
Identifying Clones in Functional Programs for
Refactoring

Nuno Rodrigues1,2 and João L. Vilaça1,3

1 DIGARC
Polytechnic Institute of Cávado and Ave

4750-810 Barcelos, Portugal
2 DI-CCTC

University of Minho
4710-057 Braga, Portugal

3 Life and Health Sciences Research Institute
School of Health Sciences, University of Minho

4710-057 Braga, Portugal

Abstract. Clone detection is well established for imperative programs.
It works mostly on the statement level and therefore is ill-suited for func-
tional programs, whose main constituents are expressions and types. In
this paper we introduce clone detection for functional programs using
a new intermediate program representation, dubbed Functional Control
Tree. We extend clone detection to the identification of non-trivial func-
tional program clones based on the recursion patterns from the so-called
Bird-Meertens formalism.

1 Introduction

Each software system has a considerable part of duplicated code, i.e. code clones,
which can be exact or modified copies of code bits. These clones are the result
of copy-paste-modify actions taken by developers, usually employed when de-
velopers want to re-use previously implemented functionality, and many times,
because of short implementation times imposed by industry demands. Conse-
quently, no software industry branch is immune from code clone, and it is more
prevalent in areas where large software projects are developed.

Although code clone can speed up development on short term, which is a
fundamental aspect for companies, on long term, code clone implications can be
very negative. In fact, whether the code was duplicated on purpose or whether
the duplicates emerged by chance—they impose increased difficulties and costs
in maintenance, adaptability, and extendability. This has given rise to research
in source code refactoring, including techniques to support that process, in par-
ticular code clone detection approaches. Refactoring is a solid software transfor-
mation technique with given proofs over the popular object-oriented (OO) and
imperative paradigm to enhance modularity and in turn ease maintenance of
software.

2 Nuno Rodrigues, and Joo L. Vilaa

In the same manner as the OO paradigm benefits from refactoring, it is
our believe that functional programs have also something to profit from sim-
ilar transformation principles. In particular, the encapsulation of, e.g., recur-
sive patterns such as catamorphisms and successive function invocations provide
reusable higher-order functions. This paper presents our idea to identify struc-
tural and functional patterns in Haskell programs in order to foster refactoring
as well as re-use of identified and refactored patterns.

Contributions. We present an approach to automatically detect clones and recur-
sive patterns in functional programs. It builds upon a new intermediate program
representation, called functional control tree (Sections 3 and 4). The identified
recursive patterns are formalised by the functional calculus of Bird-Meertens
(Section 5).

2 Functional Control Tree

The basic idea presented before, motivates that an intermediate program rep-
resentation as graph seems sensible in order to facilitate automatic pattern de-
tection and refactoring. However, functional programs may have more and very
different kinds of clone/refactoring scenarios as the simple one that we just dis-
cussed. At least, we want to consider the following five scenarios.

– Re-defining a function if it is used in another function definition seems trivial
but can be used later on with more complex scenarios.

– Inlining of a function B in the calling function A if B has no recursive calls.
As it is a de-modularisation, it is only a very simple refactoring case that
may not be sensible on its own.

– Pattern matching re-use takes parts that are used/shared by two or more
functions and encapsulates the pattern matching schema in a third function.
The only requirement is that the pattern matching has to agree on the outer
data type.

– Successive Invocations that are identified, i.e., one function successively calls
another function, can be refactored, e.g., by applying foldr to the list of
arguments on the successive invocations.

– Most importantly in functional programming, recursions—such as catamorphisms—
for a particular data type can be encapsulated into a single function.

Considering these situations, we define the previously coarse-grained FCT
now refined. In particular, we distinguish the different kinds of nodes that we
use to build the function control tree. The formal definition is as follows:

Definition 21 (Functional Control Tree) A Functional Control Tree (FCT)
is a directed graph G = 〈V, E〉 with V set of vertices denoting program code
expressions, and E set of edges representing control dependencies between the
expressions.

