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Abstract

A large and growing amount of software systems rely on non-trivial coordination logic for making use of
third party services or components. Therefore, it is of outmost importance to understand and capture
rigorously this continuously growing layer of coordination as this will make easier not only the verification
of such systems with respect to their original specifications, but also maintenance, further development,
testing, deployment and integration. This paper introduces a method based on several program analysis
techniques (namely, dependence graphs, program slicing, and graph pattern analysis) to extract coordination
logic from legacy systems source code. This process is driven by a series of pre-defined coordination patterns
and captured by a special purpose graph structure from which coordination specifications can be generated
in a number of different formalisms.
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1 Introduction

The increasing relevance and exponential growth of software systems, both in size
and quantity, is leading to an equally growing amount of legacy code that has to
be maintained, improved, replaced, adapted and accessed for quality every day.
Paradoxically, in a situation in which the only quality certificate of the running
software artifact still is life-cycle endurance, customers and software producers are
little prepared to modify or improve running code. However, faced with so risky
a dependence on legacy software, managers are more and more prepared to spend
resources to increase confidence on - i.e. the level of understanding of - their code.
Moreover, software quality, requiring systems to comply to strict and specific quality
standards, and conformance of design specifications with the actual implementations
is impossible to be assessed without rigorous models of running systems. This is
particularly critical in the emerging service-oriented paradigm where non-trivial
coordination problems lie at the very heart of applications.

Such is the scenario for the emergence of expressions like program understanding,
reverse engineering and model extraction, referring to a broad range of techniques to
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extract from legacy code specific and rigorous knowledge, represent it in malleable
representations, proceed to their analysis, classification and reconstruction.

The extraction of the entire system’s software architecture can be considered
the ultimate goal in the software reconstruction process. By this we understand,
following [2], the set of specific scoped models that expose particular aspects of
parts (possibly components, modules, processes) of the system and the interactions
between them.

Several approaches have been proposed for reverse architectural analysis. Among
them Class Diagram generators which extract class diagrams from object oriented
source code, Module Diagram generators that construct box-line diagrams from
system’s modules, packages or namespaces, Uses Diagram generators which reflect
the import dependencies of the system and Call Diagram generators which expose
the direct calls between system parts. However, none of these make it possible to
answer a critical question about the dynamics of a system: how does it interact
with its own components and external services and coordinate them to achieve its
goals? From a Call Diagram, for example, one may identify which parts of a system
(and, sometimes, even what external systems) are called during the execution of a
particular procedure. No answers are provided, however, to questions like: Will the
system try to communicate indefinitely if an external resource is unavailable? If a
particular process is down, will it cause the entire system to halt? Can the system
enter in a deadlock situation?

It is not surprising that these questions cannot be answered from most of the
models built from code extraction, because behavioural analysis is placed at a much
higher abstraction level than most of such architectural models. Actually, recovering
a coordination model, able to capture system’s behaviour with respect to its inter-
actions with different components, is a complex process. This complexity arises
from dealing with multiple activities and multiple participants which in turn are
influenced by multiple constraints, such as exceptional situations, interrupts and
failures. On the other hand, the need for methods and tools to identify, extract
and record the coordination layer of running applications is becoming more and
more relevant as an increasing number of software systems rely on non-trivial co-
ordination logic for combining autonomous services, typically running on different
platforms and owned by different organisations.

This paper is a step towards addressing such a problem. Its main contribution
is a technique which adopts typical program analysis algorithms, namely slicing,
to recover coordination information from legacy code. This is based on a notion of
coordination dependence graph, abbreviate to CDG in the sequel, proposed here as a
specialisation of standard program dependence graphs [3] used in classical program
analysis. The discovery of coordination patterns in the source code of an application
is achieved by a process of (sub-)graph identification in the corresponding CDG. The
overall strategy is illustrated in Fig. 1.

The process starts by the extraction of a comprehensive dependence graph, de-
noted in the sequel by the acronym MSDG (after Managed System Dependence
Graph), from source code. This is the fundamental structure underlying our ap-
proach, and extends, in several respects, previous work on such sort of program
representations. This is briefly explained in section 2; a complete formalisation ap-
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Fig. 1. The overall strategy

pears in [13]. The CDG mentioned above is, then, computed from this structure
in a two stage process, presented in section 3. First nodes matching rules encoding
the use of specific interaction or control primitives are suitably labelled. Then, by
backwards slicing, the MSDG is pruned of all sub-graphs found irrelevant for the
reconstruction of the program coordination layer. Note the first stage is parame-
teric in the set of rules and, therefore, in the type of interaction mechanisms used
in the program under analysis. Once the CDG has been generated, the discovery of
coordination patterns proceeds by the identification of which patterns in the graph
encode them. Such patterns, which constitute another parameter in the method,
and the associated discovery algorithm are discussed in section 4. From each coor-
dination pattern discovered in the CDG, the corresponding chunk of source code is
identified and returned.

