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Abstract

Data-flow analyses, such as live variables analysis,
available expressions analysis etc., are usefully specifiable
as type systems. These are sound and, in the case of dis-
tributive analysis frameworks, complete wrt. appropriate
natural semantics on abstract properties. Applications in-
clude certification of analyses and “optimization” of func-
tional correctness proofs alongside programs.

On the example of live variables analysis, we show that
analysis type systems are applied versions of more foun-
dational Hoare logics describing either the same abstract
property semantics as the type system (liveness states) or a
more concrete natural semantics on transition traces of a
suitable kind (future defs and uses). The rules of the type
system are derivable in the Hoare logic for the abstract
property semantics and those in turn in the Hoare logic for
the transition trace semantics. This reduction of the bur-
den of trusting the certification vehicle can be compared to
foundational proof-carrying code, where general-purpose
program logics are preferred to special-purpose type sys-
tems and universal logic to program logics.

We also look at conditional liveness analysis to see that
the same foundational development is also possible for con-
ditional data-flow analyses proceeding from type systems
for combined “standard state and abstract property” se-
mantics.

Keywords: natural semantics, Hoare logics, type systems,
data-flow analyses, program optimizations, certification of
analyses and optimizations, applied vs. foundational

1 Introduction

In proof-carrying code [13], it is the responsibility of the
code producer to produce evidence that the code shipped
is safe and/or functionally correct. When code genera-
tion involves optimizations, an important useful intermedi-
ate mechanism is certification of the underlying program

analyses, preferably based on a formalism rather than an
informal mathematical theory.

It has been recognized, see, e.g., [15, 12], that clas-
sical data-flow analyses, such as live variables analysis,
available expressions analysis etc., are usefully specifiable
in a declarative way as type systems that may operate on
source programs in a compositional (syntax-directed) man-
ner, rather than on intermediate representations (such as
flat control-flow graphs). These type systems make good
formal vehicles for certification of analyses and can thus
turn it very similar to customary certification of safety and
functional correctness properties in program-logic like for-
malisms. A certificate is a typing derivation (or a typing
judgement with sufficient additional information in the form
of annotations to recover one), certificate checking is type(-
derivation) checking and certificate generation amounts to
principal type inference. The declarative character of type
systems endows their use with additional value. For in-
stance, there is no good reason for certificates to depend
on an algorithmic definition of an analysis when only the
certifier needs to produce analyses: the certificate checker
should be able to check purported analyses based on a
declarative definition (which, moreover, is probably more
basic and thus easier to trust than any algorithmic one).

The analysis type systems are sound and, in the case of
distributive analysis frameworks, complete wrt. appropriate
natural semantics on abstract properties—a reformulation
of the usual semantical justification of analyses.

In this paper, we shed further light on the type-systematic
method by showing that analysis type systems are in fact ap-
plied versions of more foundational Hoare logics. These de-
scribe either the same property semantics as the type system
(but without recourse to any ideas about approximations) or
a more basic semantics on transition traces of a suitable kind
and are therefore easier to trust. The applied formalisms are
justifiable as sound wrt. the more foundational formalisms
(and also their underlying semantics). This is analogous to
foundational proof-carrying code [3], motivated by exactly
the same idea of reducing the burden of trusting an applied



formalism of certification by switching to a more founda-
tional one. Moreover, we learn that not only can a textbook
definition of an analysis be cast as a program-logic like for-
malism, but the same is possible for the more basic consid-
erations that justify this definition.

These contributions are all based on the classical the-
ory of monotone analysis frameworks and abstract inter-
pretation [7, 8], but they demonstrate that the applied vs.
foundational spectrum in proof-carrying code for safety or
functional correctness carries over to certified optimization
analyses. And they also emphasize that program analyses
for optimizations are just as amenable to certification in
program-logic like declarative formalisms as are functional
correctness and safety.

Further, in addition to standard data-flow analyses, we
also look at conditional analyses, based on a combined
“standard state and abstract property” semantics, as a possi-
ble variation. We also comment briefly on type-systematic
definition and justification of program optimizations and
type-systematic “optimization” of functional correctness
proofs alongside programs.

For the sake of brevity and intuitiveness of exposition,
we limit our discussion to live variables analysis and dead
code elimination for the WHILE language, but the approach
is general and applies to a variety data-flow analyses and
optimizations.

The paper is organized as follows. In Section 2, we intro-
duce the method of defining data-flow analyses as type sys-
tems on the example of live variables analysis. We justify
the type system by proving it sound and complete wrt. an
appropriate natural semantics on liveness states and show
that analyzing a program amounts to principal type infer-
ence. In Section 3, we show that the type system is an
applied version of a Hoare logic for the same natural se-
mantics. In Section 4, we define liveness of a variable as
a predicate on def/use transition traces and justify the nat-
ural semantics and Hoare logic on liveness states in terms
of a natural semantics and Hoare logic on def/use transition
traces. In Section 6, we treat conditional liveness, to then
proceed to a discussion of type-systematic program opti-
mization on the example of dead code elimination in Sec-
tion 6. Section 7 reviews some related work and Section 8
concludes.

