
Miguel Ângelo Marques de Matos

Julho de 2013

U
M

in
ho

|2
01

3

Epidemic Algorithms for Large Scale Data
Dissemination

E
p

id
e

m
ic

 A
lg

o
ri

th
m

s
fo

r
La

rg
e

 S
ca

le
 D

a
ta

D
is

se
m

in
a

ti
o

n
M

ig
ue

l Â
ng

el
o

M
ar

qu
es

 d
e

M
at

os

Universidade do Minho

Escola de Engenharia

Programa de Doutoramento em Informática
das Universidades do Minho, de Aveiro e do Porto

Universidade do Minho

universidade de aveiro

Julho de 2013

Trabalho realizado sob a orientação do

Professor Doutor Rui Carlos Oliveira

Miguel Ângelo Marques de Matos

Epidemic Algorithms for Large Scale Data
Dissemination

Universidade do Minho

Escola de Engenharia

Programa de Doutoramento em Informática
das Universidades do Minho, de Aveiro e do Porto

Universidade do Minho

universidade de aveiro

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE APENAS

PARA EFEITOS DE INVESTIGAÇÃO MEDIANTE DECLARAÇÃO

ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE:

Universidade do Minho, 30 / 07 / 2013

Assinatura:

Agradecimentos

Todas as viagens começam por um pequeno passo e transformam-se progressiva-

mente num conjunto imensurável de passos. Tive a sorte de, ao longo deste per-

curso, ser sempre acompanhado por pessoas fantásticas que o tornaram posśıvel.

Um obrigado a todos, pois cada passo, grande ou pequeno, que demos em con-

junto levou-me até aqui e está indelevelmente presente neste trabalho.

Em primeiro lugar, gostaria de agradecer ao meu orientador, Prof. Rui

Oliveira, pela incansável paciência, dedicação e orientação, dentro e fora do con-

texto deste trabalho, que excedeu largamente o profissionalmente exigido. Foi, e

é, um privilégio poder trabalhar consigo.

Não poderia deixar de agradecer também ao restante corpo docente do Grupo

(com G maiúsculo) de Sistemas Distribúıdos que, apesar da dimensão, sabe estar

coeso e sempre dispońıvel para ajudar e festejar. Uma palavra de apreço para o

Prof. José Pereira pela disponibilidade e interesse constante em auxiliar-me.

Este caminho teria sido muito mais dif́ıcil sem o excelente ambiente que se

vive no laboratório 2.20. Nunca, ao longo dos últimos sete anos que lá estou,

me senti colocado de lado ou desrespeitado e sempre que necessário, tantas vezes

sem necessitar de pedir, surgiu uma mão amiga pronta a auxiliar no trabalho ou

a participar num momento de lazer. Isto é fruto das pessoas excelentes que lá

estão e que por lá passaram: Alfrânio Correia, Ana Nunes, Bruno Costa, Daniel

Machado, Filipe Campos, Francisco Cruz, Francisco Maia, Lúıs Ferreira, Lúıs

Soares, João Paulo, José Marques, Miguel Borges, Nelson Gonçalves, Nuno Car-

valho, Nuno Castro, Nuno Lopes, Paulo Jesus, Pedro Gomes, Ricardo Gonçalves

e Ricardo Vilaça. Não posso deixar de mencionar também os membros d’Os

Sem Estatuto pelo companheirismo e diversão proporcionada e em particular ao

Jácome Cunha pela boa disposição e disponibilidade.

iii

iv

I was also lucky enough to substantially collaborate throughout most of this

dissertation with the people at the University of Neuchâtel, Switzerland, namely

Pascal Felber, Etienne Rivière and Valerio Schiavoni. I learned a lot from you

and I have become, I expect, a better researcher and a better person in the process.

Thank you very much, I expect we can continue to work together.

Não seria quem sou hoje se não fosse pelos amigos do Tour com os quais

fiz todo o percurso de licenciatura e me acompanharam em ı́numeros momentos

dif́ıceis: Agostinho Silva, André Rodrigues, Avelino Rego, Duarte Alves, Nelson

Silva, Paulo Sousa, Rui Ribeiro e Vı́tor Rocha. Além dos trabalhos feitos em

conjunto e de todas as borgas, ficou uma amizade para a vida, grande abraço!

A minha famı́lia é o pilar sobre o qual tudo assenta. Nada disto seria posśıvel,

e mesmo sendo não teria significado, sem a sua presença constante. Em particular

da minha mãe e pai, Nino, Iara, Xana e Pedro. Sou um felizardo por poder contar

com vocês.

Finalmente à Ana, que partilha comigo todos os momentos e está sempre

presente. Na ausência de palavras, só desejo fazer-te tão feliz como me fazes a

mim.

Adicionalmente, algumas instituições apoiaram o trabalho apresentado nesta

tese. A Fundação para a Ciência e Tecnologia (FCT) apoiou este trabalho através

da bolsa de doutoramento (SFRH / BD / 62380 / 2009). O Departamento de In-

formática da Univesidade do Minho e o HASLab - High Assurance Software Lab.

ofereceram-me as condições necessárias para desenvolver o trabalho conducente

a esta tese.

Braga, Julho de 2013

Miguel Matos

To Anne

Epidemic Algorithms for Large

Scale Data Dissemination

Distributed systems lie at the core of modern IT infrastructures and services,

such as the Internet, e-commerce, the stock exchange, Cloud Computing and the

SmartGrid. These systems, built and developed throughout the last decades,

have relied, due to their importance, on distributed algorithms with strong cor-

rectness and safety guarantees. However, such algorithms have failed to accom-

pany, for theoretical and practical reasons, the requirements of the distributed

systems they support in terms of scale, scope and pervasiveness. Reality is unfor-

giving and thus researchers had the need to design and develop new algorithms

based on probabilistic principles that, despite their probabilistic yet quantifiable

guarantees, are suitable to today’s modern distributed systems.

In this dissertation, we study the challenges of and propose solutions for, ap-

plying probabilistic dissemination algorithms, also known as epidemic- or gossip-

based, in very large scale distributed systems. In particular, we focus on the

issues of scalability of content types (topic-based publish-subscribe), content size

(efficient data dissemination) and ordering requirements (total order). For each

one of these issues, we present a novel distributed algorithm that solves the prob-

lem while matching state-of-the art performance and trade-offs, and evaluate it

on a realistic setting.

vii

viii

Algoritmos Epidémicos para

Disseminação de Dados em Larga

Escala

Os sistemas distribúıdos são hoje em dia components fundamentais das infraestru-

turas e serviços de TI, tais como a Internet, comércio eletrónico, a bolsa, Com-

putação em Nuvem (Cloud Computing) e a SmartGrid. Dada a sua importância,

estes sistemas, desenhados e desenvolvidos ao longo das últimas decadas, as-

sentam em algoritmos distribúıdos com garantias fortes de correção e segurança

(safety). No entanto, esses algoritmos têm ficado para trás por razões teóricas

e práticas, no que concerne às necessidades de escala, âmbito e universalidade

dos sistemas distribúıdos que suportam. Este hiato conduziu à conceção e de-

senvolvimento de novos algoritmos baseados em prinćıpios probabiĺısticos que,

apesar de oferecerem somente garantias probabiĺısticas ainda que quantificáveis,

conseguem responder às necessidades dos sistemas distribúıdos modernos.

Esta dissertação estuda os desafios e propõe soluções para a utilização de

algoritmos probabilisticos de disseminação de dados, também conhecidos como

epidémicos ou baseados em rumor, em sistemas distribúıdos de larga escala. Foca-

se, em particular, na escalabilidade de tipos de conteúdo (paradigma publicação-

subscrição baseado em tópicos), tamanho do conteúdo (disseminação eficiente de

dados) e requisitos de ordem (ordem total). Para cada problema identificado

acima, propomos um novo algoritmo distribúıdo que o resolve, sem prejúızo dos

compromissos oferecidos por outros algoritmos estado da arte, e avaliamos a

solução num ambiente realista.

ix

x

Contents

1 Introduction 1

1.1 Problem statement and objectives 3

1.2 Contributions . 8

1.3 Results . 9

1.4 Dissertation outline . 12

2 Background 13

2.1 Model . 13

2.2 Overlay Networks . 14

2.2.1 Structured Overlays . 15

2.2.2 Unstructured Overlays . 16

2.2.3 Discussion . 18

2.3 Data Dissemination . 19

2.3.1 Flooding . 19

2.3.2 Tree . 19

2.3.3 Epidemic . 20

2.3.4 Discussion . 22

2.4 Conventions . 22

3 StaN: scalable topic-based publish-subscribe 25

3.1 Introduction . 25

3.2 Algorithm description . 27

3.2.1 System Model and Assumptions 27

3.2.2 Design Rationale . 29

3.2.3 Link Management . 31

3.2.4 Dissemination . 34

xi

xii Contents

3.3 Evaluation . 36

3.3.1 Experimental Data . 37

3.3.2 Workload Characteristics 38

3.3.3 Experimental Setup . 41

3.3.4 Performance . 42

3.3.5 Fitness . 46

3.3.6 Dynamics . 48

3.3.7 Greedy-omniscient comparison 51

3.3.8 Dissemination . 53

3.4 Related Work . 55

3.5 Discussion . 58

4 Brisa: efficient reliable data dissemination 61

4.1 Introduction . 61

4.2 Algorithm description . 64

4.2.1 Peer Sampling Service Layer 64

4.2.2 Rationale . 66

4.2.3 Emergence of a Dissemination Structure 68

4.2.4 Preventing Cycles . 69

4.2.5 Parent Selection Strategies 70

4.2.6 Dynamism . 71

4.2.7 Generalized Dissemination Structures 73

4.2.8 Multiple Dissemination Structures 74

4.3 Evaluation . 76

4.3.1 Structural properties . 77

4.3.2 Network properties . 79

4.3.3 Robustness . 81

4.3.4 Multiple trees . 82

4.3.5 Comparison with existing approaches 86

4.4 Related Work . 91

4.5 Discussion . 96

5 EpTO: epidemic total order dissemination 99

5.1 Introduction . 99

5.2 Algorithm Description . 101

Contents xiii

5.2.1 System model and assumptions 102

5.2.2 Problem Statement . 102

5.2.3 Rationale . 103

5.2.4 Detailed description . 105

5.2.5 Deliverability oracle and logical time 108

5.2.6 Properties satisfiability . 111

5.3 Evaluation . 120

5.4 Related Work . 127

5.5 Discussion . 128

6 Conclusions 131

6.1 Future work . 134

Bibliography 137

xiv Contents

List of Figures

1.1 Epidemic dissemination problems 5

3.1 StaN placement in the problem space. 26

3.2 StaN’s architecture. 29

3.3 5-processes sample run with two topics from the point of view of

process n0 (only a subset of the links is shown). 34

3.4 Subscription distribution for LiveJournal universes. 39

3.5 Subscription distribution for Wikipedia universes. 40

3.6 Subscription correlation. 40

3.7 Evolution and distribution of the LVS and PVS for a synthetic

universe (100 processes and 16 topics). The legend is shared by

the two graphs. 43

3.8 IPVS/FPVS and relative improvement for the L8 and W8 universes. 44

3.9 Evolution of the IPVS/FPVS with the number of topics. 45

3.10 Clustering coefficient, average path length and diameter distribu-

tion for the L8 and W8 universes (most lines overlap). 47

3.11 View evolution under message loss for universe W8 (percentages

indicate message loss rates). 48

3.12 Universe and view evolution under churn for universe W8. (Num-

bers represent the churn speedup factor.) 50

3.13 View evolution for growing W8 universe. 51

3.14 Comparison of view improvement and clustering coefficient distri-

bution for StaN and a greedy-omniscient approach for W8. Lines

“Initial” and “Final StaN” overlap in Figure 3.14(b). 52

xv

xvi List of Figures

3.15 SimpleFlood vs CrosspostFlood on universe L8: a) bandwidth re-

duction before and after optimizing the overlays with StaN b) hops

necessary for first delivery. 54

4.1 Brisa placement in the problem space. 62

4.2 HyParView (Leitão et al. 2007b): views maintenance. 64

4.3 Distribution of duplicates per message for each process for 500

messages in a 512 processes HyParView network for various active

view sizes. 66

4.4 Reception of a duplicate and deactivation of one link, for a tree

Brisa structure. Depending on the parent selection strategy, the

deactivated link can be the previous parent or the process sending

the duplicate. 69

4.5 Avoiding creating a cycle for a tree, by checking that process N is

not in the dissemination path to the potential parent. 70

4.6 Avoiding creating a cycle for a DAG, by checking that the level of

the potential parent is less than or equal to the level of the process. 73

4.7 Depth distribution for 512 process (first-come first-picked strategy). 77

4.8 Degree distribution for 512 process (first-come first-picked strategy). 77

4.9 Sample tree shape for 100 processes represented in a radial lay-

out. The HyParView active view size of 4 (left) and 8 (right).

Expansion factor is 1. 78

4.10 Routing delays distribution on PlanetLab for 150 processes. Struc-

ture is a tree with view size 4. Message size is 1KB×200 messages. 80

4.11 Download bandwidth usage for 512 processes. 80

4.12 Upload bandwidth usage for 512 processes. 81

4.13 Distribution of the number of trees where processes are leaves for

512 processes and active view size of 8. 83

4.14 Distribution of the number of children across all trees for 512 pro-

cesses and active view size of 8. 84

4.15 Reception delays per message when using multiple trees for 512

processes and active view size of 8. The number of messages is 500. 85

4.16 Dissemination delay when splitting the stream of messages across

multiple trees for 512 processes and active view size of 8. The

number of messages is 500. 86

List of Figures xvii

4.17 Comparison of bandwidth usage for 512 processes. 89

4.18 Construction time for 512 (on cluster) and 200 (PlanetLab) pro-

cesses. X axis is logarithmic. 89

4.19 Parent recovery delays for 128 processes with active view size 4

under 3% continuous churn. 91

5.1 EpTO placement in the problem space. 100

5.2 Properties satisfiability: order but no agreement (left) and agree-

ment but no order (right). 102

5.3 Totally ordered event delivery. 103

5.4 EpTO architecture. 105

5.5 Stability oracles. 108

5.6 Sample run with a logical clock. Note that rounds are labeled just

for presentation purposes, EpTO does not require round synchro-

nization or labeling. 110

5.7 Latency distribution used in experiments (obtained from PlanetLab).120

5.8 Spontaneous order with a global and a logical clock for varying

system sizes and publication rates r. 121

5.9 Delivery delay for 100, 200 and 500 processes for varying publica-

tion rates r and clock types. 122

5.10 Pathological disorder situations related to the task execution pe-

riod δ for a publication rate r = 0.5. 123

5.11 Impact of churn on the delivery delay with a global clock and

publication rate r = 0.5. 126

6.1 Placement of each proposed algorithm in the problem space. . . . 132

6.2 Possible problem combinations and challenges. 135

xviii List of Figures

List of Tables

3.1 Universe configurations. 38

4.1 Impact of churn for a 128 and 512 node networks with active view

size 4. 83

4.2 Protocol design space. 86

4.3 Dissemination latency for 512 processes for 500 messages of 1KB. 90

xix

xx List of Tables

Chapter 1

Introduction

Since the dawn of time, our species has distinguished itself from the others by

its superior communication capabilities and the ability to cooperate toward a

common goal. Fast forwarding to the present days, our Information society is

still characterized by its blazingly fast communication capabilities and the ability

to cooperate worldwide by quickly exchanging information among several parties

geographically dispersed, from text and voice to stock information and video.

This ability rests on Telecommunication Technology and Information Technology

and forms the backbone of infrastructures as critical as electricity distribution and

the trend toward the Smartgrid, the Internet and Cloud Computing, and useful

services such as social networks and video broadcasting platforms. The impressive

growth in the number of infrastructures, machines and people interconnected

together resulted also on the exponential growth of data that flows throughout

these systems. As a matter of fact, recent studies estimate that the amount of

data available quadruples every eighteen months (Gantz 2007, 2008) making Big

Data a hot research and business topic. Remarkably, when discussing all these

subjects and systems, and the challenges they raise, we inevitably come down to a

well-known subject: distributed computing systems. At its inception, distributed

systems address essentially two problems: scalability - the capacity of a single

component is not enough to cope with the demand and thus there is the need

to distribute that load to several components; and/or availability - the service

disruption caused by the failure of a single component is unacceptable and thus

the component needs to be replicated as a means to fault tolerance.

Conceptually, distributed systems are composed of interconnected processes

1

2 1 Introduction

that execute computing instructions concurrently and independently, and may

possess only limited information about the system as a whole (Lynch 1996).

Depending on the environment they are able to operate, distributed systems

can be classified according to their timing model - synchronous or asynchronous

-, interprocess communication method - shared memory or message passing -

, and failure model - well-defined or arbitrary failures (Lynch 1996). In this

dissertation we are interested in asynchronous, message passing system with well

defined failure models regarding processes and communication channels.

Until recently, the bulk of research on distributed systems focused on the de-

sign and implementation of algorithms with strong guarantees even in the pres-

ence of process and communication failures without assumptions on processes

and communication relative speed. Examples include agreement (Guerraoui and

Schiper 2001), robust dissemination (Floyd et al. 1997) or leader election (Sabel

and Marzullo 1995). However, the huge growth in terms of number of processes

and communication complexity observed in the last decade rendered classical

algorithms impractical for systems encompassing hundreds to thousands of pro-

cesses. The reason for this stems not only from the deterministic nature of these

algorithms, which poses well-known restrictions on what can be achieved in a

distributed system (Fischer et al. 1985), but also on the properties that are

achievable at a large scale and their cost. In fact, the well-known CAP theo-

rem (Brewer 2000; Gilbert and Lynch 2002) states that one cannot achieve at

the same time consistency, availability, and partition tolerance. As failure rates

increase with the system size (Schroeder and Gibson 2007; Schroeder et al. 2009;

Verespej and Pasquale 2011), the larger the system the harder and costlier those

properties are to achieve. Besides, algorithms offering strong guarantees cope

poorly with the scale of modern distributed systems (Demers et al. 1987; Birman

et al. 1999; Vogels 2009), thus leaving a gap between what is expected by an

application architect and what is achievable in practice.

As an alternative to the dilemma posed by deterministic algorithms, a lot

of research was dedicated to probabilistic algorithms instead. Remarkably, by

sidestepping the deterministic decisions taken by classical algorithms and using

randomization instead, probabilistic algorithms become surprisingly robust to

failures (Demers et al. 1987; Birman et al. 1999), scalable (Demers et al. 1987;

Birman et al. 1999) and able to overcome impossibility results of deterministic al-

1.1 Problem statement and objectives 3

gorithms (Ben-Or 1983). The probabilistic, yet quantifiable, guarantees of these

algorithms have proved sufficient to address most problems in distributed systems,

such as membership management (Ganesh et al. 2001; Jelasity et al. 2007b; Leitão

et al. 2007b), failure detection services (Renesse et al. 2007), robust dissemina-

tion (Birman et al. 1999; Carvalho et al. 2007), leader election (Gupta et al. 2000),

or indexing mechanisms (Montresor et al. 2005; DeCandia et al. 2007b). When

the randomization happens at the interprocess communication level, the message

exchange patterns among processes actually resembles the spreading of a rumor

or epidemic. Thus such algorithms are known as gossip or epidemic (Bailey 1975;

Demers et al. 1987). As a matter of fact, the way messages are exchanged and the

guarantees epidemic algorithms offer on such exchanges is a crucial design axis

of epidemic systems. In general, in a message passing system, regardless of the

properties of the underlying communication channels, we need to consider several

fundamental aspects: delivery reliability, message type, message size, latency and

ordering.

When properly configured, an epidemic algorithm ensures delivery reliability

to all nodes, with high probability. The notion of with high probability, shortened

as w.h.p. quantifies the probability of a given property holding, such as all

processes receive all broadcast messages and is usually given by 1− ε, ε being an

arbitrarily small quantity (Birman et al. 1999; Eugster et al. 2003b). On top of

these reliability guarantees, it is possible to build other algorithms that address

each one of the concerns pointed above and model several real world scenarios.

In the next sections, we outline each one of these concerns, present the existing

problems and frame the contributions of this dissertation.

1.1 Problem statement and objectives

Given the inadequacy of classical deterministic algorithms in addressing today’s

problems of scale and cost, and the consequent issues of obtaining strong de-

terministic guarantees in highly dynamic environments, we started to look at

epidemic algorithms as a promising alternative. As a matter of fact, epidemic

algorithms have been used to address many distributed systems problems (see

for instance (Rivière and Voulgaris 2011) for a recent survey) not just on the

research community but also on industrial environments such as Amazon’s Dy-

4 1 Introduction

namo (DeCandia et al. 2007a) and Facebook’s Cassandra (Lakshman and Malik

2010), which use epidemic algorithms in key parts of their systems.

The general research question pervading this dissertation is thus:

What key weaknesses preclude epidemic algorithms from being broadly ap-

plied to a wider range of very large scale scenarios?

Instead of attacking the question in a top-down approach and addressing

a particular research problem, such as epidemic algorithms impose an excessive

overhead in the network, we followed a bottom-up approach instead by uncovering

the key aspects leading to these problems, such as careless excessive transmis-

sions of large messages result in bandwidth depletion. Because the transmission

of messages is the defining property of a message passing system in general and of

epidemic algorithms in particular, the three challenges we address in this disser-

tation are concerned with the properties of the transmission and the properties of

the messages being transmitted. More precisely, the research questions studied

in this dissertation are:

1. How can we deal with different message types and what is the impact on

management overhead?

2. How can we deal with large message sizes and what is the impact on band-

width and latency?

3. How can we deal with message ordering, and in particular total order?

Note that each one of these questions have been already addressed using

classical, often centralized deterministic algorithms. For instance, the problems

of message types has been addressed by the use of publish-subscribe systems

based on centralized brokers (Carzaniga et al. 2000; Castro et al. 2002), the

dissemination of large messages is addressed using traditional tree construction

mechanisms (Chu et al. 2002) or algorithms such as BitTorrent (Cohen 2003,

2008), and message ordering is a very well studied subject (Défago et al. 2004).

Our concern here is to build scalable algorithms suitable to the size of modern

distributed systems that are able to operate on dynamic environments subject

to recurring faults and churn - a consequence of scale itself. The scope of our

problems is depicted in Figure 1.1. In the remainder of this section we briefly

discuss each one of the problems.

1.1 Problem statement and objectives 5

Message

Ordering
Message Size
and Latency

Messa
ge

Types PSS

Network

Figure 1.1: Epidemic dissemination problems

Message types The ability to consider different message types allows not only

to differentiate between control and application level messages but also to convey

a richer semantic meaning for the application itself. For example, by mapping

a given message type to a specific kind of information - a topic - we are able to

model a system where processes might only be interested in specific topics. Pro-

cesses are then able to publish messages in a given topic and subscribe to topics

they are interested in and thus form a topic-based publish-subscribe system (Eu-

gster et al. 2003a). Despite dismayingly simple, this abstraction fully captures

the behavior of many real scenarios such as Usenet, Web syndication and social

networks. The literature on topic-based publish-subscribe is rich and extensive

and addresses problems such as topic construction, inter- and intra-topic message

dissemination and scalability to very large number of processes (Baldoni et al.

2007a; Chockler et al. 2007a,b; Girdzijauskas et al. 2010). However, the way we

produce and consume data nowadays is departing from the traditional model of

one-producer to many-consumers that can be observed in a typical newspaper to

a new paradigm where everyone is simultaneously a producer and consumer of in-

formation. This is true not only for common users with the advent of the Web 2.0

and tools such as blogs, but also for enterprises where data needs to flow to and

from several locations to support globalized businesses. On a distributed system

this results not only on a sheer increase in the number of processes in the system

6 1 Introduction

as well as on the number of topics available. To the best of our knowledge, exist-

ing approaches fall short on managing very large number of topics by incurring

on excessive overhead, by degrading the properties that make epidemic dissem-

ination robust or both. Therefore, we strive for a topic-based publish-subscribe

algorithm that addresses the following challenges: 1) scalability in the number

of processes, 2) scalability in the number of topics, 3) fitness and robustness to

epidemic dissemination, 3) completeness by having processes receive all messages

published in their subscribed topics, and 4) accuracy by avoiding that processes

receive messages they are not interested in. Part of our solution to this problem

rests on a social observation: topic subscribers often share similar interests and

thus one can leverage on this topic overlap as a means to achieve topic scalabil-

ity. The design, implementation and evaluation of this algorithm is presented in

Chapter 3.

Message size and latency Without loss of generality, we can see data dis-

semination as the need to distribute arbitrarily large data (contents) from a set of

nodes that hold the data to a very large population of nodes that demand it. The

data to be disseminated could range from updates or new versions of a popular

software, such as an operating system, to the transmission of live sport events,

both of which have very different requirements. For instance, in the former, data

integrity is a major concern, while in the latter jitter tends to be more relevant.

To enable large scale data dissemination, both in terms of number of nodes and

volume of data, several approaches emerged that focus either on the optimization

of the data sources (the nodes that hold the data) or in the exploitation of the

scale and characteristics of the target nodes, i.e. the nodes that demand the

data. The typical example of the first approach is Content Distribution/Delivery

Networks, such as Akamai (Akamai Technologies 2013), that essentially mirror

the data sources across geographically dispersed locations. In this way consumer

nodes can retrieve the data from closer locations thus improving performance,

while reducing the load on the original data sources. The other canonical ap-

proach is to leverage on the nodes demanding the data and have them behave in

a cooperatively manner by exchanging data with their peers. The most popular

peer-to-peer system used nowadays is probably BitTorrent (Cohen 2003, 2008).

Despite the popularity and the necessity of large scale data dissemination

1.1 Problem statement and objectives 7

systems, there are still outstanding issues to solve. Existing epidemic systems

are able to scale in the number of nodes and offer probabilistic delivery guaran-

tees (Kermarrec et al. 2001; Ganesh et al. 2001; Eugster et al. 2004). Nonetheless,

they impose a heavy load on the network that precludes its usage for disseminat-

ing large amounts of data. Based on this, several proposals address the problem

of heavy bandwidth consumption by using designs that are more efficient (Castro

et al. 2003b; Locher et al. 2007). However, efficiency here comes at the price of

fault and churn tolerance which is essential in very-large scale systems, where

the population of nodes could not be expected to remain stable (Schroeder and

Gibson 2007; Schroeder et al. 2009; Verespej and Pasquale 2011). With these

problems and limitations in mind, we envision a very large scale data manage-

ment system, with a particular emphasis on data dissemination. Thus, our goal

is to build an epidemic data dissemination that addresses the following chal-

lenges: 1) scalability in the number of processes, 2) robustness under faults and

churn, 3) efficient bandwidth usage, and 4) adjustable to heterogeneous environ-

ments. We approach this problem in two steps. First, we rely on the robustness

and scalability, yet inefficient, properties of epidemic dissemination as a safety

net. Then, we increase the efficiency by observing that it is the possibility of

receiving duplicates, not the actual reception, that makes epidemic algorithms so

robust. The design, implementation and evaluation of an algorithm addressing

these challenges is presented in Chapter 4.

Message ordering The order of events, carried in messages, is one of the most

fundamental problems in distributed systems (Lamport 1978) and as such a very

large body of knowledge has been dedicated to it (Défago et al. 2004). The

ability to order events in the same way irrespective of the size of the system,

relative processor speeds, failures and channel asynchrony on distinct processes

is extremely powerful and greatly simplifies the design and implementation of a

wide range of related algorithms, such as state machine replication, view syn-

chrony and consensus. Intuitively, the ordering of events is concerned with the

sequence of events that processes are allowed to deliver to an application. While

this is trivial to achieve in a system where just a single process broadcasts events

- by tagging each event with a sequence number - it becomes rather complex and

costly when more than one process may broadcast events. For instance, suppose

8 1 Introduction

two operations such as add and multiplication where the order they are applied

matters, i.e. they are not commutative. Now suppose one broadcasts two events

in a distributed system where one event carries the operation of adding a quan-

tity to a bank account and the other event carries the operation of applying an

interest rate to that account balance. Clearly, for the system to remain semanti-

cally correct and coherent, the order in which these two events are applied in all

processes needs to be the same. Different applications might live with different

ordering guarantees related to the senders, such as FIFO and causal order, the

receivers, such as total order, or a combination of both. Because senders can eas-

ily encode ordering constraints in the events they broadcast, for instance by using

sequence numbers in the case of FIFO or defining the happens before relationship

in the case of causal order (Lamport 1978), we focus instead on enforcing order at

the receivers, i.e. total order. Due to the strong abstraction they provide, total

order algorithms are complex to design, hard to implement, scale poorly and are

sensitive to failures (Felber and Pedone 2002; Cimmino et al. 2003; Défago et al.

2004). Therefore, we seek an epidemic total order algorithm that addresses the

following challenges: 1) ensures total order, 2) scales with the number of pro-

cesses and events, and 3) is robust to failures and churn. To this end, we start

with an epidemic dissemination algorithm with well-known reliability guarantees

and build the notion of stability and ordering on top of it. The design, implemen-

tation and evaluation of an algorithm addressing these challenges is presented in

Chapter 5.

1.2 Contributions

The main contributions of this dissertation are:

• StaN, a new topic-based publish-subscribe algorithm that addresses the

problem of message types by being able to scale on the number of processes

and topics, while preserving the fitness and robustness of epidemic dissem-

ination algorithms. Completeness and accuracy are obtained by design by

managing each topic independently. Moreover, we also devise a dissemi-

nation algorithm that takes advantage of crossposting, i.e. events simul-

taneously published to several topics, to reduce bandwidth usage without

compromising latency.

1.3 Results 9

• Brisa, a new dissemination algorithm combining the robustness and scal-

ability of epidemic approaches with the resource efficiency of structured

solutions. It supports multi-source dissemination with minimal overhead

by reusing the dissemination structures whenever possible. These dissemi-

nation structures, which can be either trees or directed acyclic graphs, are

built in a completely decentralized manner and can be adjusted to differ-

ent optimal criteria, such as end-to-end latency and heterogeneous process

capacities.

• EpTO, a new total order algorithm able to scale to a very large num-

ber of processes and events. Agreement is probabilistic but all the other

properties, namely validity, integrity and total order are deterministic and

always preserved. The algorithm is shown to be very robust to churn and

misconfiguration with performance degrading only under the most adverse

environments.

1.3 Results

The work conducted during this dissertation has been published in several con-

ference and journal papers. In chronological order, these are:

• StaN: Exploiting shared interests without disclosing them in gossip-based

publish/subscribe.

Miguel Matos, Ana Nunes, Rui Oliveira, and José Pereira.

In International Workshop on Peer-to-Peer Systems (IPTPS), 2010.

This paper presents the preliminary idea leading to StaN with an evalu-

ation of the algorithm in a synthetic trace. The major result is the recog-

nition that it is possible to manipulate the topics without affecting the

organizational properties necessary for robustness.

• Brisa: Combining Efficiency and Reliability in Epidemic Data Dissemina-

tion.

Miguel Matos, Valerio Schiavoni, Pascal Felber, Rui Oliveira and Étienne

Rivière.

In IEEE International Parallel and Distributed Processing Symposium (IPDPS),

2012.

10 1 Introduction

This paper presents Brisa and the main design decisions behind the al-

gorithm. The major result is the recognition that it is indeed possible to

combine the robustness of epidemic dissemination with the efficiency of a

structured approach, such as trees and directed acyclic graphs in a single

algorithm. The evaluation was done in a real environment with a real im-

plementation by leveraging the Splay framework (Leonini et al. 2009) and is

publicly available at http://www.splay-project.org/splay/ipdps2012/

brisa.zip.

• Scaling up publish/subscribe overlays using interest correlation for link

sharing.

Miguel Matos, Pascal Felber, Rui Oliveira, José Pereira and Etienne Rivière.

In IEEE Transactions on Parallel and Distributed Systems (TPDS), 2013.

This paper extends and improves the work done on StaN by presenting the

algorithm in much more detail. StaN is evaluated with real workloads from

traces of LiveJournal and Wikipedia showing substantial improvements on

topic management overhead even under dynamic environments. Moreover,

this paper also proposes a simple event dissemination algorithm that takes

advantage of event crossposting to improve bandwidth usage. Besides the

evaluation on a simulated environment, we also evaluate StaN in a real

environment with the help of the Splay framework (Leonini et al. 2009).

The implementation is publicly available at XYZ.

• Lightweight, Efficient, Robust Epidemic Dissemination.

Miguel Matos, Valerio Schiavoni, Pascal Felber, Rui Oliveira, and Etienne

Rivière.

In Journal of Parallel and Distributed Computing (JPDC), 2013.

This paper extends and improves the work done on Brisa by providing a

more detailed description of the algorithm and its main properties. The

focus was on the support of multiple dissemination structures, their im-

pact on the algorithm’s behavior and an evaluation comparing the different

alternatives. The implementation, done with the help of the Splay frame-

work (Leonini et al. 2009), is publicly available at XYZ.

• An Epidemic Total Order Algorithm for Large-Scale Distributed Systems.

http://www.splay-project.org/splay/ipdps2012/brisa.zip
http://www.splay-project.org/splay/ipdps2012/brisa.zip
XYZ
XYZ

1.3 Results 11

Miguel Matos, Pascal Felber, Rui Oliveira, and José Pereira.

(submitted)

This paper presents the main idea leading to EpTO and a detailed eval-

uation of the algorithm under different scenarios and configurations on a

simulated environment.

• LayStream: A Layered Approach to Gossip-based Live Streaming.

Miguel Matos, Valerio Schiavoni, Pascal Felber, Rui Oliveira, and Etienne

Rivière.

(submitted)

This paper builds partially on the work done on Brisa and its efficiency

and robustness properties to build an epidemic live video streaming system.

The stringent requirements of this setting led us to implement and evalu-

ate several key components of a typical epidemic system, such as the peer

sampling and topology construction services, identify mismatches between

simulated and real deployments and propose solutions for them.

Besides, during the course of this dissertation several collaborations sprung

from the work done here. The most related to this disseration, in chronological

order, are:

• An epidemic approach to dependable key-value substrates.

Miguel Matos, Ricardo Vilaca, José Pereira, and Rui Oliveira.

In International Workshop on Dependability of Clouds, Data Centers and

Virtual Computing Environments - Dependable Systems and Networks Work-

shops, (DSN-W), 2011.

• Slead: low-memory, steady distributed systems slicing.

Francisco Maia, Miguel Matos, Étienne Rivière and Rui Oliveira.

In International Conference on Distributed Applications and Interoperable

Systems, (DAIS) 2012.

• Slicing as a distributed systems primitive.

Francisco Maia, Miguel Matos, Etienne Rivière and Rui Oliveira.

In Latin-American Symposium on Dependable Computing (LADC), 2013.

12 1 Introduction

• DataFlasks: an epidemic dependable key-value substrate.

Francisco Maia, Miguel Matos, Ricardo Vilaça, José Pereira, Rui Oliveira

and Etienne Rivière.

In International Workshop on Dependability of Clouds, Data Centers and

Virtual Computing Environments - Dependable Systems and Networks Work-

shops, (DSN-W), 2013.

1.4 Dissertation outline

This dissertation is organized around the set of papers published and submitted

above. To this end, we organized the dissertation in three major chapters, one

for each of the major issues addressed, namely: message types, message size and

latency and message ordering. Because each theme is roughly self-contained,

instead of discussing the related work in a separate chapter, we present it in the

respective theme’s chapter. Still, common concepts, assumptions and models are

presented together in a background chapter.