The technique discussed in this paper is generic in the sense that it does not
depend upon the programming language or platform in which the original system
was developed. Actually, it can be implemented to target any language with basic
communications and multi-threading capabilities. In section 5 the method is illus-
trated with a (toy) example in C♯, in order to keep the presentation self-contained.
However, a prototype tool, a preliminary version of which is available from the
author’s web-page, is being developed, as a ‘proof-of-concept’, which analyses Com-
mon Intermediate Language (CIL) source code, the language interpreted by the
.Net Framework for which every Microsoft .Net compliant language compiles to.

2 The Managed System Dependence Graph

The fundamental information structure underlying the coordination discovery
method proposed in this paper is a comprehensive dependence graph — the MSDG
— recording the elementary entities and relationships that may be inferred from
code by suitable program analysis techniques.

A MSDG is an extension of a system dependence graph to cope with object-
oriented features, as considered in [6,7,16]. Our own contribution was the intro-
duction of new representations for a number of program constructs not addressed
before, namely, partial classes and methods, delegates, events and lambda expres-
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sions. For a formal specification of a MSDG, as well as for a detailed description of
the techniques used in its construction, the reader is referred to [13]. In this section,
however, we provide a brief overview of the structure of a MSDG, as detailed as
necessary to the presentation of the pattern discovery algorithm presented in section
4.

Before proceeding with the calculation of the MSDG, the program under analysis
needs to be pre-processed first. This pre-processing phase, amounts to calculating
the used and defined variables of a given statement as well as the control dependen-
cies between statements. Used and defined variables of a statement can be easily
calculated with suitable expression analysis. Control dependencies can also be triv-
ially calculated for well structured languages, like the ones being addressed here, so
we assume that such analysis are being performed in this stage. Further more, we
also assume that all object reference aliases are being handled in this pre-processing
phase. Although objected reference aliases resolution is not a trivial operation to
perform, we rely on the several research works [14,15] addressing this issue, and
assume that all object aliases have been properly resolved.

A MSDG is defined over three types of nodes representing program entities:
spatial nodes (subdivided into classes Cls, interfaces Intf and name spaces Nsp),
method nodes (carrying information on method’s signature MSig, statements MSta
and parameters MPar) and structural nodes which represent implicit control struc-
tures (for example, recursive references in a class or a fork of execution threads).
Formally,

Node = SNode +MNode +TNode

SNode = Cls + Intf +Nsp

MNode = MSig +MSta +MPar

TNode = {△,▽, ○}

where + denotes set disjoint union. Nodes of type SNode contain just an identifier
for the associated program entity. Other nodes, however, exhibit further structure.
For example, a MSta node includes the statement code (or a pointer to it) and a
label to discriminate among the possible types of statements in a method, i.e.,

MSta = SType × SCode

Stype = {mcall, cond,wloop, assgn,⋯}

where, for instance, mcall stands for any statement containing a call to a method and
cond for a conditional expression. Similarly, a MSig node, which in the graph acts
as the method entry point node, records information on both the method identifier
and its signature, i.e., MSig = Id × Sig. Method parameters are handled through
special nodes, of type MPar, representing input (respectively, output) actual and
formal parameters in a method call or declaration. Formally,

MPar = PaIn + PaOut + PfIn + PfOut

Finally, the structural nodes TNode were introduced to cope with concurrency
(case of △ and ▽) and to represent recursively defined classes (case of ○). A brief
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explanation is in order. A △ node captures the effect of a spawning thread: it links
an incoming control flow edge, from the vertex that fired the fork, and two outgoing
edges, one for the new execution flow and another for the initial one. Dually, a
thread join is represented by a ▽ node with two incoming edges and an outgoing
one to the singular resumed thread. A ○ node represents a recursively defined class,
what seems a better alternative than expanding the object tree to a certain, but
fix, depth, used, for example, in [7].

