by pattern matching against code information collected in MSDG

nodes. This means, it can be easily adapted to extract, not only different sorts

of coordination data, as mentioned above, but also other kind of program

data for different analysis purposes.
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8.5 Generation of Orc Specifications

Although the CDG already provides important coordination information

about the system under consideration, the analysis will benefit if such infor-

mation is presented in the form of a precise specification for the underlying

coordination layer. Such is the purpose of this stage. In this section we

introduce a technique for the generation of an Orc specification based on

a previously constructed CDG. This Orc specification abstracts the entire

coordination behaviour of the system in a rigorous specification.

We believe that a coordination specification, following closely the struc-

ture of the original system is more understandable and, moreover, easier to

confront with the original system. Therefore, in order to keep the original

system’s procedure calls nesting structure, one generates an Orc definition

for each procedure in the CDG and keeps the calls in the graph between these

procedures. It is this structure preservation that justifies the first exception

in the MSDG pruning phase mentioned in the previous section.

Note that we do not generate an Orc definition for every procedure

in the system, since during the construction of the CDG many procedures

(more specifically, the ones not contributing to the coordination layer) were

dropped. Also notice that, it is quite simple to transform the nested Orc

specification into a flat one, whenever this simplifies reasoning about the

coordination specification at later stages.

The Orc generation process for a procedure is based on the program

captured by the procedure sub-graph of the entire system CDG. The con-

struction of the program represented by a CDG is quite straightforward and

basically amounts to collecting the statements of the visited vertices by fol-

lowing the control flow edges.

To explain the process of generating Orc specifications from a CDG,

it is probably easier to assure a particular, concrete language in which we

suppose, for the sake of illustration, the CDG nodes be annotated by. Such

a language is a subset2 of C] presented in Figure 8.5. The representation

2Actually, we address all the relevant control flow, concurrency, and communication
primitives of the language.
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of CDG instances in this language is a straightforward process, since of the

constructs defined by the language are common to most popular language

and the ones less so, like LOCALCALL and ASYNCCALL, are easily extracted

from the vertices labelling information of the CDG.

z ∈ Values

x, x1, xn ∈ Variables

s ∈ Sites

e, e1, 2n ∈ Expressions

st, st1, st2 ∈ Statements ::= z

| x

| x = e

| st1 ; st2

| LOCK (x) {st}
| LOCALCALL f(x)

| SYNCCALL s f(x)

| ASYNCCALL s f(x) ≺ {st} �
| IF p THEN {st1} ≺ ELSE {st2} �
| WHILE p DO {st}

f1, fn ∈ Procedures ::= f(x){st}
c1, cn ∈ Classes ::= c {x1 = e1 ... xn = en f1 ... fn}

ns1, nsn ∈ Namespaces ::= ns {c1 ... cn}

Figure 8.5: Modified C] language subset

The language is quite self explanatory and contains most of the traditional

control flow constructs, thus making it relatively easy to represent programs

captured by CDG instances. Nevertheless, there is a number of specific

constructs which demand some further explanation.

We consider that a local procedure call is a synchronous call to a resource

in the same machine not involving any communication primitive. On the

other hand, every asynchronous procedure call must be performed as if being

made to an external resource, in which case it must specify the resource site
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uniquely (internal asynchronous procedure calls may be performed using the

ASYNCCALL construct with localhost as resource site). The ≺ � brackets

used in the language definition stand for optional expressions.

As it happens in the complete C] language, this subset also provides

two possibilities for performing asynchronous calls. One simply launches the

procedure call in a separate thread and continues execution of the rest of the

program. The other executes an expression when and if the asynchronous

call returns. The LOCK statement behaves as expected, i.e., it gives a variable

access to a specific statement block execution in a single thread or process.

All the remaining details concerning the syntax and the semantics of the

language are borrowed from the complete C] language.

It may seem strange the explicit distinction made between synchronous

and asynchronous procedures calls as well as between external and internal

procedure calls at the language syntax level. Note, however, that these dis-

tinctions are previously made during the construction of the CDG and are,

therefore, available at this stage of the whole process. Recall that our focus

in this language is only motivated by exposition purposes: in practice, one is

not limited to languages containing these particular constructs in what con-

cerns to synchronism and communication. Moreover, the generation process

is entirely based on the CDG, thus removing the need to actually repre-

sent the program in a particular language. The CoordInspector tool, to

be presented in chapter 10, follows this approach and bases the Orc code

generation entirely on the CDG.

Assume, thus, that input of the Orc generation process is a program,

represented in the language of Figure 8.5, obtained by a direct representa-

tion of the statements captured in the calculated CDG. The formalisation

of this process, that follows, considers only the statements of the language.

Nevertheless, the overall algorithm (as implemented in CoordInspector)

recursively analyses each invoked local function.

The Orc generation is composed of two distinct phases. The first one

is performed by function ψ which identifies all the variables in the language

for which an access control may be required, and sets up an environment for

controlling the access to such variables. The reason for having this kind of
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pre-processing stage is because, like in many specification languages, Orc

captures coordination in a declarative way i.e., without resorting to any no-

tion of state. Thus, one simulates such a state by introducing a series of

declarations of auxiliary variables, capturing pertinent initial state informa-

tion and providing a basis for the diverse coordination definitions that will

compose the specification.

Function ψ, presented in Figure 8.6, is responsible for the construction of

our simulated state, where it basically introduces a Lock site for each variable

in a LOCK statement, while keeping track of all visited variables to avoid site

duplication.

The second phase of the generation process is performed by function

ϕ, depicted in Figure 8.7, which, for every procedure body generates the

corresponding Orc definition. Note that function ϕ assumes the previous

existence of a previously created environment of sites, more specifically, an

environment with a Lock controlling the access for each critical variable.

A brief explanation is in order. Function ϕ converts a value or a variable

from the language to the correspondent variable or constant in Orc. A

synchronous procedure invocation is also directly transformed to a site call

in Orc.

The asynchronous procedure call case is not as straightforward as the

previous cases. Here, one must specify in Orc the behaviour of performing

a request to a site without blocking for an answer and leaving the rest of

the specification to carry on executing. This behaviour can be captured in

Orc by means of the Discr pattern and the fundamental site Signal, both

presented in appendix B. The Discr pattern executes both arguments in

parallel and waits for a signal from any of the sites. Since Signal publishes a

signal immediately, the behaviour of the Discr with a Signal argument is to

return immediately leaving the other argument still running. This, correctly

captures the intend behaviour of an asynchronous procedure call.

Given the blocking behaviour of the fundamental site if when faced with a

false value, one cannot perform a direct translation of the IF THEN statement

to the if Orc fundamental site. Such a direct translation would make the

entire specification block upon a false value over an if site. Thus one uses
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ψ (LOCK (x) {st}, V ) ≡(ι2(Lock > xLock > Signal), {x} ∪ V ) if x /∈ V ,

(ι1(), V ) otherwise

ψ (ASYNCCALL s f(x) {st}, V ) ≡ (ψ1 st, ψ2 st ∪ V )
ψ (IF p THEN {st}, V ) ≡ (ψ1 st, ψ2 st ∪ V )
ψ (IF p THEN {st1} ELSE {st2}, V ) ≡

(ψ1 st1, ψ2 st1 ∪ V ) if ψ1 st1 6= ι1() ∧ ψ1 st2 = ι1(),

(ψ1 st2, ψ2 st2 ∪ V ) if ψ1 st1 = ι1() ∧ ψ1 st2 6= ι1(),

(ι2(ψ′1 st1 � ψ′1 st2),

ψ1 st1 ∪ ψ1 st2 ∪ V ) if ψ1 st1 6= ι1() ∧ ψ1 st2 6= ι1(),

(ι1(), V ) otherwise

ψ (WHILE p DO {st}, V ) ≡ (ψ1 st, ψ2 st ∪ V )
ψ (st1 ; st2, V ) ≡ ((ι2(ψ′1 st1 � ψ′1 st2), ψ1 st1 ∪ ψ1 st2 ∪ V )
ψ (st, V ) ≡ (ι1(), V )

where

ψ1 = π1 . ψ

ψ2 = π2 . ψ

ρ1(ι2 x) = x

ψ′1 = ρ2 . π2 . ψ

Figure 8.6: Function ψ
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ϕ z ≡ let(z)

ϕ x ≡ x

ϕ x = e ≡ let(e) > x > Signal

ϕ x = e ; st2 ≡ let(e) > x > ϕ(st)

ϕ LOCK (x) {st} ≡ xLock.acquire�
ϕ(st)� xLock.release

ϕ LOCALCALL f(x) ≡ F (x)

ϕ SYNCCALL s f(x) ≡ s.F (x)

ϕ ASYNCCALL s f(x) ≡ Discr(s.F (x),Signal)

ϕ ASYNCCALL s f(x) {st} ≡ Discr(s.F (x) > result > ϕ(st),

Signal)

ϕ IF p THEN {st} ≡ IfSignal(let(p), ϕ(st))

ϕ IF p THEN {st1} ELSE {st2} ≡ XOR(let(p), ϕ(st1), ϕ(st2))

ϕ WHILE p DO {st} ≡ Loop(let(p), ϕ(st))

ϕ st1 ; st2 ≡ ϕ(st1)� ϕ(st2)

Figure 8.7: Function ϕ

the IfSignal pattern which never blocks and executes the second expression

in the case where the predicate evaluates to true.

The behaviour specification of the IF THEN ELSE statement is easier to

capture because one of the branches of the statement is always executed.

Therefore, a direct translation to the XOR pattern captures the intended

behaviour. Similarly, the WHILE DO statement is captured by the Loop coor-

dination pattern which does not block upon evaluation of false predicates.

Given functions ψ and ϕ, specifying the two main phases of the Orc

generation process, the overall generation algorithm is obtained as follows:

β (f(x) {st}) =

 F (x) , ψ′1(L, ∅)� ϕ(L) if ψ1(L, ∅) 6= ι1()

F (x) , ϕ(L) otherwise
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8.5.1 Example

To illustrate the generation method just introduced, consider the develop-

ment of a hypothetical client application, intended to be part of a meteo-

rological forecast network. We will manually translate the application re-

quirements into an Orc specification and, afterwards, provide a possible C]

implementation. Then, we submit the code to the analysis discussed in this

chapter, generating the corresponding CDG and, from it, a new Orc speci-

fication. This small example illustrates not only the specification generation

method, but also a use of our approach to verify coordination specifications

against actual implementations.

Suppose that instances of this weather forecast application are to be in-

stalled in a number of geographically separated stations. Each station has at

its disposal a set of sensors which provide some meteorological data relative

to current weather conditions. The objective of the application is, among

other functionality, to communicate the data read from its sensors to a cen-

tral server whose purpose is to predict the weather forecast for the next 5

days.

Since the production of weather forecasts is a demanding computational

operation, the central server will be, most of the time, devoted to inter-

nal activities and only sporadically will it interact with the client stations.

Therefore, such communication is required to be asynchronous, in order to

free the station application so that it may perform other tasks while not in-

teracting with the server. Another requisite of the application is that since

client stations are aware of current weather conditions, they must compare

the generated forecast with the weather conditions they are experiencing at

the moment and, if great discrepancies are found, ask the central server to

check and correct its forecast.

Although this coordination scenario is not unfeasible to be implemented

directly, it has still enough details to justify the previous development of a

specification of the communication protocol. The following is a specification

of such a system, written in Orc.
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Station()) , Server.CalculateForecast() > fid >

GetResult(fid)

GetResult(fid) , GetWeatherConditions() > x >

Server.GetForecast(x) > fc >

XOR(let(fc == null)

,

RT imer(1000)�

GetResult(fid)

,

V erifyResult(fc)

VerifyResult(res)) , XOR(¬ ConfirmForecast(res)

,

Server.VerifyForecast(res) > vfcid >

GetV erification(vfcid))

,

let(res))

GetVerification(vfid)) , Server.GetV erifiedForecast(vfid) > vf >

XOR(vf == null

,

RT imer(1000)�

GetVerification(vfid)

,

let(vf))

Note that in this specification Server is used as the central weather fore-

cast server. Operation GetWeatherConditions is an internal operation avail-

able in each station, to inspect the current values of its weather sensors. Since

it defines an internal station activity, whose details have no coordination rel-

evance, it is intentionally left undefined. Finally, ConfirmForecast denotes

another internal operation which compares the generated weather forecast
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with the current weather conditions.

The next step in the development of the station application is to imple-

ment the above specification in a programming language. Suppose this task

is given to a programmer’s team which produce the following C] code:

1 class Example {
2 private void GetWeatherForecast() {
3 Console.WriteLine("Calculating forecast.");

4 WeatherServer cs = new WeatherServer();

5 int taskId = RequestServerTask(cs);

6 Result res = GetResult(cs, taskId);

7 if(res != null)

8 Console.WriteLine("Forecast: " + res.ToString());

9 else

10 Console.WriteLine("Operation failed");

11 }
12

13 private int RequestServerTask(WeatherServer cs) {
14 Console.WriteLine("Requesting forecast.");

15 Operation op = ...current weather conditions gathering code...

16 int opId = cs.CalculateForecast(op);

17 return opId;

18 }
19

20 private Result GetResult(WeatherServer cs, int opId) {
21 Result res = null;

22

23 while(res == null) {
24 Console.WriteLine("Querying server for forecast.");

25 res = cs.GetForecast(opId);

26 Thread.Sleep(1000);

27 }
28 // Check if the result still needs further calculation

29 if(!ConfirmForecast(res)) {
30 Console.WriteLine("Querying server to confirm forecast.");

31 Operation op2 = ...confirm forecast parameter construction...

32 int op2Id = cs.VerifyForecast(op2);

33 res = GetVerification(cs, op2Id);

34 }
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35 return res;

36 }
37

38 private Result GetVerification(WeatherServer cs, int opId) {
39 Console.WriteLine("Querying server for verification result.");

40 Result res = cs.GetVerifiedForecast(opId);

41 if(res == null) {
42 Thread.Sleep(2000);

43 return GetVerification(cs, opId);

44 } else {
45 return res;

46 }
47 }
48 }

This is the point where our method may come to scene: a new Orc

specification can be extracted from the source code and compared with the

original one. The confrontation of the original Orc specification with the

one extracted from the actual implementation offer a number of conclusions

on the conformance of the system to its specification.

Figure 8.8 shows the generated MSDG. The corresponding CDG, obtained

through application of rules

(“CalculateForecast(*);”, (WebService, Sync, Consumer))

(“GetForecast(*);”, (WebService, Sync, Consumer))

(“VerifyForecast(*);”, (WebService, Sync, Consumer))

(“GetVerifiedForecast(*);”, (WebService, Sync, Consumer))

is represented by the same graph once all dashed vertices have been removed.