In detail, the remainder of this dissertation is organized as follows:

• Chapter 2 provides a brief introduction to the fundamental concepts of

epidemic systems, presents the building blocks used for this dissertation

and discusses the general model and assumptions made.

• Chapter 3 presents the design and evaluation of StaN, addressing the prob-

lem of message types

• Chapter 4 presents the design and evaluation of Brisa, addressing the

problem of message size and latency.

• Chapter 5 presents the design and evaluation of EpTO, addressing the

problem of message ordering.

• Chapter 6 concludes the dissertation, summarizes the major contributions

and gives some pointers for possible paths of future research.

Chapter 2

Background

In this chapter we introduce the concepts underlying epidemic algorithms, de-

fine our programing model and assumptions and describe the conventions used

throughout the rest of this dissertation.

2.1 Model

In general, distributed systems are classified according to the interprocess com-

munication mechanism, the timing model and the failure model (Lynch 1996).

The failure model specifies the type of faults in the system and it encompasses

failure detectability, process recovery, omissions in sending and/or receiving mes-

sages and arbitrary failures known as Byzantine. For simplicity, we assume only

failstop failures in which processes are allowed to fail and such failures can be

eventually detected. This means that if a process fails and later recovers and

rejoins the system, for instance as a consequence of churn, it does so as a new

process. Moreover, in the algorithms we propose, the precision of failure detec-

tion only impacts performance not correctness. Processes that do not fail are said

to be correct. Interprocess communication is the mechanism used by processes

to exchange operations and data, and can be implemented by shared memory,

point-to-point or broadcast of messages, or remote procedure calls. Due to its

simplicity and wide availability, we focus only on point-to-point communication

over an IP network using a transport protocol, such as TCP or UDP. By assump-

tion, each process can be uniquely identified and reached by its IP address and

port, i.e. we do not consider processes behind firewalls or NATs. Note that this

13

14 2 Background

limitation can be overcome by the use of several techniques, using epidemic algo-

rithms readily available (Kermarrec et al. 2009; Leitão et al. 2010). The virtual

link between any two pair of processes is called a channel. We assume channels

to be fair-lossy, i.e. losses might occur but if a correct process sends a message

infinitely often to another correct process, the latter will receive that message in-

finitely many times. Moreover, we further assume that channels do not corrupt,

duplicate or create spurious messages. In practice, this can be implemented by a

reliable transport protocol, such as TCP, or by the application by using message

retransmissions or the stubborn channel abstraction (Guerraoui et al. 1998).

The timing model is concerned with the assumptions done regarding relative

process speeds and communication channels timeliness. In one extreme, we have

synchronous systems which have a well-known upper bound on the time it takes

for processes to execute operations and on the time taken since a message is sent

until it is received. On the other hand, in asynchronous systems there is no such

upper-bound and both processes execution speed and message transmission time

can take infinitely long. Despite being harder to reason about, asynchronous

systems are more generic and therefore we focus only on asynchronous systems

in this dissertation. Moreover, unless otherwise stated, there is no assumption in

the availability of a global clock.

2.2 Overlay Networks

In order for the system to function properly, each process needs to know the

identifier of other processes with which it can communicate with. This set of

process identifiers is known as the view and the size of the view is known as the

degree. When a process p has a process q in its view, q is said to be a neighbor of

p and the set of all processes in p’s view is called the neighborhood of p. The set

of all views establishes a who knows who relationship and is known as an overlay

network - a logical network imposed on top of the physical infrastructure. When

analyzing the global properties of an overlay network, it is often useful to model

it as a graph where processes are vertices connected by the links or edges induced

by the views. This graph should have some key properties that any algorithm

should strive to obtain and preserve. These properties are (Jelasity et al. 2007a):

• Connectivity: indicates process reachability and is obtained when any

2.2 Overlay Networks 15

process is able to reach every other process in the system in a finite number

of hops. Failure to ensure connectivity, known as a partition, severely

impairs the usefulness of algorithms as not all processes are able to receive

the desired application data.

• Average path length: measures the average number of hops separating

any two processes in the system. It is related to the overlay diameter which

is given by the greatest path length between any two processes. The average

path length should be as small as possible as it imposes a lower bound on

the time needed to disseminate data among all processes.

• Clustering coefficient: measures the closeness of neighbor relations among

processes. It is defined as the number of links among the neighbors of a

given process divided by the number of all possible links among those pro-

cesses. This property affects redundancy because the number of duplicates

received directly increases with it, and also robustness because graphs with

high clustering coefficients are more prone to partitions.

• Degree distribution: is the distribution of the number of neighbors of

each process - the degree or size of the view - and measures processes’

reachability and their contribution to the connectivity.

In the following, we present the two main approaches to build overlay net-

works: structured and unstructured.

2.2.1 Structured Overlays

In the class of structured overlay networks, the neighboring relations among pro-

cesses are established judiciously according to some criteria, such as latency or

distance. Due to the tight control over link establishment, structured overlay

networks are efficient in routing data and/or requests to the appropriate process,

as the location of those processes could be calculated in a deterministic fashion.

Thus, structured overlay networks are popular to store and retrieve arbitrary data

and build distributed hash tables (DHT) (Plaxton et al. 1997). DHT algorithms

define a topology by assigning identifiers to each process, and a function that

determines the distance, in number of hops, between any two identifiers in the

space. Nonetheless, the inherent overlay structure can also be used to provide

16 2 Background

data dissemination primitives to applications (Jannotti et al. 2000; Ratnasamy

et al. 2001; Zhuang et al. 2001; Castro et al. 2002). Structured overlay networks

are typically built as spanning trees (Gallager et al. 1983) or more complex struc-

tures, such as hypercubes (Rowstron and Druschel 2001; Zhao et al. 2001; Stoica

et al. 2003) and Cartesian hyperspaces (Ratnasamy et al. 2001).

Despite the frugality in resource consumption of both processes and links,

structured overlay networks are highly sensitive to churn and failures. The fru-

gality comes from the before hand construction of the network structure that

is able to take advantage of links and processes with higher capacity. However,

upon failures the overlay must be rebuilt, precluding the dissemination of data to

all processes while this process takes place. As such, in highly dynamic environ-

ments where the churn rate is considerable, the cost of constantly rebuilding the

overlay may become unbearable. Furthermore, processes closer to the root of the

spanning tree handle most of the load of the dissemination, thus impairing the

scalability of the approach. This also applies to the aforementioned structures,

as certain processes become critical in reaching a large part of the network, and

therefore are responsible for handling the network load of large portions of the

system.

2.2.2 Unstructured Overlays

In the unstructured approach, links are established randomly among processes

without taking into account any efficiency criteria. Therefore, to guarantee that

all processes are reachable, and thus the connectivity property ensured, links

need to be established with enough redundancy, which has a significant impact

on the overlay. The main advantage is that because there are multiple paths

available between any two pair of processes, failures and churn do not impair the

successful delivery of a given message as it will be routed by some other available

path. Furthermore, as there is no implicit structure on the overlay, the churn

effect is mitigated as there is no need for global coordination or rebuilding of the

overlay. These characteristics yield strong desirable properties in distributed sys-

tems: reliability, as connectivity is preserved despite faults; and resilience, as the

effect of churn is negligible when compared to structured approaches. Scalability

is obtained by requiring each process to know only a small subset of neighbors,

typically bounded by the logarithm of the size of system, thus minimizing the

2.2 Overlay Networks 17

load imposed on the maintenance of the overlay and in the dissemination of appli-

cation data. However, departing from global knowledge to only a partial view of

the system has a serious impact on the algorithms as they need to address several

design questions in order to be successful, which include uniformity and adaptiv-

ity (Eugster et al. 2004). The reliability of the overlay stems from the fact that

links are established randomly among all the processes in the system. However,

when the algorithm is restricted to knowledge of only a subset of processes, this

uniform randomness can only be preserved if the partial view of the system is

itself a uniform sample from the system. Adaptivity is concerned with the size of

the partial view of the system. If the system size is known before hand then the

appropriate view size can be easily determined (Kermarrec et al. 2001). However,

when the system size is unknown and/or it varies along the time, the partial view

size maintained by each process needs to be adapted in order to ensure that the

connectivity of the overlay is preserved. Finally, the degree distribution of the

overlay should be even, i.e. the variance of the average degree should be small.

This is fundamental to ensure load balancing as the load imposed on processes -

both in management overhead and in the dissemination effort - is closely related

to the degree.

The mechanism used to construct the overlay in the unstructured approach

is known as the Peer Sampling Service (PSS) (Jelasity et al. 2007b). Due to

its importance as the most fundamental building block in unstructured overlays,

there is an extensive body of research on building a PSS in a fully decentralized

fashion (Lin and Marzullo 1999; Ganesh et al. 2001, 2002; Massoulié et al. 2003;

Voulgaris et al. 2005a,c; Leitão et al. 2007; Melamed and Keidar 2008). Existing

PSS proposals can be roughly classified as reactive or proactive according to the

way they update the processes’ view. In the proactive case, processes periodi-

cally exchange their views with their neighbors regardless of the actual need to

replace failed entries, resulting in each view being a continuous stream of process

samples from the network. Examples of proactive PSSs include Cyclon (Voul-

garis et al. 2005a) and Newscast (Voulgaris et al. 2005c). In the reactive case,

the view is kept unchanged unless some of its entries need to be updated, i.e.

for replacing a failed process or for accommodating a process joining the system.

Typical examples include Scamp (Ganesh et al. 2001), Araneola (Melamed and

Keidar 2008) and HyParView (Leitão et al. 2007b). The trade-off between reac-

18 2 Background

tive versus proactive strategies is essentially one between the frugality in terms

of bandwidth consumption of reactive approaches versus the view freshness and

diversity provided by the proactive approaches.

Random walks Many distributed algorithms over unstructured overlays often

need to sample the network to collect some application specific information. This

procedure can be modeled as a random walk, a graph traversal procedure (Gkant-

sidis et al. 2006; Massoulié et al. 2006). Briefly, a process initiates a random walk

by randomly selecting a neighbor from its view and sending it a specific message.

The receiver executes some application specific logic, adds some information to

the one already carried in the message from the random walk, and forwards the

random walk to a randomly selected neighbor. Each random walk is configured

with a maximum number of hops it needs to take after which it returns to the

initiator. Upon receiving the random walk, the initiator uses the information

collected in an application specific manner.

2.2.3 Discussion

The trade-off between the structured approach and the unstructured one is clear.

In the structured approach it is possible to take advantage of processes and links

with high capabilities thus improving the efficiency of the solution. However,

those approaches are sensitive to faults and churns and thus require a stable

environment in order to operate properly. On the other hand, unstructured

approaches are able to operate under considerable amounts of faults and churn,

but the toll to pay is increased overhead when disseminating application data.

The trade-off here is between a very efficient, brittle approach or a robust, less

efficient one.

Because we target very large scale systems where churn is the norm rather than

the exception, our design philosophy throughout this dissertation is to start with

a robust unstructured algorithm and then judiciously optimize it for performance.

To this end, all algorithms developed assume the existence of a PSS implemented

by one of the aforementioned proposals.

2.3 Data Dissemination 19

2.3 Data Dissemination

The goal of constructing an overlay network, regardless of the particular approach

taken, is usually to offer its capabilities to other services able to disseminate ap-

plication data from one or more sources. In this section we briefly introduce

different data dissemination algorithms and highlight the trade-offs among them.

We consider three different approaches, namely flooding, trees and epidemic algo-

rithms. Because these approaches rely on the membership information provided

by the overlay network, there are naturally some combinations more adequate

than others while others overlap in terms of functionality. For instance, flooding

a structured overlay with the shape of a tree is similar to using a tree dissemi-

nation strategy on an unstructured overlay network. Nonetheless, because these

approaches are at different abstraction levels, we conceptually separate them.

2.3.1 Flooding

Flooding is the simplest dissemination strategy. Essentially, all application mes-

sages received are relayed to all neighbors on the overlay network. As expected,

flooding is very demanding in bandwidth and as such, several optimizations to

this naive strategy exist that take advantage of the location of processes in order

to reduce the number of duplicates received. In one of those strategies, flooding

is only done in the same ’direction’ as the received message, as processes on the

opposite direction are already expected to have received the message (Ratnasamy

et al. 2001).

2.3.2 Tree

In tree approaches, such as (Castro et al. 2002), the dissemination of applica-

tion level messages uses a reverse path forwarding mechanism to construct and

maintain the multicast group, encompassing all processes interested in the dissem-

ination. For each multicast group, the dissemination protocol creates a multicast

tree with a unique identifier and uses it to relay messages to the relevant pro-

cesses. To join the group, a process uses the overlay network to send a message

to the multicast group. As the joining request traverses the overlay, each process

checks whether it is already part of the desired multicast group, and if it is, it

20 2 Background

stops forwarding the message and adds the joining process as a child in the mul-

ticast tree. If not, the request is forwarded to the parent until it is adopted by

a process or it reaches the root of the tree. In the latter, the root will adopt the

joining process as a direct child. The protocol carefully balances the multicast

tree in order to ensure an evenly load distribution among the participating pro-

cesses. To further prevent bottlenecks in certain processes, the protocol provides

mechanisms to demote a process’s child to a grandchild, thus transferring some of

the dissemination effort to its children. Further details of the deployment of these

protocols on top of the structured overlay construction mechanisms available, and

a detailed comparison of the trade-offs between each one can be found in (Castro

et al. 2003c). As the mechanism used to construct the dissemination tree ensures

loop-free paths, there are no message duplicates delivered to the application.

2.3.3 Epidemic

Epidemic or gossip dissemination approaches rely on the mathematical models

of epidemics (Bailey 1975; Demers et al. 1987; Birman et al. 1999; Eugster et al.

2003b, 2004): if each infected element spreads its infection to a number of random

elements in the universe, then all the population will be infected w.h.p. The

number of elements that need to be infected by a given element is called the

fanout and is a fundamental parameter of the model. Note that even if the

model specifies that the elements to be infected need to be selected uniformly

at random from the universe, processes usually know only a small fraction of all

processes - those in their view. This is addressed by works such as lpbcast which

ensure that the view of processes has the same properties than a uniform sample

of all processes (Eugster et al. 2003b). Thus, processes pick fanout elements

from its view and send the message to them. The choice of the value of the

fanout highly influences the fraction of the population that becomes infected. As

specified in (Eugster et al. 2004), the ideal fanout value defines a phase transition:

below that value the dissemination will reach almost no processes, and above it

the dissemination will reach almost all processes. The decision of when and

how to send the message payload to the chosen processes may follow several

approaches (Karp et al. 2000), which we describe next. In the how to send the

message decision there are two options available: push and pull. With push the

sender takes the initiative and relays the message to its neighbors as soon as it is

2.3 Data Dissemination 21

received. On the other hand, with pull the receivers ask periodically the sender

for new messages, which will then relay any new message to the receiver. In the

when decision there are also two options: eager and lazy. Essentially this defines

if the message payload should be sent immediately, the eager variant, or only

an advertisement of the message, the lazy variant. When combining both design

decisions we have four options:

• Eager push: the message payload is sent as soon as it is received. This

minimizes latency, but at the expense of bandwidth as processes are likely

to receive many duplicates. It is the most common strategy and is used by

several well-known protocols, such as (Ganesh et al. 2001; Eugster et al.

2003b; Pereira et al. 2003).

• Lazy push: upon reception of the message payload the process sends an

advertisement of the message to its neighbors. Interested processes can

then ask the sender for the payload. In this approach the latency increases

considerably as three communication steps are necessary to receive the pay-

load, in a pure lazy push system duplicates are eliminated. This strategy

is used in protocols, such as (Liu and Zhou 2006; Carvalho et al. 2007).

• Eager pull: periodically processes will ask their neighbors for new mes-

sages. Upon reception of the request, processes will send all new messages

to the requester. As in the push variant, this approach minimizes latency

but at the cost of high bandwidth usage. It is used in protocols, such

as (Nguyen et al. 2010; Frey et al. 2010).

• Lazy pull: periodically processes will ask their neighbors for new messages.

Upon reception of the request, processes will send a message with the iden-

tifiers of all new known messages to the requester, who can then selectively

pull the relevant messages. This strategy is also known as two-phase pull

and allows for an optimal use of bandwidth even though its latency is con-

siderable. It is used in the Network News Transfer Protocol (Feather 2006),

which powers Usenet.

The eager versus lazy strategy is clearly a trade-off between bandwidth and

latency, while the difference between a push and pull scheme is more subtle.

With push processes behave reactively to message exchanges, while with pull

22 2 Background

processes behave in a proactive fashion by periodically asking for new messages.

Thus, in an environment where messages are sparing, a push strategy has no

communication overhead, while the pull approach presents a constant noise due

to the periodically check for new messages. Proposals such as (Pianese et al.

2007; Carvalho et al. 2007; Wang et al. 2010) try to overcome the disadvantages

of each strategy by combining them in the same protocol.

2.3.4 Discussion

Tree approaches are very efficient in bandwidth usage as, by construction, they

avoid sending and receiving message duplicates. Furthermore, by manipulating

the depth and branching factor of the tree it is possible to obtain a wide range in

end-to-end latency at the cost of putting more load on the interior processes of the

tree. However, similarly to structured overlay networks, trees are vulnerable to

faults and churn, as the failure of an interior process will preclude the reception

of messages in its entire sub-tree. On the other hand, the flooding approach

is completely oblivious to faults and churn, as long as the overlay network is

connected, all processes will receive all messages. The cost of this resilience is

however a large amount of duplicates received, as each process will receive as many

copies of a given message as the view size - one for each neighbor. Technically,

in the tree there is also a flooding process through its branches, however this is

done only to the selected processes (the ones that define the tree according to the

propagation strategy), whereas in a pure flooding the message is sent to all the

neighbors obtained from the overlay network. Epidemic approaches present an

interesting mid-term between the two extremes. The resilience is comparable to

flooding, however, they are much less demanding in terms of bandwidth usage.

With the use of proper strategies, epidemic approaches can even offer a bandwidth

usage similar to the tree, where no duplicates are received.

2.4 Conventions

For readability, we use some conventions throughout this dissertation mostly

regarding presentation style.

When presenting algorithm listings we use the following keyword conventions:

2.4 Conventions 23

• initially: invoked when the process starts, used to initialize data structures

• every δ: invoked every δ time units, usually contains the main loop of the

algorithm

• procedure: invoked locally by the process

• send MSG to p: sending of a message MSG from the current process to

target process p

• upon receive MSG: invoked when a message MSG is received by the

current process

• RandomPick(lst): picks an element uniformly at random from the list

lst.

In the literature one can often find the terms peer, process, processor, node

or machine to refer to slightly different concepts. Technically, a node, machine

or processor is the physical hardware. On top of that we have processes or peers

(software) participating in a given distributed algorithm. While it is possible to

have several processes running on the same node, for simplicity we do not make

such distinction and use all the terms interchangeably.

Finally, one can also find in the literature the related terms message and event.

In this dissertation, we consider an event to be a piece of information created and

delivered by a process, while the message is the network level entity (usually an

Ethernet frame) carrying one or more events.

24 2 Background

Chapter 3

StaN: scalable topic-based

publish-subscribe

3.1 Introduction

As society becomes ever more digital, the number of users connected to the

Internet increases and the variety of data generated online grows steadily. Con-

sequently, there is a huge demand in dissemination systems responsible for de-

livering data to their intended recipients in a variety of contexts, ranging from

social networks and news sites to enterprise environments and financial markets.

The publish/subscribe paradigm emerged as an attractive model for scalable

event dissemination, mainly due to the strong decoupling between the commu-

nicating entities: the producers (publishers) and consumers (subscribers) of in-

formation (Eugster et al. 2003a). This flexibility—in terms of space, time and

synchronization—makes this model suitable to a wide range of application do-

mains, from collaborative feed dissemination systems (Jun and Ahamad 2006;

Nunes et al. 2009) to enterprise service bus middleware used in service-oriented

architectures (Barazzutti et al. 2013).

The topic-based publish-subscribe variant categorizes items by explicit topics,

avoiding the overhead of content-based filtering (Voulgaris et al. 2006). Topics

act as named channels where content can be published in the form of events.

Participants interested in specific content subscribe to one or more topics and

subsequently receive all the events published in these topics. Albeit simple, it

captures the behavior of many real world scenarios, such as Usenet, Web syndi-

25

26 3 StaN: scalable topic-based publish-subscribe

cation, Wikipedia, and social networks, such as LiveJournal.

St
AN Message

Ordering

Message Size
and Latency

Messa
ge

Types PSS

Network

Figure 3.1: StaN placement in the problem space.

Topic-based publish/subscribe has attracted much interest among researchers

(Chockler et al. 2007a,b; Baldoni et al. 2007a; Patel et al. 2009a), especially on

the design of decentralized approaches that do not rely on a central broker to

manage topics and route events. Furthermore, due to scale and dynamic behav-

ior, many existing proposals rely on epidemic dissemination (Birman et al. 1999;

Eugster et al. 2003b) to implement topic-based publish/subscribe communica-

tion (Eugster et al. 2003a).

Some designs build several stacked overlay networks, one for each topic, and

have processes independently join overlays for each of its subscriptions using tra-

ditional epidemic protocols (Birman et al. 1999; Eugster et al. 2003b; Jelasity

et al. 2007c). Unfortunately, this has high maintenance costs and presents scala-

bility problems as the number of links established by each process grows linearly

with the number of subscribed topics. Moreover, publishing the same event in

multiple topics yields redundant transmissions as events are separately dissemi-

nated among the same processes through different overlays.

3.2 Algorithm description 27

The alternative is to maintain a single overlay so that processes with similar

interests are close to each other (Chand and Felber 2005; Chockler et al. 2007b).

Shared interests are explicitly taken into account and redundant event transmis-

sions on multiple topics avoided. With global knowledge of process interests,

such semantic clustering can be achieved using epidemic interactions (Massoulié

et al. 2003; Jelasity et al. 2009). This has been formalized as the minimum

topic-connected problem (Chockler et al. 2007a) and shown to be NP-complete.

Furthermore, the resulting overlay is likely to exhibit a high clustering coefficient

due to the approximation of processes with similar interests. Therefore, it will

be highly sensitive to faults and churn, and prone to partitioning (Jelasity et al.

2007c).

In this chapter we present StaN, a novel approach to topic-based publish-

subscribe that aligns multiple independent overlays in order to promote link shar-

ing among them. Despite being managed independently and in a decentralized

fashion, provided that there is subscription correlation, the overlays converge to

share a large number of links. The growth is slower with the number of top-

ics than traditional multi-overlay approaches, thus promoting topic scalability.

This is achieved while preserving the desirable properties for epidemic dissemi-

nation, namely low clustering coefficient and low diameter thus making StaN an

attractive infrastructure for efficient and scalable topic-based publish-subscribe.

The rest of this chapter is organized as follows. We present StaN and a

dissemination algorithm leveraging link sharing in Section 3.2 and evaluate both

algorithms in Section 3.3. Related work is discussed in Section 3.4 and finally

Section 3.5 concludes the chapter.

3.2 Algorithm description

In this section, we describe the system model, present StaN and discuss its main

properties.

3.2.1 System Model and Assumptions

To map as close as possible to real-world observations, we assume that topic pop-

ularity (the number of subscribers for a topic) and subscriptions per process (the

number of topics a process is subscribed to) follow power law distributions (Liu

28 3 StaN: scalable topic-based publish-subscribe

et al. 2005). We also assume that topic subscriptions are correlated, i.e. there is a

non-negligible probability that subscription sets overlap as observed in real work-

loads (Saroiu et al. 2002; Fraigniaud et al. 2005; Handurukande et al. 2006). We

note that in the absence of correlation, StaN will degenerate in an overlay-per-

topic solution. In this case even single overlay approaches will produce discon-

nected components (one per topic). StaN’s performance is therefore ultimately

driven by the number of subscriptions per process and the correlation between

topics.

StaN’s architecture is presented in Figure 3.2. Our approach assumes each

topic has a separate random (unstructured) overlay network, maintained by some

peer sampling service (PSS) like Scamp (Ganesh et al. 2001). The key properties

of these overlays are: i) average view size grows logarithmically with the system

size, thus enabling process scalability, and ii) clustering and diameter are low,

making the overlays fit for epidemic event dissemination and resilient in face

of faults and churn (Jelasity et al. 2007b). Choosing processes uniformly at

random is key to ensure those properties (Eugster et al. 2004) and, therefore,

it is fundamental to preserve randomness when combining links from different

overlays. Link combination and alignment is done by the Link Management

component described in Section 3.2.3.

We model an overlay as a directed graph and assume the PSS maintains the

graph connected. Using directed graphs allows each participant to make strictly

local decisions regarding the management of its view by establishing and removing

links as appropriate.

Overlay links are a logical abstraction of the underlying network, which are

mapped to a physical link by transport protocols, such as TCP or UDP. This

can be implemented by a dynamic pool of shared TCP/IP connections as in

NeEM (Pereira et al. 2003). Therefore, an epidemic dissemination protocol

leveraging StaN can exploit logical links on different overlays that share the

same physical link, thus avoiding redundant retransmission of the same event.

This is achieved by the Dissemination Management component described in Sec-

tion 3.2.4.

For simplicity we do not differentiate publishers from subscribers and assume

both are interested in receiving all events published on the topic. With this model

of all-to-all communication we use process as a means for both a publisher and a

3.2 Algorithm description 29

 STaN

 deliver

 PSSTopicA

Connection Pool

PSSTopicB

Application
publish

(broadcast) deliver

send/receive

Network Layer

vie
w

vie
w

send/receive get/add/rmPeers

Independent Overlay Management Protocols

Dissemination Management Link Management

subscribe
(join)

publish
(broadcast)

subscribe
(join)

send/receive get/add/rmPeer

Figure 3.2: StaN’s architecture.

subscriber.

3.2.2 Design Rationale

When designing a topic-based publish/subscribe system, a set of desirable prop-

erties naturally emerge:

• Completeness: A process should receive all events published in the sub-

scribed topics.

• Accuracy: A process should not receive any event from a topic it is not

subscribed to.

• Process scalability: The system should scale with respect to the number

of processes for a given topic.

• Topic scalability: The system should scale with respect to the number of

topics.

• Fitness: The overlays should have good structural properties to enable ef-

ficient event dissemination and resilience to faults and churn. As discussed

in Section 2.2, these properties are: connectivity, average path length, degree

30 3 StaN: scalable topic-based publish-subscribe

distribution and clustering coefficient. Connectivity indicates that all pro-

cesses are reachable from any other process and is fundamental to ensure

completeness. Clustering coefficient is related to the dissemination cost as

highly clustered portions of the overlay will produce more redundant mes-

sages, and to fault tolerance as highly clustered sections of the overlay tend

to easily become disconnected from each other, thus compromising overall

connectivity. Average Path Length gives a lower bound on the time and

cost for a message to reach all processes. Degree distribution measures the

number of neighbors of a process and thus its reachability and load.

Proposals based on a single overlay, such as SpiderCast (Chockler et al.

2007b), recognize and exploit common subscriptions among processes, allowing

the number of links to grow sub-linearly with the number of topics and processes

thus providing process scalability and topic scalability. However, the remaining

properties are more challenging to maintain. In particular, the fitness of the over-

lay degrades because semantic communities lead to high clustering coefficients.

Accuracy is also problematic as, eventually, processes will have to relay events

they are not interested in to guarantee completeness.

On the other hand, proposals like daMulticast (Baehni et al. 2004) or TERA (Bal-

doni et al. 2007a) that build one overlay per topic satisfy completeness and ac-

curacy as each event is disseminated completely and only through the overlay it

belongs to. Fitness and process scalability are also satisfied as these approaches

rely on epidemic PSSs designed for scalability and epidemic dissemination (Eug-

ster et al. 2003b; Jelasity et al. 2007b). The major drawback is topic scalability

as the number of physical links established grows linearly with the number of

topics each process subscribes to. Moreover, if an event matches more than one

topic, these approaches cannot exploit this knowledge to reduce traffic because

topics are fully separated.

StaN seeks to achieve the best of both worlds by addressing all aforemen-

tioned properties by combining several logical links in a single physical link. These

combinations, detailed in Section 3.2.3, are strictly local decisions made by each

process based on the set of other processes in a topic-overlay. Link combination

also allows an event published on multiple topics to be relayed just once through

the physical link as detailed in Section 3.2.4.

3.2 Algorithm description 31

3.2.3 Link Management

The intuition behind StaN is very simple: each process periodically samples the

subscribers of all its topics, that is, at each overlay it belongs to. Since, by as-

sumption, subscriptions are correlated these sets of sampled processes will likely

overlap. For each overlay, the process then deterministically selects a set of neigh-

bors from the sampled processes. This deterministic selection over overlapping

sets leads, with high probability, to neighbors shared across all overlays enabling

the mapping of several logical links to a single physical link, thus alleviating topic

scalability problems.

However, such design raises two conflicting goals: first we want to promote

link sharing by taking advantage of subscription correlation and second we do not

want to induce clustering (due to subscription correlation) as this will impact the

fitness of the overlay. The problem at hand is then to devise a neighbor selection

process able to meet both goals. In the following we study its key requirements.

To guarantee fitness, PSSs establish links uniformly at random (Ganesh et al.

2001; Eugster et al. 2003b, 2004; Jelasity et al. 2007b), and thus our neighbor

selection process must preserve this randomness. Unfortunately, this implies

that the probability that any two processes are logically linked in more than one

overlay is dismayingly small. Even with global knowledge of the system and full

disclosure of the subscription sets, finding a minimal solution (with the smallest

number of physical links) is NP-complete (Chockler et al. 2007a).

On the other hand, to promote link sharing we need determinism, which is

apparently conflicting with uniformly random choices. In fact, due to overlap in

subscription sets resulting from correlation, a process using the same determin-

istic criterion in all overlays will independently choose approximately the same

neighbors for each overlay. Besides, to avoid clustering, processes cannot choose

the same set of neighbors (and neighbors of neighbors) which requires asymmetry

in the local choices made by processes.

In our approach each process selects neighbors using a pseudo-random crite-

rion that meets the above requirements. Uniformity is key to preserve the good

properties of a random overlay (Eugster et al. 2004), while determinism is nec-

essary to guarantee that a process will assign the same value to a target process

independently of the overlay. Both are found in hash functions (Luby 1994),

which produce uniform outputs along its codomain and always map the same

32 3 StaN: scalable topic-based publish-subscribe

Algorithm 1: Pseudo-random weight function on process p for target q
procedure Weight(q)1

return Hash(Str(p) + Str(q))2

inputs to the same outputs. Thus, by feeding a hash function with the iden-

tifiers of known processes, any process can obtain a uniform and deterministic

sorting of all other processes. Still, this is not sufficient as each process must

have a different sort order, otherwise the overlay would degrade into a chain-like

structure. Besides, sorting needs to be asymmetric to prevent clustering among

neighbors. This is obtained by having each process supply a different input to

the hash function, thus yielding different sorting orders. The pseudo-code of our

neighbor selection criterion (weight function) is shown in Algorithm 1. Note that

Str(p) is the text representation of p’s identifier.

The weight a process p assigns to a process q is given by the output of the

hash function. Weights are assigned by concatenating p and q unique identifiers

expressed as strings. Thus, processes can locally order all other processes and

give preference to different sets of neighbors. Note finally that the weight function

is asymmetric: considering any two processes p and q, Hash(Str(p) + Str(q))

and Hash(Str(q) + Str(p)) yield different values with high probability (Luby

1994).

The remaining challenge is to design a protocol that enables processes to

discover neighbors with minimum weight and replace links accordingly to reach

the desired configuration. The asymmetry and absence of clustering precludes

the use of well-known methods, such as T-Man (Jelasity et al. 2009), that rely

on the establishment of a partial order among all processes and dynamically

converge the overlay toward a global target topology. As the weight function

defines multiple orderings, one for each process in the system, there is no target

topology and thus no such convergence guarantee.

Our proposal relies instead on random walks to obtain uniform samples of the

population. These samples are locally ordered according to the weight function

and the neighbors for each overlay chosen accordingly.

The pseudo-code for StaN is shown in Algorithm 2. Each process p accesses

the list of the topics it is subscribed to through p.topics, and per each topic t,

each process maintains a separate view, denoted by p.views[t].

3.2 Algorithm description 33

Algorithm 2: StaN protocol (process p)
// Periodic refreshing of the views
every δ1

foreach topic t ∈ p.topics do2
q ← RandomPick(p.views[t])3
send CollectWalk(p,∅,TTL, t) to q4

// Random walk to collect processes
upon receive CollectWalk(src, set, ttl, topic)5

set← set ∪ {p}6
foreach process n ∈ p.views[topic] do7

set← set ∪ {n}8

if ttl > 0 then9
q ← RandomPick(p.views[topic])10
send CollectWalk(src, set,ttl− 1, topic) to q11

else12
send CollectReply(set, topic) to src13

// Reply from last process in random walk
upon receive CollectReply(set, topic)14

viewSize← |p.views[topic]|15
list← {q ∈ set ∪ p.views[topic] sorted using Weight(q)}16
p.views[topic]← first viewSize processes from list17

The protocol proceeds as follows. Periodically, each process initiates a random

walk with a given time-to-live (TTL) in each overlay it belongs to. It selects a

random process in that topic neighborhood and sends it a CollectWalk()

message with its unique identifier, an empty set that will collect other processes’

identifiers, the desired TTL and the topic identifier (lines 1–4).

Upon reception of a CollectWalk() (lines 5–13), each process adds its own

identifier and that of its neighbors to the received set, and forwards it to a random

neighbor provided that the TTL has not expired yet. Adding the neighbors to this

set improves convergence time as more identifiers are collected by each random

walk. When the TTL expires, the random walk ends and the process sends a

CollectReply() with the set of identifiers back to the originator process.

Upon reception of this set (lines 14–17), the process computes its view size,

merges the collected set with its own view, sorts the elements according to their

weight, and finally selects the best processes to replace its existing view without

changing its size.

A simplified run of StaN with five processes and two topics is depicted in

Figure 3.3. Process p0 is subscribed to topics A and B and initially maintains

four logical links, two for each topic, to neighbors p1 − p4 (top figure). As there

is no overlap in logical links, the number of physical links is also four. When

34 3 StaN: scalable topic-based publish-subscribe

p0
AB

w=3 w=2

w=1 w=4

p1
A

p2
AB

p4
B

p3
AB

p0
ABw=3 w=2

w=1 w=4

p1
A

p2
AB

p4
B

p3
AB

After optimization
Logical link
of topic A

Physical link

Process p1
subscribed
to topic A
with weight 3

Logical link
of topic B

Legend

p1
A

w=3

Before optimization

Figure 3.3: 5-processes sample run with two topics from the point of view of
process n0 (only a subset of the links is shown).

executing StaN, p0 collects the ids of neighbors p1 − p4 and assigns then the

weights shown in the figure. Then, p0 replaces links to higher weight processes

with links to lower weight ones, on a per-overlay basis. Because of correlation,

the logical links of overlays A and B converge to the same physical links (bottom

figure): logical links are preserved and the number of physical links is reduced.

Due to asymmetry, the weight p0 assigns to say p2, is unrelated to the weight p2

assigns to p0. This is reflected in the figure by not having p2 and p3 choose p0 as

its neighbor, nor each other.

3.2.4 Dissemination

StaN maps several logical links to a single physical link to improve resource

usage and topic scalability. This is possible due to the non-negligible proba-

bility of having overlap among processes’ interests, as observed in many real

scenarios (Saroiu et al. 2002; Fraigniaud et al. 2005; Handurukande et al. 2006).