There are, of course, several types of program dependencies represented as edges
in a MSDG. Formally, an edge is a tuple of type

Edge = Node ×DepType × (Inf + 1) ×Node

where DepType is the relationship type and the third component represents, option-
ally, additional information associated to it. Let us briefly review the main types of
dependency relationships. Data dependencies, of type dd, connect statement nodes
with common variables. Formally,

⟨v,dd, x, v′⟩ ∈ Edge⇔ definedIn(x, v) ∧ usedIn(x, v′)

where x is a program variable and notation definedIn(x, v) (respectively,
usedIn(x, v)) stands for x is defined (respectively, used) in node v. Typical de-
pendencies between statement nodes are of types control flow, cf, and control, ct,
the latter connecting guarded statements (e.g. loops or conditionals) or method
calls to their possible continuations and method signature nodes (which represent
the entry-points on a method invocation) to each of the statement nodes within
the method which is not under the control of another statement. Formally, these
conditions add the following assertions to the invariant of type Edge 2 :

⟨v, ct, g, v′⟩ ∈ Edge⇐ v ∈ {MSta(t,−)∣ t ∈ {mcall, cond,wloop}} ∧ v′ ∈ MSta

⟨v, ct,−, v′⟩ ∈ Edge⇐ v ∈ MSig ∧ v′ ∈ MSta

where g is either undefined or the result of the evaluation of the statement guard.
A method call, on the other hand, is represented by a mc dependence from the

calling statement wrt the method signature node. Formally,

⟨v,mc, vis, v′⟩ ∈ Edge⇔ v ∈ MSta ∧ SType v = mcall ∧ v′ ∈ MSig

where vis stand for a visibility modifier in set {private,public,protected, internal}.
Specific dependencies are also established between nodes representing formal and
actual parameters. Moreover, all of the former are connected to the correspond-
ing method signature node, whereas actual parameter nodes are connected to the
method call node via control edges. Finally, any data dependence between formal
parameters nodes is mirrored to the corresponding actual parameters. Summing

2 All conditions constraining types Edge and Edge are formally recorded in two data type invariants associ-
ated to these types in the specification of the MSDG given in [13]; such invariants are only partially stated
in this paper.
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up, these adds the following assertions to the MSDG invariant:

⟨v,pi,−, v′⟩ ∈ Edge⇔ v ∈ PaIn ∧ v′ ∈ PfIn

⟨v,po,−, v′⟩ ∈ Edge⇔ v ∈ PaOut ∧ v′ ∈ PfOut

⟨v, ct,−, v′⟩ ∈ Edge⇐ v ∈ MSig ∧ v′ ∈ (PaIn ∪ PaOut)

⟨v, ct,−, v′⟩ ∈ Edge⇐ v ∈ MSta ∧ SType v = mcall ∧ v′ ∈ (PfIn ∪ PfOut)

⟨v,dd,−, v′⟩ ∈ Edge⇐ v ∈ PaIn ∧ v′ ∈ PaOut ∧ ∃⟨u,dd,−,u′⟩ . (u ∈ PfIn ∧ u′ ∈ PfOut)

Class inheritance and the fact that a class owns a particular method is recorded
as follows

⟨v, ci,−, v′⟩ ∈ Edge⇔ v, v′ ∈ Cls ∧ v ≠ v

⟨v, cl, vis, v′⟩ ∈ Edge⇔ v ∈ Cls ∧ v′ ∈ MSig

and, similarly, for interface and namespace nodes.
Other program entities and properties typically found in modern programming

languages are also captured in a MSDG. They include, namely, properties (a special
program construct in C♯ and other .Net-based languages, intended to encapsulate
access to class variables. But also partial classes and partial methods, the latter
entailing the need for a mc dependence edge between the declaration of the partial
method and its implementation, as well as delegates, events and λ-expressions. A
delegate is a sort of a function whose values are objects, thus possibly defining
class member types. From the subscribed side, i.e., the class with the delegate
definition that invoke the subscribed method, a method node is added to represent
the delegate type, as well as parameter nodes for its arguments and results. Every
call to the delegate inside the subscribed class is represented by a method call edge
to the MSig node introduced by the delegate type. This acts like a proxy dispatching
its calls to objects and methods which subscribed the delegate. In what concerns
to graph representation, the difference between delegates and events is that the
latter can be subscribed by more than one method, whilst delegate subscriptions
override each other. Therefore, their representation in a MSDG is similar to that of
delegates, but for the possibility of co-existence of more than one mc edge between
the subscribed and the actual method to be called in the subscriber. A similar
approach is taken for the representation of λ-expressions, which in C♯ are stateful
and behave as anonymous methods (see [13] for further details).