From this CDG a new Orc specification is derived resorting to the Orc

generation strategy presented above. The result is as follows.
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GetWeatherForecast() , new WeatherServer() > cs >

RequestServerTask(cs) > taskId >

GetResult(cs, taskId)

RequestServerTask(cs) , GetWeatherConditions() > op >

cs.GetForecast(op) > opId

let(opId)

GetResult(cs, opId) , Null() > res >

Loop(let(res == null),

cs.GetForecast(opId) > res >

RTimer(1000))�

IfSignal(let(¬ ConfirmForecast(res))

,

cs.V erifyForecast(op2) > op2id >

GetV erification(cs, op2id) > res >

Signal)�

let(res)

GetVerification(cs, opId) , cs.GetV erifiedForecast(opId) > res >

XOR(let(res == null)

,

RT imer(2000)�

GetV erification(cs, opId)

,

res)

Apart some minor differences concerning a few internal names, it is easy

to conclude that both specifications represent the same behaviour in what

respects to the invocation of the foreign services (CalculateForecast, Get-

Forecast, VerifyForecast, and GetVerifiedForecast). This conclusion, which is

quite trivial for this example, may, in practice require a bit of Orc rewriting

to eventually transform both designs into a canonical form, therefore showing
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(or refuting) their (observational) equivalence.

8.6 Business Processes Discovery

This section introduces an algorithm for representing in Web Services - Busi-

ness Process Execution Language (WS-BPEL) [JE07] the information cap-

tured by the CDG generated from a given system. This provides an alter-

native to Orc as a way of expressing such specifications as recovered from

legacy code. WS-BPEL is an endogenous coordination language upon which

one can define execution processes that are able to orchestrate the invoca-

tion and provisioning of web services resources. The language has most of

the typical process algebra constructs, namely parallel and sequence compo-

sition, execution of activities (in this case, services, though it is also possible

to invoke local functions) and provisioning of new process definitions (in this

case, services) which can be invoke by other processes. Unlike Orc, WS-

BPEL is a commercially used language that is being implemented by many

software vendors who deliver coordination solutions for orchestration of web-

services. Given this practical and more “realistic” aspect of WS-BPEL, the

language size is dramatically greater when compared to the simple and ele-

gant Orc syntax. References [JE07, Mig05] provide detailed introductions

to both the syntax and semantics of the language, to which the interested

reader is referred to.

A significant difference between WS-BEPL and Orc is that the former

has an embedded notion of state, where one can define variables and resources

which can be later referred to by the process orchestration. Even more,

the way Orc defines structural execution of activities, completely based on

(local) sites and site responses (or its absence), completely diverges from

WS-BPEL where one may use imperative-like control flow constructs. Thus,

the generation of WS-BPEL orchestrations quite deviates from what was

previously presented for Orc.

It should be stressed that this generation algorithm is again generic (i.e.,

“language agnostic”). To make things concrete, however, and the exposition

easier to follow we present the WS-BPEL generation algorithm over the same
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language already used for the Orc generation, and presented in Figure 8.5.

Note, again, that this is not the language in which systems to be analysed

by CoordInspector are to be expressed, but rather the language used to

represent CDG instances in order to facilitate the reasoning and presentation

of our orchestration discovery algorithm.

The generation of the abstract WS-BPEL orchestration is accomplished

by functions Φ, Φh, Φb specified in Figure 8.9, Figure 8.10 and Figure 8.11

respectively. Note that the algorithm presentation follows a functional outset,

which, we believe, facilitates both its presentation and understanding.

Therefore, it resorts to some Haskell [HPW92] constructs, namely the

list representation syntax, the map function, which applies a given function

to every element of a given list, the : function which appends an element

to the head of a list and the foldr function which encapsulates structural

recursion over lists. Furthermore, we denote the first, second and third tuple

projections by functions π1, π2 and π3 respectively.

To avoid declaring every string concatenation used to generate the WS-

BPEL XML code, we represent constant strings values in courier font. This

way, whenever there is a functional expression followed or preceded by a

string constant in courier font, it should be interpreted as the concatenation

of the value represented by the functional expression with the string constant.

We also denote the empty string by ⊥ and string concatenation by +.

Function Φ receives as input a class and returns the WS-BPEL orches-

tration capturing all service coordination contained in all class entities. This

function depends upon four other auxiliary functions:

• Ψ which is responsible for converting a list of variables to their equiv-

alent WS-BPEL forms.

• Υ which generates the WS-BPEL links declarations, to be used in the

orchestration definition.

• Φh (shown in Figure 8.10) which derives WS-BPEL code specifying the

provided services. In particular, function Φh receives a list of functions

and, for each function with attribute CM, it computes a pair containing a
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list of the variables found (which are converted to WS-BPEL by Φ using

function Ψ) and a BPEL activity specifying the provision of a service

that was performed by some specific logic in the original system.

• Φb (shown in Figure 8.11), which is responsible for calculating the WS-

BPEL logic defined inside each function body. More specifically, func-

tion Φb receives a function body and returns a tuple containing a list

of variables to be initialised, a list of links to be initialised and the

functions body business logic translated to WS-BPEL.

Note that the generated WS-BPEL is in an abstract form as a conse-

quence of using a number of ##opaque attribute values, which are employed

whenever there is insufficient information in the source code being evaluated.

Such is the case, for instance, of the web-services url addresses that are not

present in the source code and are required for some WS-BPEL constructs.

8.6.1 The Example

For a brief example of recovering coordination specifications in WS-BPEL,

consider the C] code from Figure 8.12, implementing a company’s time sheet

submission business process. The program provides a method (Submit-

Timesheet) bound to a web-service that is responsible for receiving con-

sultants’ time sheets.

Once a time sheet arrives, its total cost is computed by the foreign web-

service GetTimesheetWithCost according to the time sheet’s consultant fees.

If the total cost retrieved by GetTimesheetWithCost is above 2000 then

the business proceeds by asynchronously invoking the AnalyzeSheet web-

service with callback function OnAnalyseResponse. On completion of func-

tion AnalyzeSheet, the business process proceeds by evaluating function

OnAnalyseResponse which, based on the time sheet cost approval, commu-

nicates the response to client and consultant in case of a positive approval,

or requests the resubmission of the time sheet to the consultant in case of a

negative response.
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If the total cost of the time sheet is bellow or equal to 2000, the busi-

ness process communicates the cost both to consultant and client through

invocation of the web-services NotiffyApprovedExpense and Communicate-

ClientExpense.

The result of applying the method introduced in this chapter to the pro-

gram of Figure 8.12, is the WS-BPEL orchestration depicted in appendix E.

Note that the generated WS-BPEL instance can easily be converted to an

executable orchestration, by introducing some web-services url’s and correct

references to the local machine resources implementing the local functions

being used.



150 CHAPTER 8. RECOVERING COORDINATION SPECIFICATIONS

Figure 8.8: MSDG of the weather forecast example
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Φ (c {x1 = e1 ... xn = en f1 ... fn}) ≡
Ψ ([x1 = e1, ..., xn = en] + π1 a+ π1 b)

Υ (π2 b)

<flow> π2a </flow>

(π3 b)

Where

a = foldr g ([], []) (map Φh [f1, ..., fn])

g (u, v) (t, k) = (u : t, v : k) b = map Φb [f1, ..., fn]

Figure 8.9: WS-BPEL generation

Φh (CM f(x){st}) ≡
(Ψ(x), <receive partnerLink=##opaque>

operation= f variable = (f+ Request ) >

<sources><source name= f /></sources> )

Φh ≡⊥

Figure 8.10: Function header WS-BPEL generation
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Φb v l z ≡ (v, l, <literal> z </literal> )

Φb v l x ≡ ((Ψ x) : v, l, ⊥)

Φb v l (x = e) ≡ ((Ψ (x =e)) : v, l, ⊥)

Φb v l (st1 ; st2) ≡ ((π1 a) + (π2 b) + v, (π2 a) + (π1 b) + l, (π3 a) + (π3 b))

Where a = Φb v l st1

b = Φb v l st2
Φb v l (LOCK {st}) ≡ ((π1 a) + v, (π2 a) + l, <scope isolated=yes>(π3 a)</scope>)

Where a = Φb v l st

Φb v l (LOCALCALL f(x)) ≡ (v, l, <invoke partnerLink=localhost operation= f/>)

Φb v l (SYNCCALL s f(x)) ≡ (Ψ(x) + v, l, <invoke partnerLink=s operation= f/>)

Φb v l (ASYNCCALL s f(x)) ≡
(Ψ(x) + v, l, <flow><invoke partnerLink=s operation=f/></flow>

Φb v l (ASYNCCALL s f(x) {st}) ≡
(Ψ(x) + (π1 a) + v, (linkId : l) + (π2 a),

<flow> <invoke partnerLink= s operation= f />

<sources><source linkName = linkId /></sources> </flow>

<scope name= fCompleted>

<targets><target linkName = linkId /></targets> π3 a </scope> )

Where linkId = f + getUToken()
a = Φb v l st

Φb v l (IF p THEN {st1} ≺ ELSE {st2} �) ≡ ((π1 a) + (π1 b) + v, (π2 a) + (π2 b) + l,

<if><condition> β(p) </condition> π3 b ≺ <else> π3 b </else> � </if>)

Where a = Φb v l st1

b = Φb v l st2
Φb v l (WHILE p DO {st}) ≡ ((π1 a) + v, (π2 a) + l,

<while><condition>β(p)</condition>π3 a</while>)

Where a = Φb v l st1

Figure 8.11: Function body WS-BPEL generation
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import System.Web.Services.Protocols.SoapHttpClientProtocol;
import System.Web.Services.Protocols;
public Class TimesheetSubmission {

[WebMethod]
public void SubmitTimesheet(TimeSheet t,

Consultant c, Client clt) {
Decimal total = Invoke("GetTimesheetWithCost",

new object[] { c });
if(total > 2000)

this.InvokeAsync("AnalyzeSheet",
new object[] { t, c},
this.OnAnlyzeResponse, null);

else {
Invoke("CommunicateClientExpense",

new object[] { expense, total });
Invoke("NotiffyApprovedExpense",

new object[] { expense, total });
}

}

private void OnAnalyseResponse(object arg) {
InvokeCompletedEventArgs invokeArgs =

((InvokeCompletedEventArgs)(arg));
if (invokeArgs.Approved) {

Invoke("CommunicateClientExpense",
new object[] { invokeArgs.Expense,

invokeArgs.Total });
Invoke("NotiffyApprovedExpense",

new object[] { invokeArgs.Expense,
invokeArgs.Total });

} else {
Invoke("ResubmitSheet",

new object[] { invokeArgs.TimeSheet });
}

}

Figure 8.12: The time sheet submission example
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Chapter 9

Discovery of Coordination

Patterns

The algorithms introduced in the previous chapter for generating coordi-

nation specifications from the CDG, either in Orc or WS-BPEL, amount

basically to “complex” translation operations. Of course such translations

have to deal with many details concerning, not only the CDG coordination

representation format, but also the peculiarities of the languages in which

such coordination specifications are to be expressed. We believe that these

algorithms have a real opportunity in specific practical cases, mainly because

they work in a complete automatic way and their complexity1 is relatively

low, which makes them able to retrieve answers in a reasonable time.

On the other hand, this approach has a number of problems. The first

disadvantage that may arise is that, for cases where the system contains

significant coordination logic, the algorithms may derive large specifications

that are difficult to understand and analyse manually. Secondly, because the

algorithms work in a fully automatic way. In some cases this is definitely an

advantage, but in other cases, one would like to guide the coordination dis-

covery process by suggesting some typical coordination policies to be looked

for or by making the algorithm ignore some services or components of the

1Although we have not performed an exhaustive complexity analysis of the presented
algorithms, the profiling of some practical cases indicates that the algorithms present
reasonable response times.
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system. In general, it would be interesting that the algorithms could take

into consideration well-known coordination patterns, so that whenever in-

stances of such patterns occur in the system under analysis, the algorithms

would retrieve exactly the fragments of source code which implement them.

In order to cope with these issues, this chapter introduces a method for

performing coordination discovery based on sub-graph patterns identifica-

tion. The general idea is to have a knowledge base of coordination schemes

described in terms of their CDG pattern representations. These coordina-

tion schemes are then passed to the coordination discovery algorithm which

searches the CDG for instances of the corresponding patterns contained in

the knowledge base. Whenever one of them is detected in the CDG, the

algorithm returns a mapping from the coordination pattern description to

the actual CDG vertices responsible for its implementation.

Unlike the algorithms from the previous chapter, this approach is not

completely automatic (although one can use a constant set of patterns) be-

cause it requires to tune the algorithm by providing specific coordination

patterns to be searched for. Nevertheless, once configured, this algorithm

has the advantage of generating much smaller and understandable coordina-

tion specifications.

The overall discovery strategy is similar to the one presented in the pre-

vious chapter but for the last stage. This is depicted in Figure 8.1.

9.1 Describing Coordination Patterns

The first problem that has to be addressed in this approach is how to cor-

rectly describe coordination patterns so that they can be searched for on

CDG instances. For this, we have chosen to keep a balance between expres-

siveness of the pattern description language and the feasibility of using its

values to perform an automatic search in CDG instances. Therefore, we de-

fine coordination patterns as pairs formed by a matching condition (of type

PCondition) and a graph over nodes of type NodeId as follows
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Pattern = PCondition× (NodeId× ThreadId× NodeId× PathPattern)∗

PCondition = NodeId⇀BGNode

NodeId = N ∪ {4,O}

PathPattern = N+ ∪ {+}

A matching condition is a mapping (i.e., a partial function) which asso-

ciates to each pattern node (of type NodeId) a predicate over CDG nodes

(of type GNode). In practice, a simple way to define such a predicate is by

a regular expression intended to be tested for matching with program data

collected on CDG nodes. For simplicity, we use the symbol ∗ in place of a

regular expressions, abbreviating the everywhere true predicate. Examples

of pattern conditions are shown later in this section.

The second component of a pattern is a sequence of edges labelled by a

thread identifier (ThreadId), which is used to specify the intervening threads

in a pattern, and a qualifier (of type PathPattern) which specifies the number

of edges in the CDG that may mediate between the node matching the source

and the target node in the pattern. In particular, symbol + is used to stand

for one or more edges. We also assume that all nodes in the sequence of edges

of a pattern which do not belong to the domain of the respective condition,

are implicitly labelled by the everywhere true predicate.

Based on the data specifications above, we have defined a small language

to express coordination patterns. Such notation, referred to as the Coor-

dination Dependence Graph Pattern Language (CDGPL), was specifically

designed to describe CDG graph patterns and to facilitate this automatic

discovery.

