
A
u

th
or

’s
m

an
u

sc
ri

p
t,

p
u

b
li

sh
ed

in
In

fo
ru

m
,

S
im

p
ós

io
d

e
In

fo
rm

át
ic

a,
20

09

Capi: Cloud Computing API

Bruno Costa and Miguel Matos and António Sousa
{blc,mm}@lsd.di.uminho.pt, als@di.uminho.pt

Universidade do Minho, Braga, Portugal

Abstract. Cloud Computing is an emerging business model to provide
access to IT resources in a pay per use fashion. Those resources range
from low-level virtual machines, passing by application platforms and
ending in ready to use software delivered through the Internet, creating
a layered stack of differentiated services. Different cloud vendors tend to
specialize in different levels, offering different services each with its own
proprietary API. This clearly led to provider lock-in and hinders the
portability of a given application between different providers. The goal
of this paper is therefore to provide an abstraction of the different levels
of services in order to reduce vendor lock-in and improve portability,
two issues that we believe impair the adoption of the Cloud Computing
model.

1 Introduction

Cloud Computing’s [7] key idea is to provide access to arbitrary resources over
the Internet which will be otherwise confined to specialized infrastructures. The
access to the Cloud is based on a pay per use model, providing resources that
range from the hardware level, to software as a service, passing by an interme-
diate level where applications could be deployed.

Although there are already multiple providers world-wide [2,1,4], providing
services at each level of the Cloud stack, there are no standard interfaces to
access those services. This lack of standardization leads to vendor lock-in and
decreases portability as applications need to be (re-)written to comply with a
given API, made available by the Cloud service provider.

In this paper, we propose a general purpose Cloud API (CAPI), that offers
programming interface abstractions to each one of the levels of the Cloud stack.
With this general API, customers are able to build their applications against it
and then, by recurring to the concrete implementation of the provider - the driver
- use the underlying services. Additionally, CAPI considers all the abstraction
levels, providing the customer with a common interface to manage all of them,
using different Cloud providers, at different abstraction levels, in a transparent
fashion.

As can be seen in Figure 1, the different abstraction levels of the Cloud stack
can be built using the functionalities of the level below it.

In the lowest abstraction level, Infrastructure as a Service (IaaS), the providers
offers virtualized hardware solutions, such as storage and processing capacity



A
u

th
or

’s
m

an
u

sc
ri

p
t,

p
u

b
li

sh
ed

in
In

fo
ru

m
,

S
im

p
ós

io
d

e
In

fo
rm

át
ic

a,
20

09

SaaS

PaaS

IaaS

Fig. 1. Cloud services levels.

(e.g. Amazon EC2 [1]). The Platform as a Service (PaaS) level models a software
stack, the platform, that could be used to develop, deploy and run applications
(e.g. Google App Engine [2] and Force.com [6]). In the less featured level, only
a service is provided to the client, which is a remote application available as a
web service or as a browser enabled application (e.g. Yahoo! Mail and Google
Docs).

The rest of this paper is structured as follows. in Section 2 we present the
architecture of the API, and the rationale that led to it. and finally Section 3
concludes the paper.

2 Architecture

Taking into account the functional requirements of the system it is clear that
we need a modular, pluggable mechanism in which it is possible to control the
modules’ life-cycle. To fulfill these requirements, our proposal is built atop the
OSGi [5] platform. The dynamic properties of OSGi enables partial deployment
of modules, as well as changing them at runtime.

In order to enable the seamless integration with management user inter-
faces, CAPI exports its interfaces through standard Java Management eXten-
sions (JMX) [3].

Figure 2 depicts the CAPI architecture. It mainly consists in three modules
that represent each one of the abstraction levels in the Cloud stack, and an ad-
ditional module that exposes the functionalities of the other modules through
JMX. In addition to these, Monitoring and Security capabilities appear as per-
vasive to all abstraction levels.