3 The Coordination Dependency Graph

The second stage in the discovery process introduced in this paper is the construc-
tion of a CDG, which basically prunes the MSDG of all information not directly
relevant for the reconstruction of the application coordination layer. This stage
is guided by a specification of a set of rules specifying the interaction primitives
used in the source code, which are actually the building blocks of any coordination
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scheme. Such rules are specified as

CRule = RExp × (CType × CDisc × CRole)

CType = {webservice, rmi, remoting,⋯}

CDisc = {sync, async}

CRole = {provider, consumer}

where RExp is a regular expressions, CType is the type of communication prim-
itive types (extensible to other classes of communication primitives), CDisc is
the calling mode (either synchronous or asynchronous) and, finally, CRole char-
acterises the code fragment role wrt the direction of communication. In the C♯,
for example, the identification of invocations to web services can be captured by
the following rule, which identifies the primitive synchronous framework method
SoapHttpClientProtocol.Invoke typically used to invoke a web service:

R = ("SoapHttpClientProtocol.Invoke(*);",
(webservice, sync, consumer))

Given a set of rules, the CDG calculation, starts by testing all the MSDG vertices
against the regular expressions in the rules. If a node of type MSta or MSig matches
one of such regular expressions, it becomes labelled with the information in the rule’s
second component. The types of the resulting nodes are, therefore,

CMSta = MSta × (CType × CDisc × CRole)

CMSig = MSig × (CType × CDisc × CRole)

Note that, because of this labelling process, the type of a CDG node is

CNode = Node + CMSta + CMSig

On completion of this labelling stage, the method proceeds by abstracting away the
parts of the graph which do not take part in the coordination layer. This is a major
abstraction process accomplished by removing all non-labelled nodes, but for the
ones verifying the following conditions:

(i) method call nodes (i.e., nodes v such that v ∈ MSta with SType v = mcall) for
which there is a control flow path (i.e., a chain of cf dependence edges) to a
labelled node.

(ii) vertices in the union of the backward slice of the program with respect to each
one of the labelled nodes.

Note that the first condition ensures that the relevant procedure call nesting struc-
ture is kept. This information will be useful to nest, in a similar way, the generated
code on completion of the discovery process. The second condition keeps all the
statements in the program that may potentially affect a previously labelled node.
This includes, namely, MSta nodes whose statements contain predicates (e,g., loops
or conditionals) which may affect the parameters for execution of the communica-
tion primitives and, therefore, play a role in the coordination layer.
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This stage requires a slicing procedure over the MSDG, for which we adopt a
backward slicing algorithm similar to the one presented in [4]. It consists of two
phases. The first phase marks the visited nodes by traversing the MSDG backwards,
starting on the node matching the slicing criterion, and following ct, mc, pi, and dd
labelled edges. The second phase consists of traversing the whole graph backwards,
starting on every node marked on phase 1 and following ct, po, and dd labelled
edges. By the end of phase 2, the program represented by the set of all marked
nodes constitutes the slice with respect to the initial slicing criterion.

Except for cf labelled edges, every other edge from the original MSDG with a
removed node as source or target, is also removed from the final graph. The same
is done for any cf labelled edge containing a pruned node as a source or a sink. On
the other hand, new ct edges are introduced to represent what were chains of such
dependencies in the original MSDG, i.e. before the removal operation. This ensures
that future traversals of this graph are performed with the correct control order of
statements.

4 Coordination Patterns Discovery

4.1 Describing Coordination Patterns

In contrast with the MSDG, which is usually a large and complex structure, the
CDG extracted from a typical system is much smaller, since all code alien to the
coordination layer has already been removed. Nevertheless, the correct identification
of the structure of such a layer is, usually, far from trivial. In our approach this
process is driven by a series of predefined coordination patterns encoded as sub-
graphs instances of which are to be discovered over the CDG. Formally, coordination
patterns are defined as pairs formed by a matching condition (of type PCondition)
and a graph over nodes of type NodeId as follows

Pattern = PCondition × (NodeId ×ThreadId ×NodeId × PathPattern)∗

PCondition = NodeId⇀2GNode

NodeId = N ∪ {△,▽}

PathPattern = N ∪ {∗}

A matching condition is a mapping (i.e., a partial function) which associates to
each pattern node (of type NodeId) a predicate over CDG nodes (of type GNode).
In practice, a common definition such a predicate resorts to a regular expression
intended to be tested for matching with the program information collected on CDG
nodes. Symbol ∗ is used to abbreviate the everywhere true predicate. Examples of
pattern conditions are shown later in this section.