The discovery process, in particular, is guided by what we call a search

pattern, i.e. an expression defined simply as a pattern (of type Pattern) or

either as a conjunctive (&&) or disjunctive (‖) aggregation of patterns.

For illustration purposes, however, we resort to a graphical notation to

present a number of the most typically found coordination patterns. These

are depicted in Figure 9.1, where notation vcx denotes the node condition
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for node x. They are detailed in the sequel.

9.1.1 Synchronous Sequential Pattern

This is one of the simplest patterns in which a sequence of external services

is invoked by calling one service after the other. This simple, yet often used,

pattern is usually employed when there are dependencies between a number

of service calls, i.e., when a service call depends on the response received to

a previous one.

In our notation this pattern is specified as in Figure 9.1(a), where each

node corresponds to a service call in the series of services to be invoked in

sequence. If the original source code implements coordination through access

to web-services, then the condition for each of these vertices can be defined

by the following predicate template:

pc(x) = x == (MSta(t, s), cp, cm, cd)⇒

match(s, “ServiceCall(*)”) ∧ cp == webservice∧

cm == sync ∧ cd == consumer

where “ServiceCall” is to be replaced by the name of the invoked web-

service method.

9.1.2 Cyclic Query Pattern

This pattern is characterized by a point in which a new thread is spawned,

becoming responsible for a on-going invocation of an external service. It is

often used by systems that have to monitor the state of some foreign resource

or that must be constantly updating an internal resource which depends upon

an external service.

In practice, this pattern appears in several variants. For instance, it may

include a time delay between each cyclic service call or use different strate-

gies to implement the service invocation cycle (e.g. resorting to a recursive

function definition or to an iterative control statement).
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(a) Synchronous Sequential Pat-
tern

(b) Cyclic Query Pattern

(c) Asynchronous Query Pattern (d) Asynchronous Query Pattern
with Client Multithreading

(e) Asynchronous Sequential
Query Pattern

(f) Joined Asynchronous Sequen-
tial Pattern

Figure 9.1: CDGPL patterns



160 CHAPTER 9. DISCOVERY OF COORDINATION PATTERNS

The pattern presented in Figure 9.1(b) captures the most generic version

of this pattern. It basically states that a new thread y must be spawned

and that under the execution of this new thread a service must be called

repeatedly. Again, vertex 1 must be instantiated with a predicate, similar

to the one used in the previous pattern, limiting the scope of services to be

called.

9.1.3 Asynchronous Query Pattern

.

The Asynchronous Query Pattern is usually employed whenever there

is a need to invoke time consuming services and the calling threads cannot

suspend until a response is returned. To overcome this situation, one of

the most used solutions is one where the server component provides two

methods, one for the request of an operation on the server and another for

the querying of an answer (if available) from the previously posted request.

Because these services are not involved in actual execution of any requested

complex operations, but rather in the control of the execution of complex

operations and results retrieval, both return an answer very quickly.

From the client side, this pattern is specified by the definition in Figure

9.1(c), encoding the invocation of a service to request the execution of some

operation execution (node 1) and a cyclic invocation of another service (node

2) to retrieve the result. Once more, in practice, both vertices 1 and 2 may be

further characterised by predicates that would clearly identify the operations

for performing the request and result retrieval.

9.1.4 Asynchronous Query Pattern (with client multi-

threading)

This often used pattern is actually a variation of the previous one, where the

client orders the execution of an operation in one thread and then launches

a second thread to retrieve the result. Note that this pattern, presented in

Figure 9.1(d) is also quite similar to the cyclic pattern, except for an extra
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node, marked with ∗ to represent the program statement that controls the

need to perform more invocations to retrieve the result.

9.1.5 Asynchronous Sequential Pattern

This pattern is similar to the Asynchronous Sequential Pattern except that

it invokes each service in a new thread specifically created for the effect.

This pattern is often used when a system has to invoke a series of services

and the order of invocation as well as the responses returned is irrelevant.

Note that, under these premises, the code corresponding to this pattern is

substantially faster than the one for the Asynchronous Sequential Pattern

case, in the invocation of the series of services. This pattern is specified in

Figure 9.1(e) where each of the service calling nodes (1 and 2) are invoked

in different threads (y and w respectively).

9.1.6 Joined Asynchronous Sequential Pattern

The Joined Asynchronous Sequential Pattern is similar to the previous pat-

tern in the sense that, in both cases, services are invoked asynchronously.

The difference is that in this pattern one is interested in controlling the

point where each of the called services have finished execution and, possibly,

returned a value.

The specification of this pattern is presented in Figure 9.1(f) where each

thread that was spawned to invoke a service, joins later in a point where

the execution may proceed with the guarantee that all service calls have

terminated.

9.2 The Discovery Algorithm

The algorithm presented in this section retrieves every sub-graph of a CDG

that conforms to a given graph pattern. The notation used is self-explanatory.

However, let us point out the use of dot . as a field selector in a record as well

as the adoption of the Haskell syntax for lists (including functional map
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and operators : for appending and ++ for concatenation). An assignment

is denoted by the ← operator; note that it can be prefixed by an expression

declaring the type of the variable being bound.

The algorithm resorts to the data types in Figure 9.2, also expressed in

the Haskell syntax for data type declarations. Note, in particular, how both

the CDG and the graph representing the pattern to be discovered are made

available to the algorithm through embedding in Graph and GraphPattern:

in both cases a node is selected as “root”, i.e. as a starting point for searching.

Graph = G { root : GNode × G : CDG }
GraphPattern = GP { root : NodeId × G : VertexPattern }
VertexPattern = VP { id : Int × cdts : GNode × visited : B }
Attribution = AT { vp : VertexPattern × v : GNode }
Extension = E { g : Graph × att : [Attribution] }

Figure 9.2: Data types for the graph pattern discovery algorithm

The overall strategy used by the discovery algorithms 1 and 2 consists

of traversing the graph pattern and incrementally constructing a list of can-

didate graphs with nodes of type Attribution. This type is used by the

algorithm because it maintains a mapping between the graph pattern nodes

and CDG nodes. If a pattern is found, during the traversal of the graph pat-

tern, for which a candidate graph cannot be extend to conform with, then

the graph in question is removed from the candidate’s list. On the other

hand, if the candidate graph can be extend with one of the several CDG

candidate nodes, it originates a series of new candidate graphs (one for each

CDG candidate node) and the original (incomplete) candidate is removed

from the candidate’s list.

Most auxiliary functions used in the algorithm presented bellow are self-

explanatory2, with the possible exception of function GetSuccCombina-

tions. This, calculates a list of lists of Attributions, i.e., a list for each

possible set of possible attributions for a given node pattern.

2The entire algorithm, expressed in C], is available at http://alfa.di.uminho.pt/

~nfr/PhdThesis/SubGraphIsomorphismAlgorithm.zip
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Algorithm 1 Pattern Discovery - Part I

1: function DiscoverPattern(Graph cdg, GraphPattern cdgp)
2: cdgp← FillCandidateVertices(cdg, cdgp)
3: cdgp← FillCandidateEdges(cdg, cdgp)
4: Graph bg ← emptyGraph()
5: [Extension] gel← [(bg, map (λx→ (cdgp.root, x)) cdgp.root.cdts]
6: repeat
7: B b← False
8: for all Extension ge in gel do
9: for all Attribution datt in ge.att do

10: datt.vp.visited← True
11: c1 ← HasSuccessors(cdgp, datt.v)
12: c2 ← ! HasSuccessors(ge.g, datt.vp)
13: if c1 ∧ c2 then
14: [Extension] dgel← ExtendBaseGraph(ge.g, datt)
15: [Extension] r ← ge : r
16: [Extension] a← dgel : a
17: b← b ∨ Length(dgel) > 0
18: end if
19: end for
20: end for
21: gel← Remove(gel, r) . Remove all r elements from gel
22: gel← gel + + r . Add all a elements to gel
23: r ← []
24: a← []
25: nv ← NotVisited(cdgp) . Get first not visited Vertex Pattern
26: if b ∧ nv 6= null then
27: b← True
28: vpa← map (λx→ (nv, x)) nv.cdts
29: map (λx→ (x.g, vpa)) gel
30: end if
31: until b == True
32: return gel
33: end function
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Algorithm 2 Pattern Discovery - Part II

34: function ExtendBaseGraph(Graph bg, Attribution att)
35: tcs← GetSuccCombinations(cdgp, vp)
36: for all tc in tcs do
37: ng ← bg
38: gel← (ge, [])
39: for all cv in tc do
40: if b ∧ nv 6= null then
41: AddEdge(ng, att, cv)
42: ge.DiscoveredAttributions.Add(cv)
43: else
44: gel.Remove(ge)
45: break
46: end if
47: end for
48: end for
49: return gel
50: end function

This algorithm makes it possible to identify coordination schemes as

graph patterns in a CDG. For each pattern identified, the corresponding

code fragment in the source can be recovered — a strategy implemented

in our “proof-of-concept” tool described in next chapter. Another use of

such patterns would be to generate coordination specifications based on their

translations to a suitable coordination language (such as Orc) and compo-

sition.



Chapter 10

CoordInspector

10.1 Motivation

The second part of this thesis addressed the problem of extracting the co-

ordination logic entangled in legacy software. It was also claimed that, for

most real-world cases, such extraction is not a trivial task to accomplish,

mainly because it needs to cope, simultaneously, with the extension of the

source code to be analysed, the heterogeneity of languages and technologies

employed and the specific level of coordination (inter-thread coordination,

component coordination, services coordination, etc) that one is looking for

in each particular case. Moreover, one wants the result of such a recovery

process to deliver, as much as possible, well-known coordination patterns,

and clear specifications of the coordination policies, facilitating their re-use

and re-engineering.

This entails the need for suitable tool support to the effective application

of the techniques discussed in the previous chapters. In particular we seek for

the possibility of automatically extracting the (often implicit) coordination

layer of a system and representing it in suitable visual ways.

The whole, constantly expanding, family of service-oriented applications

is certainly an interesting target for such tools. A recovered coordination

model, exposing services calls and the programming logic that directly (or

indirectly) influences (or is influenced by) such calls, would facilitate the

165



166 CHAPTER 10. COORDINSPECTOR

evolution of legacy systems towards the service oriented paradigm, as well as

the development of new service oriented systems and also their maintenance.

Furthermore, this tool should be able to capture multithreaded informa-

tion and to confront it with the services calling model. It would then be able

to assist the developer in answering questions like: What services are actu-

ally being invoked in the implementation of a particular functionality? How

are these services combined to achieve the desired functionality? If one of

these services fails, how does the system behaves? What is the logic, in terms

of internal and external services invocations, behind the system provision of

services?

Such was the motivation behind the development of CoordInspector,

a tool for coordination analysis, targeting the family of Microsoft .Net lan-

guages, and partially implementing many of the ideas presented in the pre-

vious chapters.

10.2 Implementation

The tool, a snapshot of which is presented in Figure 10.4, is available from

http://alfa.di.uminho.pt/~nfr/Tools/CoordInspector.zip.

A basic choice in CoordInspector design, was to make it as generic as

possible. Therefore, the actual prototype version currently available, targets

the Common Intermediate Language (CIL)[MR03] code, the native language

of the Microsoft .Net Framework, to which every .Net compilable language

ultimately gets translated to before being executed in the framework. The

decision to target CIL code was not arbitrary. Indeed we intended the tool

to be able to cope with as many programming languages as possible, because

most real world software systems are developed in more than one language.

Moreover, given the potential of the tool to assist legacy systems evolution,

this sort of “language agnosticism” becomes even more important. Thus, by

choosing CIL, the tool is presently able to analyse more than 40 programming

languages, and this number has only but potential to increase.

In order to take advantage of existing CIL analysis tools, CoordInspec-
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tor is developed as a plug-in for the CIL decompiler .Net Reflector1.

The only two components CoordInspector borrows from .Net Reflec-

tor are the parser for CIL code, which delivers an object tree representation

of the CIL abstract syntax tree, and the code representation plug-ins, which

transform CIL code into higher-level languages, like C] and C++.

Such tree is then processed to build the corresponding MSDG instance.

Given the intrinsic modularity of this process, it is executed by different

components that are responsible for the calculation of each of the MSDG

constituents, i.e., the nodes representing statements and every kind of de-

pendency between such nodes, as detailed in section 8.3. Each component

traverses the concrete syntax tree and collects the relevant information for

the construction of a particular graph.

When applied to real world systems, and if executed sequentially, the

MSDG calculation process can be a time consuming task because of the size

and computational complexity involved in its construction. In order to cope

with this situation we improved the MSDG calculation performance by multi-

threading the independent tasks which build each MSDG set of dependencies.

This improvement reduced significantly the MSDG calculation time.

The CDG calculation implemented by CoordInspector closely follows

the approach presented in section 8.4, starting by labelling the vertices based

on rules identifying communication primitives and, then, pruning the vertices

according to the strategy presented in the same section. At the moment

of writing, CoordInspector is only instantiated with rules identifying

web-services communications, distinguishing between synchronous and asyn-

chronous calls as well as between invocation and provisioning of functionality

using web-services.

The graph pruning and slicing operations were implemented according

to the specifications presented in the section 8.4 and by a series of graph

traversal algorithms and transformation functions.

The tool is currently able to generate Orc specifications, corresponding

to the discovered coordination logic. For this, it closely follows the algorithm

presented in section 8.5, with the exception that the algorithm was slightly

1http://www.aisto.com/roeder/dotnet
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adapted to meet the object oriented paradigm and instead of immediately

generating syntactic Orc expressions the implemented version generates an

object tree version of Orc which is then traversed to originate the final Orc

scripts.

The tool is also able to re-construct the analysed code, i.e. the code

represented by the calculated CDG instance, which focus the specific aspects

determined by the set of rules used. For this feature CoordInspector uses

the specific code representation plug-ins, available for .Net Rotor. Because

the tool depends on the available code representation plug-ins, for now it

is only capable of representing code in C], Visual Basic, MC++, Chrome,

Delphi and, of course, CIL itself.

CoordInspector is also able to depict and navigate through both the

calculated MSDG and CDG graphs. For this, the tool resorts to the Microsoft

Research Graph Layout Execution Engine (MSR GLEE) graph library. The

generated graphs provide different colours for the vertices, based on the la-

bels the vertices hold, which facilitates direct manual reasoning over such

structures.

The graphical presentation of the graphs is also able to supply the user

with specific vertex information, like labelling and the CIL code captured,

by double clicking on a particular vertex of the graph.

10.2.1 Architecture

The architecture of CoordInspector is depicted in Figure 10.1 by a typi-

cal box component diagram, representing the main components upon which

the implementation was divided. Note that, some of them contain them-

selves other minor components, but, for the sake of understandability, we

will abstract our presentation from these.