Besides, further studies point out that not only processes’ interests overlap but

3.2 Algorithm description 35

also the occurrence of messages posted to multiple topics, a phenomena known

as crossposting, is non-negligible (Whittaker et al. 1998; McGlohon 2010). For

instance, on Usenet at least 30% of the messages are crossposted and the average

crossposted message targets 3 topics (Whittaker et al. 1998; McGlohon 2010).

Consequently, a crosspost-aware dissemination protocol may be able to reduce

bandwidth usage by combining crossposted messages with StaN’s link sharing.

In the remaining of this section we analyze the design of such a protocol, which

we call CrosspostFlood. For simplicity it is an infect and die flooding protocol,

i.e. the first time it receives a message it relays it to all neighbors on the given

topic(s). The only assumption is access to the list of topics a message is posted

to, which can be easily included as metadata.

The basic idea is very simple and depends only on local knowledge: when the

topics of a crossposted message (or a subset of it) matches a mapping of logical

links to a physical one, only a single message copy is sent through the physical

link. Upon reception, it suffices to deliver that message to the relevant topics.

As an example, suppose process p0 on the bottom of Figure 3.3 receives (or

creates) a message m tagged with topics A and B. Process p0 needs to relay the

message to neighbors p2 and p3 to topic A and do the same to topic B. Instead

of sending two copies of m through each logical link to each neighbor, p0 sends a

single copy to either logical link. Upon reception of m, p2 and p3 detect that it has

been posted to topics A and B (by observing m’s metadata) and locally deliver

m to topics A and B, effectively reducing the number of messages in transit from

four to two. It is important to note that, although independent from the link

alignment promoted by StaN, the dissemination is most effective when combined

with crosspost detection. For instance, the exact same run on a non optimized

version of the overlays (top of Figure 3.3) would not bring any bandwidth savings.

The pseudo-code for CrosspostFlood is shown in Algorithm 3. Each process

is able to deliver an event e to a topic T by invoking T.receive(e) as depicted

in Figure 3.2. To avoid delivery of duplicates, each process maintains a set of

previously known messages, receivedMessages, initially empty (lines 1–2). The

management of this set to avoid infinite growth is out of the scope of this paper

and can be done using techniques, such as (Koldehofe 2003). A message m is

generated with a unique identifier, msgId, and the set of topics it belongs to,

msgTopics.

36 3 StaN: scalable topic-based publish-subscribe

Algorithm 3: CrosspostFlood protocol (process p)
initially1

// Contains received message identifiers, to avoid duplicates
receivedMessages← ∅2

// Message reception
upon receive Msg(msgId,msgTopics,msgData)3

if msgId /∈ receivedMessages then4
receivedMessages← receivedMessages ∪ {msgId}5

// Set that will contain the processes to forward the message to
relayProcesses← ∅6

foreach topic t ∈ p.topics ∩msgTopics do7
// Deliver message to topic t
t.receive(msgId,msgData)8

// Collect the processes subscribed to topic t
foreach process n ∈ p.views[t] do9

relayProcesses← relayProcesses ∪ {n}10

// Relay the message
foreach process n ∈ relayProcesses do11

send Msg(msgId,msgTopics,msgData) to n12

Upon reception of a message (Msg), a process first checks if the message is

new by observing the set of known message identifiers, and discarding it otherwise

(lines 4–5). The message is then delivered to the process’s topics that match the

message topics, msgTopics (lines 7–8). Additionally, for each matching topic t

the process collects the identifiers of its neighbors in each topic in a set called

relayProcesses (lines 9–10).

Finally, the message is relayed to this set of neighbors as usual. By first

collecting the neighbors that a message needs to be relayed to in a set, and only

then sending it effectively, we eliminate possible duplicates (i.e. a process that is

a neighbor in two topics), thus avoiding redundant transmissions.

3.3 Evaluation

In this section we evaluate StaN using synthetic and real workloads by simu-

lation and via a real deployment on PlanetLab. The evaluation is focused on

performance and fitness. By evaluating the performance of StaN, we are able

to infer its ability to promote link sharing among overlays which is fundamental

to alleviate resource consumption in the form of physical links established, and

thus promote topic scalability. Moreover, we also evaluate StaN under message

loss and churn to assesss its behavior on a dynamic environment and compare

3.3 Evaluation 37

it with a global-omniscient approach that aims at maximizing link sharing. The

goal is to observe the extent of StaN’s improvement and the inherent impact of

the fitness of the overlays of such approaches. Finally, we study the behavior of

the CrosspostFlood dissemination algorithm and how it takes advantage of link

sharing.

3.3.1 Experimental Data

We used two real-world workloads: a trace of RSS subscriptions from Live-

Journal (LiveJournal, Inc. 2013) and a trace of edits of the English version of

Wikipedia (Wikimedia Foundation 2013). LiveJournal is a social network where

users have a journal/blog in which they publish entries and can follow (subscribe

to) the journals of others. The data gathered includes the list of users and of sub-

scribers to the journals. This collection of users and journals, with 28,904 journals

and 301,315 users, forms the complete universe of our experiments. Journals map

to topics and users to processes subscribing those topics. For Wikipedia we gath-

ered the pages and page edits done by registered users until April 2012 resulting

in 715,710 pages and 2,015,060 users. Pages map to topics and users who edited

those pages to processes subscribing those topics.

To increase the tractability of the universes and decrease experiment running

time, we created smaller self-contained universes. A self-contained universe is

created by selecting a random subset of topics, the seed set. We then select the

users subscribed to topics in the seed set and add to the seed set the users’ topic

(journal) in LiveJournal’s case or a random topic from the process’s subscrip-

tions in Wikipedia’s case. The users subscribed to topics in the seed set comprise

our universe pruning topics with less than 30 subscribers. As the self-contained

universes were built using a random set of topics, the properties of subscription

distribution are preserved. Further details on this universe generation methodol-

ogy can be found in (Patel et al. 2009a). Table 3.1 describes all the LiveJournal

and Wikipedia universes considered in the experiments. These workloads have

been chosen as representatives of publish/subscribe systems with several seed

set sizes. For each seed set size we generated 100 universes, computed the ra-

tio between the number of topics and processes and picked the median universe.

Note that L0 andW0 represents the whole LiveJournal and Wikipedia universes,

respectively.

38 3 StaN: scalable topic-based publish-subscribe

LiveJournal

Name L0 L1 L2 L3 L4 L5 L6 L7 L8

Seeds all all 20,000 15,000 10,000 5,000 1,000 500 100

Topics 28,904 13,652 13,129 12,608 11,674 9,331 3,215 1,805 253

Procs. 301,315 267,230 237,612 214,642 182,828 130,577 40,407 23,657 4,689

Wikipedia

Name W0 W1 W2 W3 W4 W5 W6 W7 W8

Seeds all 100,000 50,000 20,000 10,000 5,000 1,000 100 20

Topics 715,710 328,145 245,977 162,448 114,646 77,338 26,525 3,858 576

Procs. 2,015,060 761,225 497,854 277,474 175,152 108,620 33,956 5,957 1,381

Table 3.1: Universe configurations.

3.3.2 Workload Characteristics

We start by confirming that our assumptions about subscriptions distribution (Adamic

and Huberman 2002; Liu et al. 2005) and correlation (Saroiu et al. 2002; Fraigni-

aud et al. 2005; Handurukande et al. 2006) hold. These assumptions are: 1) the

number of subscribers to a given topic follows a power law, 2) the number of sub-

scriptions of each user follows a power law, and 3) subscriptions are correlated

with a non-negligible probability.

Figures 3.4 and 3.5 depict the distribution of subscriptions per topic (top)

and subscriptions per process (bottom) for several LiveJournal and Wikipedia

universes, respectively. Note that both plots are log-log. The general shape

for both LiveJournal and Wikipedia is similar: few topics are highly popular

while the vast majority has few subscribers, and some users are subscribed to

many topics while most subscribe to far fewer topics. These results confirm our

assumptions about subscription distribution (Adamic and Huberman 2002; Liu

et al. 2005) and validate our method for the generation of smaller universes. Users

subscribed to many topics are the ones that can encounter problems with topic

scalability, as the number of physical connections they need to maintain can be

quite large. StaN is therefore expected to mainly affect these processes.

Figure 3.6 depicts the correlation among subscriptions as a heat map, where

white means no correlation and black strong correlation. It was obtained by

creating a matrix with topics as columns and subscribers as rows. For each

3.3 Evaluation 39

1e0

1e1

1e2

1e3

1e4

1e0 1e1 1e2 1e3 1e4 1e5

S
u

b
s
c
ri
p

ti
o

n
s

Topics

L0
L4
L8

(a) Subscriptions per topic.

1e0

1e1

1e2

1e3

1e0 1e1 1e2 1e3 1e4 1e5 1e6

S
u

b
s
c
ri
p
ti
o

n
s

Nodes

L0
L4
L8

(b) Subscriptions per process.

Figure 3.4: Subscription distribution for LiveJournal universes.

40 3 StaN: scalable topic-based publish-subscribe

1e0

1e1

1e2

1e3

1e4

1e5

1e0 1e1 1e2 1e3 1e4 1e5 1e6

S
u

b
s
c
ri
p

ti
o

n
s

Topics

W0
W4
W8

(a) Subscriptions per topic.

1e0

1e1

1e2

1e3

1e4

1e5

1e6

1e0 1e1 1e2 1e3 1e4 1e5 1e6 1e7

S
u

b
s
c
ri
p

ti
o

n
s

Nodes

W0
W4
W8

(b) Subscriptions per process.

Figure 3.5: Subscription distribution for Wikipedia universes.

Livejournal universe L8

 0 50 100 150 200 250

Topic number

 50

 100

 150

 200

 250

T
o

p
ic

 n
u
m

b
e

r

 0

 1

Wikipedia universe W8

 0 50 100 150 200 250

Topic number

 50

 100

 150

 200

 250

T
o

p
ic

 n
u
m

b
e

r

 0

 1

C
o

rr
e

la
ti
o

n

Figure 3.6: Subscription correlation.

3.3 Evaluation 41

subscriber, we set the value 1 in the respective column to indicate a subscription

to the given topic, or 0 otherwise. We then calculate the Pearson correlation

of the resulting matrix and plot it by mapping the values to different shades

of gray. For the LiveJournal universe (top) there is a mild correlation among

all topics (the map contains a non-negligible amount of gray points) while for

the Wikipedia universe (bottom) the correlation is stronger. This indicates that

StaN should be able to promote physical link sharing on both universes, but to

a greater extent on Wikipedia.

Finally, we devised a synthetic workload that provides finer control on the

number of topics/processes in a given universe to cope with the limitations of the

PlanetLab (PlanetLab 2013) testbed. To this end, we built a two-dimensional

grid with randomly placed process and topic identifiers. Additionally, each pro-

cess is assigned an interest radius, and subscribes to topics whose identifiers fall

within. For each topic, we randomly place several topic identifiers on the grid.

The number of topic identifiers follows a power-law, thus matching the topic

popularity model. The assigned interest radius also follows a power-law, thus

matching the process subscription model. Nodes close on the grid are likely to

subscribe to the same topics, hence modeling subscription correlation. This syn-

thetic workload closely matches our model and exhibits distributions similar to

those observed on real universes (Matos et al. 2010).

3.3.3 Experimental Setup

We evaluate StaN both through a real deployment on PlanetLab and by simu-

lation.

The deployment on PlanetLab is done with Splay (Leonini et al. 2009), a

framework for the development, deployment and evaluation of distributed appli-

cations. Splay handles all the details of setting up the testbed, deploying and

running the job and collecting the metrics, thus greatly facilitating the prototyp-

ing and testing of distributed application and algorithms. The code is written

in the Lua programing language and remains close to the pseudo-code presented

in the algorithm listings. Moreover, Splay has a churn module that enables the

reproduction of experiments subject to churn.

However, due to the scalability and resource limitations of PlanetLab it is

not possible to perform all experiments on a real deployment. To overcome this

42 3 StaN: scalable topic-based publish-subscribe

limitation we developed a realistic discrete, round-based event simulator, called

POS, that can scale to thousands of processes, and thus simulate the large scales

we aim at. POS models network asynchrony, process drift, and churn and can be

found at TODO. It uses a priority queue and a monotonically increasing integer to

represent the passage of time, a tick.

The Splay code used throughout the evaluation can be found at TODO and

the POS code at TODO. To assess the accuracy of the POS simulator, we first

conducted a series of experiments with the same workload on both Splay and

the POS. For a given workload, we first created the overlays for each topic by

having every process, either real or simulated, choose viewSize neighbors ran-

domly. viewSize was configured such that the probability of the overlay being

connected is 0.99 as specified in (Kermarrec et al. 2001). Finally, we ran StaN

for eight rounds and collected results. We used rounds of 30 seconds for Splay,

corresponding to a discrete time step of the simulator.

3.3.4 Performance

To assess StaN’s performance in promoting link sharing we defined two mea-

surements: logical view size (LVS) and physical view size (PVS). LVS measures

the number of logical links established by a process across all topics, which is the

sum of the view sizes across all process’s overlays. PVS captures the number of

physical links that each process needs to establish. It is obtained by extracting

the unique process identifiers from the logical views. Since StaN preserves the

number of logical links, we expect LVS to remain constant and PVS to decrease

as the algorithm converges.

Figure 3.7(a) presents the evolution of LVS and PVS for a synthetic universe

with 100 processes and 16 topics, for both the real and simulated environments.

Values are averaged over 5 distinct runs. LVS remains constant across the whole

experiment because StaN preserves the size of the views of individual overlays.

PVS drops from 25 to around 15, which shows that StaN is able to share log-

ical links after just a few rounds. The better performance of the simulator is

explained by its discrete nature as the algorithm runs in lock step mode, and

processes optimize their views before proceeding to the next round. Other rea-

sons are the non-negligible message loss and connectivity issues experienced in

PlanetLab due to faults and churn. Despite this slight deviation, one can expect

TODO
TODO
TODO

3.3 Evaluation 43

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7

V
ie

w
 s

iz
e

Round

LVS (real)
LVS (simulated)

PVS (real)
PVS (simulated)

(a) View evolution.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
e

rc
e

n
ti
le

View size

PVS
(simulated)

PVS
(real) LVS (simulated)

LVS (real)

(b) View distribution.

Figure 3.7: Evolution and distribution of the LVS and PVS for a synthetic uni-
verse (100 processes and 16 topics). The legend is shared by the two graphs.

44 3 StaN: scalable topic-based publish-subscribe

 0

 150

 300

 450

 0 150 300 450
-20

 0

 20

 40

 60

 80

 100
F

in
a

l
P

h
y
s
ic

a
l
V

ie
w

 S
iz

e
 (

F
P

V
S

)

Im
p

ro
v
e

m
e

n
t
(%

)

Initial Physical View Size (IPVS)

View size
Improvement

(a) L8 LiveJournal universe.

 0

 150

 300

 450

 600

 750

 900

 0 150 300 450 600 750 900
-20

 0

 20

 40

 60

 80

 100

F
in

a
l
P

h
y
s
ic

a
l
V

ie
w

 S
iz

e
 (

F
P

V
S

)

Im
p

ro
v
e

m
e

n
t

(%
)

Initial Physical View Size (IPVS)

View size
Improvement

(b) W8 Wikipedia universe.

Figure 3.8: IPVS/FPVS and relative improvement for the L8 and W8 universes.

that simulation results with larger universes will be representative of real-world

deployments that exceed the scale of our experimental testbed. Figure 3.7(b)

presents the cumulative distribution function of the view sizes of all processes.

Again the results obtained by simulation mimic those of the real environment.

From this point on, we ran StaN in the simulated environment with the

real universes to study its behavior in larger scales. All results below are the

average of 10 independent runs. We consider both the initial PVS (IPVS) at the

beginning of the experiment and the final PVS (FPVS) after running StaN.

The next experiment aims at observing the effectiveness of StaN at reducing

PVS as a function of IPVS. This allows us to detect where the improvement

happens, namely to which extent processes with large view sizes benefit from

3.3 Evaluation 45

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 2 4 6 8 10 12 14

IP
V

S
 /

 F
P

V
S

Topics (× 10
3
)

IPVS (before StaN)
FPVS (after StaN)

(a) LiveJournal universes.

50K

100K

150K

200K

250K

 0 50 100 150 200 250 300 350

IP
V

S
 /

 F
P

V
S

Topics (× 10
3
)

IPVS (before StaN)
FPVS (after StaN)

(b) Wikipedia universes.

Figure 3.9: Evolution of the IPVS/FPVS with the number of topics.

StaN. Figure 3.8 presents these results as a scatter plot, in the x axis we have

the IPVS and in the left y axis the FPVS. The vast majority of points for the view

size lies below the diagonal meaning that StaN effectively reduced process’s view

sizes. This is confirmed when we analyze the improvement in percentage (right y

axis). As expected, the improvement both in absolute and relative terms is greater

for Wikipedia (bottom) due to its greater correlation. In fact, the majority of

Wikipedia’s processes have an improvement over 40%, while for LiveJournal fewer

processes achieve such an improvement.

For some processes the improvement is negative. This only happens for pro-

cesses with very low IPVS and is because the weight function of StaN can some-

times split a physical link that was initially shared (by chance) when optimizing

the overlay. This may happen for all processes but it is only noticeable for pro-

cesses with very low IPVS. Indeed, the number of links that become physically

shared on processes with larger view sizes easily outweighs any alignment that

may have occurred by chance at creation time. Results for the other universes

46 3 StaN: scalable topic-based publish-subscribe

follow the same trend (not shown).

Finally, Figure 3.9 presents a condensed view of the previous plots for Live-

Journal universes L1 − L8 and Wikipedia universes W1 − W8. The results are

obtained by extracting the IPVS and FPVS for each configuration, i.e. before

and after running StaN. One can observe that the number of physical links grows

much slower, by a factor of two, with the number of topics when using StaN.

This demonstrates that our approach is effective at scaling with the number of

topics as it limits the number of physical links established by processes with many

subscriptions.

3.3.5 Fitness

We now study StaN’s fitness by focusing on the structural properties of the

overlays, namely connectivity, clustering coefficient and average path length which

affect reliability and effectiveness (Jelasity et al. 2007c). Therefore, StaN must

not modify them with respect to the initial values of the PSS. The experiments

below are for the L8 and W8 universes, results for the other configurations are

similar (not shown). Values presented are the average of each property across all

overlays.

Connectivity. This property measures the number of connected components

of each overlay. A single component indicates the overlay is connected. By

assumption, the initial overlays are managed by a PSS that creates a single

connected component. In all the experiments conducted, we did not observe a

single disconnection. This is due to the uniformity of the weight function, which

ensures that every process is equally likely to be selected as a best neighbor, thus

compensating the loss of links when processes choose other neighbors.

Clustering coefficient. The results, presented in Figure 3.10(a), show that the

initial and final values are almost indistinguishable. In fact, due to the asymmetry

of the weight function, the weight any two processes assign to each other, or to

a third, is completely unrelated, thus preventing processes from selecting each

other as neighbors, or preferring neighbors of neighbors.

Average path length. The results, presented in Figure 3.10(b), show that,

as before, both distributions are similar. The reason lies in the way the weight

function is designed. As neighbors are selected uniformly at random, the proba-

bility of losing links is identical to the probability of gaining links. Moreover, the

3.3 Evaluation 47

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100C
lu

s
te

ri
n

g
 c

o
e

ff
ic

ie
n
t

Percentile

L8 Initial
L8 Final
W8 Initial
W8 Final

(a) Clustering coefficient distribution.

 1.5

 2

 2.5

 0 20 40 60 80 100

A
v
g

.
P

a
th

 L
e
n

g
th

Percentile

L8 Initial
L8 Final
W8 Initial
W8 Final

(b) Average path lenght distribution.

 0

 1

 2

 3

 4

 0 20 40 60 80 100

D
ia

m
e

te
r

Percentile

L8 Initial

L8 Final

W8 Initial

W8 Final

(c) Diameter distribution.

Figure 3.10: Clustering coefficient, average path length and diameter distribution
for the L8 and W8 universes (most lines overlap).

asymmetry prevents the overlays from converging to a grid-like structure that

would otherwise increase average path length when compared to the initial ran-

dom overlay. Therefore, the randomness of link establishment provided by the

weight function preserves the average path length of the overlays. Figure 3.10(c)

which shows the diameter - the maximum path length between any two pair of

48 3 StaN: scalable topic-based publish-subscribe

processes - further confirms this observation.

3.3.6 Dynamics

In this section we study the behavior of StaN under conditions likely to emerge

in large-scale scenarios, namely: message loss, process churn and growing sce-

narios where processes continue to join after the initial bootstrap. For brevity,

and because the behvior under dynamics depends much more on the algorithm’s

design than on the particular universe chosen, we restrict the evaluation in this

section to the W8 Wikipedia universe.

Message Loss.

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8 9

P
h

y
s
ic

a
l
V

ie
w

 s
iz

e

Round

LVS
0%

1%
5%

10%
15%

20%
40%

Figure 3.11: View evolution under message loss for universe W8 (percentages
indicate message loss rates).

We analyze the behavior of StaN under message loss by observing its con-

vergence speed under increasing message loss rates. This is achieved simply by

dropping the given percentage of messages uniformly at random. Results can

be observed in Figure 3.11. As expected, convergence speed is slowed down by

message loss but StaN is still able to converge under moderate message loss

rates. For instance, for a loss rate of 10%, the convergence at round 9 is almost

indistinguishable from a loss-free environment. As a matter of fact, only with

loss rates greater than 15%, do we observe that the convergence speed is too slow

to be useful.

3.3 Evaluation 49

Process churn.

We now study StaN’s behavior under process dynamics by reproducing a churn

trace gathered from the Overnet network (Bhagwan et al. 2003a). For each run,

we generate a trace with 1381 processes (W8’s universe size) and map 60 seconds

of the trace time to a cycle, adding and removing processes as appropriate. We

experiment with higher churn rates by speeding up the trace by a given factor, i.e.,

mapping a longer trace time to each cycle. For instance, mapping 120 seconds to a

cycle yields a factor of 2X. Figure 5.11 presents the evolution of the universe size

(top) and PVS and LVS (bottom) for factors 1, 4 and 16. As expected, increasing

the churn rate increases the magnitude and amplitude of the variations in the

process population (Figure 3.12(a)). The same behavior is observed for the LVS

and PVS which grow and shrink as the process population variates. For higher

churn rates, we observe that a few processes (less than 5 in all the experiments)

got isolated from the overlay. The reason is that the view size evolves only

due to churn, decreasing when neighbors fail and increasing as new processes

join. In some high churn cases, failures in the vicinity of one process are enough

to depopulate the view without being compensated by joins, disconnecting the

process from the overlay. We address this issue by triggering a random walk

(Algorithm 2, CollectWalk()) to add new links, when the view size is smaller

than a given threshold (5 in our experiments). This simple modification avoids

disconnections under higher churn rates. We note that the decision to modify the

view size and add links when necessary is typically the responsibility of the PSS

and thus out of the scope of StaN. In this experiment this is done so that we

can focus exclusively on StaN’s behavior without having to be concerned how a

specific PSS manages the view size.

Growing universe.

Finally, we study the behavior of StaN under a considerable universe growth.

We start by randomly selecting 50% of the W8 processes and running StaN on

that sub-universe. Then, every 10 rounds we add 10% of the remaining processes

until all processes are in the system. Results are presented in Figure 3.13. When

adding processes, the PVS grows quickly to accommodate the new processes

which is then reduced by StaN in a few rounds. Most interestingly, some rounds

after the universe is fully grown (round 60), both LVS and PVS are almost

50 3 StaN: scalable topic-based publish-subscribe

 1280

 1300

 1320

 1340

 1360

 1380

 1400

 0 10 20 30 40 50 60 70 80 90 100

N
b

 A
li
v
e

 N
o

d
e

s

Round

1X

4X

16X

(a) Universe size evolution under churn for universe W8.

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

V
ie

w
 s

iz
e

Round

LVS 1X

PVS 1X

LVS 4X

PVS 4X

LVS 16X

PVS 16X

(b) LVS and PVS evolution under churn for universe W8.

Figure 3.12: Universe and view evolution under churn for universeW8. (Numbers
represent the churn speedup factor.)

3.3 Evaluation 51

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

V
ie

w
 s

iz
e

Round

LVS (full)
LVS (growing)

PVS (full)
PVS (growing)

Figure 3.13: View evolution for growing W8 universe.

indistinguishable from a universe fully bootstrapped from scratch.

3.3.7 Greedy-omniscient comparison

StaN promotes link sharing by relying only on local knowledge and without ex-

plicitly considering process interests. We now compare StaN against a greedy-

omniscient implementation with global knowledge that explicitly takes into ac-

count processes’ interests to try to maximize link sharing. Our goal is to compare

StaN’s performance with an approach based on global knowledge and at the same

time assess the impact on fitness of optimizing to an inherently clustered metric -

the process’s interests. The greedy-omniscient implementation works as follows:

each process sorts all other processes according to the most topics in common by

computing the cardinality of the intersection of its subscriptions with the other

process’s subscriptions. Then it picks the viewSize best ones, where viewSize

is computed as in Section 3.3.3. Because processes have global knowledge, the

process’s local choices are the best possible, but as in typical greedy approaches

there is no guarantee that the global solution is optimal. We note that this strat-

egy is similar to SpiderCast (Chockler et al. 2007b) with global knowledge and

with the random selection disabled (Kr = 0).

Figure 3.14(a) depicts the IPVS vs FPVS for both StaN and the greedy-

omniscient implementation. Each point in the scatter plot represents the IPVS

and FPVS for each process. As expected, the greedy-omniscient implementa-

tion outperforms StaN in terms of PVS reduction. This is because the greedy-

52 3 StaN: scalable topic-based publish-subscribe

 0

 150

 300

 450

 0 150 300 450 600 750 900

F
in

a
l
P

h
y
s
ic

a
l
V

ie
w

 S
iz

e
 (

F
P

V
S

)

Initial Physical View Size (IPVS)

Greedy-omniscient
StaN

(a) View improvement.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 20 40 60 80 100C
lu

s
te

ri
n

g
 c

o
e
ff

.
d
is

tr
ib

u
ti
o

n

Percentile

Initial
Final StaN

Final greedy-omniscient

(b) Clustering coefficient distribution.

Figure 3.14: Comparison of view improvement and clustering coefficient distri-
bution for StaN and a greedy-omniscient approach for W8. Lines “Initial” and
“Final StaN” overlap in Figure 3.14(b).

omniscient optimization criteria is precisely the reduction of the view size while

in StaN the optimization criteria is a weight metric unrelated to the view size.

Nonetheless, the absolute reduction in PVS obtained by StaN is still consider-

able. For instance, for an IPVS of 600 StaN achieves a reduction of around 400.

The trade-off is increased clustering because by optimizing to the view size, the

overlay tends to approximate the inherent subscriptions clustering, as observed

in Figure 3.14(b). Note that lines Initial and Final StaN overlap indicating that

StaN’s impact on clustering is negligible.

3.3 Evaluation 53

3.3.8 Dissemination

As StaN maintains the desirable properties for epidemic dissemination (Sec-

tion 3.3.5), we now study the behavior of the CrosspostFlood dissemination al-

gorithm. This is done by analyzing bandwidth usage, in terms of number of

messages exchanged, and latency, in terms of hops.

Based on real observations where, on average, each crossposted message tar-

gets 3 topics (Whittaker et al. 1998; McGlohon 2010), we devised a simple work-

load to compare the effectiveness of CrosspostFlood with a baseline infect and

die flooding algorithm, which we call SimpleFlood.

The dissemination is done on all overlays as follows: for each topic T , we

select T ′ and T ′′ as the most correlated topics with T . Next, we randomly pick

10 processes subscribed to T , T ′ and T ′′ and have each of them inject a new

message on the system tagged with the triplet (T, T ′, T ′′). This is done for each

of the 10 independent runs of StaN analyzed before. Results presented are thus

the average of 100 independent runs (10 disseminations for each of the 10 runs)

for both CrosspostFlood and SimpleFlood in the L8 universe.

Figure 3.15(a) presents the bandwidth reduction when using CrosspostFlood

and SimpleFlood before and after the optimizations performed by StaN. Results

are obtained by calculating the ratio between the number of messages sent by

each process using CrosspostFlood against SimpleFlood. Thus, a value of X%

means that CrosspostFlood sent less X% messages overall than SimpleFlood.

It is important to note that on the worst case (no crossposting or no link

sharing) CrosspostFlood degenerates to SimpleFlood. As expected, Crosspost-

Flood reduces the number of messages sent (the ratio is positive), thus saving

bandwidth. This is more evident when disseminating after the optimizations

made by StaN as there are more logical links mapped to the same physical link,

thus enabling further reductions. For instance, without StaN’s optimizations

the amount of processes able to save (reduce) more than 10% when using Cross-

postFlood is negligible. On the other hand, when using optimized overlays, more

than 20% of the processes are able to achieve reductions greater than 10% when

using CrosspostFlood.

At a local level, these savings are interesting as the cost is negligible: processes

only need to check if several logical links map to the same physical link. To assess

the cost at a global level, we need to measure the latency, in terms of number

54 3 StaN: scalable topic-based publish-subscribe

 0

 20

 40

 60

 80

 100

 50 60 70 80 90 100

B
a

n
d

w
id

th
 r

e
d

u
c
ti
o

n

u
s
in

g
 c

ro
s
s
p

o
s
t

fl
o
o

d
 (

%
)

Percentile

Before StaN
After StaN

(a) Bandwidth reduction distribution.

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100

N
u
m

b
e
r

o
f

h
o

p
s

Percentile

SimpleFlood
CrosspostFlood

(b) First delivery hops distribution.

Figure 3.15: SimpleFlood vs CrosspostFlood on universe L8: a) bandwidth re-
duction before and after optimizing the overlays with StaN b) hops necessary for
first delivery.

3.4 Related Work 55

of hops needed to infect all processes. This is because reductions in bandwidth

typically tend to negatively affect latency.

Figure 3.15(b) shows the hop count distribution for the reception of new

messages on StaN optimized overlays. As observed, hop-counts are almost unaf-

fected and even reduced in some situations. This is because when a crossposted

message is received on a given topic, it is immediately delivered and relayed to

all the relevant topics which acts as a shortcut to the normal per-topic relaying

process.

3.4 Related Work

In this section we discuss some related work pertaining StaN. Approaches to

topic-based publish/subscribe can be generally divided in two categories: one

that maintains multiple separate overlays per topic, and other that maintains a

single general overlay.

A first class of decentralized topic-based publish/subscribe rely on the struc-

tural properties of Distributed Hash Tables (DHT) to build a topic-based dis-

semination system. In Scribe (Castro et al. 2002), each topic is managed by a

single process in the DHT, the rendezvous point that handles subscription and

unsubscription requests. Subscribers are organized in a multicast tree rooted

at the rendezvous process that serves as the entry point to all events. When a

publisher wants to inject an event in the system, it uses the underlying DHT

to discover the rendezvous process responsible for the target topic. The ren-

dezvous process subsequently propagates the event through the multicast tree

associated with the topic: all intermediate processes from the subscriber to the

rendezvous have to relay the event, even if they are not interested in the topic.

CAN-multicast (Ratnasamy et al. 2001) also associates rendezvous process to top-

ics. However, each topic is managed independently with a new protocol instance.

With both Scribe (Castro et al. 2002) and CAN-based multicast (Ratnasamy

et al. 2001), processes that are not interested in some topic may still act as for-

warders, be they internal processes of the dissemination tree built on top of the

DHT or the rendezvous process that implements the group membership man-

agement. The existence of the rendezvous processes thus poses scalability and

fault-tolerant concerns as the algorithms rely heavily on them. Magnet (Girdzi-

56 3 StaN: scalable topic-based publish-subscribe

jauskas et al. 2010) relies on the same principle but uses as substrate a DHT that

clusters processes according to interests. This design greatly reduces the load on

forwarders, thus improving accuracy. StaN does not require the maintenance

of a structured overlay network for its operation nor forwarder processes as it

targets instead unstructured topic-based publish/subscribe overlays. These ap-

proaches require that forwarder processes not subscribed to a topic T participate

in the dissemination of events pertaining to T, which is not necessary in StaN.

Instead, the link sharing allows to send the same event to multiple topics by using

less actual messages, while posting to several topics in Magnet imposes a linear

increase of the load on forwarder-only processes. Magnet, similarly to Scribe or

CAN-multicast, is more adapted to situations with a moderate number of well

subscribed topics, while StaN and epidemic approaches are more adapted to a

large number of topics whose popularities follow a power law distribution.

The daMulticast (Baehni et al. 2004) departs from the structured approach

to embrace a pure epidemic strategy. Overlays are organized in a hierarchy,

with an independent overlay per level, thus enabling completeness and accuracy.

Probabilistic links are maintained from overlays at lower levels to their parents,

thus reducing maintenance overhead and message complexity by exploiting the

hierarchy of topics. This approach does, however, rely on these hierarchical rela-

tionships between topics. It would otherwise degrade to a traditional approach

with a single overlay per topic. In contrast, StaN makes no assumptions on

topic hierarchies but can nonetheless take advantage of them. As StaN works

by exploiting individual processes subscriptions instead of topic relationships, it

is more flexible. TERA (Baldoni et al. 2007a) relies on epidemic protocols to

maintain a general overlay, used for routing, and a separate overlay per topic.

One of the main goals of TERA is to provide an efficient mechanism for outer-

topic routing, i.e. the ability for a process to deliver a subscription request or

event to an arbitrary topic. In this sense, TERA is complementary to StaN

but still suffers from scalability problems with high numbers of subscriptions as

topics are maintained by fully separate overlays. Assessing whether it is possible

to combine TERA’s goals with those of StaN opens interesting perspectives.

To avoid the scalability problems of one overlay per topic, SpiderCast (Chock-

ler et al. 2007b) uses a single overlay. Links are established according to two

strategies: similarity among subscriptions or at random. In order to probabilis-

3.4 Related Work 57

tically ensure topic connectivity, the protocol attempts to guarantee that each

process becomes k -covered for every topic it is interested in. A process is k -

covered for topic T if it has k neighbors also interested in T. The approach

builds upon the theory of k -regular random graphs (Wormald 1999). Once a

process becomes k -covered, SpiderCast does no longer search for processes with

closer interests. With full membership knowledge, this approach works well since

chosen processes are, by design, the most similar. When that is not the case,

the performance degrades because the set of candidate processes may not include

the most similar ones. Still, SpiderCast is able to construct connected overlays

with low degree knowing only 5% of the processes. Naturally, the performance

improves with the initial fraction of known processes. This is not the case, how-

ever, with a partial membership view where each process knows only a very small

fraction of the system. Moreover, the decision of link addition and removal must

be made by two adjacent processes due to the use of an undirected graph. The

other main concern is service differentiation as it is not possible to offer different

service levels based on topic requirements.

The Min-TCO problem (Chockler et al. 2007a) is defined as the construction

of a graph with a minimum number of edges that ensures completeness and

accuracy. Its decision version is shown to be NP-complete, and thus captures

some inherent limitations of an approach based on a single overlay. While this

results in overlays with low average view size (degree in that paper), the maximum

view size can grow quite large. This is addressed by the Low-TCO (Onus and

Richa 2010), which achieves both low average and maximum view sizes. However,

those approaches require global knowledge, are computationally expensive and do

not support subscription dynamism. Recently, these issues have been tackled by

divide-and-conquer strategies that enable parallelization dynamism (Chen et al.