The second component of a pattern is a sequence of edges labelled by a thread
identifier (ThreadId), which is used to specify the intervening threads in a pattern,
and a qualifier (of type PathPattern) which specifies the number of edges in the
CDG that may mediate between the node matching the source and the target node
in the pattern. In particular, symbol + is used to stand for one or more edges.
Note this qualifier is always greater than 0. We also assume that all nodes in the
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(a) Synchronous Sequential Pattern (b) Cyclic Query Pattern

(c) Asynchronous Query Pattern (d) Asynchronous Query Pattern with
Client Multithreading

(e) Asynchronous Sequential Query Pat-
tern

(f) Joined Asynchronous Sequential Pat-
tern

Fig. 2. CDGPL Patterns

sequence of edges of a pattern which do not belong to the domain of the respective
condition, are implicitly labelled by the everywhere true predicate.

Based on the data specifications above, we have defined a small language to
express coordination patterns. Such notation, referred to as the Coordination De-
pendence Graph Pattern Language (CDGPL) was specifically designed to describe
CDG graph patterns and to facilitate the automatic discovery of such patterns —
see [13] for a complete specification. The discovery process, in particular, is guided
by what we call a search pattern, i.e. an expression defined simply as a pattern
(of type Pattern) or either as a conjunctive (&&) or disjunctive (∥) aggregation of
patterns.

For illustration purposes, however, we resort in this paper to a graphical notation
to present a number of most typically found coordination patterns, depicted in Fig.
2. In each pattern, notation vcx denotes the node condition for node x.
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4.1.1 Synchronous Sequential Pattern
This is one of the most simple patterns in which external services in a sequence are
invoked one after the other. This simple, yet often used, pattern is usually employed
when there are dependencies between a number of service calls, i.e., when a service
call depends on the response received from a previous one.

In our notation this pattern is specified as in Fig. 2(a), where each node corre-
sponds to a service call of the series of services to be invoked in sequence. If the
original source code implements coordination through access to web-services, the
condition for each these vertices can be defined by the following predicate template:

pc(x) = x == (MSta(t, s), cp, cm, cd)⇒

match(s,“ServiceCall(*)”) ∧ cp == webservice ∧ cm == sync ∧ cd == consumer

where “ServiceCall” is to be replaced by the name of the invoked web service
method.

4.1.2 Cyclic Query Pattern
This pattern is characterized by a point in which a new thread is spawned becoming
responsible for a on-going invocation of an external service. It is often used by
systems that have to monitor the state of some foreign resource or that must be
constantly updating an internal resource which depends upon an external service.

In practice, the pattern appears in several variations. For instance, it may in-
clude a time delay between each cyclic service call or use different strategies to
implement the service invocation cycle, e.g. resorting to be recursive function defi-
nition or iterative control statements. The pattern presented in Fig. 2(b) captures
its most generic version. It basically states that a new thread y must be spawned
and that under the execution of these new thread a service must be called repeat-
edly. Again, vertex 1 must be instantiated with a predicate, similar to the previous
one, limiting the service being called.

4.1.3 Asynchronous Query Pattern
. The Asynchronous Query Pattern is usually employed if there is a need to invoke
time consuming services, and calling threads can not suspend until a response is
returned. To overcome this situation, the server component provides two methods,
one for the request of an operation on the server and another for the querying
of an answer (if available) from the previously posted request. Both this server
methods return very quickly, since they are not involved in the execution of any
complex operation but rather in the control of the execution of complex operations
and results retrieval. From the client side this pattern is specified by the definition
in Fig. 2(c), encoding the invocation of a service to request the execution of some
operation execution (node 1) and a cyclic invocation of another service (node 2) to
retrieve the result. Once more, in practice, both vertices 1 and 2 may be further
characterized by predicates that clearly identify the operation request and result
request services.
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4.1.4 Asynchronous Query Pattern (with client multithreading)
This often used pattern is actually a variation of the previous one, where the client
orders the execution of an operation in one thread and then launches a second thread
to retrieve the result. Note that this pattern, presented in Fig. 2(d) is also quite
similar to the cyclic pattern, but for an extra node, marked with ∗ to represent the
program statement that controls the need to perform more invocations to retrieve
the result for an operation.

4.1.5 Asynchronous Sequential Pattern
This is similar to the Asynchronous Sequential Pattern except that it invokes each
service in a new thread specifically created for the effect. This pattern is often used
when a system has to invoke a series of services, the order of invocation as well as
the responses returned are irrelevant. Note that, under this premises, this pattern is
substantially faster than the Asynchronous Sequential Pattern in the invocation of
the series of services. This pattern is specified in Fig. 2(e) where each of the service
calling nodes (1 and 2) are invoked in different threads (y and w respectively).