Reading the diagram from top to bottom, the first component block rep-

resents .Net Reflector, which contains many more components than the

represented ones, but, from the CoordInspector architecture perspec-

tive, this component only exposes the CIL parser and the Multilanguage

Generator sub-components. The MSR GLEE component is used for the
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Figure 10.1: CoordInspector architecture

graphic layout of all graphs calculated during the analysis process. This

component is completely isolated from the remaining components and uses

a graph representation that is different from the ones used internally by Co-

ordInspector for instance, to capture MSDG’s and CDG’s. Therefore,

whenever a component has to display graphically a CDG or MSDG, it re-

sorts to the Graph Render component, which is responsible for translating

the CoordInspector internal graph representations to the representation

used by the MSR GLEE component.

Apart from .Net Reflector and MSR GLEE, all the remaining com-

ponents were developed specifically for CoordInspector. The CFG com-
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ponent interprets the abstract syntax tree retrieved by the .Net Rotor CIL

Parser and extracts the control flow graph by translating the base language

control flow statement semantics into a graph representation. Var Def Ref

Populator component, navigates back and forth along the CFG (resorting

to the Graph Algorithms component) in order to calculate, for each CFG

vertex, the set of variables defined and used in each programming construct

contained in the vertex. This information is then vital for the MSDG compo-

nent which is responsible for the calculation of the MSDG, following closely

the process explained in chapter 8.

The calculation of the CDG is, of course, at the responsibility of compo-

nent CDG with resorts to the rules captured by the rule management com-

ponent Rules and to the Slicing Algorithms component in order to reduce

the MSDG according to the strategy defined in chapter 8. As expected, the

Rules component is responsible for create, read, update and delete (CRUD)

operations for rules, using a XML database for this matter.

The Specification Generators component contains a set of sub-components

for the code generation of the different coordination specifications. Each of

these code generation sub-components contains abstract representations of

the targeted specification language and often resort to the Graph Algorithms

component for traversing and consuming the CDG. For now, the Specification

Generators component is populated by a single sub-component, responsible

for the generation of Orc specifications.

Besides consuming the CDG in order to generate coordination specifica-

tions, the tool is also able to discover previously defined coordination pat-

terns. For this matter, CoordInspector uses the Pattern Finder com-

ponent, which implements the coordination pattern discovery algorithm pre-

sented in chapter 9. The coordination patterns used for this task are managed

by the Coordination Patterns components, that, like the Rules component,

implements CRUD operations and uses an XML database for the permanent

storage of patterns.

Figure 10.2 presents the main interactions between the CoordInspec-

tor components, which correspond to the different phases of our analysis

process. Note that the interaction model follows a typical pipeline architec-
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Figure 10.2: Simplified CoordInspector analysis implementation

ture, ending in two different ends, one for each of the coordination analysis

approaches introduced in the previous chapters. Figure 10.2 focus on the

main components involved in the analysis process, so, it excludes all the

components in Figure 10.1 which play an auxiliary role.

10.3 Using CoordInspector

Once CoordInspector is launched, the user is provided with a form similar

to the one presented in Figure 10.3. This form, displays a tree, of which the

first level is expanded and each node (in the first level) corresponds to the

assemblies loaded in the tool, usually the base assemblies that compose the

.Net Framework.

To analyse a program, the user must use the CoordInspector main

menu option File→ Open..., followed by the selection of the file containing

the main method of the application to be analysed. This will load the as-

sembly of the program to be analysed into the tool, corresponding to a new

node being added to the tree displayed in Figure 10.3.

The next step consists of launching the coordination analysis user in-

terface, which can be done by clicking the main menu option Tools →
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Figure 10.3: CoordInspector initial form

Coordination Analysis. This will make CoordInspector to take an as-

pect similar to the one presented in Figure 10.4.

Now, real coordination analysis can start. For this, one has to choose the

programming entity upon which the analysis process will begin, by choosing

a node in the programming entities tree, displayed in Figure 10.4 by area 7.

Once the programming entity is selected, its details appear in area 8, and the

user may click the button in area 4 to start the MSDG calculation. During the

MSDG calculation, area 6 will provide information about progress and details

of the calculation process. Once CoordInspector finishes calculating and

rendering the MSDG, the graph is displayed in area 5, which can be inspected

by the graphical operations provided in area 3. The user may perform this

same operation over other program entities displayed in the tree, which allow

him to inspect the different MSDG’s of the application to be analysed.
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Once the MSDG has been calculated, the user may proceed to the CDG

calculation, by clicking on a button similar to the one presented in area 4,

but this time in the tab CDG displayed in area 2. Again, area 6 will provide

the user with information and progress about the calculation process.

Finally, the user may generate an Orc specification based on the calcu-

lated CDG, and by accessing the Orc tab in area 2 followed by a click on the

Generate Orc button. The Orc specification is provided in central area of

the Orc tab.

At any time during the analysis process, the user may change the rules

upon which the CDG is calculated, by using the rules management interface

provided in Rules tab.

The coordination pattern discovery follows a similar interface to the Orc

specifications generation, and can be accessed in the Patterns tab. This tab

also provides an interface for the management of the coordination patterns,

to be used in the pattern discovery algorithm.
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Chapter 11

Case Study: Coordination

Analysis in Software Systems

Integration

11.1 Introduction

In this chapter we apply the previously presented coordination discovery

techniques to a project of software systems integration. The problem of in-

tegrating software systems, usually referred in the literature by Enterprise

Application Integration (EAI) [Lin00, SS99, GBR04, HW03], constitutes one

of today’s most resource consuming tasks in enterprise software systems man-

agement. In fact, according to Forrester Research, more than thirty percent

of all the investments made in information technologies are spent in the link-

age of software systems in order to accomplish global coherent enterprise

software solutions.

There are many reasons justifying the need for integrating enterprise soft-

ware applications. Among them the fusion or acquisition of companies, the

necessity companies have to explore new and different markets (e.g. the

internet or mobile software), the physical distribution of companies (inter-

nationalization), the evolution of internal software solutions (which often

overlap each other both on data and functionality) and the introduction of

175
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new applications or new versions which often demand an integration with

the already existing systems.

The objective of EAI consists of the union of services, data and function-

ality from different software systems, with the objective of achieving a single,

integrated and coherent enterprise software solution. The systems integra-

tion should be performed at both the data and process automation levels,

and in such a way that a user of the integrated system (called the enterprise

software system) should not have to worry about the synchronization of both

data and processes between applications.

A great deal of work behind most EAI projects concerns the definition and

implementation of a specific coordination model between the systems being

integrated. This model should aid the software architect answering ques-

tions like, which software systems are connected, how do they communicate

(messages, distributed objects, Web-Service), what type of communication

is being held (asynchronous or synchronous) and what are the dependencies

between the connections. All these and other questions can be answered, and

specific policies, proved correct, by coordination models. That is why EAI

provides an interesting case study for the techniques discussed in the second

part of this thesis.

There are several technologies employed in the implementation of inte-

grated software systems solutions, and some of them have even been specif-

ically developed for addressing this particular problem. Popular examples

include, XML [BPSM97], SOAP [Jep01], CORBA [BVD01], middleware mes-

sage systems [HW03] and Web-Services [Che01, Gai04], just to mention but

a few. However, for the specific case addressed in this chapter, we will focus

on Web-Service communications, because such was the technology used by

the company from which the concrete case study discussed here was chosen.

Another reason for focusing on Web-Services is that CoordInspector has

a specific instantiation with rules for analysing this particular kind of com-

munication primitive.

However, note that this narrowing of the analysis scope over EAI projects

using Web-Services is by no means a limitation of the entire process analysis

presented in previous chapters. Moreover, the techniques presented can also
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be of use in forward engineering projects as well as with different types of

communication primitives.

This chapter discusses a case study on the use of a coordination analysis

process for the verification of design time integration strategies. Thus, we

start from a scenario were the integration has already been implemented, and

our aim being to validate if it respects the systems integration model that

had been defined (most of the times informally) at the integration design

time. Therefore, we have first to specify such model. This formalisation will

disambiguate many of the integration strategies adopted and eventually lead

to changes in the integration implementation.

The case study concerns a Portuguese training company with facilities in

six different cities spread over the north of Portugal. Because the company

has a great degree of specialisation in delivering computer network courses, it

developed an internal department for reselling specific networking communi-

cation device products. Given these two major activities for the company, the

main information automation needs are the management of training courses

(trainers, trainees, summaries, training modules, etc) and the management

of networking device sales (stocks, pricing, campaigns, discounts, suppliers,

etc).

The remainder of this chapter is divided in three sections, the first of

which presents the motivation for the integration and also the initial dis-

connected scenario in which the company system’s where running before the

integration project. The following section briefly presents the integration

process as well as the final collaboration layout between the systems. Fi-

nally, section 11.4 introduces the CDGPL representation of some integration

operations. For each case the actual coordination pattern was first extracted

from the implementation code, a process assisted by CoordInspector.

Then, it was analysed and re-engineered. The new coordination solution was

finally suggested to the implementation team.
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11.2 Disconnected Software Systems

Before having decided to embark on the software integration project, the

training company was working with four main software systems. These

systems, which we shall call base components, were composed by an En-

terprise Resource Planning (ERP) system, a Customer Relationship Man-

agement (CRM) system, a Training Server (TS) system, and a Document

Management System (DMS). The decision to integrate all these systems was

primarily pushed by the necessity of introducing a Web Portal, with the

main objective of selling both training courses and networking devices on-

line. Thus, the final integrated software solution is composed of these four

existing components, plus the Web Portal to be developed during the inte-

gration project.

The ERP solution was mainly used for controlling monetary expenses

and profits i.e., for billing, managing invoices, calculating balances, record-

ing expenses from suppliers, management of customers credit, management

of bank accounts, salary processing and the calculation of some periodical

financial reports. The ERP solution presents a typical n-tier architecture

from which one can clearly identify a database management layer, an appli-

cation layer and a plug-in layer, upon which it is possible to develop new

functionality. Although the source code of the ERP application is not avail-

able, the database is open and can be augmented with both new tables and

procedures. The development of new functionality over the ERP is done via

the plug-in layer which provides a fairly complete API for the main ERP

entities and relations.

The CRM application was primarily used by the commercial and mar-

keting departments for managing product and course campaigns (general

and focused customers’ campaigns), managing customer contacts, schedul-

ing sales calls and mailings, tracking customers’ responses to campaigns,

perform budgets and client proposals. The CRM application in question is

a software solution from one of the major players in the international CRM

market. Because the CRM product intends to be as easy to integrate with

other applications as possible, it provides a complete and well documented
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API, which can be used to integrate all the existing CRM functionalities with

third party solutions. Moreover, because in most cases the generic CRM

solution as to be customised to the specific customer reality, the product

provides a graphical user interface administration tool which aids the user

in the development of new data structures and functionalities. Thus, the

CRM application provides fairly good mechanisms for both the integration

and extension of this solution with the rest of the systems.

The DMS system was used for the automation of some internal processes

that are not handled by any of the other base components. This system

is also used as an archiving solution for the different types of documents

generated manually or by the other base components. In what respects to

the manageability of this application, it provides a reasonably documented

Standard Development Kit (SDK) which can be used to both interface and

develop new functionality on this application.

The TS solution consists of a Web Application specifically developed to

address the management of training courses. The main functionality pro-

vided by TS is the generation and management of the set of training sessions

for each course. Each of these sessions record contains several different kinds

of important information, like trainees and trainers absences, the type of

training involved in training sessions, the time and duration of training ses-

sions, the room it takes place, etc. This information is then used by TS

to generate salary values for the trainers, fees for the trainees, exclusion of

trainees under specific circumstances, to generate customised diplomas based

on the actual hours attended and lectured, etc. Besides controlling all the de-

tails of a running course, the solution also provides mechanisms for trainees

to communicate with each other and with the administration, as well as

the possibility to implement politics for the selection of both trainers and

trainees.

The TS solution was developed by a local software company which is

willing to develop the new functionality required for the integration with the

rest of the base components. Thus, in theory, there are no bounds for the

adaptation of this system with the remainder software solutions.

The only existing connection between these base components is a one-
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way Web-Service invocation from the CRM to the ERP, which serves to send

billing information from the CRM to the accounting department each time a

proposal or budget has been accepted by a client. Apart from this creation

of an invoice in the ERP from the CRM, every other base component lives

in complete isolation.

The situation faced by the training company, having all the base compo-

nents acting in isolation, led to numerous information synchronisation prob-

lems which had to be dealt with manually, at a daily basis. If this was

a situation which could be manually treated in the past, with the recent

growth of the company it is no longer feasible to maintain all the informa-

tion synchronised manually. Thus, several incoherencies in critical company

data inevitably started to emerge. A selection of the most important ones is

presented bellow, to give a more concrete idea of what the integration project

will have to deal with.

Base Comp. : CRM and ERP.

Entities : Products, courses and clients.

Issue : The insertion of a course, product or client in the

CRM with no correspondence in the ERP and vice-

versa.

Consequences : When a client approves a budget or proposal, some of

the products or training courses may not be included

in the invoice because the ERP ignores their existence.

Products and courses may not be included in budgets

and proposals because they only exist in the ERP and

not on the CRM.

Base Comp. : CRM and ERP.

Entities : Product and courses

Issue : The courses and products details may not be updated

consistently (or at all) in both the CRM and the ERP.
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Consequences : A proposal or budget performed on the CRM which

has been delivered and accepted by the client leads to

the creation of an invoice from the ERP with different

price values.

Base Comp. : CRM and ERP.

Entities : Pricing logic

Issue : The pricing logic may not be updated consistently (or

at all) in both the CRM and the ERP.

Consequences : A proposal or budget performed on the CRM with

a specific pricing logic (i.e., taking into consideration

the type of client, the sales volume, the quantity, the

current client and product campaigns, etc) originates

an invoice on ERP with different price values.

Base Comp. : CRM, ERP, TS, DMS.

Entities : Authentication and Authorisation

Issue : The authentication and authorisation policies can be

introduced incoherently in each of the base compo-

nents.

Consequences : A trainer in the TS may not have access to different

documents regulating the training activities that are

available in the DMS, because he does not have cor-

rect credentials to access the DMS. A CRM user who

realises that some products or pricing logic is wrongly

stored in the ERP, does not have access or permission

to apply the necessary changes to the ERP.

Base Comp. : ERP, TS.

Entities : Salaries and Grants
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Issue : The actual number of hours lectured by the trainers

and received by the trainees may not be the same in

the TS and the ERP.

Consequences : The TS solution calculates the actual hours lectured

by a trainee (considering the absences, training places

and other aspects) but, because the TS is not con-

nected to the ERP, the employee who launches the

salaries in the ERP may introduce errors in the salary

calculation. Moreover, the TS solution performs a pe-

riodically runtime calculation of the hours to be payed

to each trainee and trainer, based on the absences,

justification of absences, co-lecturing of training mod-

ules, etc.