As the API is intended to be general we have to model abstract concepts into
the definition of the interface. The rationale behind the proposal is to think in
terms of entities, their relationships and the expected behaviour.

2.1 IaaS: Resource Deployment

In the lowest abstraction level we model everything as a Resource either it is
a hard disk, a CPU, storage and so on. The basic idea is to manipulate all the



A
u

th
or

’s
m

an
u

sc
ri

p
t,

p
u

b
li

sh
ed

in
In

fo
ru

m
,

S
im

p
ós

io
d

e
In

fo
rm

át
ic

a,
20

09

IaaS PaaS SaaS

JMX

Web App

Security

Monitoring

OSGi Environment

Fig. 2. Architecture Overview.

components available at this level through a common interface with well defined
properties.

In this module we define three important interfaces. The Resource Pack mod-
els images bundles that can be deployed to the provider that includes pre-built
images and custom-made images. A Resource Container is an abstraction of a
running resource pack, having the ability to add and remove resources at run-
time. The Resource Manager appears as an entry point to this module, offering
capabilities of management and monitoring to the different resources deployed.

In addition to these, resources deployed to the Cloud usually have an inter-
nal network encompassing the resources containers of a given customer. This is
managed by a Network interface, that offers the ability to expose the machines
in the internal network to the public network.

2.2 PaaS: Applications Management

This middleware layer support an abstraction for running applications on the
Cloud provider platform. In the PaaS you develop applications that can be
deployed in the cloud, following the software development kit offered by the
provider. Therefore, we see the applications in the cloud as a set of Managed
Applications that we are able to manipulate.

The Managed Applications have a well defined lifecycle. Thus, it is possible
to start and stop that application, as well as observe its state. It also permits
to watch each application state and invoke runtime operations exposed by it,
for example to instruct the application to perform maintenance operations. To
complete the module, the Platform Manager controls the bootstrap of all the
applications.

2.3 Software as a Service (SaaS): Monitoring Services

The conceptual idea is to provide monitoring capabilities to the users of SaaS.
The restriction of functionalities available in this module is directly related to
its low flexibility. In this level, the provider offers a complete software solution
through the Internet, usually accessible to the customer via a web browser.



A
u

th
or

’s
m

an
u

sc
ri

p
t,

p
u

b
li

sh
ed

in
In

fo
ru

m
,

S
im

p
ós

io
d

e
In

fo
rm

át
ic

a,
20

09

All components in SaaS are seen as Monitored Services which state we can
monitor.

3 Conclusion

In this paper we presented CAPI, a general-purpose Cloud Computing API
that covers the different abstraction levels of Cloud services available today.
We took an high level approach that focus in the management issues raised
when managing components, be it virtual machines or software, in a Cloud
environment. With this approach our proposal is able to cope with the offerings
of the different providers at each level, and with the imposition of the different
abstraction levels on top of the lower ones.

Due to its flexible nature it is possible to build applications that use services
from different cloud providers and at different abstraction levels, effectively in-
creasing the portability among different Cloud providers and therefore breaking
the lock-in to a specific vendor.

As future work we intend to leverage on the JMX-exposed interfaces to pro-
vide a friendly and easy to use web based interface. As the Cloud platform
evolve and matures, new abstractions and functionalities will surely arise and
thus CAPI must be constantly improved to cope with the new cloud require-
ments.

References

1. Amazon.com, Inc. Amazon elastic compute cloud. http://aws.amazon.com/ec2,
2009.

2. Google. App engine. http://code.google.com/appengine, 2009.
3. E. McManus. Java management extensions. Technical report, Java Community

Process (JSR’3), 2006.
4. Microsoft Corporation. Azure services platform.

http://www.microsoft.com/azure/default.mspx, 2008.
5. OSGi Alliance. Osgi service platform. http://osgi.org/osgi technology/download specs.asp,

2005.
6. salesforce.com. Force.com. http://www.salesforce.com/force/, 2009.
7. L. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the clouds:

towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):50–55, 2009.


	Capi: Cloud Computing API