4.1.6 Joined Asynchronous Sequential Pattern
This is similar to the previous pattern in the sense that, in both of them, services
are invoked asynchronously. The difference is that in this pattern one is interested
in controlling the point where each of the called services have finished execution
and, possibly, returned a value. The specification of this pattern is presented in
Fig. 2(f) where each thread that was spawned to invoke a service, joins later in
a point where the execution may proceed with the guarantee that all service calls
have finished executing.

4.2 The discovery algorithm

The algorithm presented in this section retrieves every sub-graph of a CDG that
conforms to a given graph pattern. The notation used in self-explanatory. However,
let us point out the use of dot . as a field selector in a record as well as the adoption of
the Haskell syntax for lists (including functional map and operators ∶ for appending
and ++ for concatenation). An assignment is denoted by the ← operator; note that
it can be prefixed by an expression declaring the type of the variable being bound.

The algorithm resorts to the data types in Fig. 3, also expressed in the Haskell
syntax for data type declarations. Note, in particular, how both the CDG and the
graph representing the pattern to be discovered are made available to the algorithm
through embedding in Graph and GraphPattern: in both cases a node is selected
as ‘root’, i.e. as a starting point for searching.

The overall strategy used by the discovery algorithms 1 and 2 consists of travers-
ing the graph pattern and incrementally constructing a list of candidate graphs with
nodes of type Attribution. This type is used by the algorithm because it maintains
a mapping between the graph pattern nodes and CDG nodes. If a pattern is found,
during the traversal of the graph pattern, for which a candidate graph cannot be
extend to conform with, then the graph in question is removed from the candidate
graphs list. On the other hand, if the candidate graph can be extend with one of the
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Graph = G { root ∶∶ GNode, G ∶∶ CDG }

GraphPattern = GP { root ∶∶ NodeId, G ∶∶ V ertexPattern }

V ertexPattern = V P { id ∶∶ Int,

cdts ∶∶ [GNode]

visited ∶∶ B }

Attribution = AT { vp ∶∶ V ertexPattern,

v ∶∶ GNode }

Extension = E { g ∶∶ Graph,

att ∶∶ [Attribution] }

Fig. 3. Data types for the Graph Pattern Discovery algorithm

several CDG candidate nodes, it originates a series of new candidate graphs (one
for each CDG candidate node) and the original (incomplete) candidate is removed
from the candidate list.

Most auxiliary functions used in the algorithm are self-explained by its identi-
fier names, with the possible exception of function GetSuccCombinations which
calculates a list of lists of Attributions, i.e., a list for each possible set of possible
attributions for a given node pattern. By using the graph pattern discovery algo-
rithm we are now able to identify coordination patterns in legacy code. Moreover,
if each pattern is associated to a pattern ‘implementation’ in one of the several
coordination languages available in the literature, one will be able to reconstruct a
specification of the system whose code has been analysed.

5 Example

As an example of the presented coordination pattern discovery method, consider the
C♯ code fragment in appendix A. The class WeatherServer used in the code is the
web-service proxy class, automatically generated by the tool Microsoft.VSDesigner.

The example code is intended to be run on a client that calls a server to predict
the weather for the next couple of days based on the current weather conditions.
Because weather prediction is a complex and time consuming task it is unfeasible
for the client execution thread to be hold until a response from the server is return.
Thus, the client submits the prediction operation to the server, the server returns
immediately yielding an operation identifier for the client request and then the
responsibility to request for an answer is passed to the client which has to perform
multiple queries to the server until a weather prediction answer is returned. Once
the client receives the answer with the prediction from the server it inspects the
result and if it seems wrong (method CheckPrediction) it submits a new request
to the server in order to reevaluate the prediction.

By the description of the client behaviour, it becomes more or less clear that
this client probably implements one or more instances of the previously presented
Asynchronous Query Pattern. More difficult, is to identify exactly which statements
in the code are responsible for the implementation of the pattern. Note that in real
world systems, this difficulty is even greater since the code would most certainly
be ‘intermediated’ by other statements (with completely different purposes other
that coordinating other components, like updating the user interface, or freeing
resources) as well as spread among different parts of the system, thus making it
quite difficult to identify any coordination pattern.
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Algorithm 1 Pattern Discovery - Part I
1: function DiscoverPattern(Graph cdg, GraphPattern cdgp)
2: cdgp← FillCandidateVertices(cdg, cdgp)

3: cdgp← FillCandidateEdges(cdg, cdgp)

4: Graph bg ← emptyGraph()

5: [Extension] gel ← [(bg, map (λx→ (cdgp.root, x)) cdgp.root.cdts]