Base Comp. : CRM, ERP, TS.

Entities : Training and Courses

Issue : The training courses may not be inserted and updated

correctly between the CRM, ERP and TS.

Consequences : A training course is being offered by some CRM cam-

paign with some specific details (number of hours,

training place, trainers, etc) and that same course is

registered with different information in the TS, which

is the system that actually determines the training

course details.

This set of synchronisation problems is by no means a systematic de-

scription of all the functional operations that have to be taken care in the

integration phase. In fact, many of these problems will have to be mitigated

with several atomic integration operations (in this case using Web-Services),

and some may even raise new integration problems that also have to be

addressed in order to achieve the desired level of integration.
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With all these synchronisation problems to fix between the different base

components, and with the further need to include an E-Commerce solution,

demanding the implementation of even more complex integration requisites,

the company decided to embark on a EAI project.

11.3 Integrating Base Components

Like in any other software integration project, the first issue that has to

be addressed is the definition of the integration architecture to be followed

during the EAI implementation. A good software integration architecture

should clearly identify the base components involved, a description of each

base component in terms of the functionalities provided to the enterprise

system (every internal detail of each base component should be omitted), the

connections between the base components (where there may exist more than

one connection between the same base components) and the specific details

of each connection, in terms of the information flowing over the connection,

the type of communication to be used (synchronous or asynchronous) and

the properties that the connection must provide (atomicity, integrity, fault

tolerance, etc).

There are several patterns and best practices [Lin00, Lin03, HW03] which

facilitate the design and implementation of software integration architectures.

Nevertheless every EAI project is different from each other, mainly because

there are too many variables in stake that may dramatically influence the

definition of the integration architecture. Among other aspects one may find

that there are some details that differentiate EAI projects from regular soft-

ware development project, namely, the level of customisation of each base

component (potentially making each base component significantly different

from every other integration project), the usually great size of base compo-

nents and the different and often peculiar interfaces that have to employed

to connect base components.

Given the objectives and definition of a good software integration archi-

tecture, it is clear to us that the use of coordination models and formalisms

for their specification are essential to the validation of the desired proper-
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ties in the final enterprise system. But, such is not the case in most EAI

projects, and nor was it in our training company integration project. Nev-

ertheless, even with an informal description of the integration architecture,

it is possible to take advantage of the techniques presented in this thesis, as

will be made clear in the remainder of this chapter.

The details and the process that led to the adoption of the integration

architecture implemented in the training company, constitutes by itself an

interesting discussion topic. Nevertheless, such issues are of no relevance for

our objective of validating if the proposed integration architecture is correct

with respect to what was actually implemented.

Before presenting the informal integration architecture used in the AEI

project, we will first focus on some of the integration issues that arise from

the insertion of the E-Commerce System (ECS ) to the enterprise software

system. Many of the integration problems concerning the ECS depend on

the strategy used to solve the integration issues presented in the previous

section, special the ones between the CRM and the ERP. Therefore, every

time an ECS operation depends on the CRM and ERP integration, one will

refer to these two base components as a single integrated one, referred to as

CRM&ERP.

Base Comp. : ECS, ERP.

Entities : Invoices and Receipts

Issue : The invoices and receipts of every sale performed at

the ECS must be in complete accordance with the

invoices and receipts stored in the ERP.

Consequences : The company accounting may not reflect correctly the

actual sales made by the ECS, registered on the re-

ceipts and invoices stored in the ERP.

Base Comp. : ECS, CRM&ERP.

Entities : Products and Courses



11.3. INTEGRATING BASE COMPONENTS 185

Issue : The products and courses together with the details

of each may not be synchronised between ECS and

CRM&ERP.

Consequences : The ECS may be offering courses and products that

are no longer offered by the company nor register on

the CRM&ERP. The details of courses and products,

like price, stock and scheduling may be publicised in-

correctly in the ECS.

Base Comp. : ECS, CRM&ERP.

Entities : Pricing and Campaigns

Issue : The pricing and campaigns logic must be the synchro-

nised between the ECS, CRM&ERP.

Consequences : The ECS may be calculating course and product

prices that do not reflect the current company pricing

and campaign logic.

Base Comp. : ECS, CRM.

Entities : Users (Clients) and Commercial Activities

Issue : The portal users that have performed some commer-

cial operation must be registered in the CRM.

Consequences : If a ECS user that has performed some commercial

activity within the Web Portal is not registered in the

CRM, than all the marketing and commercial analysis

performed may be erroneous.

Base Comp. : ECS, CRM&ERP.

Entities : Discount Vouchers
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Issue : The discount vouchers and current state must be kept

coherent between the ECS and CRM&ERP.

Consequences : A discount voucher may be used twice or used be-

yond the validity date. The preconditions imposed on

discount vouchers may not be enforced by the ECS.

Base Comp. : ECS, CRM.

Entities : Client Card

Issue : The client card and all the associated information

must be kept synchronised between the ECS and the

CRM.

Consequences : A newly issued card at the CRM is not accepted by

the ECS impeding the registration of the products and

courses bought as well as the calculation of prices and

campaigns based on sales quantity and volume.

Note that, when not properly implemented, even a single of these in-

tegration issues may introduce great problems to the normal work of the

company. Thus, all these issues must be taken into consideration by the in-

tegration architecture, and even more, their correctness should be properly

verified.

To verify the different functional properties the enterprise system should

expose, the only pieces of information available were the informal integration

architecture presented in Figure 11.1 and the source code of the ECS and

the TS system. Of course, the collaboration of the EAI implementation team

was also available in order to clarify any details about the implementation.

An important detail was no access was given to the source code of the

CRM, ERP, nor the DMS. We could inspect what services these system

provided to the Web Portal, but we could not inspect the logic behind each

of the services in question.

The first observation that emerges from the EAI architecture in Figure
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Figure 11.1: EAI architecture

11.1, is that it uses a point-to-point integration style [Lin00], instead of a

centralised style, like a message broker or a database oriented middleware

[Lin00], as one might have expected. The problems associated with a point-

to-point integration are various, and range from the lower level of scalability,

given the potential great number of connections to be implemented between

systems1, the difficulty in coordinating connections involving different base

components and the difficulty to maintain the system secure under so many

connections. Therefore, for an EAI project starting with five base compo-

nents and with potential to include more of them in the future, it seemed

a rather strange decision that the development team opted for the point-to-

point integration style.

When questioned about this choice, the development team argued that,

although they were aware of its limitations, the point-to-point style gave

them more control during the project development, since once completed,

each integration connection could be tested and deployed to the working

environment. This way, the team could not only control the quality and

effectiveness of each milestone in the AEI project, but also to change the

users’ habits in a smooth way. Another important argument for choosing the

point-to-point style was that the company administration realised that such

1In the worst case, for the integration of n base components, this figure may rise to
n(n−1)

2 connections.
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an integration architecture would reduce dramatically the risk of success of

the entire project. In practice, the administration could assess the success of

the project regularly by inspecting the connections already achieved and the

impact they have in the overall company activity.

If a centralised integration style were chosen, the middleware system

would have to be completely specified and implemented (with all the in-

termediate data structures, and integration operations), before one could be

able to assess the correctness and effectiveness of the entire enterprise sys-

tem. Furthermore, although a centralised style would have many functional

and non-functional advantages over the point-to-point one, it also introduces

a single point of failure in the entire enterprise system, a risk that in this

case was found to prevail over the drawbacks of the point-to-point style.

The EAI architecture defines that the ECS component should commu-

nicate and guaranteed the synchronisation of information with the CRM,

ERP and TS systems. In such a model, the ECS component does also have

to take into consideration the integration of both operations and data be-

tween the components it interacts with. Therefore, although the red arrows

in Figure 11.1 may lead one to think that the integration between the CRM,

ERP and TS components is already being taken care of, in fact they are just

resolved for the user interface operations and not for the supplied service

operations, like the ones invoked by the ECS. Thus, giving this lack of inte-

gration between the ERP, CRM and TS systems at the service level, the ECS

integration logic has to guarantee, for instance, that whenever a product is

inserted in the ECS it has also to be inserted in both the CRM and ERP,

and in the case of a training course, in the CRM, ERP and TS.

Given the architecture and material provided by the company, we will

concentrate on the blue arrows in Figure 11.1 i.e., in the connections be-

tween ECS and the CRM, ERP and TS components. In particular we will

focus on the outgoing arrows from ECS to the other components, given that

we have full access to the ECS source code and to the informal specification

of how these connections should behave. In what respects to the incoming

arrows to the ECS component, we assume they were provided for each oper-

ation and that the programming logic associated to each invocation correctly
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implements the behaviour expected by the base component responsible for

the invocation.

11.4 Coordination Patterns

In order to verify the coordination of each operation implemented in the ECS

that involves some, or all, of the remainder base components, one must first

clearly identify the operations to be addressed and derive its representation

in the CDGPL language. Many of the operations to be verified have already

been informally presented in the previous sections. Nevertheless, now, one

needs to formalise such operations in CDGPL in order to achieve a rigor-

ous definition of the integration operations, as well as to permit the use of

CoordInspector for the verification of the implemented operations.

The remainder of this section presents each coordination operation both

in CDGPL and informally. Note that, the synchronisation strategies to be

described are not always the best solutions for the problems in hands. Rather,

they are the solution described in the integration architecture (sometimes,

they were just orally transmitted by the development team) which one will

later try to verify.

In the sequel the acronym CUD will be used, referring to the topical

CRUD acronym (Create, Read, Update and Delete) without the Read oper-

ation. The reason to discharge the Read operation is that almost every base

components has a local version of the information it needs to operate upon,

making Read operations rarely invoked between base components. This ar-

chitectural decision intends to reduce significantly the time to perform data

read operations, which are thought to be the vast majority of operations

performed by every base component.

The notation n1 → n2 will be used to denote an edge from vertex n1 to

vertex n2. The following definitions are also used to ease the description of

the regular expressions associated to each vertex.

R = “System.Web.Services.Protocols.SoapHttpClientProtocol.Invoke”

arg = “, \s ∗ \w\s ∗ ”
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CallWs (ws, n) = PrimMeth+ “\s ∗ \(\s ∗ \′′” + ws+ “\′′\s ∗ ”+

(concat . replicate n $ arg) + “\)\s∗; ”

The regular expression syntax [Stu07] used is a rather universal one, that

can be found in many languages, such as Perl, JavaScript, C] and Java. In

the definition of the macros we also use the Haskell list function concat,

which concatenates a list of elements, and replicate, which receives an integer

n and an element e and returns a list containing n repetitions of the element

e.

The subsequent calls to web-services used in each coordination pattern

are always performed with two arguments. This is not a simplification of the

real calls used in the implementation, but reflects the design decision which

defines that every web-service call should use only two arguments. The first

argument is an XML document and serves to pass any number of arguments

to the service being called, while the second argument serves to pass a secu-

rity token which is analysed by the receiving component in order to verify

the integrity and sometimes the confidentiality of the first argument. The

main advantage of this remote call policy is that every component uses the

same security and integrity mechanism to verify the integrity of the received

calls. The main drawback of such a decision comes from the impossibility of

performing a static type check on the arguments of each remote call.

11.4.1 Op1 – Profile CRU

A profile defines a set of authorisation policies that can be associated to users

in order to grant them operational privileges in the CRM, ERP and ECS. The

TS system profiles are bound to its business logic and cannot be changed,

so there is no need to synchronise any profiles with the TS component. The

CDGPL description of the profile creation operation is presented in Figure

11.2.

The creation operation is performed by spawning two different threads

(y and z) each of which is responsible for invoking a web-service to create

the profile on the CRM and ERP respectively. The loop in vertices 1 and
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Figure 11.2: Profile creation operation

2 refers to a recurring implementation technique used by the development

team, which serves to re-execute the creation operation in case an error or

exception occurs in the previous try.

One of the first observations made once this pattern was discovered in

the ECS implementation, was that such a coordination operation could lead

to multiple creations of the same profile in both the ERP and CRM. More

specifically, the replication of profiles can occur when a response from the

invocation of the methods in vertices 1 or 2 is not received. In such a case, the

pattern re-executes the insertion operation over the base components. The

problem with this coordination behaviour is that a non received response

from a remote operation does not necessarily mean that the operation has

not been performed remotely, it only means that the response did not reach

the ECS component. Therefore, in a situation where only the response had

been lost, the coordination pattern leads to repetitive insertions of the same

profile.

The possible unintended behaviour in the creation of a profile was com-

municated to the development team, who, even though had agreed with

our interpretation, did not made any changes to the implementation of the

discovered coordination pattern. The explanation for not changing the im-

plementation is twofold. First, the insertion of repetitive profiles, in both

the ERP and CRM, does not introduce any direct problems to the behaviour

of these systems, since the profiles are only used to attribute authorisation
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Figure 11.3: Profile update operation

credentials to users. Secondly, the mitigation of the problem would led to

a decrease in performance of the profile insertion operations, given that one

would have to use transactional web-services calls or enhance the coordina-

tion with more Web-Service calls.

The profile update operation, presented in Figure 11.3 is somewhat more

complex than the previously presented creation operation. The reason for

having a more complicated logic derives from two special situations that have

to be handled properly. First, one must cope with the situation where the

profile to be updated does not exist in the CRM or ERP. In this case, one

must first create (vertices 2 and 4) the profile, before updating it (vertices

5 and 6). The second situation occurs when the information associated to

the same profile does not coincide in both the CRM and ERP systems. To

overcome this problem, one has to merge the information from the CRM and

ERP2, a procedure that is performed between the second join and vertex 5.

From the CDGPL definition and the discovered implementation instance,

one can make several observations about the details of the profile update op-

eration. First, the actual update procedures (vertices 5 and 6) could be

performed in parallel, reducing the amount of time to perform the update

operations. Even more, based on the observations made from the profile cre-

ation, the update operation could lead to the replication of profiles. Another

2In case of conflict it was decided that the CRM information prevails over the ERP.
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aspect of the pattern, is that it does not update the profile in the CRM nor

in the ERP, in the case where one of these systems did not answered (or the

answer was lost) upon the invocation of the read or create operations (ver-

tices 1, 2, 3 and 4). This changes the accomplishment of this synchronisation

operation from a single point of failure to two points of failure.

From these observations, only the first issue, concerning the performance

of the pattern, led to a modification of the implementation. Again, the re-

mainder changes were not implemented due to the nonexistent impact of the

change in the functional properties of the system and because the complexity

and potential decrease in performance associated to them could influence the

overall system performance.

Note that, the profile removal operation follows a strategy very similar

to the creation of profiles, with the exception of resorting to different Web-

Services in vertices 1 and 2.