2010, 2011). Still, they are centralized and designing a distributed equivalent is,

to the best of our knowledge, an open issue.

A survey of proposals based on subscription correlation can be found in (Quer-

zoni 2008).

58 3 StaN: scalable topic-based publish-subscribe

3.5 Discussion

So far, designers of topic-based publish-subscribe systems faced a dilemma: one

can either manage each topic independently and pay the inherent overhead or

manage all available topics in an integrated manner at the expense of fitness and

accuracy. The reason for this stems from the fact that approaches trying to over-

come the scalability issues of independently managing multiple topics explicitly

take into account a social aspect - the interests of topic subscribers are correlated.

As a result, such approaches inevitably construct overlays inherently clustered,

which are undesirable in epidemic algorithms (Jelasity et al. 2007a). StaN’s

novelty is the departure from this explicit acknowledgement of interest overlap

to a tacit exploitation of the phenomena. Similar to previous approaches, StaN

computes the best neighbors of each process in a deterministic fashion - a condi-

tion necessary for convergence - but unlike them, the best neighbors are not given

by their interests but by a pseudo-random weight function. This simple modi-

fication breaks the symmetry of choices, and thus effectively avoids clustering.

Still, because of the implicit correlation of interests, processes end up selecting

the same neighbors in several topics, and thus reduce the cost of participating in

many topics by allowing links to be shared. In terms of absolute improvement

on link sharing, approaches that explicitly take into account process’s interests

clearly outperform StaN (Figure 3.14(a)). However, the resulting clustering be-

comes very high and therefore the overlays are not only brittle under faults and

churn, but also inefficient for epidemic dissemination. On the other hand, StaN

does not affect the clustering and still provides a reduction of up to 60% in the

number of physical links established. Performance is ultimately limited by the

initial view size of the processes and topic correlation. As expected, the benefits

of StaN are more evident in processes with large views, precisely those with

scalability problems as it effectively reduces the number of physical links main-

tained. This is, in our opinion, an interesting trade-off in the design space - one

can significantly reduce the cost of subscribing to multiple topics while maintain-

ing the robustness and fitness for epidemic dissemination. Interestingly, this is

obtained with low overhead in terms of message complexity. As a matter of fact,

StaN’s overhead is due to the periodic random walks. This impact is low because

the TTL is small and messages only carry a small sample of process identifiers.

The TTL only needs to be on the order of the overlay diameter to provide the

3.5 Discussion 59

chance of discovering all processes. Shorter TTLs would preclude processes from

opposite fringes of the overlay to know each other. Processes can control the

random walk period based on the expected improvements: new processes would

use small periods to quickly converge and then progressively reduce the frequency

as improvements become marginal. Although not considered, processes can also

leverage other process’s random walks (upon a CollectWalk()) as a source of

new neighbors, further reducing the impact on the network and improving con-

vergence speed. This optimization is also useful to counter the effects of message

loss and churn as processes are able to gather more information for each message

delivered.

The crosspost-aware nature of CrosspostFlood when combined with the phys-

ical link sharing obtained by StaN enables improved resource usage in terms of

bandwidth at virtually no local or global cost. We note that these savings are

only possible due to link sharing, otherwise it degenerates to a simple flood-

ing dissemination protocol. Moreover, CrosspostFlood is not specific to StaN

as it may be combined with other protocols that promote link sharing, such as

SpiderCast (Chockler et al. 2007b). The results are interesting because the im-

provements are obtained at virtually no cost. Nonetheless, a deeper analysis of

this protocol and its combination with link sharing protocols like StaN is needed,

namely by considering more complex workloads and other phenomena, such as

message re-crossposting, i.e. when a process receives a message on a topic and

locally decides to repost it on another topic.

The fact that StaN does not require disclosure of each process’s interests

- in fact it is oblivious to them - opens interesting perspectives for a privacy

preserving topic-based publish-subscribe. The non-disclosure of interests adds

some naive privacy preservation to StaN as honest-but-curious processes are not

provided with a list of subscriptions of other processes as part of links creation

and maintenance. However, honest-but-curious processes can still know many of

the subscribers of the topics they belong to simply by inspecting the Collect-

Walk() they forward. Studying the use of cryptographic techniques in StaN to

preserve the privacy of processes, strengthening the algorithm against malicious

processes and researching the issue of privacy in topic-based publish-subscribe

systems in general opens interesting research avenues.

60 3 StaN: scalable topic-based publish-subscribe

Chapter 4

Brisa: efficient reliable data

dissemination

4.1 Introduction

We live in a digital era whose foundations rely on the production, dissemination,

and consumption of data. The rate at which content is produced is constantly

increasing (Gantz 2007, 2008), putting pressure on dissemination systems able

to efficiently deliver the data to its intended consumers. Examples include the

distribution of digital media (e.g., music, news feeds) on the Internet (Frey et al.

2009) or software updates in a datacenter infrastructure (Twitter Engineering

September, 2012).

On account of its importance, significant research has been dedicated to con-

ceiving efficient and robust data dissemination systems (Birman et al. 1999; Cas-

tro et al. 2002, 2003a; Eugster et al. 2003b; Liang et al. 2005). Unfortunately,

both design vectors, efficiency and robustness, are often addressed disjointly: ei-

ther by a highly efficient structure based on trees like in (Chu et al. 2002) or by

a highly robust unstructured epidemic approach such as (Birman et al. 1999).

However, under churn and faults, the rigid structure that makes the tree

efficient must be rebuilt constantly, hindering robust dissemination and continuity

of service, and significantly increasing delays for all processes that lie in the

subtree rooted at a failed process. These reconstruction delays accumulate along

the path to leaves, when multiple faults occur during a dissemination further

degrading dissemination latency. Furthermore, only interior processes contribute

61

62 4 Brisa: efficient reliable data dissemination

to the dissemination effort while resources of leaf processes remain unused which

leads to poor load balancing.

Brisa

Message

Ordering

Message Size
and Latency

Messa
ge

Types PSS

Network

Figure 4.1: Brisa placement in the problem space.

On the other hand, epidemic dissemination systems rely on redundancy in-

stead of structure to offer guarantees on the delivery of data to all partici-

pants (Birman et al. 1999; Eugster et al. 2003b). Epidemic dissemination was

initially proposed in the context of database replica synchronization in the Clear-

ingHouse project (Demers et al. 1987). The transmission of several copies of the

same message to random processes enables epidemic systems to be oblivious to

faults and churn, as the same message will be received through different paths.

Epidemic principles have also been used elsewhere to build robust and scalable

distributed systems components such as membership (Ganesh et al. 2001; Jelasity

et al. 2007b; Leitão et al. 2007b), failure detection services (Renesse et al. 2007)

or indexing mechanisms (Montresor et al. 2005; DeCandia et al. 2007b). As long

as the overlay constructed by the PSS is connected, complete dissemination can

be trivially achieved by flooding. The cost is increased bandwidth and processor

4.1 Introduction 63

usage due to the transmission and processing of duplicates. As bandwidth is a

limited resource, the considerable amount of duplicates received poses a problem

of data scalability, i.e. these approaches do not scale with respect to message

size. Even if the typical message size is moderate in relation to bandwidth, the

number of duplicates sent and received can easily clog the available bandwidth

and thus impair the reliability of the system. Due to this limitation, current

epidemic dissemination systems are mostly used for dissemination of application

control data (van Renesse et al. 2003; Renesse et al. 2007). There are however

scenarios where epidemic properties are desirable, like its scalability in the num-

ber of processes, resilience to faults and churn, and load balancing among all the

participants in the dissemination process, that still require the dissemination of

medium to large data/message sizes in order to operate properly. Examples of

this include system patches in a data center, or updates to blobs in a tuple store,

with multiple messages from different sources being disseminated concurrently in

the system.

Several proposals try to overcome the weakness of each approach by combin-

ing them. For instance, SplitStream (Castro et al. 2003a) builds several trees

and strips the application data among them to distribute the load and increase

robustness to faults. The management overhead of such approaches is however

non-negligible under churn due to its structured nature. Others like MON (Liang

et al. 2005) and TAG (Liu and Zhou 2006) build an overlay and a tree and pull

application data through them. Pulling data is an effective mechanism to avoid

duplicates which unfortunately comes at the cost of increased latency and re-

quires receivers to periodically poll senders. Our approach also uses overlays and

trees but in such a way that the maintenance cost of the trees, even under churn,

is comparable to that of simple overlay. Moreover, due to the way trees are built,

data is pushed through them thus minimizing latency.

In this chapter we present Brisa, an efficient, robust and scalable data dis-

semination system. Brisa leverages the robustness and scalability of an epidemic

substrate to build efficient dissemination structures that are correct, i.e., cover

all processes, by construction. Such structures are built in a distributed fashion

with local knowledge only and with minimal overhead. Brisa has been designed

in a way that upon failures or churn, trees are easily and rapidly repaired thanks

to the underlying epidemic substrate that acts as a safety net. We evaluated

64 4 Brisa: efficient reliable data dissemination

A

J O K

active view
I P M N D F G C

passive view

O

B A H
.

TCP connection (w/ fault detection)

exchange
of passive

views

J

K

Figure 4.2: HyParView (Leitão et al. 2007b): views maintenance.

Brisa on PlanetLab (PlanetLab 2013) and on a local cluster comparing it with

several data dissemination systems from the literature.

The remaining of this chapter is organized as follows. Section 4.2 describes

the design of Brisa and Section 4.3 presents the experimental evaluation. In

Section 4.4 we discuss related work and finally Section 4.5 concludes the chapter.

4.2 Algorithm description

In this section, we describe the design of Brisa. Brisa relies on an underlying

peer sampling service (PSS), and thus we first discuss its requirements and the

guarantees it provides. Then, we introduce the key design principles of the Brisa

protocol and how the dissemination structures are constructed. Finally, we show

how Brisa deals with dynamism, generalize the construction of dissemination

structures with desirable efficiency/robustness criteria and discuss the creation

of multiple dissemination structures.

4.2.1 Peer Sampling Service Layer

We assume the existence of a PSS (Jelasity et al. 2007b) with the properties

discussed in Section 2.2.2 and more specifically HyParView (Leitão et al. 2007b).

The motivation for this choice comes from the additional stability of reactive

approaches, which simplifies the process of creating efficient and correct dissem-

ination structures. In short, HyParView maintains two views at each process:

4.2 Algorithm description 65

a larger passive view and a smaller active view (see Figure 4.2). Only the ac-

tive view containing the process’s neighbors is exposed to the application and in

particular to Brisa. The passive view is maintained in a proactive manner by

periodic exchanges and shuffling of passive views with randomly selected neigh-

bors, that are also selected from the passive view itself. The entries in the active

view are managed in a reactive manner: a neighbor in this view only changes

upon failures, or for accommodating a newly joined process. An opened TCP

connection is maintained with each of the processes in the active view for com-

munication efficiency, in particular, latency. Due to the limited size of the active

view, efficient heartbeat-based fault detection can be used for all of its members.

Upon detection of a failed neighbor, a replacement process is selected from the

passive view and moved to the active view. When the active view is full and a

new process attempts to join, a random process is removed from the active view

to accommodate the joiner. In order to avoid chain reactions due to the massive

number of joins when bootstrapping the system (process A’s view size is full so

it removes process B, B also removes A from its view and promotes a process C

from its active view, C must add B to its view and thus remove an existing one as

its active view is already full, removing D and so on and so forth), we allow the

active view size to grow past the configured value by a given expansion factor.

Processes evictions do not result in replacements when the view size is between

the target view size and this size times the expansion factor. We used an expan-

sion factor of 2 throughout the evaluation. The impact on the actual view sizes

is limited as shown later in the analysis of the degree distribution (Section 4.3.1,

Figure 4.8).

An important aspect of HyParView is that links with neighbors are bidirec-

tional. If process A has process B in its active view, then B also has A as its

neighbor. In a connected overlay, using bidirectional links allows us to ensure

that messages disseminated by flooding will reach all the processes in the sys-

tem without requiring pull mechanisms - also known as anti-entropy (Demers

et al. 1987) - where processes periodically poll other processes for the content

they might have missed. A process receiving a message for the first time from a

neighbor simply propagates it to all its other neighbors.

Flooding is ensured to reach all processes as long as no process in the system

has an active view with only failed processes. The larger the active views the

66 4 Brisa: efficient reliable data dissemination

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

%
 (

C
D

F
)

Number of duplicates

view size = 4
view size = 6

view size = 8
view size = 10

Figure 4.3: Distribution of duplicates per message for each process for 500 mes-
sages in a 512 processes HyParView network for various active view sizes.

smaller the chances for this to occur. However, the larger the view, the larger the

number of relayed messages and consequently the number of duplicate receptions.

As a concrete example, Figure 4.3 presents the cumulative distribution function

(CDF) of the number of duplicates during the dissemination of 500 messages over

a 512 processes HyParView network for different view sizes. We observe that as

the size of the view grows, processes quickly receive large amounts of duplicate

messages. For instance, half of the processes receive more than one duplicate

with a view size of 4, while they receive more than 7 duplicates with a view size

of 10.

Brisa develops on top of HyParView. It takes advantage of the connectivity

guarantee that can tolerate up to 80% process failures (Leitão et al. 2007b) to

emerge efficient dissemination structures that eliminate (or considerably reduce)

the number of duplicates, while keeping the robustness offered by the underlying

PSS.

4.2.2 Rationale

The objective of Brisa is to support the efficient, robust and scalable dissemi-

nation of a stream of messages from one or several sources to the entire network.

Efficiency relates primarily to the limitation of duplicate message transmissions

that waste bandwidth and processor resources. On top of that, Brisa can con-

sider additional efficiency criteria, namely: the reduction of the end-to-end delay

(dissemination time from the source to the last receiver) and network efficiency

4.2 Algorithm description 67

(ratio between the delay for receiving a message through Brisa as compared to a

hypothetical direct communication from the source). Robustness relates to fault

tolerance: dissemination should progress despite the inactivity of some processes

(failure or disconnection) and the system should be able to rapidly detect and

mask such faults. Finally, Brisa scales to very large networks, because the view

size is kept small and under strict control by the PSS thus preventing the load

at any process to grow linearly with the system size.

The main idea behind Brisa stems from the observation that it is the possibil-

ity of receiving messages through multiple paths that makes epidemic approaches

robust, not necessarily the actual data transmission. Therefore, our goal is to

limit or even eliminate duplicate transmissions while maintaining the possibility

of receiving the messages through multiple paths. Such possibility is given by

the view provided by the PSS which contains a set of potential senders. From

this set, Brisa selects one or more to perform the actual data transmission thus

materializing the possibility into a concrete delivery.

Based on this selection, Brisa automatically derives dissemination structures

on top of the undirected HyParView overlay. Such structures are oriented and

can be either trees, by restricting the inbound neighbors of every process to a

single process (parent), or directed acyclic graphs (DAG) by allowing multiple

parents for each process. The creation of a structure is performed by local and

unilateral decisions made by the processes about the set of neighbors that should

be active and actually relay inbound traffic and those that should be inactive. In

the case of a tree the reception of duplicates is effectively eliminated; in a DAG,

it is selectively reduced.

The resulting dissemination structure must ensure complete disseminations,

i.e. that all processes receive all messages. To that end, we must ensure that

it does not contain a non-connected sub-graph that would not receive the mes-

sage from the other components of the structure. This property is ensured by

enforcing the absence of cycles. In fact avoiding cycles is the main concern when

determining the set of active and inactive neighbors of a process. In the following

sections, we first describe how the emergence of a single tree is achieved in Brisa,

then generalize the approach to DAGs, and finally delineate the use of forest of

trees.

68 4 Brisa: efficient reliable data dissemination

4.2.3 Emergence of a Dissemination Structure

The emergence of Brisa’s dissemination structures is part of the natural opera-

tion of the system and is based on the reception of duplicates. Processes start with

all the links active and thus the initial dissemination structure exactly matches

the HyParView overlay. These links form a graph that serves as the basis for

the construction of a Brisa dissemination structure. Initially, a source process

sends the first message of the stream to all its neighbors. Processes receiving

the message for the first time simply forward it to all the processes in their view

because all links are active, effectively flooding the network.

This flooding operation reaches all processes, given the connected and bidi-

rectional nature of the overlay provided by HyParView. During the initial flood,

processes receive the message from a number of different neighbors. Out of these

sources, each process autonomously selects one as its parent in the dissemination

structure and sends a deactivation message to all the others. Future messages in

the stream will then be received only from the selected parent process. The se-

lection is achieved by the use of a link deactivation mechanism and follows one of

the selection strategies presented in Section 4.2.5. To emerge a tree each process

simply needs to prune out all but one of its inbound links. Note that the boot-

strap can also be done by injecting an empty message (without payload) in the

system if the initial flood of an application message poses bandwidth concerns.

It is important to note that deactivating a link does not imply removing the

corresponding entry from the HyParView active view. The overlay constructed

by the PSS remains available and is used both as a provision of processes for

reparations upon failures, or as a fallback for dissemination when reparation is

temporarily not possible. Figure 4.4 presents the principle of the link deactivation

mechanism for constructing a tree. Initially, links from processes X, Y , and Z

belonging to process A’s view and are all active. The first reception of a message

from process X results in process A considering X as its parent. A subsequent

reception of a duplicate from process Y or Z triggers the link deactivation mech-

anism. As only one inbound link should be active, process A needs to deactivate

either the link from process X or the link from process Y . In our example, as the

cost of Y is lower X selects it as its parent and deactivates the previously active

link from X.

There are three guiding principles for deciding which link to deactivate. First,

4.2 Algorithm description 69

A

X Y Z

m

A

X Y Z

A

X Y Z

(parent)
m

first reception, X is implicitly selected as A's parent. Link labels represent
the arbitrary cost of that link according to the parent selection strategy.

duplicate reception triggers the deactivation of the link that has the
highest cost according to the parent selection strategy

A

X Y Z

(parent)
deactivates

50 7010 50 7010

(parent)

Figure 4.4: Reception of a duplicate and deactivation of one link, for a tree Brisa
structure. Depending on the parent selection strategy, the deactivated link can
be the previous parent or the process sending the duplicate.

the dissemination structure must not contain cycles. Second, it must seek to meet

the target number of parents for each process (one for the tree structures, more

when generalizing to DAGs). Finally, when both conditions are met, the parent

selection strategy chooses the new parent based on different criteria for shaping

the dissemination structure (Section 4.2.5).

4.2.4 Preventing Cycles

A mandatory condition for selecting a parent process is that it does not yield a

cycle in the dissemination structure. This means that the potential parent of a

process N does not receive the stream directly or indirectly from N itself. For a

tree this implies that the parent of N must not appear in the sub-tree rooted at

N .

To verify this condition each process piggybacks on the application messages

the process identifiers in the path from the source to itself. When selecting its

parent, a process N rejects those candidates whose message path to the source

includes N itself. This is illustrated in Figure 4.5, where grey processes are not

eligible as parents of process N . It is important to note that the overhead of

70 4 Brisa: efficient reliable data dissemination

N

P

S

path
S P

S
source

connecting creates no cycle

connecting may create a cyclea

b

c d
e

g

h

i

m

r
q

Piggybacked path from S to P:
S a b d N m q r

N cannot select P as parent
because N is a predecessor of P

Figure 4.5: Avoiding creating a cycle for a tree, by checking that process N is
not in the dissemination path to the potential parent.

path embedding is minimal and very attractive when compared to probabilistic

inclusion structure such as Bloom filters (Bloom 1970). As a matter of fact, the

size of the embedded path is bounded by the tree height, which is expected to be

O(logb(N)) where N is the system size and b the active view size. For instance,

in a system with 1× 106 processes with an active view size of 8, the average tree

height is log8(1× 106) ≈ 7. This bounds the maximum metadata size a message

needs to carry which, assuming a 48 bit (IP,port) pair as unique identifier, is only

336 (7∗ 48) bits. A bloom filter, to ensure a reasonable false positive probability

to avoid detecting cycles where there is none, would require significantly more

bits (Bloom 1970). Taking into account the metadata size required, the fact that

path embedding is exact (false positive probability is zero) and the computational

overhead associated with Bloom filters (which requires computing several hashes),

path embedding presents many advantages over Bloom filters.

The detection of cycles is not only done during the initial flooding phase: a

process that detects a cycle from a parent simply makes the link from that parent

inactive and selects a new parent using the regular selection mechanism or the

fallback to flooding as we describe later in Section 4.2.6.

4.2.5 Parent Selection Strategies

From N ’s eligible parents (that is, those not having N in the path followed by the

messages from the source), Brisa selects one according to the following strategies:

1. First-come first-picked. The process sending the first received message

4.2 Algorithm description 71

is selected as parent, all subsequent duplicates received trigger the deactivation

of the incoming link.

2. Delay-aware. This strategy considers the round-trip time between N

and the candidate processes. The one with the lowest delay is selected as parent.

We leverage the periodic keep-alive messages that are exchanged by the processes

in the active views at the HyParView level to measure round-trip times.

A simple optimization is available when building a dissemination tree using

the first-come first-picked strategy: the deactivation of links can be symmetric.

Supposing process A receives a message first from process B and then from process

C, A will pick the link from B and send a deactivate message to C. But it can

further mark its outgoing link to C as inactive as A knows it will not be not

eligible as parent for C, as C already received the message first.

4.2.6 Dynamism

The insertion and removal of processes in the system is handled by the underlying

PSS. A new process joins by contacting a process already in the system. The

new process is provided with an active view with the size of that of its contact

point, and is inserted in the active views of the associated processes. Brisa

automatically marks links to new processes as active. As a result, the joining

process will have all its inbound links marked as active and will receive its first

message multiple times. All that remains is to select its parent(s) according to

the mechanism discussed previously.

The detection of process failures is performed at the level of the active view,

by exchanging periodic keep-alive messages over the established TCP connec-

tions, or when a process fails to acknowledge the reception of a transmission (as

detected by the TCP flow control for that link). When a process notices that

one of its neighbors is removed from the active view (due to a failure), it first

checks if that neighbor was a parent. If that is not the case, the removal can be

ignored. Otherwise, the process needs to find a replacement parent using one of

two strategies. It first attempts a soft repair by trying to select as parent one

of the remaining neighbors. A simple approach is to reactivate all its inbound

links and proceed with the normal parent selection process. This can however

be optimized by leveraging the keep-alive messages used for monitoring the ac-

tive view at the PSS level and piggyback up-to-date information required by the

72 4 Brisa: efficient reliable data dissemination

parent selection procedure. If a suitable parent is found then its inbound link is

directly re-activated. Note that this mechanism uses local knowledge only and

requires a single message exchange being thus very fast and efficient. Further-

more, as shown later in the evaluation, almost all repairs can be done using the

soft repair strategy resulting in minimal disruptions and very fast recovery of the

dissemination structure (Section 4.3.3).

If no replacement parent exists in the active view, we resort to a hard repair

that uses the underlying flooding approach for rebuilding part of the dissemina-

tion structure. The orphan process first re-activates all its incoming links and

considers itself a fresh process by forgetting its position in the cycle detection

mechanism. This allows the orphan process to take any of its neighbors as a

parent. To ensure the tree remains connected, it is necessary to rebuild the in-

coming links for a part of the structure rooted at that orphan process. The need

to repair a portion of the tree is detected by the children of the orphan process

when they receive an activation request from their (former) parent. Those pro-

cesses proceed then with the local repair attempting first a soft repair and if not

possible resorting to a hard repair. We note that the effects of the hard repair are

limited to a small portion of the tree and in practice stop as soon as a process can

find a suitable parent in its active view. Besides, the former parent will receive

subsequent messages from the children (remember the parent activated that link)

and may effectively exchange roles. The number of processes affected by a hard

repair is independent of the position of the original orphan process in the tree: it

only depends on processes in the sub-tree finding a suitable replacement parent,

which is independent of the position of the original orphaned process.

Finally, processes can compensate message loss during recovery by directly

asking its new found parent to send the missing ones. Since parent recovery is

quick (Section 4.3.3) the number of messages each parent needs to buffer is small.

Nonetheless more complex approaches such as (Koldehofe 2003) could still be used

to ensure processes buffer messages for long enough to allow recovery.

We note that the only requirement for trees to be repaired is the existence

of some neighbors at the PSS level which implies that the graph induced by the

PSS views is connected. One of those neighbors is then chosen by Brisa’s repair

mechanism as the new parent. It is important to note that PSSs in general, and

HyParView in particular, are very robust to disconnections and able to maintain

4.2 Algorithm description 73

S
N

P

0 1 2 3 4 5
DAG: depths

S
source

connecting creates no cycle

connecting may create a cycle
(false

negative)

1
2

3
4

5

Figure 4.6: Avoiding creating a cycle for a DAG, by checking that the level of
the potential parent is less than or equal to the level of the process.

connectivity even under massive failures (Leitão et al. 2007b). It follows thus

that Brisa is also able to overcome the failure of a great portion of the network

and eventually reestablish tree connectivity.

4.2.7 Generalized Dissemination Structures

To enhance service continuity under failures and churn, Brisa can generalize the

tree structure to directed acyclic graphics (DAGs) by having each process being

served by several parents instead of only one. In this way, a process that sees

one of its parents fail can seamlessly keep receiving the flow of messages without

the need to first undergo through the parent recovery process. This is attained

at the cost of handling a controlled level of duplicate messages.

The establishment of a DAG basically involves making a number p > 1 of

inbound links active in such a way that cycles are avoided. The technique to

prevent cycles we used for trees is however unfeasible in the case of DAGs due to

the amount of control information required to be exchanged. Indeed, a process

in the nth level of the tree requires a set of n process identifiers to define the path

from the stream source to itself, while for a DAG with p parents per process this

set at level n could reach pn+1 − 1 should all paths be non-overlapping.

Conversely, for DAGs, we use an approximate quantitative approach that

does not include the processes identifiers but just the depth each process is in

the DAG as illustrated by Figure 4.6. The source process is at depth 0 and

every message carries its sender’s depth encoded by a single integer. Initially,

the depth of a process N is undefined and, upon reception of its first message

from a process with depth i − 1, N places itself at depth i. From then on, N

74 4 Brisa: efficient reliable data dissemination

can select parents, and thus receive messages, from processes at any depth not

greater than i. Should N receive a message from a process at depth i (its current

depth) then N moves to depth i + 1 and immediately updates its downstream

children processes accordingly. Similar to the technique we used for trees, it is

clear that any process M served directly or transitively by process N will be at

a depth strictly greater than N. Therefore, M cannot become a parent of N and

yield a cycle.

As mentioned, the technique is however approximate because it can yield false

negatives by discarding valid potential parents, as illustrated in Figure 4.6. Any

two paths (rooted at S) are likely to be labeled similarly with respect to depths.

Since the tagging is purely quantitative, a process from one path may be dis-

missed as a potential parent of a process in another path despite the paths being

causally unrelated. An alternative is to rely on Bloom filters to maintain the

set of processes that need to be excluded for the parent selection process. How-

ever, as for trees this a costly technique when compared to the simplicity and

efficiency of depth encoding. In our experiments, processes are able to obtain the

desired number of parents, thus we consider this approach an attractive alterna-

tive when compared to the cost of both an exact predictor (path embedding) and

of a probabilistic one (Bloom filters).

After determining the set of potential parents with the above strategy all

that remains is selecting the best ones by using the parent selection strategies

presented in Section 4.2.5.

4.2.8 Multiple Dissemination Structures

So far we discussed the creation of a single dissemination structure, be it a tree or

a DAG. In the remainder of this section we motivate and describe the support for

multiple dissemination structures. For clarity of explanation, we focus on trees

but the same principles apply to DAGs.

There are several cases where it is interesting to support more than one tree,

for instance if the source needs to split the content across several trees as in

SplitStream (Castro et al. 2003a) or to apply network coding techniques, or simply

if there are several sources in the system. Moreover, the use of multiple trees

enables a better use of system resources as more processes can contribute to the

dissemination effort. This is because when using a single tree, the leaf processes,

4.2 Algorithm description 75

which are a big portion of the system, do not upload data and thus their capacity

is not used. Supporting several sources can be done by building a single tree

rooted at a rendezvous process that acts on behalf of all sources as in Scribe (?).

This design suffers however from a bottleneck in the rendezvous process and fails

to take advantage of the upload bandwidth available at leaf processes.

Therefore, we consider instead the creation of several independent trees. In

Brisa, a tree is simply given by the set of active and inactive links that each

process locally maintains. Consequently, all that is required to maintain multiple

trees is to locally maintain multiple such sets, one for each tree in the system. To

this end, each tree is uniquely identified by a flowId generated by the tree source

at construction time. Note that as, by assumption, each process has a unique

id, it is straightforward to generate unique flowIds, for instance by concatenating

the process id with a local sequence number. The source then tags all application

messages with its flowId, enabling other processes to uniquely assign the messages

to the appropriate tree. Upon reception of a message from an unknown flowId, a

process locally creates a new set of active and inactive links dedicated to managing

that tree and proceeds as detailed in Section 4.2.3.

This approach is very lightweight as it requires the maintenance of a small

local state, yet due to the inherent randomness in tree creation, enables a much

more efficient use of the overall upload bandwidth as few processes are leaf in all

trees (as we show in Section 4.3.4, Figure 4.13).

Nonetheless, from a design point of view, we observe that the state each

process needs to maintain grows linearly with the number of trees in the system.

To mitigate this, we designed a tree reusing strategy that can be used when the

number of trees grows. The base idea is very simple: instead of creating a new

tree, a process simply reuses one it already knows to disseminate its messages.

To this end, the process analyzes the trees it knows and if it is close enough to

the root of any tree according to reuseDepth, a protocol parameter, it uses that

tree’s flowId instead of creating a new one. Note that, due to path embedding,

a processes always knows its position in all trees it belongs to, so computing

the distance to any root is inexpensive and requires only local knowledge. By

reusing an existing flowId, the messages created by that process will simply be

relayed through the existing tree with no further overhead. However, as the

source process is not located at the root of the tree anymore, it is necessary to

76 4 Brisa: efficient reliable data dissemination

relay messages upward in the tree, to ensure completeness. This is easily achieved

by adding an upward flag to the message, implying that processes need to relay

those messages not only to their children but also to their parents. Another option

would be to directly send the message to the root of the tree which would act as

a rendezvous process. We note that the latter shows less bottlenecks problems

than Scribe as it considers several rendezvous processes, one for each existing

tree, instead of just one. While simple, this strategy is very effective at reducing

the number of total trees and the associated overhead. Obviously, reusing trees

can have contradictory goals with the creation of multiple disjoint trees, e.g., as

in SplitStream (Castro et al. 2003a) or as shown in our evaluation Section 4.3.

In these cases, the goal is to create multiple disjoint trees from a single source, in

order for leaves in a tree to act as interior processes in the other, and reversely, in

order to balance the load of the dissemination of a stream that is split among the

trees. Tree reusing can limit the benefit of this approach, leaves remaining leaves

in multiple trees and the dissemination load is unbalanced. Nonetheless, tree

reusing can still be beneficial, between trees that are used for different streams.

Therefore, tree reusing shall only be prevented for the trees of a given stream. In

this case, each such tree is marked with the identity of the other trees from the

stream, and reusing is disabled for those trees in the reusing decision process.

4.3 Evaluation

In this section we evaluate Brisa on two different testbeds: (1) a local clus-

ter of 15 computers equipped each with 2.2 GHz Core 2 Duo CPU and 2 GB

of RAM and connected by a 1 Gbps switched network, supporting up to 512

Brisa processes and (2) a slice of up to 200 processes on the global-scale Plan-

etLab (PlanetLab 2013) testbed. Similarly to StaN the prototype also leverages

Splay (Leonini et al. 2009), an integrated system for the development, deployment

and evaluation of distributed applications (see Section 3.3.3 for more details).

The evaluation is focused on the aspects that drove Brisa’s design: efficiency

and robustness. For each experiment and unless otherwise stated, we bootstrap

the system with the specified number of processes using the first-come first-picked

strategy with an expansion factor of two, randomly choose a process to be the

source across all the experiment and then have it inject 500 messages at a rate of

4.3 Evaluation 77

 0

 20

 40

 60

 0 1 2 3 4 5 6 7 8 9 10

To
ta

l n
b.

 o
f n

od
es

 (%
)

Depth

tree,view=8
DAG,2 parents,view=8

tree,view=4
DAG,2 parents,view=4

Figure 4.7: Depth distribution for 512 process (first-come first-picked strategy).

 0

 20

 40

 60

 0 1 2 3 4 5 6 7 8 9 10

To
ta

l n
b.

 o
f n

od
es

 (%
)

Depth

tree,view=8
DAG,2 parents,view=8

tree,view=4
DAG,2 parents,view=4

Degree

Figure 4.8: Degree distribution for 512 process (first-come first-picked strategy).

5 per second, taking measurements as appropriate. The message payload is an

opaque random bit string with the specified size.

We start with a preliminary study, in Section 4.3.1, on the structural proper-

ties of the dissemination structures created by Brisa as those properties impose

well-known bounds in resource usage and dissemination time. Then, in Sec-

tion 4.3.2 we inspect the network properties of Brisa, namely bandwidth con-

sumption and routing delays, and analyze the results according to the structural

properties. Next, we evaluate the behavior of Brisa under churn in Section 4.3.3,

and with multiple trees in Section 4.3.4. Finally, in Section 4.3.5, we compare

Brisa with other approaches.

4.3.1 Structural properties

We first study the shape of the structures generated by Brisa, namely trees

and DAGs with 2 parents. The shape (depth and degree), imposes constraints

on latency and on the distribution of the dissemination effort. Results for each

configuration are obtained after building the respective structure and letting it

78 4 Brisa: efficient reliable data dissemination

Figure 4.9: Sample tree shape for 100 processes represented in a radial layout.
The HyParView active view size of 4 (left) and 8 (right). Expansion factor is 1.

stabilize completely. The reason for using the basic first-come first-served strat-

egy is twofold: i) a naive strategy helps to better understand the basic behavior

of Brisa thus serving as a baseline for more elaborate strategies and ii) the lim-

ited number of physical processes hides significant differences on the observation

of structural properties changes that are better observed at larger scales. For

instance for a perfect binary tree doubling the number of processes only increases

the maximum depth by one. Depth places a lower bound on the dissemination

time due to the cost of traversing several intermediate processes and thus should

be kept as low as possible. Figure 4.7 presents the depth density distribution in

a universe with 512 processes. As expected, larger views allow processes to have

more children thus reducing maximum depth. The larger depths in DAGs are

because depth measures the maximum distance, i.e. the longest path from the

root to the process, which increases with the extra number of links. The steep

curves hint that the structures built by Brisa are fairly balanced, i.e., do not de-

generate into long chain even with a simplistic strategy thus preserving desirable

properties for dissemination. An analysis of the degree distribution confirms this

observation.

The degree of a process in Brisa is given by the number of outgoing links and

thus bounds the number of messages a process needs to transmit. This is directly

related to the dissemination effort and as such, degree distribution should be as

4.3 Evaluation 79

narrow as possible indicating an evenly distributed load. When analyzing the

degree distribution presented in Figure 4.8 three main observations arise. First

DAGs are more effective than trees in having a greater share of the processes

contribute to the dissemination effort (processes with degree zero are leaves). As

overall more links are required, the chance of having all outgoing links deactivated

is smaller. Secondly, degree distribution is also highly affected by the view size

provided by the PSS: higher values lead to shallower trees thus resulting in more

leaves, while lower values lead to deeper trees due to the limitation imposed

by the view sizes. Such relation between degree and depth can be observed in

Figure 4.9, which depicts sample trees obtained by Brisa. As a matter of fact,

despite using a simple strategy, the resulting trees are fairly balanced which is

essential for efficient dissemination. Finally, despite using an expansion factor of

2 the number of processes with degree higher than the configured value remains

small as hinted in Section 4.2.1.