Identifying Clones in Functional Programs for Refactoring 3

Each FCT has its dedicated entry node that carries the name of the function
that is represented by that particular functional control tree. The edges may be
labelled true or false, stating whether the previous conditional expression had
to evaluate to true or false in order to follow this path.

In order to express all properties of a function appropriately for the later
described clone detection algorithms, we need to distinguish five kinds of vertices.
In detail, the vertices in our functional control tree are of either of the following
kinds:

constant nodes that map constant expressions,
function nodes that constitute calls to functions,
recursive nodes that represent recursion,
conditional nodes that form conditional expressions, or
pattern nodes that represent pattern-matching clauses.

As calls to functions as well as recursive function calls will carry one or
more arguments, it is important to handle these arguments correctly. Therefore,
function and recursive nodes have a list attached in which all needed arguments
are stored in the order as they have to be supplied. In the FCT itself, the list
order is mapped by the natural left-to-right order in the tree.

3 Functional Clone Detection

As a prove of concept we have developed a simple clone detector based on FCTs.
Keeping faithful to the functional paradigm, the clone detector is implemented
in Haskell [1] and makes heavy use of some functional programming machinery,
like high order functions, lazy evaluation and polymorphism.

3.1 Implementing the FCT

Capturing the previously formalised notion of an FCT, we have the following
Haskell data type:

data FCT a = Constant a type PatternClause a = ([Pattern a], FCT a)
| Function a [FCT a]
| Recursive [FCT a] data Pattern a = PConstant a
| If (FCT a) (FCT a) (FCT a) | PFunction a [Pattern a]
| PM [PatternClause a] deriving (Eq, Show)
deriving (Eq, Show)

where an FCT defines a tree containing several kinds of nodes. Each node kind
represents a different entity from the source code and each constructor is self-
explanatory to understand the kind of entities it represents. However, the last
node type represent not so obvious code entities, which are pattern-matching
clauses. Thus, a PM node has a list of pairs where each one of these pairs represents
a pattern-matching clause. Each of these pairs is constituted by a list of patterns,
which represent all the curry patterns of the clause, and an FCT which represents

4 Nuno Rodrigues, and Joo L. Vilaa

the function definition associated to that clause. Note that, due to pattern-
matching evaluation limitations, pattern nodes have fewer types available when
compared to regular nodes.

Since we deliberately adopted a more general specification of the FCT data
type, in order to keep it as simple as possible, it can give rise to the existence of
valid FCT instances that do not respect the previous FCT formal definition. Thus,
it is necessary to have some data type invariants in order to avoid invalid FCT
instances. Therefore, to ease these invariants’ understanding, one will present
them in an informal way, although the clone detector implementation has con-
crete Haskell functions constraining FCT instances. Accordingly, an FCT must
respect the following invariants:

– Every node of type PM must have at least one pattern clause.
– Every node of type PFunction must have at least. one pattern

In order to illustrate the use of the FCT data type, we present the FCT
instance for function mySum:

mySum :: (Num a) => [a] -> a mySumFct =
mySum [] = 0 PM [([PConstant "[]"], Constant "0"),
mySum (h:t) = h + (mySum t) ([PFunction ":" [PConstant "h",

PConstant "t"]],
Function "+" [Constant "h",

Recursive [Constant "t"]])]

3.2 Limitations of the Data Type FCT

By adopting such a data type definition to capture FCT instances, we are re-
stricting ourselves to a subset of the entire Haskell language. This way, we do
not have a direct way of capturing where and let clauses nor the monadic do

notation. These limitations may seem to restrictive, but a simple refactoring re-
veals that this is not the case. In fact, most where and let clauses serve only to
better organise the source code in a more comprehensive manner. Thus, we can
eliminate these expressions by substituting in the core of the function the new
variables they introduce by the expression they capture. Still, let and where ex-
pressions that perform more complex pattern-matching, can not be eliminated
in this way, thus representing truly cases with no direct instance in our FCT
data type which we do not consider. Concerning the monadic do notation, we
can easily capture them in our FCT data type by using the semantic of the no-
tation which is in fact just a syntax convenience to the appliance of the monadic
combinatorial functions (>>) and (>>=).