11.4.2 Op2 – User CRU

In theory, the registration of a user in the ECS should always lead to its

registration in the CRM, ERP and TS, so that these systems may store

commercial, accounting, and training information associated to the created

user. However, because the ECS user registration is open to the public,

everyone can register himself at the ECS, leading to a potential great number

of new user registrations per day.

Under a complete synchronisation of users, the CRM, ERP and TS sys-

tems would be constantly flooded with requests concerning user creations

and updates. Moreover, for the vast majority of the users being introduced

the information associated with them would be of no relevance for the CRM,

ERP or TS. So, instead of keeping user data synchronised between systems,

the integration architecture defines that only the ECS users with any rele-

vance towards some other base component i.e., that are actually involved in

some logic concerning one of the other base components, should actually be

synchronised with the base component in question.

In order to analyse the coordination involved in a user creation operation,
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Figure 11.4: User create operation

we shall focus on the most complex case of this procedure, i.e., the case where

the user plays a role and has to be created in all three base components

(the CRM, the ERP and the TS). The other cases are easily captured by a

simplification of the presented pattern.

Figure 11.4 presents the implemented coordination logic for this opera-

tion. The behaviour is similar to the one found in the creation of a profile,

but this time, instead of dealing with only two base components, the be-

haviour has been extended to three. Another important difference between

this create operation and the previous one, is that each call to a remote

creation operation (vertices 2, 4, 6) is always preceded by a remote call to

check if the user already exists in the base component in question. If the

user is found in the base component, the remote creation operation is not

carried out (edges between vertices 1, 3, 5 and the respective join vertices),

otherwise the pattern performs a remote call to the user create operation.

Given that this coordination pattern was implemented as a reuse of the

previous case concerning profiles, the strategy to cope with failures in the

creation operation amounts to the re-invocation of the remote create call

(loop edges in vertices 2, 4 and 6). By using this same resilience strategy,

one also inherits the replication problem of the entities being created. But,
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Figure 11.5: Corrected user create operation

unlike the previous case, it can be very problematic to have replicated users

inside the enterprise system. If such a replication occurs, the entire enter-

prise system integrity could be at stake, given that, for instance, relevant

information about a single user information could be scattered around its

replicates.

To fix this problem one has changed the coordination model, transforming

the loop edges 2 → 2 , 4 → 4 and 6 → 6 to edges 2 → 1, 4 → 3 and

6→ 5. This way, before re-invoking the create operation, the pattern always

performs a check to verify if the user already exists in the relevant base

component.

The resilience of the model can also be improved by introducing loop

edges in the existence check operations (edges 1 → 1, 3 → 3 and 5 → 5).

The advantages of the transformed model, presented in Figure 11.5, were

clearly understood and accepted by the development team, who changed the

implementation according to the new design.

In what respects to the update of users, the development team chose once

more to reuse the coordination pattern of the profile update case. Again, in

the more complex case of this operation, the pattern has to interact with

all three base components. Figure 11.6 presents the coordination model
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Figure 11.6: User update operation

implemented in the integration project implementation. Note that, this is a

straightforward extension to three base components, of the update operation

presented above. The discovery and specification of the model in terms of

the pattern presented, clearly evidences the possibility of repetitive creation

of users as well as some room for performance improvements.

In what concerns to the problem of repetitive creation of users, one can

apply the previous solution and insert extra vertices for checking if a user

already exists in the relevant base components. However, in this case, the

calls to the remote creation operations (vertices 2, 4 and 5) are always carried

after a read operation (vertices 1, 3 and 5), which makes the first remote call

to the creation operation to be aware of the existence, or not, of the user.

Thus, only the subsequent remote creation operations (executed by following

the loop edges 2→ 2, 4→ 4 and 6→ 6) suffer from the problem of inserting

duplicate users. Therefore, one has made a small change to the previous

solution to this problem, and opted to insert the extra user existence check

vertices (vertices 3, 6 and 9 in Figure 11.7) after the remote creation calls.

The actual remote update of a user is only performed at the very end of

this coordination pattern, in vertices 7, 8 and 9. Moreover, the updates are

performed in a single thread, making each previous call to possibly introduce

delays in all subsequent remote calls, eventually resulting in significant delays
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Figure 11.7: Corrected user update operation

to the overall remote operation. This single thread sequence of remote calls

also demands for a rigorous exception and error handling, given that each call

may influence the subsequent calls and consequently the entire operation. In

this case-study, once the pattern was discovered, one had to manually inspect

for the proper exception and error handling, since CDGPL does not have yet

the capability of representing this kind of programming logic.

In the corrected coordination model, presented in Figure 11.7, the se-

quence of update calls are transformed in parallel calls, so that each call

cannot introduce delays nor influence the others. Both transformations pro-

posed in this section were accepted and used by the development team to

modify the implementation, whose performance revealed to be improved sig-

nificantly in every user update operation.

Although one has achieved the improvement and verification of the im-

plemented coordination strategies, there is still the possibility for a remote

call to continually fail. In such a case, each of the previous models would

not only fail, but, what is worse, enter in a deadlock situation, which could
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ultimately lead to a complete halt of the entire ECS solution. Note that

the discovery of such deadlock situations can be performed by a graph loop

discovery algorithm.

To overcome deadlock situations present in every studied coordination

pattern, one has introduced a counter for each of the discovered loops and

include a guard (or extend one, if a guard was already there) in the loop

that inspects the number of cycles performed. In case one of these loops has

overcome the maximum number of cycles allowed, the guard not only guar-

antees that the program control leaves the loop, but also that the operation

not carried out is written to an error log table.

The deadlock removal strategy introduces a mechanism for error recovery

as well as it enables the introduction of different amounts of tries for each

remote call. Furthermore, the error log table can be used, for instance, to run

a periodically batch job responsible for the re-invocation of failed operations.

The remainder entities CRU integration operations present in the enter-

prise system were found to be implemented using coordination patterns quite

similar to the ones discovered for the user and profile cases discussed here. In

each case, one has identified each pattern and suggested similar modifications

for the improvement of the overall integration project.

11.4.3 Op3 – Multiple Sale of Training Courses

To close the discussion of this case-study, we shall now consider a more

complex coordination operation: the online sale of a set of training courses

to be performed by the ECS.

It might seem strange that someone would ever buy a set of training

courses online, however, it often happens when, for instance, enterprises are

purchasing training for their employees or associates. Actually, most of the

training course sales made by the training company consist of multiple course

purchases. Thus, this operation should not just be verified but also improved

if possible.

The set of courses referred in this operation, is actually composed by a

set of possibly different training course with possibly different quantities for
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Figure 11.8: Training courses sale operation

each one. The online sale of a set of courses follows a similar process to the

one employed in the traditional (presential) case. The main activities to be

performed on such operation can be resumed by the following steps.

1. Check availability for every course;

2. Reserve training course positions to ensure that the courses will be

available by the end of the selling process;

3. Check current course and client campaigns. If any current campaign

applies to one of the courses or to the client, then it should be applied;

4. Check quantity and volume discounts. Again, if any of these apply to

this sale, the value should be deducted in the final price;

5. Check client credit notes in the ERP. If there are any, they should also

be applied;

6. Calculate the total price based on the previous numbers;

7. Collect payment from the client;

8. If payment succeeded;
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(a) Issue and invoice and a receipt from the ERP;

(b) Update purchasing user (client) information in the CRM, ERP

and TS;

(c) If user achieved any new promotional benefit with the current sale;

i. Send an email to the user reporting the promotional benefit

achieved;

(d) Create an user entry in the TS system for every training course

position purchased;

(e) Collect the TS users’ login information and email it to the pur-

chasing user (client);

(f) Transform the training course reservations in the CRM and ERP

to actual training bookings;

(g) Send a notification (by mail, if possible) to the client with the

trainees’ login and purchase details (invoice, receipt and other

relevant information);

9. If payment did not succeed;

(a) Remove training courses reservations.

This workflow concerning the sale of training courses is full of integration

issues between all four base components, which have to be properly taken

care of in order to guarantee the correctness of the entire operation. Figure

11.8 presents the pattern that was actually found in the integration imple-

mentation code. Note that, although the pattern may seem simplistic at

first sight, vertices 9 and 12 are actually reuses of the previously presented

patterns for users update and creation respectively. Even more, one of this

pattern reuse vertices, vertex 12, contains a loop capturing the iterative cre-

ation of users (the trainees of the purchased courses) in the ERP, CRM and

TS.

The first observation one can make about the coordination pattern in

Figure 11.8 is that, even though the user update and create operations are
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multithreaded, the actual sale operation is entirely performed on a single

thread. This, of course, facilitates considerably the correctness verification

of the implementation but, it introduces a great performance penalty in the

overall sale operation. Moreover, the training course sale operation contains

several activities that do not depend on each other and, if handled properly,

can be run in parallel.

Figure 11.9: Improved training courses sale operation

The time penalty introduced by the lack of concurrency not only dimin-

ishes the user satisfaction when purchasing training courses, which by itself

constitutes a strong motive for changing this operation, but it also increases

the chances of incurring in an error or exception. In a situation where the

time to finalise the sequential sale operation is n times slower than its con-

current equivalent, it is more likely that a communication error will occur,

or that the session storage becomes corrupted or even times-out3. Thus, al-

3Note that, since this integration project is using Web-Services, the communication is
performed via HTTP, a stateless and disconnected protocol that demands the intervening
systems to maintain sessions and time-outs to regulate all communications.
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though the discovered coordination pattern was not found to bare any func-

tional errors, the performance non-functional property may induce future

functional errors.

In order to overcome the performance penalty detected in this operation,

and at the same time to mitigate future functional errors, one has proposed

the modification of the previous coordination pattern to the one presented in

Figure 11.9. The main modification concerns the introduction of concurrency

between every independent activity. However, some activities still have to

be performed in sequence, for instance, vertex 9 is still sequentially executed

after vertex 8, because the update activity associated to the former depends

on the success of the payment operation contained in the latter.

The examples discussed here of discovered and re-engineered coordination

patterns in the integration code for this EAI case study, illustrate how the

methods and tool proposed in this thesis may help the working software

engineer in practice.

The focus of our work, as described in the last 3 chapters, was on the

identification and extraction from source code of coordination policies and

their abstractions on a graph structure — the CDG. From there they could

be rendered as coordination specifications in Orc or WS-BPEL, or else as

particular graph patterns with direct correspondence to the source code. An

obvious second stage in this process would be the development of calculi and

tools to transform such coordination specifications.

Some coordination models have already such calculi available (for example

Orc and Reo) and some form of tool support. Although such second stage

is clearly out of the scope of our thesis, this case study actually makes the

case for further research on the integration of both phases of

• discovery/analysis

• and re-engineering by model transformation

whose relevance for the engineering of legacy software cannot be understated.



Chapter 12

Conclusions and Future Work

12.1 Discussion of Contributions

The second part of this thesis addresses the identification, extraction and

recovery of the coordination model entangled inside legacy software systems.

Such layer is often spread among various parts of a system and, even more

problematic, it is usually mixed up with code devoted to implement internal

computations.

The clear understanding of how a software system makes use and manip-

ulates third-party entities is of extreme importance to the (re-)construction

of the system software architecture. The importance of this coordination

understanding is getting increasingly relevant as software systems are being,

more and more, built on top of external services and components.

We have introduced a method, based on slicing and graph analysis, for

reverse engineering of software systems’ coordination layers. The method

is based on the notions of Managed System Dependence Graph (MSDG)

and Coordination Dependence Graph (CDG), two program representation

structures which characterises the different program entities used in the code

and captures several types of dependencies between them.

An important aspect of our reverse engineering process is that it is para-

metric on the type of coordination it abstracts. This feature enables the

process, when parameterized accordingly, to extract, for instance, the web-

203
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service coordination layer of a system or its distributed object calling model,

or even its multithread coordination layer. Even more, it is possible to anal-

yse more than one of these types of coordination layers, given that the ap-

propriate parameterisation of the communication primitives is passed to the

labelling phase. Due to the language heterogeneity that most real world sys-

tems present, the “language agnosticism” of the technique stands as another

very important feature. However, it should be pointed out that we have

not obtained a complete language independence, since that would imply the

technique to cope with unstructured1 languages as well as with languages

not providing a precise definition of statements. Nevertheless, most used

(commercial) languages do not hold such characteristics, which make them

possible targets of our analysis process.

The analysis process is divided into two parts. The first one consists

of a generic processing phase which delivers a graph representation of the

system (the CDG), focusing on the specific coordination aspects identified

by the rules which parameterize the process. The second part deals with

the generation of concrete coordination specifications expressed in specific

coordination modelling languages. Depending on the language or formalism

chosen to represent the discovered coordination, the first part of the process

is maintained unchanged whilst the second part needs to be rebuilt in order

to generate the desired format.

The coordination languages Orc and WS-BPEL where chosen to express

the recovered coordination policies. Nevertheless, the whole method can be

adapted to target other coordination specification languages.

In what respects to the second part of the method, the generation of Orc

or WS-BPEL specifications is quite straightforward. Actually, this phase re-

sorts to a translation of the extracted information into a small set of Orc

and WS-BPEL behavioural patterns. This, can sometimes lead to big and

repetitive specifications that demand further simplifications to facilitate un-

derstanding and re-engineering. In the Orc case, the language is accompa-

nied by a well defined formal semantics and a calculational framework, which

makes the manipulation and transformation of specifications easy. Even in

1Languages containing arbitrary jump statements, like the GO TO expression.
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the WS-BPEL case, where a formal semantics is still lacking, there is a num-

ber of analysis tools which may also play a significant role in the understand-

ing and transformation of such coordination specifications. Nevertheless, it

should be possible to tune the whole generation process in order to make it

driven by more complex and well-known coordination patterns. Moreover,

such an improvement would much facilitate the coordination analysis of sys-

tems, since the coordination specification would become less verbose and

its analysis could be based on previous knowledge about such coordination

patterns.

That was the reason why we developed a second method for the discov-

ery of coordination policies based on coordination patterns. Unlike the first

two approaches, more syntactically oriented, this one is based on well-known

coordination patterns that must be previously encoded in a special language

developed for the effect. The approach then identifies instances of such co-

ordination patterns, resorting to a sub-graph pattern detection algorithm

specifically developed for this purpose.

Although the most direct application of our algorithms and tool serve

to assist on the coordination analysis of legacy systems, they can also be

used to assess the correctness of systems implementations with respect to

their design specifications or even with respect to the growing software qual-

ity regulations. Even more, with the provision of rules for COM or RMI

communication discovery, it can be used to assist the conversion of legacy

distributed object systems to web-service oriented systems (or vice versa).