6: repeat
7: B b← False

8: for all Extension ge in gel do
9: for all Attribution datt in ge.att do

10: datt.vp.visited← True

11: c1 ← HasSuccessors(cdgp, datt.v)

12: c2 ← ! HasSuccessors(ge.g, datt.vp)

13: if c1 ∧ c2 then
14: [Extension] dgel ← ExtendBaseGraph(ge.g, datt)

15: [Extension] r ← ge ∶ r

16: [Extension] a← dgel ∶ a

17: b← b ∨Length(dgel) > 0
18: end if
19: end for
20: end for
21: gel ← Remove(gel, r) ▷ Remove all r elements from gel

22: gel ← gel + + r ▷ Add all a elements to gel
23: r ← []

24: a← []

25: nv ← NotVisited(cdgp) ▷ Get first not visited Vertex Pattern
26: if b ∧ nv ≠ null then
27: b← True

28: vpa←map (λx→ (nv, x)) nv.cdts

29: map (λx→ (x.g, vpa)) gel

30: end if
31: until b == True
32: return gel

33: end function

Due to space limitations we omit some code details, which are clearly identified
by underlined comments. Two of this omissions are concerned with the construction
of the parameters being passed to the server operations (lines 15 and 31), which
amount to the gathering of the current weather conditions. The second omission
(line 52) regards the code to setup the web service proxy class, which contains the
code to control all the Simple Object Access Protocol (SOAP) communications as
well as all object marshalling operations.

The process of discovering instances of the Asynchronous Query Pattern starts
by the construction of the MSDG for the code under analysis. Fig. B.1, in appendix
B, presents the MSDG for the example code. To maintain the readability of the
graph, one has opted to include only control, method call, control flow, formal-in
and out dependencies.
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Algorithm 2 Pattern Discovery - Part II
34: function ExtendBaseGraph(Graph bg,Attribution att)
35: tcs←GetSuccCombinations(cdgp, vp)

36: for all tc in tcs do
37: ng ← bg

38: gel ← (ge, [])

39: for all cv in tc do
40: if b ∧ nv ≠ null then
41: AddEdge(ng, att, cv)

42: ge.DiscoveredAttributions.Add(cv)

43: else
44: gel.Remove(ge)

45: break
46: end if
47: end for
48: end for
49: return gel

50: end function

The following phase consist in the calculation of the CDG, based on
the constructed MSDG. In this example one is interested in identifying syn-
chronous calls to web services. Such identification can be performed using the
rule (“SoapHttpClientProtocol.Invoke(*);”, (WebService, Sync,Consumer)),
which identifies web-services calls made by the Microsoft.VSDesigner tool.

The process of calculating the CDG, as explained in section 3, leads to the
elimination of the code lines 3, 7, 8, 9, 10, 14, 24, 26, 30, 39 and 42 or in graphical
terms to the dashed vertices in Fig. B.1. Note that the removed statements are
exactly the ones not directly involved in the invocation of web-services, which in
this small and highly coordination devoted code corresponds almost entirely to IO
statements. Nevertheless in a real world system, containing logic to control many
other aspects besides coordination of foreign resources, the percentage of program
statements being sliced, with respect to the entire system, would certainly be much
higher.

The following phase is to define in CDGPL an expression that characterises
the coordination pattern one is looking for. For this example, one will use the
Asynchronous Query Pattern CDGPL definition presented in section 4.1, with the
following pc pattern condition. This pattern condition makes use of a regular ex-
pression matching function named match.

pc(1) =λ(MSta(t, s), cp, cm, cd)→ (match(s,“GetForecast(∗)”) ∨match(s,“ConfirmForecast(∗)”)) ∧

cp == webservice ∧ cm == sync ∧ cd == consumer

pc(2) =λ(MSta(t, s), cp, cm, cd)→match(s,“GetOperationResult(∗)”) ∧ cp == webservice ∧ cm == sync ∧

cd == consumer

Using the graph pattern discovery algorithm presented in section 4.2 one clearly
identifies two instances of the Asynchronous Query Pattern used in the code and
highlighted by the two mappings f1, f2 between the vertex pattern identifiers and
the example code line statements. In order to facilitate the identification of the
statements involved in the coordination pattern instances, the example code in
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appendix A highlights these statement in red and italic font.

f1(1) = 16 f2(1) = 32

f1(2) = 23 f2(2) = 38

f1(3) = 25 f2(3) = 40

Note that, although being discovered as instances of the same coordination pattern,
the implementations are quite different from each other. In the first case the query-
ing for an answer is performed by a while cycle, whereas in the second case this is
performed by a recursive call to method GetForecastConfirmationResult.