3.3 Clone Detection Algorithms

Given the above FCT data type implementation, we still have to define suitable
clone detection strategies. Nevertheless, in order to do so, we first need a precise
notion of what do we mean by a functional code clone. In fact, this is a per-
tinent definition that will drive all the latter analysis algorithms. We consider

Identifying Clones in Functional Programs for Refactoring 5

two functional expressions as being clones, if they can be captured by a third
functional expression that, when used in the place of the first two expressions,
does not change the semantic of the initial expressions.

In particular this means that we may have syntactically fairly different ex-
pressions that by our definition are still regarded as clones. This approach to code
clones, also gives rise to the appearance of a vast number of clones which can be
categorised according to some specific characteristics they expose. Nevertheless,
such an issue is beyond the scope of this paper.

As it would be expected, all clone discovery algorithms we present are based
on the programs corresponding FCT instances. The approach we take, consists
first of the generation of the FCT for each function of the analysing program.
Given this FCTs we proceed by calculating every sub-tree of the FCTs previously
calculated. Since a complete sub-tree calculation can lead to a vast number of
cases to compare, we truncate it by using a threshold consisting of a minimum
number of nodes in each sub-tree. The next step consists of hashing each sub-
trees in order to create buckets of similar sub-trees. This hashing depends on
the clone detection algorithm that one will use in the following phase. The final
phase consists of comparing each sub-tree inside a particular bucket, using one
of the clone detection algorithms.

Exact Clone Detection. Concerning the clone detection algorithms, we start by
analysing the simplest case of clone detection, which is the detection of exact
clones. We then continue in an incremental way by analysing more complex non-
trivial clones. Every strategy presented here is implemented in the clone detector
prototype as FCTs comparison function(s).

The first strategy, and the simplest one, consists on finding exact clones, i.e.,
exact syntactic code copies except for the use of white characters. In this case,
the Haskell equality operator == suffices to give an implementation such that all
FCT data types derive from the Eq class. Since we are using String as the FCT
data type parameter and all FCT data types derive from Eq, we already have
this exact comparison for free.

Bringing some light into the categorisation of the code clones we are targeting
in this case, we categorise this clones as higher order clones. The justification
behind this name comes from the fact that the refactoring process associated to
the elimination of these clones makes heavy use of higher order functions.

Exact Clone Detection up to Constants. The second clone detection case is given
by an exact clone detection up to constant nodes, i.e., we are looking for ex-
act clones, like in the previous case, except that now we do not force constant
nodes to be identified by the same identifier in both expressions. In practice, this
translates to finding exact functional expressions except for the name of pattern-
matching variables and their following uses in the core of the function definition.
Such code clones can be found by using the former exact clone detection func-
tion (==) after applying a colouring constant node function to both comparing
expressions. This constant colouring node function attributes a different colour
to every constant node, by the order of appearance in the tree, followed by a

6 Nuno Rodrigues, and Joo L. Vilaa

substitution of every occurrence of that variable in the core of the function by
the same colour.

At the implementation level this is accomplished by function renameConsts

which makes use of function rnConsts that substitutes constant nodes by ID

values identified by integers.

As suitable hashing criterion for this algorithm, we use the number of con-
stant nodes in a tree. Nevertheless, for large programs, other kinds of hashing
functions may be needed and even tuned according to the context of the program.

Exact Clone Detection up to Every Node Kind. Building up on top of the pre-
vious approach, one finds the discovery of code clones up to every kind of node.
Translating this to our FCT terminology, one is looking for FCTs with the same
shape and the same node colours, only this time instead of using a colouring
function that only colours constant nodes, we will use a colouring function that
colours every node type. After having applied this colouring function to both
comparing expressions, the clone detection subsumes to an exact tree equality
comparison with the (==) function.