Many of the ideas presented in the second part of the thesis are im-

plemented in CoordInspector, a tool targeting Microsoft .Net Frame-

work systems. The tool is available from http://alfa.di.uminho.pt/~nfr/

Tools/CoordInspector.zip, and besides providing many of the operations

presented it is also capable of displaying and navigating through the graph

structures computed along the analysis. Given that the tool analyses Com-

mon Intermediate Language (CIL) code, it is potentially capable of perform-

ing coordination analysis in every programming languages compilable to the

.Net framework.

In order to validate the applicability of the techniques proposed, we have
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applied our pattern based coordination analysis to a real project of software

integration. The project amounted to the integration of five different types

of applications, where web-services were used as the primary communica-

tion primitive. There were two primary outcomes of this experience. First,

it was possible to confirm the implementation was respecting many of the

assumptions made in the (informal) design of the project. Moreover, this

confirmation was made with strong evidences collected from the actual im-

plementation code, which, of course, lead to a greater degree of confidence in

the integration process. Secondly, it was possible to identify specific problems

that in some cases arose from the design of the operations, where in other

cases, the implementation was found to be the main responsible for the possi-

ble for the erroneous behaviour. Again, every possible behavioural deviation

report was supported by strong evidence collected from the implementation

code.

Overall, we regard this work as part of the broad area of software ar-

chitectural analysis, where the ultimate goal is the discovery of the business

process orchestration logic laying beneath a software system implementation.

We strongly believe that the techniques, like the ones presented in this thesis,

contribute to the correct discovery of business processes (or even to perform

it automatically), and to the evolution of such systems towards the (web)

service oriented world or to future coordination paradigms.

12.2 Future Work

An interesting topic for future work is the classification of orchestration pat-

terns, as in [AHKB03], and their representation in the Coordination Depen-

dence Graph Pattern Language. Such categorisation of coordination patterns

would facilitate not only the development of new software systems but also

provide a basis for CoordInspector and similar tools.

Another interesting improvement would be to allow changes to be made

on the generated specifications (in this case, in Orc or WS-BPEL) and,

based on such changes, regenerate equivalent transformations to be applied

to the original source code. Such a development would permit to implement
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a round-trip behaviour in the coordination analysis tool, which would help

to assess the impact of certain coordination design decisions.

Although the presentation of our analysis process bifurcates into a more

traditional code generation technique and a pattern based one, we do not

regard these two approaches as incompatible. In fact, even though we have

not tried to combine them, we believe that the use of the pattern based

technique, when applicable, together with the more straightforward code

generation for the remaining code, could lead to an even greater quality

degree of the discovered coordination logic. This raises, of course, many

questions for future work, such as, how to perform code generation without

considering the code fragments discovered by the pattern base approach?

Which would then be a suitable set of coordination patterns to be used in such

combination? Should the code generation process be aware of the pattern

based approach or could we compose this two approaches sequentially.

CoordInspector was our laboratory for most of the ideas and tech-

niques discussed in this thesis. Thus, it is of utmost importance that this

laboratory evolves in parallel with all other future work lines to validate their

applicability and potential for analysis.

12.3 Related Work

To the best of our knowledge, there is no previous research directly related

to our work on the specific problem of discovering and extracting coordi-

nation logic from a system’s source code. However, there is a number of

works addressing architectural recovery from legacy software that should be

mentioned at this stage.

The Alborz system [SYS06, SDS06] centres its software architectural re-

covery strategy in both dynamic and static analysis techniques. While the

former strategy completely diverges from our work, the latter has similari-

ties to our pattern-based coordination discovery technique. In particular it

resorts to architectural patterns (which seem also to be defined as graphs)

to guide the discovery process. However, little detailed is given about nei-

ther, the internal representation of the system to be analysed nor about the
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description or expressiveness of the architectural patterns. Moreover, the Al-

borz system is unable to analyse, nor exploit, object-oriented and concurrent

concepts.

In [Bou99], Boucetta et al. propose a method for recovery of software ar-

chitectures based on both bottom-up and top-down analysis techniques. This

approach may be considered somehow related to ours, in the sense that we

also use bottom-up techniques, by calculating special purposed graph struc-

tures directly from source code, and top-down ones, by defining high-level

coordination patterns to be discovered over the code graphs representation.

However, unlike [Bou99], our focus is centred on the recovery of coordina-

tion logic, an aspect which dramatically influences and drifts our definitions

of architectural patterns and code representation structures from the ones

presented in [Bou99]. Moreover, no details are presented in [Bou99] about

intermediate source code representations, architectural pattern languages or

the algorithms to perform a match between architectural patterns and the

actual system under analysis.

Reference [MMCG02], presents a series of improvements to the Bunch

software architecture system. The tool produces Module Dependency Graphs

(MDG), which are computed with automatic module clustering techniques.

The improvements presented are mainly concerned with the possibility of

manually introducing clustering information about the system, with the ob-

jective of retrieving more accurate structures. The points of contact with our

own work are limited, mainly concerned with the manual tuning of the archi-

tectural discovery process. Nevertheless, the techniques used in Bunch could

also be used in our component discovery case study, presented in chapter 4

from the first part of this thesis.

12.4 Epilogue

We have now reached the end of this thesis. As the title indicates, the main

objective of our work was to investigate the application of slicing techniques

to the extraction of high-level models describing the underlying architecture

of legacy software systems. This led us to a journey that started on the study
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of the available slicing theories, algorithms and implementations. Our own

interest in Functional programming and the fact that this paradigm is often

neglected in mainstream slicing research, justifies our initial work on slicing

techniques for functional programs which is reported in the first part of this

thesis. This experience also served as a training bed for grasping the main

concepts and difficulties associated to program slicing.

The continuation of our journey, lead us towards our main objective:

using slicing as a basis for the recovery of high-level software architectural

models, with a specific emphasis in tracing back the pathways of interaction,

their structures and nature, in legacy source code. We believe this may turn

out to be an important component in real program understanding and re-

engineering projects. Given the massive service oriented trend that software

engineering witnesses, this was an additional source of motivation for our

work.

Reaching the end of this thesis, we would like to use the following few

pages, summing up, not the thesis conclusions, which were already presented

before, but a few considerations on the definition and role of software ar-

chitecture for the working systems developer. The relevance of architectural

issues, as perceived in our own practice, was part of our motivation for this

work. In retrospect, its results may contribute to improve methods and prac-

tices in this domain.

Thus, as an epilogue, we would like to comment on what we understand

by software architecture and the roles it may play in the practice of Software

Engineering. Our starting point is the following definition in [BCK98]:

“The software architecture of a program or computing system is the struc-

ture or structures of the system, which comprise software components, the ex-

ternally visible properties of those components, and the relationships between

them”

We would like to dissect this definition to fully understand how it charac-

terises the notion of a software architecture. First, the definition states that

a software architecture is the structure or structures of a software system. In

opposition to some definitions that elect a single and complete master model
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of the system as being the software architecture itself, we share this notion

that a software architecture may be composed by more than one structure or

model of the system. Furthermore, these models should complete themselves

towards providing an overall view of the system and highlighting different

aspects of the project. This entails another question, i.e., how many and

what kind of models should be used to provide a good and complete archi-

tecture? Unfortunately, the answer is not unique: it depends on the specific

details of the software system under analysis. So, for a simple object oriented

library it may be sufficient to have a system architecture just composed of

a single class diagram module. In this case, the single class diagram is itself

the software architecture of the system since it exposes a high-level view of

the main aspects of the library. Such cases, where the software architecture

is correctly expressed by a single model, may be responsible for the gener-

alisation of the idea (in our view erroneous) that there is a single special

model that correctly describes a system’s software architecture in every sit-

uation. On the other hand, for large service oriented architectures, which

handle different workflow scenarios simultaneously at runtime, one certainly

needs a set of modules emphasising different aspects of the solutions. In this

case, one would probably need a module diagram to divide the project into

isolated work modules to be assign to different development teams, several

class diagram modules for the parts of the system that were developed using

an object oriented paradigm, and a coordination mode in order to suitably

control the coordination of the different services provided and potentially

consumed by the system.

The definition continues stating that a software architecture comprises

software components. However, it does not define what a component is,

which we believe to be a wise approach to take given that the concept of a

component bares little definition consensus among the Software Engineering

community. Again, this is in accordance to our interpretation of a software

architecture composed by different and complementary models where each

model may have a different notion about the units or entities it reasons about.

Our interpretation of the definition is that these entities, generally referred to

as components, must be clearly identified in each model so that there remains
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no doubt about what are the target entities the model intends to capture.

Just to put things a bit more concrete, in the specific case of a coordination

model, a software component would typically be an autonomous process or

service running in its own thread.

Another important issue in the definition is the statement that a software

architecture is concerned with the externally visible properties of the ad-

dressed components. This clearly means that a software architecture should

abstract some of the details of the components it deals with and only expose

specific aspects (in this case referred to as visible properties) of the compo-

nent being described. Otherwise, the software architecture of a system would

be the system itself, possibly in another representation form, but still with

little use an abstraction.

With respect to the properties which should be abstracted, we diverge a

bit from the classification in [BCK98] who defined these as the visible com-

ponent properties. Actually, we prefer a more general definition, restating

the previous definition to the component’s properties relevant for the model

under consideration. So, if for instance a particular property of a module is

a private property of the module but it is fundamental to the definition of

the work module that must be given to a developer team, one would include

such a property in the system module diagram, even though it would not

be a typically visible property of the component. Of course, it will be omit-

ted from a coordination model, as other processes could not rely, or even be

aware of it.

Finally, let us concentrate on the final part of the definition stating that

a software architecture is also concerned about capturing the relationships

between the system components. Here one dares to take a step further, and

state that for the great majority of the systems being developed, these rela-

tionships between components are even more important than the components

themselves. The reason being that modern software systems are becoming

more and more based on externally developed components, leaving the major-

ity of the actual system development work to the task of correctly connecting

and synchronising different components and services, i.e., instantiating the

interaction paths.
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But why does one need a software architecture, after all? We believe

that there are three mains reasons justifying the need for comprehensive and

verifiable software architectures.

The first, and often neglected, advantage of an architectural description

is as an effective means of project documentation, which can be shared with

every stakeholder in the project. This way software architects and system

developers can start discussing the project with every interested part, based

on a precise, though high-level, description of the system. Formal specifi-

cations may be, at present, too hard to fill this goal. But, models like the

workflow description of the processes being implemented and graphical user

interface prototypes, would undoubtedly be of utmost importance for the de-

veloper team to discuss and precisely understand what problems should the

system really solve. In practice, this advantage of having a software architec-

ture comes with at least two important positive outcomes. The first is that

the architect and the development team can understand more precisely what

every stakeholder is expecting from the system and use this information to

guide the development and structural construction of the system. The sec-

ond outcome is that one may correctly assess what functionalities the system

does not need to provide and this way removing work that would be needed

to develop the useless functionalities and also reducing the entire complexity

of the system.

The second, and most important, advantage of documenting a software

architecture before the actual system starts being developed is the ability

that, by reasoning upon the architectural models, one is able to take early

design decisions that would be catastrophic to take at later development

stages. As an example of this advantage in practice, take for instance the case

of developing a software solution where some agents have to consume services

from a particular provider. At a first glance, such a scenario fits perfectly

in the well-known client-server model, possibly even using web services to

implement the communication between the parties. Now, imagine that the

development of the solution continues under such model and somewhere,

at an intermediate stage, it is found that some clients have to be actively

called from the server. This situation is clearly in complete discordance
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with the client-server model adopted before, where only clients were able to

call the server and not the opposite. Thus, for the system to be correctly

developed one would need to adopt a different architecture, say a blackboard

or an event based architecture. This change would transform most of the

developed parts of the system into completely useless artefacts, and thus

force the development team to re-start the project from scratch.

On the other hand, if one would have taken some time to develop an

architecture of the system, which in this case would most certainly demand

for a coordination model of the entities involved, one would certainly come

to the conclusion that there were some situations where clients had to be

actively called by the service provider entity. Such a conclusion would have

guided the development of the system to the adoption a different architecture

from the outset.

The third advantage in having a software architecture of a system being

developed takes place during the actual development phase. In the absence of

a software architecture and during the entire development phase, the project

can easily drift away from the initial plan and end up being something com-

pletely different from the initial requirements or not fulfilling some of the

non-functional requisites, a situation which is often explained by the attempt

to adapt legacy sub-systems to fulfil some initial functional requisites. Again,

in the presence of a software architecture, developers can continuously base

their decisions on the architecture and check regularly to what extent the

implementation is sticking to the architectural model.

This also explains the relevance of architectural models for re-engineering

projects. The challenge has, in our opinion, two complementary sides. On the

one hand, we need rigorous specification notations to describe architectures

and, inside them, what we have called in this thesis the coordination-driven

view of architectures. Orc or Reo are promising frameworks for expressing

and transforming coordination policies as well as for reasoning about them.

On the other hand, there is a need for techniques, methods and tools to

extract, identify, represent and analyse such policies from running systems,

preferably acting at the source code level.

This thesis intended to contribute to this second direction. No doubt, a
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lot of work remains to be done to combine the level of (forward) specification

and the one of (reverse) understanding of coordination policies and frame

them in mainstream architectural research. But probably any thesis ends

raising more questions than the ones it tried to solve.