6 Conclusions and Future Work

This paper introduced a method that combines a number of program analysis tech-
niques (namely, dependence graphs, program slicing, and graph pattern analysis) to
extract coordination logic from legacy systems source code. The process is driven
by a series of pre-defined coordination patterns and captured by a special purpose
graph structure from which coordination specifications can be generated in a num-
ber of different formalisms. The use of dependence graphs to represent different
sorts of program entities and the ways they depend on each other has already a
long history in the program analysis community — see, e.g. [10] for an early refer-
ence. Our contribution has been to extend previous work (namely [5,8]) to collect
all the information that may be necessary to extract the (often deeply hidden) coor-
dination layer of an application. Note that most of the work and tools developed for
reverse engineering have limited scope, typically intended to obtain module, class
diagrams and method call dependencies from legacy code.

One of the most relevant parts if this approach is its parametrisation by rules
identifying the communication primitives one is interested in, thus making it adapt-
able to diverse kinds of coordination analysis and programming frameworks. Given
the language heterogeneity that pervades most software, such a “language agnosti-
cism” of the technique stands as another very important feature.

A prototype tool 3 to implement the techniques presented here is currently un-
der development. The tool, named CoordInspector, targets the Common In-
termediate Language (CIL), thus making it able to cope with any Microsoft .Net
Language. Although targeting a completely different language, the development o
CoordInspector shares a number of intuitions discussed in [12,11,9].

Although the most direct application of this approach and tool is to assists on
the coordination analysis of legacy systems, they can also be used to assess the
correctness of systems implementations with respect to its design specifications or
even with respect to the growing software quality regulations. Even more, with
the provision of rules for COM or RMI communication discovery, it can be used
to assist the conversion of distributed object systems towards web-service oriented
systems (or vice versa).

An interesting topic for future work is the classification of coordination patterns,

3 A preliminary version of which is available at the authors web page.
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as in [1], in terms of their graph pattern representation expressed in CDGPL. This
information would allow the creation of a coordination patterns repository which
could be used not only for reverse, but also for forward, systems engineering.
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A Example Code

1 class Example {
2 private void GetWeatherForecast() {
3 Console.WriteLine("Calculating forecast.");
4 WeatherServer cs = new WeatherServer();
5 int taskId = RequestServerTask(cs);
6 Result res = GetTaskResult(cs, taskId);
7 if(res != null)
8 Console.WriteLine("Forecast: " + res.ToString());
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9 else
10 Console.WriteLine("Operation failed");
11 }
12

13 private int RequestServerTask(WeatherServer cs) {
14 Console.WriteLine("Requesting forecast.");
15 Operation op = ...current weather conditions gathering code...

16 int operationId = cs.GetForecast(op);
17 return operationId;
18 }
19

20 private Result GetTaskResult(WeatherServer cs, int opId) {
21 Result res = null;
22 int i = 0;
23 while(res == null && i++ < 10) {
24 Console.WriteLine("Querying server for forecast.");
25 res = cs.GetOperationResult(opId);
26 Thread.Sleep(1000);
27 }
28 // Check if the result still needs further calculation
29 if(!CheckPrediction(res)) {
30 Console.WriteLine("Querying server to confirm forecast.");
31 Operation op2 = ...confirm forecast parameter construction...

32 int op2Id = cs.ConfirmForecast(op2);
33 res = GetForecastConfirmationResult(cs, op2Id);
34 }
35 return res;
36 }
37

38 private Result GetForecastConfirmationResult(WeatherServer cs, int opId) {
39 Console.WriteLine("Querying server for simplification result.");
40 Result res = cs.GetOperationResult(opId);
41 if(res == null) {
42 Thread.Sleep(2000);
43 return GetForecastConfirmationResult(cs, opId);
44 } else {
45 return res;
46 }
47 }
48 }
49

50 class WeatherServer : System.Web.Services.Protocols.SoapHttpClientProtocol {
51

52 ...proxy class setup code...
53

54 public int GetForecast(Operation op) {
55 object[] results =
56 this.Invoke("PerformComplexOperation",
57 new object[] { op });
58 return ((int)(results[0]));
59 }
60

61 public int ConfirmForecast(Operation op) {
62 object[] results =
63 this.Invoke("ConfirmForecast",
64 new object[] { op });
65 return ((int)(results[0]));
66 }
67

68 public Result GetOperationResult(int opId) {
69 object[] results =
70 this.Invoke("GetOperationResult",
71 new object[] { opId });
72 return ((Result)(results[0]));
73 }
74 }

B Example Code MSDG
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Fig. B.1. Example code MSDG
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