Code Clone Detection Tuning. A fourth kind of clone detection, which is actually
more a specialisation to all previous algorithms, consists of taking into account
the fact that certain operators are commutative. Thus, this approach takes as
extra input a list of commutative functions and discovers code clones that may
commute the arguments of such functions. In particular, we apply this principle
to all other approaches.

Sub-tree Analysis. As for the sub-tree generation, identified earlier as the second
phase of the clone detection process, it is particularly useful in the way that it
permits to find sub-expressions inside a function that were already declared
by another function or another function sub-expression. At the implementation
level, such a specialisation is mainly accomplished due to the following function
which calculates every sub-tree of a given FCT with a minimum number of
nodes i. Notice that we exclude from the sub-tree list the sub patterns of a
given pattern-matching clause, since they do not point out clones. Nevertheless,
the FCT associated to each pattern must be decomposed in the several sub-trees,
which in fact may point out possible cases of code clones.

fctSubTrees :: (Ord a) => Int -> FCT a -> [FCT a]
fctSubTrees i n@(Constant a) = fctSubTrees i n@(If tt t1 t2) =

if i <= 1 then [n] else [] if fctSize n >= i
fctSubTrees i n@(Function a ts) = then n : (fctSubTrees i tt ++

if fctSize n >= i fctSubTrees i t1 ++
then n : (concat . fctSubTrees i t2)

map (fctSubTrees i) $ ts) else []
else [] fctSubTrees i (PM []) = []

fctSubTrees i n@(Recursive ts) = fctSubTrees i n@(PM ((pt, t):pts)) =
if fctSize n >= i if fctSize n >= i

then n : (concat . then n : (fctSubTrees i t ++
map (fctSubTrees i) $ ts) fctSubTrees i (PM pts))

else [] else []

Identifying Clones in Functional Programs for Refactoring 7

4 Identifying Functional Patterns

Using the tree representation of functional programs and by combining it
with other well known clone detection techniques, we were able to discover some
structural basis that a large amountof function programs share. Still, we have
to investigate more what these underlying commonalities are, and how we may
take advantage of them whenever they appear in the code.

The functional control trees we are using capture the way data flows inside
functions. Since one of the main characteristics that decides how data flows in
functional programs is recursion, one of the main common functional aspects we
are identifying is recursion patterns. Indeed, if we look at the recursion patterns
used in our examples, we realise that they all use tail recursion. This tail recursion
is mainly responsible for the overall similarities in the layout that all the trees
share.

Recursion patterns have been well studied in the past, for which [2, 3] are
good examples of. In fact, some of the recursion patterns presented in so-called
Bird-Meertens formalism [2] fit very well in the patterns we have previously
identified.

For the addOdds, remNeg, and getReflex functions, one can find out which
recursion pattern fits better by noticing that all edges returning to the entry
node (the recursive edges), came from the h : t node and that they only re-
utilise the tail t of the input list.

This is a very common strategy in functional programming and can be cap-
tured by a recursion pattern presented by the Bird-Meertens formalism [2] as
a catamorphism. The following diagram shows how the pattern works and that
the only thing it needs to derive working solutions is a definition for the gene f .
Now, the explicit recursion is hidden from the gene f , which just has to calculate
the intended result B from the case where the list is empty (represented by the
1 in the notation) and from the case where it has to combine an element of the
list (A) and a value already calculated with the desired result B (achieved from
applying the desired operation to the tail of the list).

FA
out //

(|f |)F
��

1 + A× FA

id+id×(|f |)F
��

B 1 + A×B
f

oo

Nevertheless, the above formalism only captures part of the similarities that
we found in the functional control graphs. In fact, we are only treating the
redundancy referring to the recursive edges, but there can be other kinds of
similarities in the graphs. For instance, in the presented example functions, every
graph has a control node based on a predicate, in the case of non empty lists,
which decides how the recursive call should be made. Such similarities can also

8 Nuno Rodrigues, and Joo L. Vilaa

be captured and formalised, augmenting the above diagram to the following one.