Appendix A

Haskell Bank Account System

Program

module Slicing where

import Mpi

data System = Sys { clients :: [Client],

accounts :: [Account] } deriving Show

data Client = Clt { cltid :: CltId,

name :: CltName } deriving Show

data Account = Acc { accid :: AccId,

amount :: Amount } deriving Show

type CltId = Int

type CltName = String

type AccId = Int

type Amount = Double

initClts :: [((CltId, CltName), (AccId, Amount))] -> System

initClts = (uncurry Sys) . split (map ((uncurry Clt) . fst))

(map ((uncurry Acc) . snd))

findClt :: CltId -> System -> Maybe Client

findClt cid sys =

215



216 APPENDIX A. HASKELL BANK ACCOUNT SYSTEM

if (existsClt cid sys)

then Just . head . filter ((cid ==) . cltid) .

clients $ sys

else Nothing

findAcc :: AccId -> System -> Maybe Account

findAcc acid sys =

if (existsAcc acid sys)

then Just . head . filter ((acid ==) . accid) .

accounts $ sys

else Nothing

existsClt :: CltId -> System -> Bool

existsClt cid = elem cid . map cltid . clients

existsAcc :: AccId -> System -> Bool

existsAcc acid = elem acid . map accid . accounts

insertClt :: (CltId, CltName) -> System -> System

insertClt (cid, cname) (Sys clts accs) =

if (existsClt cid (Sys clts accs))

then error "Client ID already exists!"

else Sys ((Clt cid cname) : clts) accs

insertAcc :: (AccId, Amount) -> System -> System

insertAcc (acid, amount) (Sys clts accs) =

if (existsAcc acid (Sys clts accs))

then error "Account ID already exists!"

else Sys clts ((Acc acid amount) : accs)

removeClt :: CltId -> System -> System

removeClt cid (Sys clts accs) =

if (existsClt cid (Sys clts accs))

then Sys (filter ((cid /=) . cltid) clts) accs

else Sys clts accs

removeAcc :: AccId -> System -> System

removeAcc acid (Sys clts accs) =

if (existsAcc acid (Sys clts accs))
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then Sys clts (filter ((acid /=) . accid) accs)

else Sys clts accs

updateClt :: (CltId, CltName) -> System -> System

updateClt (cid, cname) sys =

if (existsClt cid sys)

then insertClt (cid, cname) . removeClt cid $ sys

else insertClt (cid, cname) sys

updateAcc :: (AccId, Amount) -> System -> System

updateAcc (acid, amount) sys =

if (existsAcc acid sys)

then insertAcc (acid, amount) . removeAcc acid $ sys

else insertAcc (acid, amount) sys

getCltName :: CltId -> System -> Maybe CltName

getCltName cid sys = case findClt cid sys of

Just clt -> Just . name $ clt

Nothing -> Nothing

getAccAmount :: AccId -> System -> Maybe Amount

getAccAmount acid sys = case findAcc acid sys of

Just acc -> Just . amount $ acc

Nothing -> Nothing
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Appendix B

A Brief Introduction to Orc

B.1 Purpose and syntax

Many traditional concurrency problems, like the integration of business work-

flows, resource sharing or composition of web-services, can be regarded as

orchestrations of third party resources, encompassing a general-purpose, ex-

ogenous, coordination model, for which a number of formal semantics have

already been proposed [HMM04, KCM06, AM07]. This provides a solid the-

oretical background upon which a calculus to reason and transform coordi-

nation specifications can be based.

This appendix provides a brief introduction to Orc its syntax and in-

formal semantics, to the extent required for understanding the coordination

specification recovered from legacy code as presented in chapter 8. The reader

is referred to [MC06, HMM04, KCM06, AM07] for detailed presentations of

the language, its formal semantics and applications.

Unlike other coordination models, Orc regards the orchestration of dif-

ferent activities and participants in a centralised way. Thus, in Orc, external

services never take the initiative of initiating communications; there is a cen-

tral entity to control the invocation of foreign operations.

In Orc, third party services are abstracted as sites which can be called.

Included in this notion of site, are user interaction activities and third party

data manipulation.

219



220 APPENDIX B. A BRIEF INTRODUCTION TO ORC

The language builds upon few simple basic constructs to build orchestra-

tions. An orchestration consists, therefore, of a set of auxiliary definitions

and a main goal. In summary, the language provides a medium to evaluate

such expressions. It can be regarded as a platform for simple specification

of third-party resources invocations with a specific goal to accomplish, while

managing concurrency, failure, time-outs, priorities and other constrains.

e, f, g, h ∈ Expression ::= M(p) ‖ E(p) ‖ f > x > g ‖ f | g ‖
f where x :∈ g ‖ x

p ∈ Actual ::= x ‖ M ‖ c ‖ f

q ∈ Formal ::= x ‖ M

Definition ::= E(q) , f

Figure B.1: Orc syntax

The syntax of the language is presented in Figure B.1, where definitions

for Orc Expressions, Actual parameters p, Formal parameters q and Defi-

nitions are given.

An Orc expression can be composed of a site call M(p), an expression call

E(p), a sequential execution of expressions f > x > g, a parallel execution of

expressions f |g, an asymmetric parallel composition of expressions f where

x :∈ g, or a variable x.

There are a few fundamental sites in Orc which are essential for effective

programming of real world examples. Such sites along with its informal

semantics are described in Table B.1.

let(x, y, ...) Returns argument values as a tuple.

if(b) Returns a signal if b is true, and it does not respond if b is false.

Signal Returns a signal. It is same as if(true)

RTimer(t) Returns a signal after exactly t time units

Table B.1: Fundamental sites in Orc
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Orc also provides means for creating dynamic orchestrations, i.e., or-

chestrations that are able to create local sites at runtime. This feature is

provided by special sites, called Factory Sites, which return a local site when

invoked [CPM06]. Table B.2 describes some useful factory sites together

with an informal description of its semantics. These factory sites, are used

in chapter 8 for capturing specific coordination schemas.

Site Operations Description

Buffer put, get The Buffer factory site returns a n−buffer local site
with two operations, put and get. The put operation
stores its argument value in the buffer and sends a
signal after the storage. The get operation removes
an item from the buffer and returns it. In case the
buffer is empty the get operation suspends until a
value is putted in the buffer.

Lock acquire, release The Lock factory site returns a lock local site which
provides two operations, acquire and release. When
an expression invokes the acquire operation on a
lock, that expression becomes its owner and subse-
quent calls to acquire from other expressions will
block. Once the lock owner expression releases it,
ownership of the lock will be given to one of the
acquire waiting operations, if any.

Table B.2: Factory sites in Orc

B.2 Informal semantics

A site in Orc is an independent entity with the capacity of publishing values

to the calling expressions. The evaluation of a site call holds indefinitely

(possibly forever, if the site never publishes a value) until the called site

publishes a value.

An expression call, simply transfers the control from the expression under

evaluation to the called expression with the associated parameters.

A sequential execution of expressions f > x > g proceeds by evaluating
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expression f , binding the value published by f to x and then evaluating

expression g which may contain references to x. In cases where x isn’t used

by g, the sequential expression is abbreviated to f >> g.

Parallel composition of expressions is carried out as in most concurrent

process algebras i.e., by the concurrent execution of the intervening expres-

sions.

Finally, asymmetric parallel composition f where x :∈ g proceeds by

evaluating f and g in parallel, suspending the evaluation of f whenever it

depends on variable x and g has not published any value to this variable.

Once g publishes a value, its evaluation is halted and the value produced

is stored in x, enabling expression f evaluation to continue. For a formal

semantics of the language see [HMM04, KCM06, AM07].

Table B.3 presents a number of typical Orc definitions, which encap-

sulate useful coordination used in the body of this thesis. For now, they

serve to provide a few examples and some intuition on the execution of Orc

expressions.

XOR(p, f, g) , if(p)� f | if(¬p)� g

IfSignal(p, f) , if(p)� f | if(¬p)
Loop(p, f) , p > b > IfSignal(b, f � Loop(g, f))

Discr(f, g) , Buffer > B > ((f | g) > x > B.put(x) | B.get)

Table B.3: Some Orc definitions

The XOR definition takes as arguments a predicate expression p, and

two orchestrations f and g. If p evaluates to true then orchestration f is

executed, otherwise g is chosen. Regard that, in spite of the parallel operator

the definition only executes one of the expressions, f or g, and that one of

them is always executed.

The IfSignal definition receives a predicate and an orchestration and

executes the orchestration if the predicate evaluates to true. Again, notice

that irrespective p evaluates to true or false the definition never blocks; it

always publishes a value, thus permitting the calling orchestration to proceed.
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The Loop expression receives a predicate p and an orchestration f . This

definition executes f continuously until predicate p evaluates to false. If

predicate p evaluates to false the definition does not block and returns a

signal in order for the calling orchestration to proceed.

Finally, definition Discr makes use of the factory site Buffer in order to

capture the signal of the first of its two parameter orchestrations to respond.

Once one of the orchestrations returns, the signal is forwarded to the calling

orchestration, but leaving the other orchestration running until, eventually,

it reaches termination.
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Appendix C

Consultant Time Sheet

Example Code

C1: public class ConsultantSubmitTimeSheetApp {

S2: textBoxLog = new TextBox();

S3: textBoxConsultantId = new TextBox();

S4: textBoxClientId = new TextBox();

S5: textBoxTimeSheet = new TextBox();

M6: private void UpdateLog(string message) {

S7: DateTime now = DateTime.Now;

S8: textBoxLog.Text += now.ToShortDateString() + " " +

now.ToShortTimeString() + ": " + message +

Environment.NewLine;

}

M9: private void button2_Click(object sender,

EventArgs e) {

S10: int cId = Convert.ToInt32(textBoxConsultantId.Text);

S11: int cltId = Convert.ToInt32(textBoxClientId.Text);

S12: FileInfo fi = new FileInfo(textBoxTimeSheet.Text);

S13: if (!fi.Exists)

S14: MessageBox.Show(

"No timesheet valid file available.");

S15: StreamReader sr =
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new StreamReader(textBoxTimeSheet.Text);

S16: TimeSheet ts = new TimeSheet(sr.ReadToEnd());

S17: UpdateLog("Calculating time sheet total cost...");

S18: CommercialDepService.CommercialDep commercialDep =

new CommercialDepService.CommercialDep();

S19: decimal totalCost =

commercialDep.CalculateTimeSheetTotalCost(ts,

cId,

cltId);

S20: UpdateLog("Total cost = " + totalCost.ToString());

S21: if (totalCost > 1000) {

S22: UpdateLog(

"Requesting administration validation...");

S23: RequestAdministrationValidation(ts, cId, cltId);

} else {

S24: UpdateLog("Time sheet expense approved...");

S25: ProceedWithTimeSheetExpenseProcessing(ts,

cId,

cltId);

}

}

M26: private void RequestAdministrationValidation(

TimeSheet ts, int cId, int cltId) {

S27: AdministrationDepService.AdministrationDep adminDep =

new AdministrationDepService.AdministrationDep();

S28: if (adminDep.ValidateTimeSheet(ts, cId, cltId)) {

S29: UpdateLog(

"Administration accepted time sheet expense...");

S30: ProceedWithTimeSheetExpenseProcessing(ts,

cId,

cltId);

} else {

S31: UpdateLog(

"Administration refused time sheet expense...");

S32: adminDep.UpdateConsultantScoreNegativelyCompleted+=

((o, ea) =>
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UpdateLog(

"Consultant score updated negatively"));

S33: adminDep.UpdateConsultantScoreNegativelyAsync(ts,

cId);

}

}

M34: private void ProceedWithTimeSheetExpenseProcessing(

TimeSheet ts, int cId, int cltId) {

S35: FinancialDepService.FinancialDep finDep =

new TimeSheetConsultantClient.FinancialDepService.

FinancialDep();

S36: finDep.SubmitExpenseCompleted +=

((o, ea) =>

UpdateLog(

"Time sheet expense received by " +

"financial dep"));

S37: finDep.SubmitExpenseAsync(ts, cId, cltId);

S38: CommercialDepService.CommercialDep comDep =

new TimeSheetConsultantClient.CommercialDepService.

CommercialDep();

S39: comDep.CommunicateExpenseToClientCompleted +=

((o, ea) =>

UpdateLog(

"Expense communication received by " +

"commercial dep"));

S40: comDep.CommunicateExpenseToClientAsync(ts, cltId);

S41: AdministrationDepService.AdministrationDep adminDep =

new AdministrationDepService.AdministrationDep();

S42: adminDep.UpdateConsultantScorePositivelyCompleted+=

((o, ea) =>

UpdateLog(

"Consultant score updated positively"));

S43: adminDep.UpdateConsultantScorePositivelyAsync(ts,

cId);

}

}
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Appendix D

Appendix C Example Code

MSDG
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Figure D.1: Example program



Appendix E

Abstract WS-BPEL of the

Business Process in Figure 8.12

<process>

<variables>

<variable name="SubmitTimeSheetRequest" />

<variable name="GetTimesheetWithCostResponse" />

<variable name="AnalyzeSheetResponse" />

</variables>

<flow>

<receive partnerLink="##opaque"

operation="SubmitTimesheet"

variable="GetTimesheetWithCostResponse">

<sources><source linkName="SubmitTimesheet" />

</sources>

</receive>

</flow>

<scope name="SubmitTimesheet">

<targets><target linkName="SubmitTimesheet" />

</targets>

<sequence>

<invoke partnerLink="##opaque"

operation="GetTimesheetWithCost"

input="SubmitTimeSheetRequest"

output="GetTimesheetWithCostResponse" />

<if>

<condition>

231



232 APPENDIX E. ABSTRACT WS-BPEL

getVariableProperty(GetTotalCostResponse,

total) > 2000

</condition>

<flow>

<invoke partnerLink="##opaque"

operation="AnalyzeSheet"

input="SubmitTimeSheetRequest"

output="AnalyzeSheetResponse" >

<sources>

<source linkName="OnAnalyseResponse" />

</sources>

</invoke>

</flow>

<scope name="OnAnalyseResponse">

<sequence>

<targets>

<target linkName="OnAnalyseResponse" />

</targets>

<if>

<condition>

getVariableProperty(AnalyzeSheetResponse,

Approved)

</condition>

<invoke partnerLink="##opaque"

operation="CommunicateClientExpense"

input="GetTimesheetWithCostResponse" />

<invoke partnerLink="##opaque"

operation="NotiffyApprovedExpense"

input="GetTimesheetWithCostResponse" />

<else>

<invoke partnerLink="##opaque"

operation="ResubmitSheet"

input="GetTimesheetWithCostResponse" />

</else>

</if>

<sequence>

</scope>

<else>

<invoke partnerLink="##opaque"
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operation="CommunicateClientExpense"

input="GetTotalCostResponse" />

<invoke partnerLink="##opaque"

operation="NotiffyApprovedExpense"

input="GetTotalCostResponse" />

</else>

</if></sequence></scope></process>
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slicing of java programs.

[Kri03] Jens Krinke. Context-sensitive slicing of concurrent programs.

SIGSOFT Softw. Eng. Notes, 28(5):178–187, 2003.

[LAK+95] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera,

D. Bryan, and W. Mann. Specifications and analysis of sys-

tem architecture using Rapide. IEEE Tran. on Software Engi-

neering (special issue in Software Architecture), 21(4):336–355,

April 1995.

[Lau93] John Launchbury. A natural semantics for lazy evaluation. In

Conference Record of the Twentieth Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages,

pages 144–154, Charleston, South Carolina, 1993.



246 BIBLIOGRAPHY

[LH96] Loren Larsen and Mary Jean Harrold. Slicing object-oriented

software. In ICSE ’96: Proceedings of the 18th international

conference on Software engineering, pages 495–505, Washing-

ton, DC, USA, 1996. IEEE Computer Society.

[LH98] D. Liang and M. J. Harrold. Slicing objects using system depen-

dence graphs. In ICSM ’98: Proceedings of the International

Conference on Software Maintenance, page 358, Washington,

DC, USA, 1998. IEEE Computer Society.

[Lin00] David S. Linthicum. Enterprise application integration.

Addison-Wesley Longman Ltd., Essex, UK, UK, 2000.

[Lin03] David S. Linthicum. Next Generation Application Integration:

From Simple Information to Web Services. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2003.
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