4.3.2 Network properties

In this section we focus on the network properties of the dissemination structures

obtained by Brisa.

First, we analyze the routing delay of dissemination on the PlanetLab testbed.

To this end, we use the cumulative round trip times, taken at each hop, from the

root to a given process. When compared against the round trip time of direct

communication between the root and that process, it indicates the effectiveness of

Brisa in building dissemination structures with low end-to-end delays, an essen-

tial property for a dissemination system. The ratio between the first and second

measurements gives the stretch factor. However, due to PlanetLab asymmetries

that deter direct communication between some processes, we instead present the

cumulative distribution of the raw results in Figure 4.10. Not surprisingly, the

flooding strategy yields the worst results due to the heavy load imposed on the

network. In this non-structural metric, the effects of a delay-aware strategy be-

come clear when compared to the simplistic first-come first-pick: for instance,

40% of the processes reduce the routing delays to half.

Next, we focus on bandwidth usage. This measures the effort and is directly

influenced by the depth and degree distribution. Figure 4.11 and Figure 4.12

depict download and upload bandwidth usage, respectively, for payloads of 1, 10,

80 4 Brisa: efficient reliable data dissemination

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

 %
 (

C
D

F
)

Routing delays (seconds)

point-to-point
delays-aware

first-pick
flood

Figure 4.10: Routing delays distribution on PlanetLab for 150 processes. Struc-
ture is a tree with view size 4. Message size is 1KB×200 messages.

 0

10

20

30

1 10 50 100

D
o

w
n

lo
a

d
 (

K
B

/s
)

Message Size (KB)

tr
e

e
,

v
ie

w
 4

tr
e

e
,

v
ie

w
 8

D
A

G
,

2
 p

a
re

n
ts

,
v
ie

w
 4

D
A

G
,

2
 p

a
re

n
ts

,
v
ie

w
 8

90
th

 perc.

75
th

 perc.

50
th

 perc.

25
th

 perc.

5
th

 perc.

Figure 4.11: Download bandwidth usage for 512 processes.

50 and 100 KB. We used stacked bars with decaying shades of grey for represent-

ing a distribution using a set of percentiles. For instance, the medium shade of

grey gives the median value (half of the processes below that value, the other half

above), while the lighter shade gives the 90th percentile: 90% of the processes are

associated with a lower bandwidth.

As expected, trees are more frugal with respect to download as processes

receive exactly one copy of each message whereas in DAGs processes receive two

copies (one for each parent). For each structure, the increase in bandwidth usage

for the different view sizes is due to the PSS. The small difference, negligible

when compared to application messages, hints at a low overhead service. The

differences in the percentiles for the DAG are related to the depth of processes

(Figure 4.7) as processes at lower depths may not be able to find additional

parents and thus receive messages only from a single parent.

4.3 Evaluation 81

 0

20

50

80

1 10 50 100

U
p

lo
a

d
 B

a
n

d
w

id
th

 (
K

B
/s

)

Message Size (KB)

tr
e

e
,

v
ie

w
 4

tr
e

e
,

v
ie

w
 8

D
A

G
,

2
 p

a
re

n
ts

,
v
ie

w
 4

D
A

G
,

2
 p

a
re

n
ts

,
v
ie

w
 8

90
th

 perc.

75
th

 perc.

50
th

 perc.

25
th

 perc.

5
th

 perc.

Figure 4.12: Upload bandwidth usage for 512 processes.

For upload, results are naturally similar. DAGs require more links and con-

sequently processes will have to relay messages to more neighbors, increasing

upload bandwidth usage. The differences between percentiles for a given config-

uration are explained by the degree distribution (Figure 4.8) as processes with

higher degrees need to upload more.

4.3.3 Robustness

We now focus on the behavior of Brisa under continuous churn in order to

assess its robustness. Each experiment is associated with a synthetic churn trace

based on the churn support module of Splay. The synthetic description is given

in Listing 4.1 and proceeds as follows: first we bootstrap the system and let it

stabilize. After, we induce churn at rate X by having X percent processes fail at

random and X percent new processes join the system during each minute.

from 1 s to N s join N

at 1000 s s e t replacement r a t i o to 100%

from 1000 s to 1600 s const churn X% each 60 s

at 1600 s stop

Listing 4.1: Splay’s churn trace generation script.

Table 4.1 presents the results obtained for networks with 128 and 512 pro-

cesses. For simplicity we ensure that the source process does not fail. However,

we note that the failure of source process would only produce a negligible impact

in the presented results. In fact only the direct children of the source (a small

number limited by the view size) would experience the effect of a parent failure.

We defined the following metrics:

82 4 Brisa: efficient reliable data dissemination

• Parents lost per minute: rate at which processes lose any of their par-

ents;

• Orphans per minute: rate at which processes lose all parents, i.e. become

disconnected;

• Percentage of soft repairs: upon disconnections, how many processes

successfully repair their incoming links using the soft repair mechanism;

• Percentage of hard repairs: upon disconnections, how many processes

required using the hard repair mechanism.

As expected the rate at which parents are lost is higher for DAGs than trees

due to the larger number of parents of the former. Nonetheless DAGs are much

more robust with processes being seldom fully disconnected. For instance, with a

churn rate of 5% per minute, which implies half of the processes leaving the sys-

tem within the ten minutes of the experiment, only 17 processes on an universe

of 512 get disconnected (1.7 per minute * 10). Of those, all but one were able

to recover using the soft repair, which simply implies activating a link to a new

parent. Moreover, the time required for hard repairs, studied in the next section,

is very low meaning that despite disconnections processes are able to promptly

repair connectivity with minimal effort. Finally, quick parent recovery also al-

lows processes to quickly recover lost messages thus ensuring that all application

messages are effectively delivered. Such recovery capabilities under high churn,

combined with efficient dissemination structures that are correct by design made

Brisa a promising substrate for efficient and robust dissemination in very large

scale scenarios.

4.3.4 Multiple trees

In this section, we analyze Brisa’s support for multiple trees regarding load

balancing and performance. The network size is 512 and the active view size is

8 as in the previous experiments. Unless otherwise stated, the multiple tree

experiments below do not use the tree reusing strategy; the goal is instead to

create multiple, independent and disjoint trees.

We first analyze Brisa’s multiple trees effectiveness in balancing the dissem-

ination effort among all processes. Figure 4.13 depicts the number of trees where

4.3 Evaluation 83

Churn conditions Parents
lost/min.

Orphans/
min.

%Soft
repairs

%Hard
repairs

128 Nodes

Churn rate:
X=3%

Tree 2.3 2.3 87.0 13.0

DAG, 2 parents 4.0 0.2 92.5 7.5

Churn rate:
X=5%

Tree 3.4 3.4 79.4 20.6

DAG, 2 parents 7.0 0.3 90.0 10.0

512 Nodes

Churn rate:
X=3%

Tree 22.2 22.2 88.2 11.8

DAG, 2 parents 36.8 2.3 94 6

Churn rate:
X=5%

Tree 22.2 22.2 87.7 12.3

DAG, 2 parents 32.3 1.7 94.1 5.9

Table 4.1: Impact of churn for a 128 and 512 node networks with active view size
4.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

 %
 (

C
D

F
)

Number of trees each leaf belongs to

1 tree
2 trees
4 trees
8 trees

Figure 4.13: Distribution of the number of trees where processes are leaves for
512 processes and active view size of 8.

processes are leaves. For instance, with 2 trees, 40% of the processes are leaves in

one tree. Results confirm our expectations that as the number of trees increases,

the chance of processes being a leaf in all trees becomes dismayingly small, for

instance for the 8 trees experiment only less than 5% of the processes are leaves in

more than 6 trees. As leaf-only processes do not contribute to the dissemination

effort, these results indicate that the use of multiple trees is essential to promote

load balancing among processes.

This is confirmed in Figure 4.14 which presents the number of children of

each process across all trees. As is it possible to observe, the number of processes

that do not contribute to the dissemination, i.e. have zero children, diminishes

dramatically with the number of trees in the system. In fact, with a single tree,

84 4 Brisa: efficient reliable data dissemination

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

 %
 (

C
D

F
)

Number of children

1 tree

2 trees

4 trees

8 trees

Figure 4.14: Distribution of the number of children across all trees for 512 pro-
cesses and active view size of 8.

almost 80% of the processes do not upload - they have no children - whereas

for 8 trees this value is very close to zero. These results confirm our motiva-

tion to use multiple trees as a mechanism to balance the dissemination effort

among all the processes (Section 4.2.8). We note that this is achieved without

explicit coordination among processes or by using more complex mechanism as

in SplitStream (Castro et al. 2003a). In fact, Brisa just relies on the inherent

randomness of the underlying PSS to build disjoint trees.

In the next experiment, we study the evolution of Brisa’s performance with

respect to the number of trees. This allows to access the impact deploying mul-

tiple trees has on the reception delay of the individual trees. The reception delay

is defined as the time elapsed, at the source, since the message was published

until the reception at processes, and gives the compounded effect of: a) the rout-

ing delays inherent to the dissemination structure, and b) eventual delays due

to the dissemination overhead (reception, processing and relaying of messages).

Note that this measurement does not require synchronization among processes:

upon reception of a message, a process notifies the source which replies back

with the time elapsed since the message was published. The resulting value is

then weighted with the time elapsed since the process first sent the notification

to minimize the network impact in the measurement. Results are depicted in

Figure 4.15 and show that the reception delay is very similar regardless of the

number of trees. This demonstrates that not only are Brisa’s multiple trees

effective in promoting load balancing among processes, but also the individual

performance of multiple trees is similar to that of a single tree. We account for

4.3 Evaluation 85

 0

 20

 40

 60

 80

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

 %
 (

C
D

F
)

Reception Delays (seconds)

1 tree
2 trees
4 trees
8 trees

Figure 4.15: Reception delays per message when using multiple trees for 512
processes and active view size of 8. The number of messages is 500.

this behavior precisely due to the randomness in the tree creation process. As

a matter of fact, as more trees are added, previously unused resources (leaf-only

processes’ upload capacity), start being used enabling the performance of the

system to remain stable despite the increased overall load.

Finally, we consider a scenario where multiple trees are used to split content

and improve not only resource usage but also dissemination time. We note that

this scenario is close to the one proposed in SplitStream where several disjoint

trees are used to stream content.

In this experiment, we inject 500 messages on the system, evenly split across

the given number of trees, and measure the dissemination delay. The dissem-

ination delay is defined as the local time elapsed between the reception of the

first message and the reception of all messages. Note that, while the reception

delay measures the time elapsed since a message is published until it arrives at

processes, the dissemination delay measures the time it takes for a process to

receive all messages. Results are shown in Figure 4.16. To improve readability,

we show only the portion of the plot where the measurements lie. As expected,

the dissemination delay is considerably reduced when increasing the number of

trees. This is because more messages can be sent in parallel in each tree but also

because the reception delay when using multiple trees does not increase. The cost

is a naturally increased bandwidth usage due to parallelization. Such cost can

however be observed in the distribution of children of each process, which essen-

tially gives the upload requirement, enabling an application designer to choose

the right amount of trees tolerated by the underlying physical network.

86 4 Brisa: efficient reliable data dissemination

 0

 20

 40

 60

 80

 100

 2
81

.5

 2
82

 2
82

.5

 %
 (

C
D

F
)

8 trees

 4
74

.5

 4
75

 4
75

.5

4 trees

 6
22

 6
22

.5

 6
23

Dissemination delay (seconds)

2 trees

 1
21

2

 1
21

2.
5

 1
21

3

1 tree

Figure 4.16: Dissemination delay when splitting the stream of messages across
multiple trees for 512 processes and active view size of 8. The number of messages
is 500.

Protocol
Organization Dissemination Strategy

Structured Unstructured Push Pull

SimpleGossip ×
√ √ √

SimpleTree
√

×
√

×
TAG

√ √
×

√

Brisa
√ √ √

×

Table 4.2: Protocol design space.

4.3.5 Comparison with existing approaches

In this section we compare Brisa’s bandwidth usage, structure construction time,

dissemination latency and parent recovery delays with several alternative algo-

rithms. The algorithms we compare Brisa with are representatives of different

points in the efficiency/robustness design spectrum as can be observed in Ta-

ble 4.2. The comparison metrics have been chosen because they generally rep-

resent the most important parts in any dissemination system and clearly show

the impact of each design decision. For Brisa we use a tree with a HyparView

active view size of 4. In order to assess the inherent overhead of each approach,

and for fairness reasons, the other approaches are implemented and evaluated in

the same environment as Brisa and configured with equivalent settings. The

algorithms we considered are the following:

SimpleGossip This approach lies on the robustness end of the spectrum. We

use Cyclon (Voulgaris et al. 2005b) as the PSS. Due to its proactive nature we use

4.3 Evaluation 87

a combination of rumor mongering (push) to infect most of the processes and anti-

entropy (pull) to ensure completeness (Demers et al. 1987). Rumor mongering

follows an infect and die strategy with a fanout of ln(N), where N is the system

size and anti-entropy exchanges updates with a single random neighbor with a

frequency that is the double of the message creation ratio.

SimpleTree Oppositely, this approach lies on the efficiency side of the design

spectrum. We consider a tree created randomly with the help of a centralized

process. The only criteria for a process joining the tree is to connect to a parent

that joined earlier in the past, which avoids creating a cycle in a similar manner

to the one used in Tag below. This parent is provided by the centralized process

that randomly picks any of the previously joined processes as a parent for a

newly joined process. Dissemination is done by pushing the messages immediately

through tree links thus minimizing latency.

Tag The approach use in Tag (Liu and Zhou 2006) tries to achieve both ro-

bustness and efficiency at the same time sharing thus similar goals to Brisa.

As Brisa, Tag maintains a tree and an unstructured overlay to combine the

efficiency of trees and robustness of epidemics. Processes are further organized

in a linked list sorted by joining time, with processes maintaining information

about their predecessors/successors up to two hops away. New processes traverse

this list backwards until an application specific condition is met. In the traversal,

processes pick k random peers to form the overlay and join the tree by choosing

a suitable parent. Upon parent failures, processes update the linked list and tra-

verse it to find a new parent and thus restore the tree. Regarding dissemination,

Tag uses a pull-based approach with processes pulling content both from the

tree and from overlay neighbors. Because Tag relies on pull we expect increased

dissemination latency due to the additional roundtrips and pull period. We chose

to compare Brisa against Tag due to its proximity in terms of goals and general

approach (combining tree efficiency and epidemic robustness) and the differences

in its design choices (a different tree construction mechanism and a pull-based

approach). We believe this choice allows a better assessment of the merits of each

approach in the following evaluation scenarios.

88 4 Brisa: efficient reliable data dissemination

Bandwidth usage

We first focus on the bandwidth usage of each algorithm by considering two

metrics: stabilization bandwidth and dissemination bandwidth.

Stabilization bandwidth is the bandwidth used to bootstrap the algorithm

including the construction of the overlay and tree structures and is measured until

stabilization. After stabilization we consider the dissemination bandwidth as the

bandwidth associated with message disseminations and subsequent management

overhead. Once the structure stabilizes, we inject messages with payload sizes

from 0 to 20 KB in a network of 512 processes. This differentiation allows us to

clearly observe the overhead imposed in each phase. As SimpleGossip does not

uses any structure we represent all the bandwidth consumed under dissemination

bandwidth.

Figure 4.17 presents bandwidth consumption averaged over all processes. As

expected, Tag and Brisa are comparable and the actual cost is dominated by the

sending of data among peers rather than the management cost of bootstrapping

the dissemination structures. The smaller management overhead of SimpleTree is

due to the fact that only a single communication step with the centralized process

is needed while the other algorithms require inter-process communications. The

small extra bandwidth cost for Tag and Brisa when compared to SimpleTree is

from the maintenance of the PSS layer and dissemination structures that are key

to the performance in terms of delays and robustness as we explore later. For the

smaller message sizes, SimpleGossip is comparable with both Brisa and Tag due

to the absence of structure management and because Cyclon does not uses explicit

fault detection mechanisms. However, this is quickly offset for larger message sizes

due to the excessive number of duplicates SimpleGossip relays resulting in high

bandwidth consumption.

Structure Construction Time

In this experiment we measure the time necessary to bootstrap the dissemination

structures both on the cluster and on PlanetLab. Due to the absence of struc-

ture of SimpleGossip and the construction simplicity of SimpleTree, they are not

considered in this experiment. For Brisa we consider the time elapsed since a

process sends the first deactivation message until all its inbound links except one

are deactivated. In the case of Tag we use the time since a process joins the

4.3 Evaluation 89

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

0 1 10 20

D
a

ta
 T

ra
n

s
m

it
te

d
 (

M
B

)

Message Size (KB)

S
im

p
le

T
re

e

B
R

IS
A

 t
re

e
,
v
ie

w
 4

T
A

G
,
v
ie

w
 4

S
im

p
le

G
o
s
s
ip

 Stabilization Dissemination

Figure 4.17: Comparison of bandwidth usage for 512 processes.

 0

 20

 40

 60

 80

 100

 0.01 0.1 1

 %
 (

C
D

F
)

seconds

Brisa, cluster
Tag, cluster

Brisa, PlanetLab
Tag, PlanetLab

Figure 4.18: Construction time for 512 (on cluster) and 200 (PlanetLab) pro-
cesses. X axis is logarithmic.

list until it settles its position on that list. Results are presented in Figure 4.18.

It is interesting to observe that in absolute terms (note that the x scale is log-

arithmic) Tag is marginally faster than Brisa on the cluster but much slower

on PlanetLab. This is because the construction mechanism happens at once in

Tag by traversing the list, whereas in Brisa it is triggered by the reception of

messages. As Brisa keeps the connection to its neighbors open, in the adverse

environment of PlanetLab, the traversal cost of Tag (i.e. creating a connection

to a process, exchanging messages, tearing it down and proceeding to the next

process) easily outweighs the time Brisa needs to wait for the reception of the

messages from all its neighbors.

90 4 Brisa: efficient reliable data dissemination

Protocol Latency (seconds) Overhead

SimpleGossip 128,23 +28%

SimpleTree 100,025 -

TAG 200,476 +100%

Brisa 106,587 +6%

Table 4.3: Dissemination latency for 512 processes for 500 messages of 1KB.

Dissemination Latency

We consider dissemination latency as the time elapsed between the reception of

the first and last message among the set of all messages. When studied along

with bandwidth usage, it highlights the tradeoffs of each approach. The message

payload is 1 KB and the the ideal dissemination latency is 100 seconds (500 mes-

sages at 5 per second). Table 4.3 presents the results averaged over all processes.

As SimpleTree is very close to the ideal value we use it as a baseline of comparison

for the other approaches. Latency for Tag is significantly higher than the other

approaches. This is mainly because Tag uses a pull-based approach to get up-

dates, while the others rely on push. We note however that this is a characteristic

that pertains to pull approaches in general and not Tag in particular. The delays

for Brisa are similar to the ones for SimpleTree, with a small variation that we

account for the extra context switching and physical machines sharing on our

cluster. Differences in practice are expected to be minimal with a SimpleTree,

and largely in favor of Brisa when using a delay-aware selection strategy as pre-

viously illustrated in Figure 4.10. Somehow surprisingly, SimpleGossip performs

worse than Brisa and SimpleTree. This is due to the overhead of dealing with

duplicates and eventual omissions that need to be compensated by the slower

anti-entropy mechanism.

Parent recovery delay

Our last comparison considers the robustness of Brisa and Tag. As Simple-

Tree does not consider dynamic scenarios, and SimpleGossip does not maintain

any structure both approaches are ignored in this experiment. We apply for

both algorithms the same churn conditions as described in Section 4.3.3, with

a churn rate of 3%, and focus on the parent recovery delay for hard repairs in

both cases. In Brisa this corresponds to the case where no immediate replace-

4.4 Related Work 91

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

 %
 (

C
D

F
)

milliseconds

BRISA tree TAG

Figure 4.19: Parent recovery delays for 128 processes with active view size 4
under 3% continuous churn.

ment neighbor is available and the unstructured overlay is used instead. In Tag

this corresponds to the case where the linked list is broken (i.e., two consecu-

tive simultaneous process failures) and the process needs to be re-inserted into

the structure. Figure 4.19 depicts the results for 128 processes. We note that

Brisa, while yielding a similar bandwidth cost, and better dissemination delays,

also outperforms Tag regarding robustness in two ways: i) the number of hard

repairs almost doubles with Tag (not shown) in the same churn conditions and

ii) the delay for recovery is twice as fast for Brisa. This means that both the

disruption of dissemination happens less often with Brisa, and that the effect of

such disruptions is less than what is experienced with Tag.

4.4 Related Work

Existing approaches to large-scale data dissemination cover two main design do-

mains: overlay management and application-level multicast. In the following we

present existing work in this design space and compare it to Brisa.

Scribe (Castro et al. 2002) is an application-level multicast layer that builds

dissemination trees by aggregating reverse paths to a rendezvous node in the Pas-

try (Rowstron and Druschel 2001) distributed hash table (DHT). Unlike Brisa,

where we assume that all nodes are interested in all messages, Scribe supports

group membership management by having each node subscribe to group(s) it is

interested in. Yet, the load of dissemination is shared by non-members of the

groups that must act as interior (forwarding) nodes in the dissemination trees.

92 4 Brisa: efficient reliable data dissemination

Unlike epidemic dissemination, where the failure of a node has little impact on

the system, Scribe’s rendezvous nodes are single points of failure and bottlenecks

in the system. Brisa also constructs a dissemination structure from an exist-

ing overlay, but can leverage the epidemic dissemination layer as a fallback for

robustness. We note that group membership can be implemented in Brisa by

maintaining on each node separate views for its subscribed groups, as done in

the TERA publish/subscribe system (Baldoni et al. 2007b). These group spe-

cific views can themselves be constructed by the means of an epidemic clustering

protocol such as T-Man (Jelasity et al. 2009).

SplitStream (Castro et al. 2003a) is a high-bandwidth dissemination layer

built on top of Scribe (?) and Pastry (Rowstron and Druschel 2001). In order

to balance the load of dissemination, it constructs multiple Scribe trees that are

used for sending alternate pieces of a stream. Nodes participating as a leaf in

one tree are placed as interior nodes in other(s) trees, thus balancing the in- and

out-degrees of nodes. The same is achieved probabilistic by Brisa due to the

inherent randomness of the PSS where the multiple Brisa trees are embedded.

Chunkyspread (Venkataraman et al. 2006) also builds multiple dissemination

trees, rooted at a single source node. These trees are built on top of an unstruc-

tured overlay and not on a DHT. They are used to parallelize the dissemination

process by pushing different parts of the data in each tree. Cycles in the trees are

avoided by using a technique derived from Bloom filters, whereas Brisa relies

on simpler mechanism based on the path or the number of hops from the source.

Chunkyspread trees can be constructed by taking into account latency and load

metrics that can also be considered with Brisa’s parent selection strategies.

In Bullet (Kostic et al. 2003), a stream of data is also pushed through a

tree structure. Different data blocks are intentionally disseminated to different

branches of the tree, taking into account the bandwidth limits of participating

nodes. Bullet complements this tree with an epidemic layer that allows the re-

covery of missed messages. This mechanism takes the form of a mesh that is

used to locate peers with missing items, in a way similar to a PSS. In this sense,

Bullet is based on a design choice that is opposite to ours: Brisa complements a

robust dissemination layer (the PSS) with an efficient but failure-prone structure

(tree/DAG), while Bullet complements a tree with an epidemic dissemination

mechanism to support failures. Rappel (Patel et al. 2009b) is another example

4.4 Related Work 93

of a dissemination service that combines a tree structure for dissemination with

an epidemic service for optimization purposes. In the case of Rappel, the epi-

demic layer is used to locate suitable peers based on interest-affinity and network

distances, and not as a fallback mechanism for dissemination.

MON (Liang et al. 2005) relies on a mechanism similar to Brisa to construct

spanning trees and DAGs on top of an unstructured overlay. The goal of MON

is to manage large-scale infrastructures such as PlanetLab, by using the resulting

trees/DAGs to disseminate management commands. Therefore, sessions in MON

are intended to be short-lived and the protocol does not provide any support for

dynamism in the population of peers. To disseminate data, MON relies on a

pull strategy, where nodes can download content simultaneously from multiple

parents, if available. This approach eliminates duplicates, as it is the receiver that

decides which pieces to receive. However it requires nodes to maintain knowledge

of the data blocks/messages present at each parent.

The work presented in (Voulgaris and van Steen 2007) stems from an ob-

servation similar to ours that even though epidemic dissemination is attractive

due to robustness, achieving completeness requires large fanouts resulting in high

overhead. The authors thus propose a hybrid approach that uses an epidemic

dissemination with fanouts lower enough to infect most of the population, and

ensures completeness by relying on a ring structure that encompasses all nodes.

Epidemics are used for the bulk dissemination of data, still resulting in many du-

plicates, as opposed to Brisa, where most of the dissemination happens on the

dissemination structure with a controlled number of duplicates. Similarly, in (Li

et al. 2008, 2011) a Chord-like ring overlay is combined with a push mechanism to

disseminate messages over a spanning tree optimized for minimal latency. Brisa

instead builds on top of an unstructured overlay, and it offers a wider set of

options for the structure construction.

In (Fei and Yang 2007) the authors propose an alternative approach to tree

repair based on proactive principles. Each node computes alternative parents for

its children that can be used upon failures. This minimizes disruptions as nodes

known beforehand the new parent they need to connect to. Further it can cope to

some extent with multiple concurrent failures and strictly control node degrees, a

major goal of the authors. Due to this restriction, tree shape tends to degenerate

to a chain overtime penalizing end-to-end delay. Brisa uses a notion similar to

94 4 Brisa: efficient reliable data dissemination

the alternative parents without however having the tree degenerate into a chain,

neither requiring a pre-computation of the suitable alternative parents. This is

because (Fei and Yang 2007) only considers potential parents in the failed node

subtree while Brisa can consider any node as long as it passes the cycle detection

mechanism.

GoCast (Tang et al. 2005) builds a dissemination tree embedded on an epi-

demic overlay that takes into account network proximity to improve end-to-end

latency. The tree is built using a traditional Distance Vector Multicast Routing

Protocol (DVMRP) and used to push messages as in Brisa. Message identifiers

are advertised through the overlay links as in PlumTree (Leitão et al. 2007a) and

used to recover missing messages due to tree disruptions that, contrary to Brisa,

imposes additional network overhead. Most strikingly this recovery information

is not used to repair the tree, which relies solely on DVMRP and thus presents

scalability problems due to the overhead of periodic floods to rebuild the tree.

Furthermore, Brisa is able to adjust to different performance criteria but could

nonetheless take advantage of the network-proximity offered by Gocast’s overlay.

TAG, the protocol we use in the direct comparison with Brisa also falls into this

class due to the use of a tree and an epidemic overlay. More details can be found

in Section 4.3.5.

Similarly to Brisa, PlumTree (Leitão et al. 2007a) also relies on the detection

of duplicates and subsequent deactivation of links to build an embedded spanning

tree on an unstructured overlay built by HyParView. However, inactive links are

still used in a lazy push approach, by announcing the message identifier instead

of the full payload. These announcements are used to repair the tree: when an

announcement for an unknown message is received, the protocol starts a timer.

If the timer expires before the reception of the missing payload the tree repair

mechanism is triggered. This approach is sensitive to variations in network la-

tency, which lead to unnecessary message recoveries as observed in (Ferreira et al.

2010). Brisa does not separate the dissemination of the metadata and the pay-

load: the dissemination is deterministic (through the active links), and faults are

detected at the underlying PSS layer. In this way Brisa removes the need for

sending periodic probe messages at the level of the dissemination layer; avoids the

complexity of managing timers for recovery purposes and removes the overhead of

the continuous exchange of message identifiers. Further, the generic construction

4.4 Related Work 95

mechanism can build trees and DAGS according to different criteria, which is not

possible in PlumTree. Due to the use of message advertisements to manage faults

both PlumTree and Gocast fall in an undesirable tradeoff: either advertisements

are sparingly sent to conserve bandwidth with an impact on recovery time, or

advertisements are aggressively sent imposing a constant management overhead

in the system. To cope with multiple senders, PlumTree uses two approaches:

a single, multi-source tree, or multiple trees by sender. The first approach is

similar to Brisa’s tree reusing and works because the links established are bidi-

rectional allowing a message created by a leaf to reach everyone. The downside,

similarly to Brisa’s tree reusing, is a considerable penalty in end-to-end latency.

Alternatively, when using multiple trees, one per source, the control overhead

in the form of lazy push messages increases proportionally to the number of the

trees. In the optimized version of the protocol with multiple senders this control

overhead is 20% higher than in the non-optimized version. In Brisa there is no

network overhead for the existence of multiple trees on the system, nodes only

need to maintain a local structure with which links are active on each tree.

Thicket (Ferreira et al. 2010) uses the same principles of PlumTree to build

multiple dissemination trees on top of an unstructured overlay. The goal is to

provide similar functionality to SplitStream by balancing the number of trees

where a node is interior, and also by splitting the content among trees to improve

fault-tolerance. The mechanism used to build trees imposes several constrains

that do not ensure the resulting tree is connected by design. This is addressed

with a tree repair mechanism based on missing messages, as in PlumTree, that

requires periodic exchanges of received messages among neighbors which is also

used to handle joins and leaves. The support for multiple trees in Thicket is based

on the premise of load balancing and fault-tolerance by leveraging on network

coding techniques. In contrast, Brisa builds connected trees by design, despite

controlled fanouts, and deals with joins and failures with a simple and lightweight

mechanism that is triggered only when failures happen. Multiple trees are a nat-

ural extension of the system and therefore do not require additional maintenance

mechanisms.

96 4 Brisa: efficient reliable data dissemination

4.5 Discussion

Data dissemination is a crucial problem in distributed systems as the huge body

of existing research attests. When developing a data dissemination system, de-

signers forcibly need to consider two key aspects and the tradeoff they yield:

efficiency and reliability. Strikingly, the need to excel at the two ends of the

spectrum is constantly increasing. On one hand, the exponentially increase in

the amount of data produced and exchanged (Gantz 2007, 2008) demands highly

efficient systems, while in the other hand the very large scale of modern systems

- and consequently the continuous occurrence of faults and churn (Schroeder and

Gibson 2007; Schroeder et al. 2009; Verespej and Pasquale 2011) - call for a ro-

bust data dissemination system. Brisa addresses these key aspects by decoupling

them in two different components. The epidemic unstructured overlay guarantees

robustness and scalability even under faults and churn acting as a safety net for

the dissemination. On top of that, Brisa judiciously builds a structure used for

the bulk of dissemination thus removing the overhead of traditional epidemic dis-

semination. The combination of both components leverages the key observation

that the fundamental requirement for robustness is the possibility of receiving du-

plicates, not the actual data transmission. With this in mind, the path diversity

that naturally exists in unstructured overlays is kept dormant most of the times

- through the inactive links - and only used when strictly necessary to build or

repair the dissemination structure which is the key for efficiency. Because inactive

links can be promptly reactivated when necessary, the dissemination structures

can be quickly repaired (Section 4.3.3) and involving only the PSS neighbors of

the process affected by the failure thus overcoming the major hurdle of traditional

structured approaches.

Using dissemination structures such as trees has also the disadvantage of

skewed load balancing because leaf processes do not contribute to the dissemi-

nation. This is usually overcome by using multiple dissemination structures and

parallelizing the dissemination among them as done in SplitStream (Castro et al.

2003a) or Thicket (Ferreira et al. 2010). However, when disseminating through

multiple trees, the effect of failures is amplified because a single failed process can

compromise delivery in several trees. As such, approaches such as SplitStream

and Thicket take special care to build trees where, ideally, processes are interior

in just a single tree and leafs in all the others. As a complement, it is possible

4.5 Discussion 97

to use network coding techniques in the disseminated data such that the loss of

some messages - for instance due to a failure - can still be masked by the re-

dundant information carried on other messages from different trees (Mea et al.

2007; Nguyen et al. 2010). In our opinion, the main motivation behind these

techniques can be pinpointed again to the difficulty in building, maintaining and

repairing the dissemination structures. Because of this, in Brisa the concern

of having processes participate as interior nodes in several trees is much more

relevant for load balancing purposes than for the continuity and completeness of

the dissemination itself. As such, it is enough to rely on the inherent randomness

of the physical network and on the PSS to support multiple trees with reasonable

load balancing properties (Section 4.3.4).

Brisa’s parent selection strategy allows the construction of dissemination

structures with different performance criteria (Section 4.2.5). With this in mind

there are several other strategies that can be considered to select the best parent.

We highlight some possibilities: i) gerontocratic: which takes into account the

uptime of the candidate processes and selects the one with the highest value. This

is based on the observation that the higher the uptime of a node, the more likely

it is to remain available (Bhagwan et al. 2003b), ii) heterogeneity-aware: which

considers the available bandwidth at candidate processes and iii) load-balancing:

which selects parents according to load and is, to some extent, the dual of the

gerontocratic strategy by spreading the dissemination effort to newer processes.

However, it is important to note that the effectiveness of these strategies is limited

in practice by two factors: the bounded size of the PSS active view and its reactive

nature. As a matter of fact, because all processes currently have the same active

view size it is not possible to fully exploit a strategy such as heterogeneity-aware

because a high capacity process can serve at most the same number of processes

than a low capacity process. Moreover, because the active view is built randomly,

and thus oblivious to any performance criteria, the effectiveness of more elaborate

strategies as the ones identified above is limited. Finally, because the active view

is reactive, new processes joining the system, which are potential best parents to

some existing processes might not be taken into account. This can be addressed

by building the active view of the PSS taking into account the parent selection

strategy instead of at random while keeping the same properties. As an initial

approach, one can leverage a topology construction protocol like T-Man (Jelasity

98 4 Brisa: efficient reliable data dissemination

et al. 2009) to build and maintain the active views and thus offer better support

to more adequate parent selection strategies.

The frugality and robustness of Brisa, combined with the low end-to-end

delay of its dissemination structures, and the ability to quickly repair failures

led us to consider using Brisa in more demanding dissemination scenarios and

in particular live streaming video dissemination. This work which already takes

into account the issues of more efficient parent selection strategies, is submitted

at the time of this writing to a conference as LayStream: A Layered Approach

to Gossip-based Live Streaming. Miguel Matos, Valerio Schiavoni, Pascal Felber,

Rui Oliveira, and Etienne Rivière.

Chapter 5

EpTO: epidemic total order

dissemination

5.1 Introduction

The ordering of events is one of the most fundamental problems in distributed

systems and as such a large body of research has been dedicated to the design

of ordering abstractions with different guarantees and trade-offs (Lamport 1978;

Défago et al. 2004). Most of those abstractions focus on providing strong deter-

ministic guarantees that enable distributed applications to solve various problems,

such as synchronization, agreement or state machine replication. Unfortunately,

such strong guarantees are expensive to obtain and the algorithms that imple-

ment them are known to scale poorly, resulting in a mismatch between what is

expected by distributed applications and the properties achievable in the large-

scale systems encountered in the real world (Birman et al. 1999; Vogels 2009).