FA
out //

(|f |)F
��

1 + A× FA

id+id×(|f |)F
��

B 1 + A×B
f

oo

id+(π2·(p×id))?uu
1 + ((A×B) + (A×B))

c+[g,π2]

hh

By encapsulating the test p in the pattern, our gene f definition is even more
specific and captures more of the similarities previously identified by the graphs
analysis. With the newly discovered pattern definition, we can now define all
functions just by filling in the missing parts p, c and g in the following definition
of the catamorphism gene.

f = (c+ [g, π2]) · (id+ (π2 · (p× id))?)

p is the desired test predicate, c is the constant being applied when the input
is an empty list, and g the function that combines an element of the list with
the result of applying the defining function to the rest of the list whenever the
predicate succeeds.

Besides having isolated the redundancy in function definitions, the above
method also delivers a formal definition over the functional calculus presented
in [2]. This can then be used to formally calculate properties over programs, or
to refine the analysed programs.

5 Refactoring in Haskell

In order to refactor found patterns, however, we do not need to introduce a new
aspect-oriented extension such as AspectH, or whatever called. In the world of
functional programming, Haskell is that powerful that we get it for free.

For the exact clone detection case, the refactoring associated consists of iso-
lating the clone expression in a third independent function and then reusing this
last function in place of the previous two expressions. However, the third func-
tion definition must keep the pattern matching clauses that refer to any variable
used in the sub-expression clones.

For the second clone detection case, which detects exact code clones up to
constant nodes, the previous refactoring suffices to eliminate the clones. Notice
that this refactoring eliminated the sub-expression variables and created a new
function capturing the common pattern-matching variables.

For the third case, the associated refactoring is a bit more elaborate since it as
to be sensible to the amount of equal function nodes. Thus, the refactoring begins
just like the previous one, but introduces a new pattern-matching parameter for
each function node that differs in the FCTs. Once this is accomplished, the clones
may be eliminated by calling the new created function using as arguments not
just the constant nodes but also the different function nodes.

Identifying Clones in Functional Programs for Refactoring 9

6 Conclusions and Consequences

We have introduced a new intermediate data representation model for functional
programs, the functional control tree. Our FCT definition combines what we
believe are the main aspects of functional programs regarding functional program
analysis and transformation, i.e., the pattern-matching clauses, the recursive
calls, and the control flow influenced by the previous two. In particular, we have
shown the application of FCTs in code clone detection, refactoring, and recursive
pattern discovery over functional programs.

The discovered recursive patterns identified by our method can be easily for-
malised in the functional calculus of Bird-Meertens, giving a strong basis and
soundness to the programs obtained by the recursive pattern discovery algo-
rithm.

As a prove of concept of the more theoretical ideas over FCTs, we presented
the guidelines for a code clone and recursive pattern discovery system imple-
mented in Haskell.

As being what we believe a first incursion in Haskell code clone detection,
there are numerous points for future work following what we have presented here.
In particular, the development of automatic extractors from Haskell source code
to FCT instances would be a very important step in order to test our ideas over
real examples. Further research of minimal sets of code entities that positively
point out the occurrence of recursive patterns would also be welcome to augment
our current recursive pattern cases.

Finally the articulation of our algorithms to fully functional refactorers like
HaRe [4] also constitute a primordial step towards our objective of implementing
a fully functional code clone detector and refactorer.

References

1. Bird, R.: Functional Programming Using Haskell. Series in Computer Science. ph
(1998)

2. Bird, R., Moor, O.: The Algebra of Programming. Series in Computer Science. ph
(1997)

3. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In Hughes, J., ed.: Proceedings of the 1991 ACM
Conference on Functional Programming Languages and Computer Architecture,
Springer Lect. Notes Comp. Sci. (523) (1991) 124–144

4. HaRe project webpage. :
(http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html)