Indeed, large-scale systems are prone to failures and partitions, and one typically

has to relax some guarantees. Notably, the so-called CAP theorem (Brewer 2000;

Gilbert and Lynch 2002) states that one cannot achieve at the same time con-

sistency, availability, and partition tolerance. Therefore, many practical systems

provide some degraded form of these properties, the best known being eventual

consistency (Vogels 2009), which states that the system will reach a consistent

state given a sufficiently long period of time over which no changes occur.

In this chapter, we focus on the problem of data dissemination with reliability

and ordering properties. We argue that, in large-scale settings, it is impractical to

99

100 5 EpTO: epidemic total order dissemination

strive for strong deterministic guarantees as it would lead to prohibitively expen-

sive or non-scalable algorithms. As a matter of fact, this is the same reason that

led to the emergence of probabilistic dissemination algorithms based on epidemic

principles as an alternative to deterministic dissemination algorithms (Dan et al.

1987; Hayden and Birman 1996; Birman et al. 1999; Koldehofe 2002; Eugster et al.

2003b; Carvalho et al. 2007). Such algorithms provide probabilistic guarantees,

typically reaching convergence with high probability in a finite time (eventually).

Additionally, they are known for their extreme scalability and resilience to churn,

which are desirable properties in a real world deployment. However, most existing

epidemic dissemination protocols have focused exclusively on the (probabilistic)

reliability of the dissemination, overlooking stronger properties, such as order-

ing. Unfortunately, the absence of ordering properties, and in particular total

order, limits the usage of epidemic dissemination algorithms in a wider range of

scenarios.

EpTO

Message

Ordering

Message Size
and Latency

Messa
ge

Types PSS

Network

Figure 5.1: EpTO placement in the problem space.

To help overcome this problem, we propose a new epidemic dissemination al-

gorithm, EpTO, with ordering and probabilistic reliability guarantees. It guar-

5.2 Algorithm Description 101

antees that processes eventually agree on the set of received events w.h.p. and

deliver these events in total order to the application. The core of the algorithm is

precisely on determining how long shall one wait without requiring coordination

or synchrony assumptions. Note that this is substantially different from exist-

ing optimistic total order algorithms (Sousa et al. 2002; Saito and Shapiro 2005)

based on spontaneous order - the physical order in which messages are received

from the network - because they still require processes to agree on a definitive fi-

nal order, and thus rests on deterministic reliable dissemination. Instead, EpTO

relies solely on probabilistic dissemination, and thus does not suffer from the

same limitations.

We start with a balls-and-bins approach to dissemination (Koldehofe 2002)

and for simplicity assume that processes have access to global time, e.g. as pro-

vided by a GPS or atomic clock and used by Google’s Spanner (Corbett et al.

2012). In a second step, we lift the assumption of global time and show how one

can rely just on logical time. This extension does not require modifications to

EpTO but only adjustments to an oracle able to inform about the deliverability

of events.

We finally present extensive evaluations of the behavior of EpTO in realistic

settings. Results indicate that EpTO scales well with the number of processes

and events, and achieves agreement with high probability in all but the most

extreme scenarios.

The rest of the paper is organized as follows: in Section 5.2 we define the

system model, state the problem, present EpTO and discuss its properties. In

Section 5.3 we evaluate EpTO under different realistic conditions and in Sec-

tion 5.4 we discuss related work. Finally, Section 5.5 concludes the chapter and

points toward future work.

5.2 Algorithm Description

In this section we start by presenting our assumptions, describing the system

model, and precisely defining the problem. Then, we present the rationale behind

EpTO, describe it in detail and discuss its properties.

102 5 EpTO: epidemic total order dissemination

p

q

r

e' e''e

e' e''e

e''e'

(a) Run A

p

q

r

e' e''e

e' e''e

e e''e'

(b) Run B

Figure 5.2: Properties satisfiability: order but no agreement (left) and agreement
but no order (right).

5.2.1 System model and assumptions

As in StaN and Brisa, we assume that processes have access to a peer sam-

pling service providing uniform random sample of other processes (Section 2.2.2).

Moreover, we initially assume that processes have access to a global clock. We

will then drop this assumption and, instead, only require processes to have access

to a local clock. Local clocks are not necessarily synchronized but we assume that

their drift is bounded.

5.2.2 Problem Statement

We are interested in data dissemination with reliability and ordering guarantees.

In particular, we want to ensure that any broadcast event is delivered with high

probability to all correct processes and that the very same order of events is

observed at all recipients.

We consider that processes use primitives EpTO-broadcasts and EpTO-

deliver to communicate and that the following properties are satisfied:

Integrity: For any event e, every process EpTO-delivers e at most once, and

only if e was previously EpTO-broadcast.

Validity: If a correct process EpTO-broadcasts an event e, then it eventually

EpTO-delivers e.

Total Order: If processes p and q both EpTO-deliver events e and e′, then

p EpTO-delivers e before e′ if and only if q EpTO-delivers e before e′.

Probabilistic Agreement: If a process EpTO-delivers an event e, then

with high probability all correct processes eventually EpTO-deliver e.

Besides agreement, which is probabilistic, the remaining properties closely

follow those from traditional total order (or atomic) broadcast algorithms (Défago

et al. 2004). The integrity property precludes spurious messages by disallowing

5.2 Algorithm Description 103

the delivery of duplicates and messages not previously sent. Liveness of the

protocol is ensured by the validity property that requires correct processes to

always deliver the messages they broadcast.

While the total order property is standard, its interplay with the probabilistic

agreement guarantees of the protocol is of particular interest. Since the protocol

reliability is probabilistic, holes may occur (although with low probability) in

the sequence of messages delivered at each process. While these sequences may

differ for any pair of processes, the order of any two delivered messages should be

the same. Consider, for instance, the two runs depicted in Figure 5.2 with three

processes and three events. In the run on the left (Figure 5.2(a)) the total order

property is preserved but agreement is violated because process r did not receive

event e’. Therefore, this is a valid, although unlikely, run in EpTO. On the other

hand, in the run on the right (Figure 5.2(b)) agreement is preserved (all processes

received all events), but total order is violated because process r delivered the

events in a different order from the other two processes. Consequently, this run

is not allowed in EpTO.

5.2.3 Rationale

Legend

p

q

received : {e}
deliverable: {}

received : {}
deliverable: {}

received : {e,e'}
deliverable: {}

received : {e'}
deliverable: {}

received : {e,e'}
deliverable: {}

received : {e',e}
deliverable: {}

received : {e,e'}
deliverable: {e,e'}

received : {e',e}
deliverable: {e',e}

e' event reception
e' event delivery

e e' e'

e' e

e e'

e e'

round

Figure 5.3: Totally ordered event delivery.

Most work on epidemic dissemination protocols focused only on reliability (Bir-

man et al. 1999; Koldehofe 2002; Eugster et al. 2003b), that is, in satisfying the

(probabilistic) agreement property.

104 5 EpTO: epidemic total order dissemination

Of particular interest to us is the balls-and-bins model, which offers a quan-

tifiable probability of an event reaching all processes (Koldehofe 2002). In (Kold-

ehofe 2002) processes are abstracted as bins, and balls represent a set of events.

It is then shown that by throwing c · n · lg(n) balls uniformly at random, with

n the system size and c > 1 a constant, every bin will contain at least one ball

w.h.p.

A protocol that creates c ·n · lg(n) balls is said to be balls-and-bins compliant

and can be implemented by an epidemic algorithm as follows (Koldehofe 2002).

In periodic rounds (not necessarly synchronized) each process sends balls to other

K processes chosen uniformly at random. Each ball contains the events received

during the last round that have been retransmitted less than TTL times. The

fanout K is given by d2 ·e · ln(n)/ln(ln(n))e and the TTL by dlg(n)e for a system

of size n.

We now provide the intuition on how we can provide totally ordered event de-

livery on top of a ball-and-bins protocol. The protocol proceeds in asynchronous

rounds and, for now, let us assume that processes have access to a global clock

that provides totally ordered timestamps used to tag every broadcast event. We

say that an event is deliverable when it has been received by all processes w.h.p.

This information is conveyed to processes through an isDeliverable oracle derived

from the TTL value of the balls-and-bins model. It follows that, for any two

deliverable events e and e′, a process p knows that every other correct process

has received them w.h.p.

As events carry totally ordered timestamps, p can deterministically sort both

events and deliver them in correct order to the application (Figure 5.3). Extend-

ing this observation to every process and pair of events, we are able to totally

order all events without requiring any sort of global coordination among pro-

cesses.

Should the deliverability oracle be perfectly accurate, the sequence of events

delivered at each process would be exactly the same. However, as it is probabilis-

tic, our algorithm will ensure the total order property at the expense of holes in

the sequence of delivered events at some (in practice very few) processes.

In the remainder of this section we describe the algorithm in detail and discuss

how our assumptions can be implemented in practice.

5.2 Algorithm Description 105

5.2.4 Detailed description

 Reliable Dissemination Component

Application

Network

PSS

receive(BALL) send(BALL)

Ordering Component
deliver(event)

orderEvents(BALL)

broadcast(event)

clock

isDeliverable?

Deliverability oracle

Probabilistic
Agreement

Total
Order

Valididty
&

Integrity

Guaranteed property

Figure 5.4: EpTO architecture.

The EpTO algorithm is composed of two parts: a balls-and-bins compli-

ant dissemination component responsible for satisfying the agreement property

and an ordering component responsible for fulfilling the total order property as

depicted in Figure 5.4. The remaining properties of validity and integrity are

ensured by the two components in tandem. We discuss how these properties

are satisfied in Section 5.2.6. The dissemination component handles the recep-

tion and retransmission of events. Received events are passed to the ordering

component which orders and delivers them to the application.

The dissemination component of the algorithm is depicted in Algorithm 4 for

a process p. It proceeds in asynchronous rounds by periodically executing the

task in lines 20 to 28. The algorithm assumes the existence of a PSS responsible

for keeping p’s view variable (line 2) up-to-date with a stream of at least K correct

process, the fanout, for each round (Section 2.2.2). TTL is a constant holding

the number of times each event needs to be relayed throughout its dissemination.

The nextBall set collects the events to be sent in the next round by p.

This component consists of three procedures executed atomically: the event

broadcast primitive, the event receive callback and the periodic relaying task.

106 5 EpTO: epidemic total order dissemination

Algorithm 4: EpTO - reliable dissemination component (process p)
initially1

view ← . . . ; // system parameter: set of uniformly random correct peers2
K ← . . . ; // system parameter: fanout3
TTL← . . . ; // system parameter: nb times events need to be relayed4
nextBall← ∅ ; // set of events to be relayed in the next round5

procedure broadcast(event)6
event.ts← getClock()7
event.ttl← 08
event.sourceId← p.id9
nextBall← nextBall ∪ (event.id, event)10

upon receive BALL(ball)11

foreach event ∈ ball do12
if event.ttl < TTL then13

if event.id ∈ nextBall then14
if nextBall[event.id].ttl < event.ttl then15

nextBall[event.id].ttl← event.ttl ; // update TTL16

else17
nextBall← nextBall ∪ (event.id, event)18

updateClock(event.ts) ; // only needed with logical time19

every δ20
foreach event ∈ nextBall do21

event.ttl← event.ttl + 122

if nextBall != ∅ then23
peers ← Random (view,K)24
foreach q ∈ peers do25

send BALL(nextBall) to q26

orderEvents(nextBall)27
nextBall← ∅28

When p broadcasts an event (lines 6–10), the event is timestamped with p’s

current clock, its ttl is set to zero and it is added to the nextBall to be relayed

in the next round. Upon reception of a ball (lines 11–19), events with ttl < TTL

are added to nextBall for further relaying. When a received event is already in

nextBall, we keep the one with the largest ttl to avoid excessive retransmissions.

Finally, the process clock is updated (this will only become relevant later in

Section 5.2.5).

The periodic relaying task is executed every δ time units (lines 20–28). Process

p first updates the ttl of each event in nextBall and then sends it to K processes

randomly chosen from its view. Next, it calls the procedure orderEvents of the

ordering component (Algorithm 5) and afterwards resets the nexBall.

The ordering component is depicted in Algorithm 5. Procedure orderEvents

is called every round (line 27 of Algorithm 4) and its goal is to deliver events

to the application (Algorithm 5, line 30). To do so, each process p maintains

5.2 Algorithm Description 107

Algorithm 5: EpTO - ordering component (process p)
initially1

received← ∅ ; // map of received but not delivered events2
delivered← ∅ ; // set of delivered events3
lastDeliveredT imestamp← 0 ; // maximum timestamp of delivered events4

procedure orderEvents(ball)5
// update TTL of received events
foreach event ∈ received do6

received[event.id].ttl← received[event.id].ttl + 17

// update set of received events with events on the ball
foreach event ∈ ball do8

if event.id /∈ delivered ∧ event.ts < lastDeliveredT imestamp then9
if event.id ∈ received then10

if received[event.id].ttl < event.ttl then11
received[event.id].ttl← event.ttl12

else13
received← received+ (event.id, event)14

// collect deliverable events and determine smallest timestamp of non deliverable events
minQueuedT imestamp←∞15
deliverableEvents← ∅16
foreach event ∈ received do17

if isDeliverable(event) then18
deliverableEvents← deliverableEvents ∪ event19

else if minQueuedT imestamp > event.ts then20
minQueuedT imestamp← event.ts21

foreach event ∈ deliverableEvents do22
if event.ts > minQueuedT imestamp then23

// ignore deliverable events with timestamp smaller than all received events
deliverableEvents← deliverableEvents \ event24

else25
// event can be delivered, remove from received events
received← received− (event.id, event)26

foreach event ∈ deliverableEvents | sorted by (timestamp, sourceId) do27
delivered ← delivered ∪ event28
lastDeliveredTimestamp ← event.ts29
deliver(event) ; // deliver event to the application30

a received map of (id, event) pairs with all known but not yet delivered events

and a delivered set with all the events already delivered to the application. The

main task of this procedure is to move events from the received to the delivered

set, preserving the total order of the events’ timestamps. This is done in several

steps as follows.

We start by incrementing the ttl of all events previously received (lines 6–

7) as the result of entering a new round. Then, in lines 8 to 14, the events

received in parameter ball are processed. For each event, if it has been already

delivered or its timestamp is greater than the timestamp of the last event delivered

108 5 EpTO: epidemic total order dissemination

initially1
globalClock ← . . .2

procedure isDeliverable(m)3
return m.ttl > TTL4

procedure getClock()5
return globalClock.getTime()6

procedure updateClock(ts)7
// nothing to do

(a) Global Time

initially1
logicalClock ← 02

procedure isDeliverable(m)3
return m.TTL > 2 * TTL4

procedure getClock()5
logicalClock ← logicalClock + 16
return logicalClock7

procedure updateClock(ts)8
if ts > logicalClock then9

logicalClock ← ts10

(b) Logical Time

Figure 5.5: Stability oracles.

(lastDeliveredT imestamp) then it is discarded. Delivering such an event in the

former case would violate integrity because the delivery of a duplicate event, and

in the latter case incur in a violation of total order. Otherwise, the event is

added to received or, if previously there, its ttl value set to the largest of both

occurrences. Note that here the event’s ttl is not used anymore for dissemination

but just for deliverability detection purposes as we explain below when discussing

the isDeliverable oracle (Section 5.2.5).

The next step (lines 15–26) builds the set of events to be delivered in the

current round (deliverableEvents). In a nutshell, an event e becomes deliverable

if it is deemed so by the isDeliverable oracle and its timestamp is smaller than

any non deliverable event in the received set. Lines 15 to 21 collect the deliver-

able events in the deliverableEvents set and calculate the minimum timestamp

(minQueuedT imestamp) of all the events that cannot yet be delivered. Next,

lines 22 to 26 purge from the deliverableEvents set all events whose timestamp

is greater than minQueuedT imestamp because otherwise total order would be

violated. The remaining events can be effectively delivered, and thus are removed

from the received set. Finally (lines 27–30), the events in deliverableEvents are

delivered to the application following timestamp ordering.

5.2.5 Deliverability oracle and logical time

In this section we discuss the implementation of the deliverability oracle. The

concept of deliverability builds on the notion of event stability. An event is said

to be stable once it has been received by all correct processes w.h.p. This is

5.2 Algorithm Description 109

actually the fulfillment of the probabilistic agreement property and, as shown

in (Pittel 1987; Koldehofe 2002), in a balls-and-bins compliant protocol happens

after the event is disseminated TTL times. In fact, the dissemination of events

actually corresponds to aging the events until they become stable. Whereas for

reaching agreement processes do not need to become aware of when an event

becomes stable, in our algorithm this is essential to determine when the event

can be delivered while preserving total order. To do so, our algorithm not only

periodically ages events by disseminating the events in nextBall at each round

(recall that these are the events received since the last dissemination occurred) in

lines 21 to 26 in Algorithm 4, but also mimics at the same time the aging of events

it has received and await to be delivered. This is done by incrementing their ttl in

lines 6 and 7 of Algorithm 5. Therefore, because the events can be totally ordered,

by assumption, thanks to the global clock, the deliverability oracle comes down

to comparing the event’s ttl with the system’s TTL parameter, Figure 5.5(a).

Intuitively, for adequately mimicking the aging of events we need to approxi-

mate that aging with the dissemination periods. This approximation is controlled

by the parameter δ which specifies how often the algorithm’s round should be

executed. For performance, δ should be a good estimate of the end-to-end com-

munication delay to allow events to become stable. Note that because EpTO is

asynchronous, setting a wrong δ only impacts performance not correctness. As a

matter of fact, the safety of the algorithm (total order and integrity) is determin-

istic and always preserved as well as its liveness. Validity is also deterministic

and always ensured while agreement is probabilistic, meaning not all messages

might be delivered. In practice, this means that in the worst case, the sequence of

events delivered at processes may contain holes. We informally discuss how these

properties are satisfied in Section 5.2.6 and evaluate the impact of δ in EpTO’s

performance in Section 5.3.

Logical clock We now consider the use of logical time releasing the assumption

of a global clock. We use a scalar logical clock implemented in a standard way:

the local clock is incremented whenever an event is broadcasted and received

with procedures getClock() and updateClock(ts) of Figure 5.5(b), respectively.

By disambiguating concurrent events using the process identifiers, we are able to

still totally order all events.

110 5 EpTO: epidemic total order dissemination

p

q

rec.: {}
del.: {}

rec.: {}
del.: {}

rec.: {}
del.: {}

rec.: {(e',1,TTL-1),
 (e,1,TTL)}
del.: {}

e' event reception e' event delivery

ee'

ee'

rounde event broadcast

(e,1,TTL-2)

rec.: {}
del.: {}

rec.: {(e,1,TTL-1)}
del.: {}

(e',1,TTL-2)

rec.: set of received events

(e,1,TTL)

rec.: {(e,1,TTL)}
del.: {}

(e',1,TTL)

rec.: {(e,1,TTL)}
del.: {}

rec.: {(e',1,TTL),
 (e,1,TTL)}
del.: {}

rec.: {(e,1,TTL)}
del.: {}

rec.: {(e',1,TTL),
 (e,1,TTL)}
del.: {}

rec.: {(e,1,TTL),
 (e',1,TTL)}
del.: {}

(e,ts,ttl) -> event e with timestamp ts and TTL ttl del.: set of deliverable events

Legend

Round 0 Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

rec.: {}
del.: {(e',1,TTL),
 (e,1,TTL)}

rec.: {}
del.: {(e',1,TTL),
 (e,1,TTL)}

Figure 5.6: Sample run with a logical clock. Note that rounds are labeled just for
presentation purposes, EpTO does not require round synchronization or labeling.

Because event stability depends on real time (rounds of δ units of time) but

now timestamps are logical (and therefore oblivious to the passing of time), the

event stability achieved at TTL rounds may not be sufficient to allow ordered

delivery of concurrent events. To understand the phenomenon, consider the fol-

lowing example depicted in Figure 5.6 with processes p and q. Further assume

that in this example, the TTL is two, i.e. events are stable after two rounds, pro-

cesses initial logical clock is set to one and p.id precedes q.id. Note that rounds

are labeled just for the sake of explanation, EpTO does not require round syn-

chronization or labeling. Process q broadcasts (e, 1) (event e with timestamp 1)

at round zero. Process p receives event e in round two but just before the recep-

tion, it broadcasts event (e′, 1). Because p broadcasts e′ before receiving e, the

timestamp associated with e′ still does not take into account the timestamp of e,

and thus both events have the timestamp set to one. Simultaneously e is deemed

stable at q because TTL rounds have elapsed. Now, if our only criteria was event

stability, q would correctly deliver e. However, by doing so q would no longer be

able to deliver e′ as it would violate total order. This is because p.id precedes

q.id, and thus e′ precedes e, which could well be the order in which p will deliver

5.2 Algorithm Description 111

both events. The result will be an unnecessary hole in the sequence of delivered

events at q. To overcome this issue events can only be considered deliverable

when another TTL rounds have passed, i.e. 2 ∗ TTL. The reason for this is that

after 2 ∗ TTL, any event received will already take into account the timestamp

of events broadcasted 2 ∗ TTL (TTL for the event to become stable w.h.p. plus

another TTL for any concurrent event to also become stable w.h.p.) before, thus

enabling gapless delivery w.h.p. In the example depicted in Figure 5.6 the result

is that both processes deliver e′ and e in that order at round six (i.e. 2∗TTL = 4

rounds after event e′ was broadcasted).

5.2.6 Properties satisfiability

In this section we informally discuss how EpTO satisfies the Validity, Integrity,

Agreement and Total Order properties. As highlighted in Figure 5.4, agreement

is achieved by the dissemination component (Algorithm 4) while Total Order is

obtained by the ordering component (Algorithm 5). Validity and Integrity are

ensured by the two components in tandem. In the following we enumerate a set

of lemmas that will support our propositions. For simplicity, and following the

name of the data structures used in the alorithm listings, we call received to the

map of received events and delivered to the set of delivered events (Algorithm 5,

lines 2 and 3, respectively).

Lemma 1 The timestamp of an event e broadcasted by a process p is greater

than the timestamp of any event in received.

The timestamp of event e is assigned when broadcasting the event with the call to

procedure getClock() (Algorithm 4, line 7). The mechanism to update the clock is

different whether we have a global or logical clock. We consider both cases next.

Remember that, by assumption, procedures execute atomically. Furthermore,

consider lastReceivedT imestamp to be the smallest timestamp in received.

Global clock case. From the algorithm, events are exclusively created, and the

timestamp assigned, in the BROADCAST procedure (Algorithm 4, lines 6–10).

Moreover, events can be added to received only through the call to orderEvents

(Algorithm 4, line 27). Because procedures execute atomically, the last execution

of orderEvents happened before, in real time, than the call to BROADCAST .

Moreover, because no events are created in the orderEvents procedure, any event

112 5 EpTO: epidemic total order dissemination

in received has been necessarly created before (in real time) its invocation. It

follows that the timestamp of e, as given by the call to getClock(), is greater

than that of any event in received.

Logical clock case. Process p can put in received events broadcasted by p itself or

by other processes. Because process p is correct, the timestamp p assigns to the

events it broadcasts monotonically increases (Algorithm 5.5(b)), and thus it is not

possible to have an event e′ created by p after event e with a timestamp smaller

than e. Therefore, the remaining situation to consider is the timestamp of events

created by other processes. These events are first received in the call to BALL

(Algorithm 4, lines 11–19), placed in the nextBall and their timestamp used to

increase p’s logical clock (Algorithm 4, line 19). It follows that the timestamp

of any received event is used to update p’s logical clock, and thus any event

broadcasted by p will have a timestamp greater than lastReceivedT imestamp.

Lemma 2 Only events in received are added to delivered (and delivered to the

application).

Directly from the algorithm. Only events belonging to the deliverableEvents

set are added to delivered (Algorithm 5, lines 27–28), and all events from deliverableEvents

come from received (Algorithm 5, lines 17–19).

Lemma 3 An event e broadcasted by a correct process p is added to p’s received.

When a correct process p broadcasts an event e (Algorithm 4, lines 6–10), it

is placed in the nextBall to be relayed on the next round. Correct processes will

eventually execute the next round (Algorithm 4, lines 20–28), and thus will call

the orderEvents procedure (Algorithm 4, line 27) of the ordering component.

Provided the following conditions hold, then event e will be added to the received

(Algorithm 5, line 14). These conditions are: (i) event e does not belong to

delivered (Algorithm 5, line 9), and (ii) the timestamp of e is greater than the

timestamp of the last delivered event (Algorithm 5, line 9), and (iii) event e is

not already in received.

Condition (i): event e does not belong to delivered. From the algorithm, it

follows that delivered is only manipulated on the orderEvents procedure (Algo-

rithm 5, line 28). Because this is the first invocation of orderEvents since event

5.2 Algorithm Description 113

e was broadcasted, then clearly event e cannot belong to delivered. Condition (i)

is therefore satisfied.

Condition (ii): the timestamp of e is greater than the timestamp of the last

delivered event. From Lemma 2 only events in received are added to delivered.

Therefore, no event in delivered has a timestamp greater than an event in received.

Moreover, from Lemma 1, the timestamp of any broadcast event e is greater than

the timestamp of any event in received. It follows that condition (ii) holds.

Condition (iii): event e is not already in received. If e is already on received,

then there is nothing left to do. Otherwise, the condition is true and e is added

to received (Algorithm 5, lines 10–14). It follows that condition (iii) holds.

From conditions (i), (ii) and (iii) it follows that an event e broadcasted by a

correct process p is added to p’s received.

Lemma 4 An event e in received eventually becomes stable.

An event is said to be stable when its ttl is greater than TTL, and thus

the event is known by all correct processes w.h.p. (Section 5.2.5). From the

algorithm, the ttl of each event in received monotonically increases every round

in two possible ways: by one unit (Algorithm 5, lines 6–7) or by one unit or

more if the received ball has the same event with a larger ttl (Algorithm 5, lines

10–12). Moreover, TTL is a finite quantity so eventually the ttl of each event

will be greater than TTL, and thus the event will be stable.

Lemma 5 An event e in received eventually becomes the event with the smallest

timestamp.

In every round, received might be modifed in two different ways: by adding

new events received in a ball (Algorithm 5, lines 8–14) and removing deliverable

events (Algorithm 5, lines 22–26). Thus, one needs to consider two conditions:

condition (i): events removed from received have timestamps smaller than e and

condition (ii) events added to received eventually have timestamps greater then

e.

Condition (i): events removed from received have timestamps smaller than e.

From Lemma 4 events eventually become stable, and from Lemma 6 the stable

event with the smallest timestamp is removed from received. Thus, events with

timestamp smaller than e get removed from received before e does.

114 5 EpTO: epidemic total order dissemination

Condition (ii): events added to received eventually have timestamps greater then

e. From the algorithm events can be added to received either if they are broad-

casted by the process p itself (Algorithm 4, lines 6–10) or if they are received in

a ball (Algorithm 4, lines 11–19). From Lemma 1 any event broadcast by p has

a timestamp greater than any event in received so we only need to be concerned

with events broadcasted by other processes. Faulty processes eventually crash

so we only need to be concerned with correct processes. The timestamp at any

correct process q also increases monotonically and, in the case of logical clocks,

it will eventually take into account the timestamp of event e (see Section 5.2.5).

This implies that eventually any event broadcasted by a process q will have a

timestamp larger than e.

From condition (i) and condition(ii) it follows that event e will eventually

become the event with the smallest timestamp in received.

Lemma 6 The stable event e with the smallest timestamp in received is added

to delivered and removed from received.

Any event belonging to the deliverableEvents set is added, in timestamp or-

der, to delivered (Algorithm 5, lines 27–30). Thus, we need to consider how the

deliverableEvents set is built. The deliverableEvents set is initially populated

with the events that are deliverable according to the isDeliverable oracle (Al-

gorithm 5, lines 18–19). Remember that an event e is said to be deliverable if

and only if e is stable and no event created afterwards can have a timestamp

smaller than e w.h.p. (Section 5.2.5). For all events in received that are not de-

liverable, we determine the smallest timestamp minQueuedT imestamp of such

events (Algorithm 5, lines 20–21). Next, all events in the deliverableEvents set

whose timestamp is greater than minQueuedT imestamp (Algorithm 5, lines 22–

24). It follows that deliverableEvents ends up containing all the deliverable,

and thus stable, events with timestamps smaller than all non deliverable events.

These events are removed from received (Algorithm 5, lines 25–26) and added to

delivered in timestamp order (Algorithm 5, lines 27–30).

Lemma 7 An event e is added to delivered (and delivered to the application) at

most once.

Note that received is a map data structure with the event identifier as the

key. This means that at any given time, received does not hold the same event

5.2 Algorithm Description 115

more than once. Similarly, delivered is a set, and thus it cannot contain the same

event more than once.

An event can be added to received only if it is not in delivered (Algorithm 5,

lines 8–14). Besides, any event added to delivered is removed from received (Algo-

rithm 5, lines 23–28). This means that gradually events are moved from received

to delivered. Therefore, because by assumption procedures are executed atomi-

cally, it is not possible to add an event to received that is already in delivered.

Moreover, from Lemma 2 only events in received can be added to delivered. It

follows that events are added to delivered and delivered to the application at

most once.

Lemma 8 The dissemination of an event e terminates after TTL retransmis-

sions.

When a new event e is broadcasted (Algorithm 4 lines 6–10), its ttl is set

to zero and it is added to the nextBall. On the next round (Algorithm 4 lines

20–26), the ttl of all events contained in the nextBall is increased by one and

the ball is sent to K peers. Upon reception of a ball (Algorithm 4 lines 11–19),

the events in that ball are included in p’s nextBall if and only if the event’s ttl

is smaller than TTL. It follows that only events with ttl smaller than TTL will

be relayed, thus ensuring termination of events’ dissemination in TTL rounds.

Lemma 9 Events are disseminated to K processes chosen uniformly at random.

From the algorithm (Algorithm 4, lines 24–26) it is clear that only events in

the nextBall are transmitted. As observed before, an event can be put into the

nextBall set either if it is broadcasted by a process p (Algorithm 4 lines 6–10),

and hence its ttl is set to zero, or by Lemma 8 if it was received in a ball and its

ttl is smaller than TTL.

These events contained in nextBall, are sent to K processes, a protocol pa-

rameter. The target processes are chosen by the RandomPick function (Al-

gorithm 4, line 26) which selects from the view variable, K process uniformly at

random (Section 2.4). By assumption, the view variable is managed by a PSS

and contains uniformly random samples from the network (Section 2.2.2). Be-

cause a uniformly random selection from a uniformly random variable preseves

the uniformly random properties the target processes are chosen uniformly at

random.

116 5 EpTO: epidemic total order dissemination

Lemma 10 No process p adds an event e′ to delivered after an event e if the

timestamp of e′ is smaller than the timestamp of e.

From Lemma 2 only events in received are delivered to the application and

added to delivered. If both events e and e′ are in received simultaneously, then

from Lemma 4, Lemma 5 and Lemma 6, e′ will be delivered before e and thus

this lemma holds. Additionally, from the same three lemmas it follows that

eventually all events in received will be added to delivered. Thus, the problem

arises only when e is already on delivered and e′ is not yet in received. Sup-

pose this is the case. When and if e′ is received, provided its dissemination

was not terminated (Lemma 8), i.e its ttl was not expired, then e′ is added to

the nextBall (Algorithm 4, lines 12–18) to be disseminated and passed to the

orderEvents procedure in the next round (Algorithm 4, lines 23–27). Note that

if the dissemination of event e′ already terminated, then e′ will be simply not

added to the nextBall, and thus it is not eligible for delivery in the next round.

It follows that we need to consider only events whose dissemination was not yet

terminated. For e′ to be added to received in the orderEvents procedure, three

conditions are required: condition (i) e′ cannot be in delivered, condition (ii) the

timestamp of e′ needs to be greater than the timestamp of the last delivered

event, lastDeliveredT imestamp, and condition (iii) e′ cannot be in received (Al-

gorithm 5, lines 9–10). By assumption, e′ is neither in received nor in delivered,

so conditions (i) and (iii) fail, respectively. Also by assumption, event e is already

in delivered, and thus by the algorithm the lastDeliveredT imestamp is at least

set to the timestamp of e. But, by assumption the timestamp of event e is greater

than the timestamp of e′. It follows that event e′ cannot be added to the received

and, by Lemma 2, cannot be added to delivered.

Propositions We now discuss how, based on the previous lemmas, EpTO sat-

isfies the Validity, Integrity, Probabilistic Agreement and Total Order properties.

Proposition 1 (Integrity) EpTO satifies the Integrity property.

With respect to Integrity we need to consider two sufficient and necessary

conditions: integrity-a) only broadcasted events are delivered and integrity-b) no

event is delivered more than once.

Integrity-a: only broadcasted events are delivered. By Lemma 2 only events

5.2 Algorithm Description 117

in received can be delivered. Events can be added to received only if they are

contained in a ball passed to the orderEvents procedure (Algorithm 5). There

are only two ways events can become part of a ball, either they are broadcasted

locally by the process p (Algorithm 4, lines 6–10) or they are received in a ball

(Algorithm 4, lines 11–19). Balls are received from other processes, and con-

tain events they have broadcasted or received. Besides, by assumption, channels

do not duplicate or create spurious messages (Section2.1). It follows that only

broadcasted events are delivered.

Integrity-b: no event is delivered more than once follows directly from Lemma 2

and Lemma 7.

Proposition 2 (Validity) EpTO satifies the Validity property.

By Lemma 3 an event e broadcasted by a correct process p is added to p’s

received. An event e in p’s received eventually becomes stable by Lemma 4 and

with the smallest timestamp by Lemma 5. Moreover, the stable event with the

smallest timestamp is added to delivered by Lemma 6. It follows that if a correct

process broadcasts an event e, then it eventually delivers e.

Proposition 3 (Probabilistic Agreement) EpTO satifies the Probabilistic Agree-

ment property.

The satisfiability of Agreement comes directly from the balls-and-bins model.

Under the balls-and-bins model it is enough to retransmit a ball (set of one or

more events) c · n · lg(n) times uniformly at random for that ball to fall into all

bins (processs) w.h.p. Specifically, an epidemic protocol is balls-and-bins com-

pliant if the following conditions hold: agreement-a) it retransmits c · n · lg(n)

copies of each event, agreement-b) to processes chosen uniformly at random and

agreement-c) terminates after TTL rounds (Koldehofe 2002).

Agreement-b and agreement-c follow directly from Lemma 9 and Lemma 8, re-

spectively.

Finally, condition agreement-a requires that c · n · lg(n) copies of each event

are created and disseminated. From agreement-b and agreement-c it is clear that

each process creates, at each round, K copies of each event whose ttl was not

expired. It follows that for any K ≥ 1 it is enough to set the TTL to c · n · lg(n),

for any c ≥ 1 to create enough events to satisfy condition agreement-a.

118 5 EpTO: epidemic total order dissemination

Note however that the actual bound on the TTL is much lower, as given

by (Koldehofe 2002). As a matter of fact, to satisfy Agreement w.h.p. the TTL

needs to be dlg(n)e and the fanout K = d2 · e · ln(n)/ln(ln(n))e for a system of

size n. From the combination of agreement-a, agreement-b and agreement-c it

follows that EpTO satisfies Agreement w.h.p.

Proposition 4 (Total Order) EpTO satifies the Total Order property.

Regardless of the clock used, all events broadcasted can be deterministically

sorted by timestamp and then by broadcast identifier. Suppose two correct pro-

cesses p and q and that both have events e and e′ in delivered. Moreover, assume

the timestamp of event e is smaller than the timestamp of e′. We proceed by

contradiction. Suppose that total order was violated, i.e. the order by which p

and q have added events e and e′ to delivered is different. For this to happen, one

process delivered e before e′ (the correct order) and the other process delivered e′

before e (the wrong order). Without loss of generality, let us assume that p is the

process which delivered the events in the wrong order. This means that process

p added e to delivered after adding e′, despite the timestamp of e′ being greater

than the timestamp of e. However, from Lemma 10 this is a contradiction. It

follows that EpTO satisfies the Total Order property.

Regarding performance.

From the discussion above, we saw that EpTO satisfies the properties of a To-

tal Order algorithm specification (Défago et al. 2004) subject to the Probabilis-

tic Agreement. Of particular interest is the interplay between the Probabilistic

Agreement and Total Order. As a matter of fact this is the key for scalability in

the number of events and processes (Section 5.3) and allows us to discard events,

and thus blame Agreement, whenever Total Order is endangered. Naturally, we

want to avoid such discards as much as possible. Next, we discuss the conditions

required to avoid forced event discards. For the sake of this discussion, let us

assume that forced discards were not performed, and thus violations in the Total

Order property could occur. It follows that the only way for events to be put in

delivered in different order by two processes p and q is if the deliverableEvents

set at p differs from the one at q when the orderEvents is executed indepen-

dently at each process. Note that this does not impose any synchronization

5.2 Algorithm Description 119

between processes, it just requires that whenever the deliverableEvents set is

populated (Algorithm 5 lines 15–26) the set of events it contains are the same.

From Lemma 6 the stable event with the smallest timestamp in received is added

to delivered and from Lemma 2 events eventually become stable. Events become

stabler by increasing their ttl which can happen in two ways: when they are

received in a ball (which corresponds to the dissemination in the balls-and-bins

model) and due to the local stabilization procedure we discussed in Section 5.2.4.

In both cases, the pace at which the ttl of events is increased is controlled by the

round period δ, which indicates how often processes should retransmit unstable

events and how often the local stabilization should be run. Next, we discuss two

scenarios where a poorly chosen δ was a negative impact on the number of forced

discards. Note that because the system is asynchronous, the correctness proper-

ties discussed above always hold irrespective of the performance of the system.

We consider two scenarios: scenario-a) processes cycle faster than the network

delay and scenario-b) processes drift considerably and place bounds on each.

For scenario-a assume a system with two processes p and q with δ set to
networkdelay

TTL+1
. Furthermore, suppose p and q broadcast events e and e′ at the same

time, respectively. From the algorithm, both processes will locally detect its own

events as stable after TTL ·δ time units (Lemma 4). Because networkdelay
TTL+1

·TTL <
networkdelay, then each process will locally stabilize its event before receiving

the other process’s event. It follows that from Lemma 5 and Lemma 6 both p

and q will deliver e and e′, respectively. In the next round p and q receive e′ and

e, respectively. Now, if e.ts < e′.ts, p can deliver e′ but q cannot from Lemma 10.

Strictly, this avoids a total order violation but creates an unnecessary hole in the

sequence of delivered events. To prevent this, δ needs to be at least networkdelay
TTL−1

to give broadcasters enough time to receive event from other processes before

delivering their own. However, in practice, and to the best of our knowledge,

using round periods so small will be a waste of network resources. In fact, this

issue is not discussed in most epidemic dissemination protocols we are aware

of (Birman et al. 1999; Koldehofe 2002; Eugster et al. 2003b). Our simulations

on the pathological cases (Figure 5.10(a)) confirm that this bound can indeed

be just on the order of the median network delay (it’s enough to reach half the

nodes) but below that we are prone to get holes in the delivery sequence.

The scenario-b case can happen if a process’s round period drifts too much

120 5 EpTO: epidemic total order dissemination

from the configured δ and can be divided in two sub-cases: future-drift (running

too quickly) and past-drift (running too slowly). The future-drift is just a par-

ticular case of scenario-a, and thus has the same effects. The past-drift has the

opposite effect because events broadcasted by the process itself will take longer

to be injected into the network. This means that other processes might receive

this process’s events too late and have to drop them, creating unnecessary holes.

For both cases of the drift is bound ±δ, which in practice means that the process

may execute the next round immediately or execute it twice as slower than ex-

pected. These results are also confirmed by our simulations on the pathological

cases (Figure 5.10(b)).

5.3 Evaluation

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

C
D

F
 (

%
)

Latency (simulator ticks)

Latency Distribution for 226 PlanetLab nodes

Figure 5.7: Latency distribution used in experiments (obtained from PlanetLab).

In this section we evaluate EpTO’s performance under several scenarios and

analyze in which pathological conditions and misconfigurations the performance

degrades. The experiments are conducted in the same simulator used to evaluate

StaN (Section 3.3) with the following configurations. Processes execute at time

now() + δ ± processDrift, balls sent are delivered at processes at time now() +

networkLatency and processes may be added/removed from the system at a rate

churnRate.

In all the experiments below, networkLatency is a random sample from an

5.3 Evaluation 121

 0
 20
 40
 60
 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 (

%
)

Ordering

Spontaneous Ordering - Global Clock

100N 0.01p
100N 0.1p
100N 0.5p

200N 0.01p
200N 0.1p
200N 0.5p

500N 0.01p
500N 0.1p
500N 0.5p

(a) Global clock.

 0
 20
 40
 60
 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 (

%
)

Ordering

Spontaneous Ordering - Logical Clock

100N 0.01p
100N 0.1p
100N 0.5p

200N 0.01p
200N 0.1p
200N 0.5p

500N 0.01p
500N 0.1p
500N 0.5p

(b) Logical clock.

Figure 5.8: Spontaneous order with a global and a logical clock for varying system
sizes and publication rates r.

empirical distribution obtained by pinging among PlanetLab nodes as depicted

in Figure 5.7. The mean is ≈ 157 with standard deviation ≈ 119 and the 5th ,

50th and 95th percentiles are 15, 125 and 366 simulator ticks, respectively.

Experiments are run with 100, 200, and 500 processes for event publication

rates, r, of 0.01, 0.1, and 0.5. An event publication rate of r means that each

processes has, in each round, a probability r of broadcasting a new event. The

main task of the processes executes every δ = 125 ticks (the median network

latency) with a processDrift of 0.1, meaning the execution period is randomly

distributed in the interval [113..137] (i.e. 125± 12). All presented results are the

average of 20 runs.

122 5 EpTO: epidemic total order dissemination

 0
 20
 40
 60
 80

 100

 0 500 1000 1500 2000 2500

C
D

F
 (

%
)

Time (sim. ticks)

Delivery delay - 100 processes

0.01r global
0.1r global
0.5r global

0.01r logical
0.1r logical
0.5r logical

Spontaneous

 0
 20
 40
 60
 80

 100

 0 500 1000 1500 2000 2500 3000

C
D

F
 (

%
)

Time (sim. ticks)

Delivery delay - 200 processes

0.01r global
0.1r global
0.5r global

0.01r logical
0.1r logical
0.5r logical

Spontaneous

 0
 20
 40
 60
 80

 100

 0 500 1000 1500 2000 2500

C
D

F
 (

%
)

Time (sim. ticks)

Delivery delay - 500 processes

0.01r global
0.1r global
0.5r global

0.01r logical
0.1r logical
0.5r logical

Spontaneous

Figure 5.9: Delivery delay for 100, 200 and 500 processes for varying publication
rates r and clock types.

We first measure the spontaneous order of the system when using only an

epidemic dissemination protocol. This corresponds to delivering new events to

5.3 Evaluation 123

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 (

%
)

Ordering

100N 10 ticks
200N 10 ticks
500N 10 ticks

100N 25 ticks
200N 25 ticks
500N 25 ticks

100N 50 ticks
200N 50 ticks
500N 50 ticks

(a) Misconfigured task period δ.

 1

 10

 100

 0.95 0.96 0.97 0.98 0.99 1

C
D

F
 (

%
)

Ordering

100N 1.0 drift
200N 1.0 drift

100N 1.5 drift
200N 1.5 drift

100N 2.0 drift
200N 2.0 drift

(b) Task execution period drift for a baseline δ = 125.

Figure 5.10: Pathological disorder situations related to the task execution period
δ for a publication rate r = 0.5.

the application right after they are received for the first time (Algorithm 4, line

11). Results are presented in Figure 5.8. The ordering is measured by computing

the common sequences between the events delivered at processes, and the final

event sequence as given by deterministically sorting all events by timestamp and

process identifier. As expected, the ordering becomes worse (i.e. more disordered)

with increasing number of processes and events, but it is much more affected by

the latter due to multiple events being broadcasted concurrently. For broadcast

ratios higher than 0.1 no process is able to correctly deliver more than half of its

events, which makes spontaneous ordering in epidemic dissemination protocols

unusable. In fact, the inherent randomness of an epidemic dissemination clearly

124 5 EpTO: epidemic total order dissemination

goes against any spontaneous ordering that might arise from the natural network

order as exploited in other works (Sousa et al. 2002; Pedone and Schiper 2003).

When using EpTO in the same scenario all processes deliver all events in the

same order, either with a global or logical clock.

We next focus on the delivery delay of EpTO, which measures the time

spent, in simulator ticks, between the broadcast of an event and its delivery to

the application. This indicates the cost of reaching order when compared to a

typical epidemic dissemination protocol. Results are shown in Figure 5.9. The

first observation is that the delay for achieving order is two to four times that

of an unordered epidemic protocol depending on whether we can access a global

clock. Given the much stronger abstraction, a total order algorithm offers to

the application (note that all events were delivered by all processes in the same

order), EpTO offers a reasonable compromise. Moreover, EpTO also scales well

both in the number of nodes and events, as increasing those fivefold only results

in about a twofold increase in the delay.

In the following experiment we study two pathological cases where perfor-

mance degrades. The first is when the period of execution δ of the algorithm’s

main task (Algorithm 4) is too short compared to the network delay. This means

that events are locally stabilized (Algorithm 5, lines 6–7) before having the chance

to reach all nodes, and thus preclude agreement. We experimented with several

values for the task period corresponding to different percentiles of the network

delay (Figure 5.7). Results are presented in Figure 5.10(a). As expected, when

the periodic task executes too fast the performance degrades because processes

end up with holes in the sequence of delivered events. Still, EpTO is surprisingly

resilient to this misconfiguration and just starts to degrade importantly for values

below a third of the median network delay as hinted in Section 5.2.6. The other

pathological case is when process drift is very large, i.e. processes may execute

significantly slower or faster than the configured period. Despite being a differ-

ent cause, the practical effect is the same as before: events might be prematurely

stabilized, thus precluding the delivery of ”earlier” events to the application. We

also experimented with several values for the allowed processDrift, as shown in

Figure 5.10(b). Note that for drifts larger than one, we prevent processes from

executing the next round “in the past” and instead execute it immediately. Re-

markably, even with a drift as large as the task execution period (1.0 drift lines

5.3 Evaluation 125

in the figure), which means the next execution of the task can happen almost

immediately or take twice the configured value, 99% of the processes are able

to deliver all events in the same order, i.e. without holes. For larger values the

performance starts to degrade quickly as discussed in Section 5.2.6.

Finally, we study the behavior of EpTO under churn by observing the evo-

lution of the delivery delay. To this end, we subject half of the system to a

given churn rate by removing churnRate percent nodes uniformly at random

and adding churnRate percent nodes to the system every δ = 125 simulator

ticks. We then measure the ordering on processes not subject to churn. Results

are presented in Figure 5.11. As one can observe, the impact of churn on the

delivery delay is almost unnoticeable with churn rates up to 10%. Moreover, for

churn rates up to 20% all events were delivered to all nodes in the same order.

This highlights the robustness of EpTO for dynamic environments, which stems

essentially from its epidemic nature.

126 5 EpTO: epidemic total order dissemination

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

C
D

F
 (

%
)

Delivery delay (simulator ticks)

Delivery delay under churn

0.0c 0.01c 0.05c 0.1c 0.2c

(a) 100 processes

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

C
D

F
 (

%
)

Delivery delay (simulator ticks)

Delivery delay under churn

0.0c 0.01c 0.05c 0.1c 0.2c

(b) 200 processes

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

C
D

F
 (

%
)

Delivery delay (simulator ticks)

Delivery delay under churn

0.0c 0.01c 0.05c 0.1c 0.2c

(c) 500 processes

Figure 5.11: Impact of churn on the delivery delay with a global clock and pub-
lication rate r = 0.5.

5.4 Related Work 127

5.4 Related Work

There is a vast amount of work on deterministic total order algorithms, much of

which has been analyzed and categorized in (Défago et al. 2004). To the best

of our knowledge, the earliest idea on a probabilistic total order algorithm is

briefly discussed in (Hayden and Birman 1996). The algorithm uses an epidemic

dissemination protocol and, similarly to EpTO, waits for messages to become

stable before delivering them. However, its dissemination protocol has weaker

guarantees than a balls-and-bins compliant dissemination protocol, and thus it is

more likely to violate agreement. The detection of stability is based on the real

time expected for an event to reach all nodes, unlike EpTO rounds, and it is thus

very sensitive to fluctuations in the network delay and process drift. Because of

that, it is also restricted to scenarios with access to a global clock.

Some optimistic total order algorithms also rely on the notion of real time

required for an event to reach all nodes by exploiting the spontaneous network

order (Sousa et al. 2002; Pedone and Schiper 2003). The goal is to decrease

the delivery latency of deterministic protocols and allow applications to process

events optimistically. However, such protocols still require a deterministic deliv-

ery of the final order, and thus are subject to the same scalability constraints

of traditional protocols. Besides, they are sensitive to network fluctuations, and

thus prone to mistakes in the optimistic delivery. The possibility of doing mis-

takes requires optimistic protocols to define corrective mechanisms that fix those

mistakes and define the final deterministic order. Mistakes in EpTO are avoided

by blaming agreement meaning that events which would result in an order vio-

lation are dropped at the expense of the final deterministic order of optimistic

protocols.

The PABCast protocol proposed in (Felber and Pedone 2002) proceeds in

asynchronous rounds where processes can either broadcast an event or vote for

other processes’ events. Processes communicate through gossip and exchange

the set of events and its voters. A round terminates when processes collect

n− f votes (n being the system size and f the number of faulty processes) and

deterministically deliver all events. PABCast provides probabilistic safety and

liveness properties, whereas EpTO provides deterministic safety (integrity and

total order are always preserved) and probabilistic liveness (validity is preserved

and agreement is achieved w.h.p). The basic version of PABCast only allows for

128 5 EpTO: epidemic total order dissemination

processes to either broadcast a single event or place a vote for an event of another

process. This can be overcome with several extensions to the protocols but, as

the authors point out, the number of concurrent broadcasted makes the protocol

more prone to out of order deliveries.

5.5 Discussion

The ordering of events is one of the most fundamental and well studied problems

in distributed systems (Lamport 1978; Défago et al. 2004). Until recently, the fo-

cus of research was on the construction of primitives with strong guarantees and

sound theoretical basis. However, the impressive growth of distributed systems

in terms of scale, started to expose the practical weaknesses of these approaches,

namely poor scalability, quickly degrading behavior under churn and increasing

latency. These issues, amplified by the scale of modern systems, led researchers

to devise alternative formulations with weaker yet quantifiable guarantees, such

as eventual consistency (Vogels 2009) or epidemic dissemination protocols them-

selves (Demers et al. 1987; Birman et al. 1999).

Part of the limitations of classical approaches stem, in our opinion, from the

reliance on the deterministic behavior of the agreement property. As a matter

of fact, the cost of a deterministic reliable multicast primitive - on which one

can build the agreement property - is one of the reasons that led to the emer-

gence of probabilistic dissemination mechanism and, in particular, to epidemic

protocols (Demers et al. 1987; Birman et al. 1999). For instance, optimistic total

order protocols generally leverage a degraded form of agreement to optimistically

deliver events to the application, and thus overcome the latency constraints of a

deterministic reliable multicast (Sousa et al. 2002; Saito and Shapiro 2005). In a

second step, optimistic protocols still use a deterministic reliable multicast prim-

itive to deliver the final order to the application and, if necessary, issue corrective

deliveries to fix any mistakes done in the optimistic phase.

With EpTO, we explicitly rely on the use of a probabilistic reliable multicast

primitive, and thus on probabilistic agreement. This means that in the absence of

deterministic agreement, while total order is always ensured, the reliable delivery

of events is probabilistic, and thus subject to holes in the sequence of delivered

events. Still, the evaluation conducted shows that the impact of ensuring total

5.5 Discussion 129

order in event reliability (i.e. preventing order violations) is just observed in the

most extreme scenarios (Figure 5.10). As a matter of fact, because agreement

is ensured with high probability, in normal scenarios the guarantees offered by

EpTO are close to those of a deterministic algorithm. Actually, EpTO provides

deterministic integrity and total order, and thus safety is deterministic. Validity

is also deterministic and agreement is ensured w.h.p., thus liveness is ensured

with high probability. The probabilistic nature of agreement, which sidesteps

coordination, allows EpTO to scale to a large number of processes and events.

The performance of the algorithm in terms of delivery delay can be fine tuned by

adjusting the period δ of execution without impacting safety.

In EpTO, because agreement is probabilistic, one is allowed to drop events

whenever its delivery would incur in an order violation. Alternatively, one can

consider the delivery of corrective deliveries to fix mistakes as done in optimistic

protocols. Note, however, that the absence of a final order in EpTO makes these

corrective deliveries substantially different from the ones in optimistic protocols.

As a matter of fact, in the latter, a corrective delivery as given by the final order is

definitive, and thus enables the application to proceed accordingly. On the other

hand, in EpTO one does not have a final order and as such it is not possible

to issue a corrective delivery and inform the application that it is final. This is

actually close to the notion of unconscious eventual consistency (Baldoni et al.

2006), where processes might receive corrective deliveries but are not aware (i.e.

they are unconscious) if the delivery order they possess is definitive. Studying

the suitability of EpTO to such a programing model is an interesting research

avenue that we plan to pursue.

In complement to the unconscious programing model discussed above, one

can also consider directly exposing to the application the probabilistic nature of

agreement. In fact, from the balls-and-bins model which underlies the dissemi-

nation guarantees, one knows that after TTL dissemination rounds a given event

is stable, i.e. it is known by all processes w.h.p. It is possible to go a step further

and expose the notion of stability to the application by associating each known

but not yet delivered event with the probability of being stable (and deliverable).

Therefore, the application could peek into this list and decide, for each event, if

the associated probabilities of stability and deliverability are acceptable and con-

sume them accordingly. As before, we plan to formalize and develop this model

130 5 EpTO: epidemic total order dissemination

in future work.

Chapter 6

Conclusions

In this dissertation we focused on three fundamental problems in distributed sys-

tems. While the problems we target have been solved before using deterministic

algorithms, existing state of the art solutions barely address, to the best of our

knowledge, these same problems in very large scales. This stems from the scale

of the system itself, the cost, for instance in terms of message complexity, of

maintaining certain system properties, the outright adverse dynamics of the en-

vironment where churn and failures are the norm rather than the exception, and

the impossibility of centralized knowledge and management.

The harsh environment and uncertain nature of very large scale distributed

systems preclude stringent approaches based on rigid knowledge about the sys-

tem, and thus forfeit the deterministic outcomes produced by classical approaches.

The alternative considered in this dissertation - epidemic algorithms - are per-

fectly suited to these harsh and uncertain environments essentially due to their

randomized nature which is able to produce outcomes otherwise unattainable in

a deterministic environment (Ben-Or 1983).

Equipped with the basic philosophy and concepts of epidemic algorithms, we

proceeded to formulate the research question leading to this dissertation:

What key weaknesses preclude epidemic algorithms from being broadly ap-

plied to a wider range of very large scale scenarios?

Due to its message passing nature, research on epidemic algorithms usually

focus on devising new message exchange patterns, or improving existing ones, to

construct a service or address an application specific need. The loosely coupled

131

132 6 Conclusions

Brisa

EpTO
StA
N

Message

Ordering

Message Size
and Latency

Messa
ge

Types PSS

Network

Figure 6.1: Placement of each proposed algorithm in the problem space.

nature of epidemic algorithms make them particularly suited to the publish-

subscribe model and in particular to its topic-based variant (Eugster et al. 2003a).

Existing algorithms, while scalable in the number of processes and messages, deal

poorly with multiple topics and thus multiple message types categorized into

those topics. Moreover, the distinguishing robustness of protocols comes at the

expense of multiple redundant message transmissions (Demers et al. 1987). This

makes epidemic protocols poorly suited to the dissemination of larger contents

restricting their use mostly to control data. Finally, many distributed applications

require messages to be ordered in a specific way, and in particular in total order.

With a few notable exceptions (Hayden and Birman 1996; Felber and Pedone

2002), there is little research, to the best of our knowledge, in epidemic algorithms

offering total order guarantees.

These three gaps led us to formulate three different research questions and

propose algorithms to address them, as depicted in Figure 6.1.

Next, we will briefly discuss the major research questions introduced in the

133

beginning of this dissertation. However, instead of detailing the particular merits

of each approach, as has already been done in their respective chapters, we will

elaborate instead on the underlying concepts and principles that led to their

design in the first place:

1. How can we deal with different message types and what is the impact on

management overhead?

This problem has been address by StaN, a scalable topic-based publish-

subscribe algorithm described in Chapter 3. StaN takes advantage of the

interest overlap of subscribers to reduce the management overhead associ-

ated with participating in multiple topics. The major novelty of StaN is, in

our opinion, the acknowledgement that one cannot construct, at the same

time, an overlay organization that scales in the number of topics by explic-

itly exploiting subscriber interests, and possesses the properties suitable for

epidemic dissemination. We solve this conundrum through a weight metric

completely unrelated to subscriptions overlap and thus able to sidestep their

inherent clustering as the major cause of overlay degradation. The reduc-

tion in management overhead is thus not a cause of subscription correlation,

as in other approaches, but its indirect consequence. As the optimization

criteria is completely oblivious to subscriptions, StaN presents itself as

a surprisingly effective mechanism to preserve the privacy and safety of

subscribers. We intend to exploit these capabilities in future research.

2. How can we deal with large message sizes and what is the impact on band-

width and latency?

This problem has been addressed by Brisa, an efficient and reliable data

dissemination algorithm described in Chapter 4. Brisa builds efficient dis-

semination structures, such as trees, backed up by a robust unstructured

overlay that is able to quickly fix disruptions in the structure and thus

minimize service disruptions. The major observation underlying Brisa is

the recognition that what makes epidemic algorithms robust is the possi-

bility, at any given instant, of receiving redundant messages, not the actual

message transmission. With this in mind, Brisa disables the transmis-

sion of messages on most paths following some application specific criteria,

but in such a way that all processes are reachable and connectivity can

be promptly restored. The combination of efficiency and robustness, along

134 6 Conclusions

with the ability to quickly restore connectivity, makes Brisa an appealing

solution for epidemic live streaming video dissemination.

3. How can we deal with message ordering, and in particular total order?

This problem has been addressed by EpTO, an epidemic total order dis-

semination algorithm described in Chapter 5. EpTO disseminates events

following a balls-and-bins approach and when event stability is detected -

i.e. when an event has reached all processes w.h.p. - delivers the event to

the application in total order. The major novelty supporting EpTO is the

conversion of a deterministic property hard to achieve in a large dynamic

distributed setting - agreement -, into a probabilistic one that can be esti-

mated from local knowledge only, based solely on the termination proper-

ties of the underlying balls-and-bins dissemination algorithm. This enables

EpTO to offer a total order primitive, subject to probabilistic agreement,

able to scale to a large number of processes and events.

Each one of the proposed algorithms adequately solves, in our opinion, the

stated problems. Notwithstanding the particular research avenues and open chal-

lenges already discussed for each of the proposed algorithms, we believe that their

combination and composition brings interesting possibilities. We discuss these

combinations in the next section.

6.1 Future work

Building on the main problems specified in this dissertation, and on the proposed

solutions, it is possible to derive a new set of problems by combining the basic ones

as depicted in Figure 6.2. In the following, we briefly discuss these possibilities

and point toward future research directions.

Message Types and Ordering. This is the problem of offering total order

with messages of different types, i.e. belonging to multiple topics. At first sight,

this could be addressed by the combination of StaN and EpTO. One can con-

sider the simpler case of ordering of events just inside a single topic or a more

complex scenario where ordering is required to encompass multiple topics. In the

former, one might want to apply EpTO directly into an overlay (topic) managed

6.1 Future work 135

Message Types and Ordering

Me
ss

ag
e O

rd
er

ing
, S

ize
 an

d

La
ten

cy

Message Types, Size and Latency

Message

Ordering

Message Size
and Latency

Messa
ge

Types PSS

Network

Figure 6.2: Possible problem combinations and challenges.

by StaN. However, the overlays managed by StaN are, by the very nature of

the algorithm, reactive. This limits the randomness of the neighbors of a process

which might negatively affect the dissemination guarantees of the balls-and-bins

model, and thus probabilistic agreement. Studying whether this endangers prob-

abilistic agreement of if there are better ways of ensuring probabilistic agreement

in this scenario is thus an open question. The latter is clearly related to to-

tal order multicast to multiple groups (Guerraoui and Schiper 1997). Clarifying

the differences between each approach and researching on whether one can im-

prove existing state of the art based on the proposals presented here is also an

interesting perspective.

Message Ordering, Size and Latency. This is the problem of totally order-

ing messages with large payloads and/or strict latency requirements. It could be

addressed by a combination of EpTO and Brisa but it is not as straightforward

as the previous problem. This is because due to the large size of the payloads,

typically there are few sources, and more commonly just one, and thus ordering

136 6 Conclusions

can be done at the senders which eliminates the need for EpTO. Moreover, be-

cause large payloads are usually media, such as video or music, the usefulness

of being able to totally order such content is not clear. Therefore, this research

path is, in our opinion, the least interesting.

Message Size, Latency and Types. This is the problem of disseminating

large message payloads over one or more topics. Oppositely to the previous

problem, one can clearly see the usefulness of such primitive, for instance to

disseminate media content together with news feeds in a topic-based publish-

subscribe system. We can address this problem by a combination of Brisa and

StaN. This combination is actually quite natural because the reactive nature of

the overlay manage by StaN is clearly adequate to Brisa’s requirements. How-

ever, some research questions remain. For instance, while it is straightforward to

use Brisa in a single StaN topic to disseminate large payloads, studying how one

can combine multiple topics with Brisa’s mutliple trees becomes quite challeng-

ing and interesting. Moreover, the disclosure of message crossposting to Brisa

also opens the door to more efficient topic-based publish-subscribe systems.

Bibliography

L.A. Adamic and B.A. Huberman. Zipf’s law and the Internet. Glottometrics, 3

(1):143–150, 2002. - Cited on page 38.

Akamai Technologies. Akamai. http://www.akamai.com, 2013. - Cited on

page 6.

S. Baehni, P.T. Eugster, and R. Guerraoui. Data-aware multicast. In Dependable

Systems and Networks, 2004. - Cited on pages 30 and 56.

Norman Bailey. The Mathematical Theory of Infectious Diseases and its Appli-

cations. Hafner Press, second edi edition, 1975. - Cited on pages 3 and 20.

R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, and S. Tucci-Piergiovanni.

TERA: topic-based event routing for peer-to-peer architectures. In Inter-

national conference on Distributed event-based systems, 2007a. - Cited on

pages 5, 26, 30 and 56.

Roberto Baldoni, Rachid Guerraoui, R Levy, V Quéma, and Sara Tucci Pier-

giovanni. Unconscious eventual consistency with gossips. Stabilization, safety,

and security of distributed systems, 2006. URL http://www.springerlink.

com/index/m022w817t4326083.pdf. - Cited on page 129.

Roberto Baldoni, Roberto Beraldi, Vivien Quema, Leonardo Querzoni, and Sara

Tucci-Piergiovanni. Tera: topic-based event routing for peer-to-peer archi-

tectures. In Proceedings of the International Conference on Distributed Event-

based Systems, DEBS, pages 2–13, New York, NY, USA, 2007b. ACM. - Cited

on page 92.

Raphaël Barazzutti, Pascal Felber, Christof Fetzer, Emanuel Onica, Jean-

François Pineau, Marcelo Pasin, Etienne Rivière, and Stefan Weigert.

137

http://www.springerlink.com/index/m022w817t4326083.pdf
http://www.springerlink.com/index/m022w817t4326083.pdf

138 Bibliography

StreamHub: A Massively Parallel Architecture for High-Performance Content-

Based Publish/Subscribe. In Proceedings of the 7th ACM international

conference on Distributed event-based systems - DEBS ’13, page 63, New

York, New York, USA, June 2013. ACM Press. ISBN 9781450317580.

doi: 10.1145/2488222.2488260. URL http://dl.acm.org/citation.cfm?id=

2488222.2488260. - Cited on page 25.

Michael Ben-Or. Another advantage of free choice (Extended Abstract). In

Proceedings of the second annual ACM symposium on Principles of distributed

computing - PODC ’83, pages 27–30, New York, New York, USA, August 1983.

ACM Press. ISBN 0897911105. doi: 10.1145/800221.806707. URL http://

dl.acm.org/citation.cfm?id=800221.806707. - Cited on pages 3 and 131.

R Bhagwan, S Savage, and G Voelker. Understanding availability. In Proc. of

IPTPS: international workshop on Peer-to-Peer Systems, February 2003a. -

Cited on page 49.

Ranjita Bhagwan, Stefan Savage, and Geoffrey Voelker. Understanding avail-

ability. In Peer-to-Peer Systems II, Lecture Notes in Computer Science, pages

256–267. Springer Berlin / Heidelberg, 2003b. - Cited on page 97.

Kenneth Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and

Yaron Minsky. Bimodal Multicast. ACM Transactions on Computer Systems,

17(2):41–88, 1999. ISSN 0734-2071. doi: http://doi.acm.org/10.1145/312203.

312207. - Cited on pages 2, 3, 20, 26, 61, 62, 99, 100, 103, 119 and 128.

Burton Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13:422–426, 1970. - Cited on page 70.

Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of

the nineteenth annual ACM symposium on Principles of distributed computing,

page 7, New York, New York, USA, July 2000. ACM Press. ISBN 1581131836.

doi: 10.1145/343477.343502. URL http://dl.acm.org/citation.cfm?id=

343477.343502. - Cited on pages 2 and 99.

Nuno A. Carvalho, José Pereira, Rui Oliveira, and Lúıs Rodrigues. Emergent

Structure in Unstructured Epidemic Multicast. In Proceedings of the 37th

http://dl.acm.org/citation.cfm?id=2488222.2488260
http://dl.acm.org/citation.cfm?id=2488222.2488260
http://dl.acm.org/citation.cfm?id=800221.806707
http://dl.acm.org/citation.cfm?id=800221.806707
http://dl.acm.org/citation.cfm?id=343477.343502
http://dl.acm.org/citation.cfm?id=343477.343502

Bibliography 139

Annual IEEE/IFIP International Conference on Dependable Systems and Net-

works, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-

2855-4. doi: http://dx.doi.org/10.1109/DSN.2007.40. - Cited on pages 3, 21,

22 and 100.

Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving

scalability and expressiveness in an Internet-scale event notification service. In

Proceedings of the nineteenth annual ACM symposium on Principles of dis-

tributed computing - PODC ’00, pages 219–227, New York, New York, USA,

July 2000. ACM Press. ISBN 1581131836. doi: 10.1145/343477.343622. URL

http://dl.acm.org/citation.cfm?id=343477.343622. - Cited on page 4.

M. Castro, P. Druschel, A.M. Kermarrec, and A.I.T. Rowstron. SCRIBE: A

large-scale and decentralized application-level multicast infrastructure. IEEE

Journal on Selected Areas in communications, 20(8):1489–1499, 2002. - Cited

on pages 4, 16, 19, 55, 61 and 91.

Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony

Rowstron, and Atul Singh. Splitstream: high-bandwidth multicast in cooper-

ative environments. In Proceedings of the 19th ACM symposium on Operating

systems principles, SOSP, pages 298–313, New York, NY, USA, 2003a. ACM.

- Cited on pages 61, 63, 74, 76, 84, 92 and 96.

Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony

Rowstron, and Atul Singh. SplitStream: high-bandwidth multicast in cooper-

ative environments. In Proceedings of the 19th ACM symposium on Operating

systems principles, SOSP, pages 298–313, New York, NY, USA, 2003b. ACM.

- Cited on page 7.

Miguel Castro, Michael Jones, Anne-Marie Kermarrec, Antony Rowstron, Mar-

vin Theimer, Helen Wang, and Alec Wolman. An Evaluation of Scalable

Application-Level Multicast Built Using Peer-to-Peer Overlays. In Twenty-

Second Annual Joint Conference of the IEEE Computer and Communications

Societies, volume 2, pages 1510–1520, 2003c. - Cited on page 20.

R. Chand and P. Felber. Semantic peer-to-peer overlays for publish/subscribe

networks. In International Conference on Parallel and Distributed Computing,

2005. - Cited on page 27.

http://dl.acm.org/citation.cfm?id=343477.343622

140 Bibliography

Chen Chen, Hans-Arno Jacobsen, and Roman Vitenberg. Divide and Con-

quer Algorithms for Publish/Subscribe Overlay Design. In Int. Conference

on Distributed Computing Systems. IEEE, 2010. ISBN 978-1-4244-7261-1. doi:

10.1109/ICDCS.2010.87. - Cited on page 57.

Chen Chen, Roman Vitenberg, and Hans-Arno Jacobsen. Scaling Construction

of Low Fan-out Overlays for Topic-Based Publish/Subscribe Systems. In In-

ternational Conference on Distributed Computing Systems. IEEE, 2011. ISBN

978-1-61284-384-1. doi: 10.1109/ICDCS.2011.68. - Cited on page 57.

G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Constructing scalable

overlays for pub-sub with many topics. In Principles of Distributed Computing,

2007a. - Cited on pages 5, 26, 27, 31 and 57.

G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Spidercast: a scalable

interest-aware overlay for topic-based pub/sub communication. In Interna-

tional Conference on Distributed Event-Based Systems, 2007b. - Cited on

pages 5, 26, 27, 30, 51, 56 and 59.

Y. Chu, S.G. Rao, S. Seshan, and H. Zhang. A case for end system multicast.

IEEE Journal on Selected Areas in Communications, 20:1456–1471, 2002. -

Cited on pages 4 and 61.

S. Cimmino, C. Marchetti, and R. Baldoni. A Guided Tour on Total Order Speci-

fications. In The Ninth IEEE International Workshop on Object-Oriented Real-

Time Dependable Systems (WORDS’ 03), pages 187–187. IEEE, 2003. ISBN 0-

1795-2054-5. doi: 10.1109/WORDS.2003.1267507. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=1410962’escapeXml=’false’/>. -

Cited on page 8.

Bram Cohen. Incentives build robustness in bittorrent, 2003. - Cited on pages 4

and 6.

Bram Cohen. The bittorrent protocol specification.

http://www.bittorrent.org/beps/bep 0003.html, January 2008. - Cited

on pages 4 and 6.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1410962' escapeXml='false'/>
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1410962' escapeXml='false'/>

Bibliography 141

Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi

Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quin-

lan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christo-

pher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally-

distributed database. In Operating Systems Design and Implementation,

2012. ISBN 978-931971-96-6. URL http://dl.acm.org/citation.cfm?id=

2387880.2387905. - Cited on page 101.

Alan Dcmers Dan, Carl Hauser, Wes Irish, John Larson, Scott Shenkcr, Howard

Sturgis, Dan Swinehart, Doug Terry, Alan Demers, Dan Greene, and Scott

Shenker. Epidemic algorithms for replicated database maintenance. In Proceed-

ings of the sixth annual ACM Symposium on Principles of distributed comput-

ing, 1987. ISBN 0-89791-239-4. doi: http://doi.acm.org/10.1145/41840.41841.

- Cited on page 100.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulap-

ati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter

Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value

store. ACM SIGOPS Operating Systems Review, 41(6):205, October 2007a.

ISSN 01635980. doi: 10.1145/1323293.1294281. URL http://dl.acm.org/

citation.cfm?id=1323293.1294281. - Cited on page 4.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulap-

ati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter

Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value

store. SIGOPS Operating Systems Review, 41:205–220, 2007b. - Cited on

pages 3 and 62.

Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and

multicast algorithms: Taxonomy and survey. In ACM Computing surveys,

volume 36, 2004. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.102.3146. - Cited on pages 4, 7, 8, 99, 102, 118, 127 and 128.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,

Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for

replicated database maintenance. In Proceedings of the 6th ACM Symposium

http://dl.acm.org/citation.cfm?id=2387880.2387905
http://dl.acm.org/citation.cfm?id=2387880.2387905
http://dl.acm.org/citation.cfm?id=1323293.1294281
http://dl.acm.org/citation.cfm?id=1323293.1294281
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.3146
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.3146

142 Bibliography

on Principles of distributed computing, PODC, pages 1–12, New York, NY,

USA, 1987. ACM. - Cited on pages 2, 3, 20, 62, 65, 87, 128 and 132.

P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of

publish/subscribe. ACM Computing Survey, 35(2), 2003a. ISSN 0360-0300. -

Cited on pages 5, 25, 26 and 132.

Patrick Eugster, Rachid Guerraoui, Sidath Handurukande, Petr Kouznetsov, and

Anne-Marie Kermarrec. Lightweight probabilistic broadcast. ACM Trans-

actions on Computer Systems, 21(4):341–374, 2003b. ISSN 0734-2071. doi:

http://doi.acm.org/10.1145/945506.945507. - Cited on pages 3, 20, 21, 26,

30, 31, 61, 62, 100, 103 and 119.

Patrick Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent Mas-

soulié. From Epidemics to Distributed Computing. IEEE Computer, 37(5):

60–67, May 2004. - Cited on pages 7, 17, 20, 28 and 31.

C. Feather. Network News Transfer Protocol (NNTP). RFC 3977 (Proposed Stan-

dard), October 2006. URL http://www.ietf.org/rfc/rfc3977.txt. Up-

dated by RFC 6048. - Cited on page 21.

Zongming Fei and Mengkun Yang. A proactive tree recovery mechanism for

resilient overlay multicast. IEEE/ACM Transactions on Networking, 15:173–

186, 2007. - Cited on pages 93 and 94.

Pascal Felber and Fernando Pedone. Probabilistic Atomic Broadcast. In In-

ternational Symposium on Reliable Distributed Systems, 2002. URL http://

portal.acm.org/citation.cfm?id=831138. - Cited on pages 8, 127 and 132.

Mario Ferreira, Joao Leitao, and Luis Rodrigues. Thicket: A Protocol for Building

and Maintaining Multiple Trees in a P2P Overlay. In Proceedings of the 29th

IEEE International Symposium on Reliable Distributed Systems, SRDS, pages

293–302, New Delhi, India, 2010. IEEE Computer. - Cited on pages 94, 95

and 96.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of

distributed consensus with one faulty process. J. ACM, 32(2):374–382, April

1985. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/3149.214121. URL

http://doi.acm.org/10.1145/3149.214121. - Cited on page 2.

http://www.ietf.org/rfc/rfc3977.txt
http://portal.acm.org/citation.cfm?id=831138
http://portal.acm.org/citation.cfm?id=831138
http://doi.acm.org/10.1145/3149.214121

Bibliography 143

S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A reliable multicast

framework for light-weight sessions and application level framing. IEEE/ACM

Transactions on Networking, 5(6):784–803, 1997. ISSN 10636692. doi: 10.1109/

90.650139. URL http://dl.acm.org/citation.cfm?id=270856.270863. -

Cited on page 2.

P. Fraigniaud, P. Gauron, and M. Latapy. Combining the use of clustering and

scale-free nature of exchanges into a simple and efficient P2P system. In In-

ternational Conference on Parallel and Distributed Computing, 2005. - Cited

on pages 28, 34 and 38.

D. Frey, R. Guerraoui, A.-M. Kermarrec, M. Monod, and V. Quema. Stretching

gossip with live streaming. In Proceedings of the 39th IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks, DSN, pages 259–264,

Budapest, Hungary, 2009. IEEE Computer Society. - Cited on page 61.

Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, and Maxime Monod.

Boosting Gossip for Live Streaming. In 2010 IEEE Tenth International Con-

ference on Peer-to-Peer Computing (P2P), pages 1–10. IEEE, August 2010.

ISBN 978-1-4244-7140-9. doi: 10.1109/P2P.2010.5569962. URL http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5569962. -

Cited on page 21.

Robert Gallager, Pierre Humblet, and Philip Spira. A Distributed Algorithm

for Minimum-Weight Spanning Trees. ACM Transactions on Programming

Languages and Systems (TOPLAS), 5(1), 1983. ISSN 0164-0925. URL http://

portal.acm.org/citation.cfm?doid=357195.357200. - Cited on page 16.

Ayalvadi Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. Scamp: Peer-

to-Peer Lightweight Membership Service for Large-Scale Group Communica-

tion. In Networked Group Communication, Lecture Notes in Computer Science,

pages 44–55. Springer Berlin / Heidelberg, 2001. - Cited on pages 3, 7, 17, 21,

28, 31 and 62.

Ayalvadi Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. HiScamp:

self-organizing hierarchical membership protocol. In Proceedings of the 10th

workshop on ACM SIGOPS European workshop, pages 133–139. ACM, 2002.

- Cited on page 17.

http://dl.acm.org/citation.cfm?id=270856.270863
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5569962
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5569962
http://portal.acm.org/citation.cfm?doid=357195.357200
http://portal.acm.org/citation.cfm?doid=357195.357200

144 Bibliography

John Gantz. The Expanding Digital Universe. Technical report, IDC White

Paper - sponsored by EMC, 2007. URL http://www.emc.com/collateral/

analyst-reports/expanding-digital-idc-white-paper.pdf. - Cited on

pages 1, 61 and 96.

John Gantz. The Diverse and Exploding Digital Universe. Technical report,

IDC White Paper - sponsored by EMC, 2008. URL http://www.emc.com/

collateral/analyst-reports/diverse-exploding-digital-universe.

pdf. - Cited on pages 1, 61 and 96.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services. ACM SIGACT News,

33(2), 2002. ISSN 01635700. doi: 10.1145/564585.564601. URL http:

//dl.acm.org/citation.cfm?id=564585.564601. - Cited on pages 2 and 99.

Sarunas Girdzijauskas, Gregory Chockler, Ymir Vigfusson, Yoav Tock, and Roie

Melamed. Magnet: practical subscription clustering for Internet-scale pub-

lish/subscribe. In International Conference on Distributed Event-Based Sys-

tems. ACM Press, 2010. ISBN 9781605589275. doi: 10.1145/1827418.1827456.

- Cited on pages 5 and 55.

C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks:

algorithms and evaluation. Performance Evaluation - P2P Computing Systems,

63(3), 2006. ISSN 0166-5316. - Cited on page 18.

R Guerraoui and A Schiper. Total order multicast to multiple groups.

Distributed Computing Systems, 1997. . . . , 1997. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.7078http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=603426. - Cited on

page 135.

R. Guerraoui and A. Schiper. The generic consensus service. IEEE Transactions

on Software Engineering, 27(1):29–41, 2001. ISSN 00985589. doi: 10.1109/

32.895986. URL http://dl.acm.org/citation.cfm?id=359555.359565. -

Cited on page 2.

Rachid Guerraoui, Rui Oliveira, and André Schiper. Stubborn communication

channels. Technical report, Tech. Rep.98-278, Département d’Informatique,

http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf
http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://dl.acm.org/citation.cfm?id=564585.564601
http://dl.acm.org/citation.cfm?id=564585.564601
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.7078 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=603426
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.7078 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=603426
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.7078 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=603426
http://dl.acm.org/citation.cfm?id=359555.359565

Bibliography 145

École Polytechnique Fédérale de Lausanne, 1998. URL http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.51.7698. - Cited on page 14.

Indranil Gupta, R Van Renesse, and KP Birman. A probabilistically

correct leader election protocol for large groups. In Maurice Herlihy,

editor, Distributed Computing, volume 1914 of Lecture Notes in Com-

puter Science, pages 89–103, Berlin, Heidelberg, March 2000. Springer

Berlin Heidelberg. ISBN 978-3-540-41143-7. doi: 10.1007/3-540-40026-5.

URL http://www.springerlink.com/content/k8tfgwnq6fa590q2http://

link.springer.com/chapter/10.1007/3-540-40026-5_6. - Cited on

page 3.

S. Handurukande, A.-M. Kermarrec, F. Le Fessant, L. Massoulié, and S. Patarin.

Peer sharing behaviour in the eDonkey network, and implications for the design

of server-less file sharing systems. ACM Eurosys, 2006. - Cited on pages 28,

34 and 38.

Mark Hayden and Kenneth Birman. Probabilistic Broadcast. Technical Report

TR96-1606, Cornell University, 1996. URL http://dl.acm.org/citation.

cfm?id=866882. - Cited on pages 100, 127 and 132.

John Jannotti, David Gifford, Kirk Johnson, M. Frans Kaashoek, and James

O’Toole. Overcast: Reliable Multicasting with an Overlay Network. In

Usenix OSDI Symposium 2000, pages 197–212, October 2000. URL http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.7544. - Cited

on page 16.

Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie

Kermarrec, and Maarten van Steen. Gossip-based peer sam-

pling. ACM Transactions on Computer Systems, 25(3):8–es, Au-

gust 2007a. ISSN 07342071. doi: 10.1145/1275517.1275520. URL

http://portal.acm.org/citation.cfm?doid=1275517.1275520http:

//dl.acm.org/citation.cfm?id=1275517.1275520. - Cited on pages 14

and 58.

Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and

Maarten van Steen. Gossip-based peer sampling. ACM Transactions on Com-

puter Systems, 25, 2007b. - Cited on pages 3, 17, 28, 30, 31, 62 and 64.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.7698
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.7698
http://www.springerlink.com/content/k8tfgwnq6fa590q2 http://link.springer.com/chapter/10.1007/3-540-40026-5_6
http://www.springerlink.com/content/k8tfgwnq6fa590q2 http://link.springer.com/chapter/10.1007/3-540-40026-5_6
http://dl.acm.org/citation.cfm?id=866882
http://dl.acm.org/citation.cfm?id=866882
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.7544
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.7544
http://portal.acm.org/citation.cfm?doid=1275517.1275520 http://dl.acm.org/citation.cfm?id=1275517.1275520
http://portal.acm.org/citation.cfm?doid=1275517.1275520 http://dl.acm.org/citation.cfm?id=1275517.1275520

146 Bibliography

Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and

Maarten van Steen. Gossip-based peer sampling. ACM Transactions on Com-

puter Systems, 25(3), aug 2007c. - Cited on pages 26, 27 and 46.

Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-man: Gossip-

based fast overlay topology construction. Computer Networks: The Inter-

national Journal of Computer and Telecommunications Networking, 53:2321–

2339, 2009. - Cited on pages 27, 32, 92 and 97.

S. Jun and M. Ahamad. Feedex: collaborative exchange of news feeds. In Int.

Conference on World Wide Web, 2006. - Cited on page 25.

R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor

spreading. In Symposium on Foundations of Computer Science. IEEE Com-

puter Society, 2000. - Cited on page 20.

A-M. Kermarrec, L. Massoulié, and A. Ganesh. Probabilistic reliable dissemina-

tion in large-scale systems. Transactions on Parallel and Distributed Systems,

14, 2001. - Cited on pages 7, 17 and 42.

Anne-Marie Kermarrec, Alessio Pace, Vivien Quema, and Valerio Schiavoni.

NAT-resilient Gossip Peer Sampling. In 2009 29th IEEE International Con-

ference on Distributed Computing Systems, pages 360–367. IEEE, June 2009.

ISBN 978-0-7695-3659-0. doi: 10.1109/ICDCS.2009.44. URL http://dl.acm.

org/citation.cfm?id=1584339.1584601. - Cited on page 14.

Boris Koldehofe. Simple gossiping with balls and bins. International Conference

on Principles of Distributed Systems, 2002. URL http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.3.2404&rep=rep1&type=pdf.

- Cited on pages 100, 101, 103, 104, 109, 117, 118 and 119.

Boris Koldehofe. Buffer management in probabilistic peer-to-peer communica-

tion protocols. In Proceedings of the 22nd IEEE International Symposium on

Reliable Distributed Systems, SRDS, pages 76–85, Florence, Italy, 2003. IEEE

Computer. doi: 10.1109/RELDIS.2003.1238057. - Cited on pages 35 and 72.

Dejan Kostic, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat. Bullet:

High bandwidth data dissemination using an overlay mesh. In Proceedings of

http://dl.acm.org/citation.cfm?id=1584339.1584601
http://dl.acm.org/citation.cfm?id=1584339.1584601
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.2404&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.2404&rep=rep1&type=pdf

Bibliography 147

the nineteenth ACM symposium on Operating systems principles, SOSP, pages

282–297, New York, NY, USA, 2003. ACM. - Cited on page 92.

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured

storage system. ACM SIGOPS Operating Systems Review, 44(2):35, April 2010.

ISSN 01635980. doi: 10.1145/1773912.1773922. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=1309162. - Cited on page 4.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed sys-

tem. Communications of the ACM, 21(7), 1978. ISSN 00010782. doi: 10.

1145/359545.359563. URL http://dl.acm.org/citation.cfm?id=359545.

359563. - Cited on pages 7, 8, 99 and 128.

J. Leitão, J. Pereira, and L. Rodrigues. Hyparview: A membership protocol for

reliable gossip-based broadcast. In International Conference on Dependable

Systems and Networks (IEEE DSN), pages 419–428. IEEE Computer Society,

2007. - Cited on page 17.

João Leitão, Robbert van Renesse, and Lúıs Rodrigues. Balancing gossip ex-

changes in networks with firewalls. page 7. USENIX Association, April 2010.

URL http://dl.acm.org/citation.cfm?id=1863145.1863152. - Cited on

page 14.

Joao Leitão, José Pereira, and Lúıs Rodrigues. Epidemic Broadcast Trees. In

Proceedings of the 22nd IEEE International Symposium on Reliable Distributed

Systems, SRDS, pages 301–310, Beijing, China, 2007a. IEEE Computer. -

Cited on page 94.

Joao Leitão, José Pereira, and Lúıs Rodrigues. HyParView: A membership proto-

col for reliable gossip-based broadcast. In Proceedings of the 37th IEEE/IFIP

International Conference on Dependable Systems and Networks, DSN, pages

419–429, Edinburgh, Scotland, 2007b. IEEE Computer Society. - Cited on

pages xvi, 3, 17, 62, 64, 66 and 73.

Lorenzo Leonini, Etienne Rivière, and Pascal Felber. SPLAY: Distributed sys-

tems evaluation made simple (or how to turn ideas into live systems in a breeze).

In Symposium on Networked Systems Design and Implementation, NSDI, pages

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309162
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309162
http://dl.acm.org/citation.cfm?id=359545.359563
http://dl.acm.org/citation.cfm?id=359545.359563
http://dl.acm.org/citation.cfm?id=1863145.1863152

148 Bibliography

185–198, Berkely, CA, USA, 2009. Usenix Association. - Cited on pages 10,

41 and 76.

Z. Li, G. Xie, and Z. Li. Towards reliable and efficient data dissemination in

heterogeneous peer-to-peer systems. In Proceedings of the 22th IEEE Inter-

national Parallel and Distributed Processing Symposium, IPDPS, pages 1–12,

Miami, FL, USA, 2008. IEEE Computer Society. - Cited on page 93.

Zhenyu Li, Gaogang Xie, Kai Hwang, and Zhongcheng Li. Churn-resilient pro-

tocol for massive data dissemination in p2p networks. IEEE Transactions on

Parallel and Distributed Systems, 22:1342–1349, 2011. - Cited on page 93.

Jin Liang, Steven Ko, Indranil Gupta, and Klara Nahrstedt. MON : On-demand

Overlays for Distributed System Management. In Proceedings of the 2nd con-

ference on Real, Large Distributed Systems, WORLDS, pages 13–18, Berkely,

CA, USA, 2005. Usenix Association. - Cited on pages 61, 63 and 93.

Meng Lin and Keith Marzullo. Directional Gossip: Gossip in a Wide Area Net-

work. In Proceedings of Third European Dependable Computing Conference,

volume 1667 of Lecture Notes in Computer Science, pages 364–379. Springer,

1999. URL http://link.springer.de/link/service/series/0558/bibs/

1667/16670364.htm. - Cited on page 17.

H. Liu, V. Ramasubramanian, and E.G. Sirer. Client behavior and feed char-

acteristics of RSS, a publish-subscribe system for web micronews. In Internet

Measurement Conference, 2005. - Cited on pages 27 and 38.

Jiangchuan Liu and Ming Zhou. Tree-assisted gossiping for overlay video dis-

tribution. Multimedia Tools and Applications, 29:211–232, 2006. - Cited on

pages 21, 63 and 87.

LiveJournal, Inc. http://www.livejournal.com/stats.bml, 2013. - Cited on

page 37.

Thomas Locher, Remo Meier, Stefan Schmid, and Roger Wattenhofer. Push-to-

pull peer-to-peer live streaming. In Distributed Computing, Lecture Notes in

Computer Science, pages 388–402. Springer Berlin / Heidelberg, 2007. - Cited

on page 7.

http://link.springer.de/link/service/series/0558/bibs/1667/16670364.htm
http://link.springer.de/link/service/series/0558/bibs/1667/16670364.htm
http://www.livejournal.com/stats.bml

Bibliography 149

M. Luby. Pseudorandomness and Cryptographic Applications. Princeton Univer-

sity Press, 1994. ISBN 0691025460. - Cited on pages 31 and 32.

NA Lynch. Distributed algorithms. Morgan Kaufmann Publishers

Inc., January 1996. ISBN 1558603484. URL http://dl.acm.org/

citation.cfm?id=525656http://books.google.com/books?hl=en&lr=

&id=2wsrLg-xBGgC&oi=fnd&pg=PP2&dq=Distributed+Algorithms&ots=

G3sWtxG2zv&sig=xEP9uJhxBKrbg2mJMzyAPrSct7I. - Cited on pages 2

and 13.

L. Massoulié, A-M. Kermarrec, and A. Ganesh. Network awareness and fail-

ure resilience in self-organising overlay networks. In Symposium on Reliable

Distributed Systems, 2003. - Cited on pages 17 and 27.

Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayalvadi

Ganesh. Peer counting and sampling in overlay networks: random walk meth-

ods. In Principles of Distributed Computing, 2006. - Cited on page 18.

Miguel Matos, Ana Nunes, Rui Oliveira, and José Pereira. Stan: Exploiting

shared interests without disclosing them in gossip-based publish/subscribe. In

Proc. of IPTPS: international workshop on Peer-to-Peer Systems, San Jose,

CA, USA, 2010. - Cited on page 41.

M. McGlohon. Structural Analysis of Large Networks: Observations and Appli-

cations. PhD thesis, Carnegie Mello University, 2010. - Cited on pages 35

and 53.

Wang Mea, Li Baochun, Mea Wang, and Baochun Li. R2: Random Push with

Random Network Coding in Live Peer-to-Peer Streaming. IEEE Journal on

Selected Areas in Communications, 25(9):1655–1666, December 2007. ISSN

0733-8716. doi: 10.1109/JSAC.2007.071205. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=4395125. - Cited on page 97.

Roie Melamed and Idit Keidar. Araneola: A scalable reliable multicast system

for dynamic environments. Journal of Parallel and Distributed Computing, 68

(12):1539–1560, 2008. - Cited on page 17.

http://dl.acm.org/citation.cfm?id=525656 http://books.google.com/books?hl=en&lr=&id=2wsrLg-xBGgC&oi=fnd&pg=PP2&dq=Distributed+Algorithms&ots=G3sWtxG2zv&sig=xEP9uJhxBKrbg2mJMzyAPrSct7I
http://dl.acm.org/citation.cfm?id=525656 http://books.google.com/books?hl=en&lr=&id=2wsrLg-xBGgC&oi=fnd&pg=PP2&dq=Distributed+Algorithms&ots=G3sWtxG2zv&sig=xEP9uJhxBKrbg2mJMzyAPrSct7I
http://dl.acm.org/citation.cfm?id=525656 http://books.google.com/books?hl=en&lr=&id=2wsrLg-xBGgC&oi=fnd&pg=PP2&dq=Distributed+Algorithms&ots=G3sWtxG2zv&sig=xEP9uJhxBKrbg2mJMzyAPrSct7I
http://dl.acm.org/citation.cfm?id=525656 http://books.google.com/books?hl=en&lr=&id=2wsrLg-xBGgC&oi=fnd&pg=PP2&dq=Distributed+Algorithms&ots=G3sWtxG2zv&sig=xEP9uJhxBKrbg2mJMzyAPrSct7I
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4395125
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4395125

150 Bibliography

Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Chord on demand. In

Proceedings of the 5th IEEE International Conference on Peer-to-Peer Comput-

ing, P2P, pages 87–94, Washington, DC, USA, 2005. IEEE Computer Society.

- Cited on pages 3 and 62.

Anh Tuan Nguyen, Baochun Li, and Frank Eliassen. Chameleon: Adaptive

Peer-to-Peer Streaming with Network Coding. In 2010 Proceedings IEEE

INFOCOM, pages 1–9. IEEE, March 2010. ISBN 978-1-4244-5836-3. doi:

10.1109/INFCOM.2010.5462032. URL http://ieeexplore.ieee.org/xpl/

freeabs_all.jsp?arnumber=5462032. - Cited on pages 21 and 97.

A. Nunes, J. Marques, and J. Pereira. Seeds: The social internet feed caching

and dissemination architecture. In INForum Simpósio de Informática, 2009. -

Cited on page 25.

Melih Onus and Andréa W. Richa. Parameterized Maximum and Average De-

gree Approximation in Topic-Based Publish-Subscribe Overlay Network De-

sign. In International Conference on Distributed Computing Systems. IEEE,

2010. ISBN 978-1-4244-7261-1. doi: 10.1109/ICDCS.2010.54. - Cited on

page 57.

J. Patel, E. Rivière, I. Gupta, and A.-M. Kermarrec. Rappel: Exploiting interest

and network locality to improve fairness in publish-subscribe systems. Com-

puter Networks, 53(13):2304–2320, August 2009a. ISSN 13891286. - Cited on

pages 26 and 37.

Jay A. Patel, Etienne Rivière, Indranil Gupta, and Anne-Marie Kermarrec. Rap-

pel: Exploiting interest and network locality to improve fairness in publish-

subscribe systems. Computer Networks: The International Journal of Com-

puter and Telecommunications Networking, 53:2304–2320, 2009b. - Cited on

page 92.

Fernando Pedone and André Schiper. Optimistic atomic broadcast: a prag-

matic viewpoint. Theoretical Computer Science, 291(1), 2003. ISSN 03043975.

doi: 10.1016/S0304-3975(01)00397-8. URL http://dl.acm.org/citation.

cfm?id=795635.795644. - Cited on pages 124 and 127.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5462032
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5462032
http://dl.acm.org/citation.cfm?id=795635.795644
http://dl.acm.org/citation.cfm?id=795635.795644

Bibliography 151

J. Pereira, L. Rodrigues, R. Oliveira, and A.-M. Kermarrec. Neem: Network-

friendly epidemic multicast. In Symposium on Reliable Distributed Systems,

2003. - Cited on pages 21 and 28.

Fabio Pianese, Diego Perino, JoaquÍn Keller, and Ernst Biersack. PULSE: An

Adaptive, Incentive-Based, Unstructured P2P Live Streaming System. IEEE

Transactions on Multimedia, 9(8):1645–1660, 2007. ISSN 15209210. doi:

10.1109/TMM.2007.907466. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=4378428. - Cited on page 22.

Boris Pittel. On Spreading a Rumor. SIAM Journal on Applied Mathematics, 47

(1), 1987. ISSN 0036-1399. doi: 10.1137/0147013. URL http://dl.acm.org/

citation.cfm?id=37387.37400. - Cited on page 109.

PlanetLab. PlanetLab. http://www.planet-lab.org, 2013. - Cited on pages 41,

64 and 76.

Charles Plaxton, Rajmohan Rajaraman, and Andréa Richa. Accessing nearby

copies of replicated objects in a distributed environment. ACM Symposium on

Parallel Algorithms and Architectures, 1997. URL http://portal.acm.org/

citation.cfm?doid=258492.258523. - Cited on page 15.

L. Querzoni. Interest clustering techniques for efficient event routing in large-

scale settings. In International Conference on Distributed Event-Based Sys-

tems, 2008. - Cited on page 57.

Sylvia Ratnasamy, Mark Handley, Richard M. Karp, and Scott Shenker.

Application-level multicast using content-addressable networks. In Workshop

on Networked Group Communication, NGC ’01. Springer-Verlag, 2001. - Cited

on pages 16, 19 and 55.

Robbert Van Renesse, Yaron Minsky, and Mark Hayden. A gossip-style failure

detection service. In Proceedings of the ACM/IFIP/USENIX International

Conference on Middleware, Middleware, pages 389–409, New York, Inc. New

York, NY, USA, 2007. Springer-Verlag. - Cited on pages 3, 62 and 63.

Etienne Rivière and Spyros Voulgaris. Gossip-Based Networking for Internet-

Scale Distributed Systems, volume 78 of Lecture Notes in Business Infor-

mation Processing. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4378428
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4378428
http://dl.acm.org/citation.cfm?id=37387.37400
http://dl.acm.org/citation.cfm?id=37387.37400
http://portal.acm.org/citation.cfm?doid=258492.258523
http://portal.acm.org/citation.cfm?doid=258492.258523

152 Bibliography

ISBN 978-3-642-20861-4. doi: 10.1007/978-3-642-20862-1. URL http://www.

springerlink.com/content/g472j742413p6457/. - Cited on page 3.

Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object lo-

cation and routing for large-scale peer-to-peer systems. In Middleware, Lecture

Notes in Computer Science, pages 329–350. Springer Berlin / Heidelberg, 2001.

- Cited on pages 16, 91 and 92.

Laura S. Sabel and Keith Marzullo. Election Vs. Consensus in Asynchronous Sys-

tems. February 1995. URL http://dl.acm.org/citation.cfm?id=866766. -

Cited on page 2.

Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing Sur-

veys, 37(1), 2005. ISSN 03600300. doi: 10.1145/1057977.1057980. URL http:

//dl.acm.org/citation.cfm?id=1057977.1057980. - Cited on pages 101

and 128.

Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement

study of peer-to-peer file sharing systems. In Proceedings of Multimedia Com-

puting and Networking, 2002. - Cited on pages 28, 34 and 38.

Bianca Schroeder and Garth Gibson. Disk failures in the real world: What does an

MTTF of 1, 000, 000 hours mean to you? In FAST, number September, pages

1–16, 2007. URL http://www.usenix.org/event/fast07/tech/schroeder/

schroeder.pdf. - Cited on pages 2, 7 and 96.

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors

in the wild. In Proceedings of the eleventh international joint conference on

Measurement and modeling of computer systems - SIGMETRICS ’09, page 193,

New York, New York, USA, June 2009. ACM Press. ISBN 9781605585116. doi:

10.1145/1555349.1555372. URL http://portal.acm.org/citation.cfm?id=

1555349.1555372. - Cited on pages 2, 7 and 96.

António Sousa, José Pereira, Francisco Moura, and Rui Oliveira. Optimistic

total order in wide area networks. In IEEE Symposium on Reliable Distributed

Systems, 2002. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.5.3676http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=1180188. - Cited on pages 101, 124, 127 and 128.

http://www.springerlink.com/content/g472j742413p6457/
http://www.springerlink.com/content/g472j742413p6457/
http://dl.acm.org/citation.cfm?id=866766
http://dl.acm.org/citation.cfm?id=1057977.1057980
http://dl.acm.org/citation.cfm?id=1057977.1057980
http://www.usenix.org/event/fast07/tech/schroeder/schroeder.pdf
http://www.usenix.org/event/fast07/tech/schroeder/schroeder.pdf
http://portal.acm.org/citation.cfm?id=1555349.1555372
http://portal.acm.org/citation.cfm?id=1555349.1555372
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.3676 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1180188
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.3676 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1180188
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.3676 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1180188

Bibliography 153

Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-

peer lookup protocol for internet applications. IEEE/ACM Networking Trans-

actions, 11(1):17–32, 2003. ISSN 1063-6692. doi: http://dx.doi.org/10.1109/

TNET.2002.808407. - Cited on page 16.

Chunqiang Tang, Rong N. Chang, and Christopher Ward. Gocast: Gossip-

enhanced overlay multicast for fast and dependable group communication. In

Proceedings of the 35th IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN, pages 140–149, Washington, DC, USA, 2005.

IEEE Computer Society. - Cited on page 94.

Twitter Engineering. Murder: Fast datacenter code deploys using BitTorrent.

http://t.co/uo5rEN4, September, 2012. - Cited on page 61.

Robbert van Renesse, Ken Birman, and Werner Vogels. Astrolabe: A robust and

scalable technology for distributed system monitoring, management, and data

mining. ACM Transactions on Computer Systems, 21:164–206, 2003. - Cited

on page 63.

Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul Francis.

Chunkyspread: Heterogeneous Unstructured Tree-Based Peer-to-Peer

Multicast. In Proceedings of the 14th IEEE International Conference on

Network Protocols, ICNP, pages 2–11. IEEE Computer Society, 2006. - Cited

on page 92.

Hakon Verespej and Joseph Pasquale. A Characterization of Node Up-

time Distributions in the PlanetLab Test Bed. 2011 IEEE 30th In-

ternational Symposium on Reliable Distributed Systems, pages 203–208,

October 2011. doi: 10.1109/SRDS.2011.32. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6076778http:

//ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6076778. -

Cited on pages 2, 7 and 96.

Werner Vogels. Eventually consistent. Communications of the ACM, 52(1), 2009.

ISSN 00010782. doi: 10.1145/1435417.1435432. URL http://dl.acm.org/ft_

gateway.cfm?id=1435432&type=html. - Cited on pages 2, 99 and 128.

http://t.co/uo5rEN4
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6076778 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6076778
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6076778 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6076778
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6076778 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6076778
http://dl.acm.org/ft_gateway.cfm?id=1435432&type=html
http://dl.acm.org/ft_gateway.cfm?id=1435432&type=html

154 Bibliography

S. Voulgaris, D. Gavidia, and M. Steen. Cyclon: Inexpensive membership man-

agement for unstructured p2p overlays. Journal of Network and Systems Man-

agement, 13(2):197–217, June 2005a. - Cited on page 17.

Spyros Voulgaris and Maarten van Steen. Hybrid dissemination: Adding deter-

minism to probabilistic multicasting in large-scale p2p systems. In Proceedings

of the ACM/IFIP/USENIX International Conference on Middleware, Middle-

ware, pages 389–409, New York, Inc. New York, NY, USA, 2007. Springer-

Verlag. - Cited on page 93.

Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. Cyclon: Inexpensive

membership management for unstructured p2p overlays. Journal of Network

and Systems Management, 13:197–217, 2005b. - Cited on page 86.

Spyros Voulgaris, Márk Jelasity, and Maarten Van Steen. A Robust and Scalable

Peer-to-Peer Gossiping Protocol. In Agents and Peer-to-Peer Computing, vol-

ume 2872 of Lecture Notes in Computer Science, pages 47–58. Springer-Verlag

Berlin, Heidelberg, 2005c. - Cited on page 17.

Spyros Voulgaris, Etienne Rivière, Anne-Marie Kermarrec, and Maarten van

Steen. Sub-2-sub: Self-organizing content-based publish subscribe for dynamic

large scale collaborative networks. In International Workshop on Peer-to-Peer

Systems, 2006. - Cited on page 25.

Feng Wang, Yongqiang Xiong, and Jiangchuan Liu. mTreebone: A Collaborative

Tree-Mesh Overlay Network for Multicast Video Streaming. IEEE Transac-

tions on Parallel and Distributed Systems, 21(3):379–392, March 2010. ISSN

1045-9219. doi: 10.1109/TPDS.2009.77. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=4967573. - Cited on page 22.

S. Whittaker, L. Terveen, W. Hill, and L. Cherny. The dynamics of mass inter-

action. In Conference on Computer supported cooperative work, 1998. - Cited

on pages 35 and 53.

Wikimedia Foundation. Wikipedia database dumps. http://dumps.wikimedia.

org/, 2013. - Cited on page 37.

N.C. Wormald. Models of random regular graphs. Surveys in combinatorics, 276:

239–298, 1999. - Cited on page 57.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4967573
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4967573
http://dumps.wikimedia.org/
http://dumps.wikimedia.org/

Bibliography 155

Ben Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: An Infrastruc-

ture for Fault-tolerant Wide-area Location and Routing. Technical Report

UCB/CSD-01-1141, UC Berkeley, April 2001. URL http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.18.1577. - Cited on page 16.

Shelley Zhuang, Ben Zhao, Anthony Joseph, Randy Katz, and John Kubiatow-

icz. Bayeux: An architecture for scalable and fault-tolerant wide-area data

dissemination. In Proceedings of the 11th international workshop on Network

and operating systems support for digital audio and video, NOSSDAV, pages

11–20, New York, NY, USA, 2001. ACM. - Cited on page 16.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.1577
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.1577

	Página 1
	Página 2
	Página 3
	Página 4
	tese_capa.pdf
	Introduction
	Problem statement and objectives
	Contributions
	Results
	Dissertation outline

	Background
	Model
	Overlay Networks
	Structured Overlays
	Unstructured Overlays
	Discussion

	Data Dissemination
	Flooding
	Tree
	Epidemic
	Discussion

	Conventions

	StaN: scalable topic-based publish-subscribe
	Introduction
	Algorithm description
	System Model and Assumptions
	Design Rationale
	Link Management
	Dissemination

	Evaluation
	Experimental Data
	Workload Characteristics
	Experimental Setup
	Performance
	Fitness
	Dynamics
	Greedy-omniscient comparison
	Dissemination

	Related Work
	Discussion

	Brisa: efficient reliable data dissemination
	Introduction
	Algorithm description
	Peer Sampling Service Layer
	Rationale
	Emergence of a Dissemination Structure
	Preventing Cycles
	Parent Selection Strategies
	Dynamism
	Generalized Dissemination Structures
	Multiple Dissemination Structures

	Evaluation
	Structural properties
	Network properties
	Robustness
	Multiple trees
	Comparison with existing approaches

	Related Work
	Discussion

	EpTO: epidemic total order dissemination
	Introduction
	Algorithm Description
	System model and assumptions
	Problem Statement
	Rationale
	Detailed description
	Deliverability oracle and logical time
	Properties satisfiability

	Evaluation
	Related Work
	Discussion

	Conclusions
	Future work

	Bibliography