2 A natural semantics and type system for
live variables

We begin by an overview of the type-systematic ap-
proach to data-flow analyses [15, 12]. We do this on the
example of live variables analysis (in Sec. 5, we also con-
sider a variant, conditional liveness).

Informally, a variable is said to be live on a computation
path, if it has a future useful use not preceded by a defini-

tion. A useful use is a use in an expression assigned to a live
variable or a use in a guard expression. (This is the strong
version of liveness, in contrast to the weaker one where any
use triggers liveness.)

The textbook definition of live variables analysis and its
justification, however, do not proceed directly from this def-
inition but from derived considerations. The analysis (for
source programs, not for the corresponding control-flow
graphs) is justified by the following non-standard seman-
tics, which we state as a natural (i.e., big-step) semantics.

States δ are assignments of values {dd, ll}, dd v ll, to
variables, understood as “liveness states”. We define δ v δ′

to mean that δ(y) v δ′(y) for any y ∈ Var.
The evaluations of a statement are pairs of states (a

prestate and a poststate) given by the rules in Figure 1, the
notation δ �s� δ′ meaning that δ and δ′ are a possible pre-
and poststate for s. The notation δ[x 7→ v] stands for updat-
ing a state δ at a variable x with a value v and we also use a
similar notation for simultaneous updates.

Intuitively, this semantics runs programs backwards. For
any final liveness state, we get the initial liveness states cor-
responding to the computation paths the program can take.
For example, the assignment rule, :=lvns, expresses that, if
the lhs variable x is live in a poststate, then it becomes dead
in the midstate (where the rhs has been evaluated but not
assigned yet), because the assignment defines it, while all
variables y of the rhs (including perhaps x as well) become
live in the prestate, because they are usefully used. If x is
dead in a poststate, the prestate is the same. The semantics
is non-deterministic, as if- and while-statements can take
multiple computation paths: liveness states fix no values for
the variables.

A version that is deterministic (still in the backwards di-
rection: for any poststate, there is exactly one prestate), the
collecting semantics, is defined by

JsK(δ′) =df

⊔
{δ | δ �s� δ′}

The collecting semantics calculates the MOP (“meet over
all paths”) upper bound on the liveness prestates for a given
liveness poststate.

The analysis (working with approximations) can be for-
mulated as a type system. Types d are assignments of values
from {dd, ll}, dd v ll to variables, just as states, but their
pragmatics is different: they function as non upper bounds
(over-approximations) of liveness states. The negation here
is a formality that results from the analysis being backward,
but validity of subtyping and typing being forward (for con-
formity with the standard definitions of validity; this design
decision will be useful for us especially in Sec. 5). Ignoring
this negation, the values dd and ll in types can be under-
stood to mean “certainly dead” resp. “possibly live”: a state
is of a type, if all variables dead in the type are dead in the



δ[x 7→ dd][y 7→ δ(y) t δ(x) | y ∈ FV(a)] �x := a� δ
:=lvns

δ �skip� δ
skiplvns

δ �s0� δ′ δ′ �s1� δ′′

δ �s0; s1� δ′′
complvns

δ �st� δ′

δ[y 7→ ll | y ∈ FV(b)] �if b then st else sf� δ′ ifttlvns

δ �sf� δ′

δ[y 7→ ll | y ∈ FV(b)] �if b then st else sf� δ′ iffflvns

δ �st� δ′ δ′ �while b do st� δ′′

δ[y 7→ ll | y ∈ FV(b)] �while b do st� δ′′ whilett
lvns δ[y 7→ ll | y ∈ FV(b)] �while b do st� δ

whileff
lvns

Figure 1. Natural semantics for live variables

state (a variable live in the type can be both dead and live in
the state).

The type system has one subtyping rule, reading

d′ v d

d ≤ d′

The types of a statement are pairs of types (a pretype and
a posttype): we write to s : d → d′ to denote that d
and d′ are a possible pre- and posttype of s. The typing
rules are in Figure 2. Note that while the assignment rule
of the type system is similar to that in the semantics, the
rules for if- and while-statements are different: a typing of
a statement pertains to all computation paths of a statement,
not just one. The while rule is similar to the while rule
from standard Hoare logic by involving an invariant type.
Likewise, the subsumption rule is an analogue of the conse-
quence rule. The type system accepts all valid analyses of
a program, not only the strongest one, so for the statement
s =df if w = 3 then x := y else x := z and posttype [w 7→
dd, x 7→ ll, y, z 7→ dd], both [w 7→ ll, x 7→ dd, y, z 7→ ll]
and [w, x, y, z 7→ ll] are derivable as pretypes, but the for-
mer pretype corresponds to the strongest analysis.

To state and prove the type system adequate wrt. the se-
mantics, we define δ |= d to mean δ 6v d in agreement with
the explanations above. Adequacy of subtyping (d ≤ d′ iff
d′ being an upper bound of a state implies that d is also an
upper bound) is trivial.

Theorem 1 (Soundness and completeness of subtyping)
d ≤ d′ iff for any δ, δ |= d implies δ |= d′ (i.e., δ v d′

implies δ v d).

Soundness and completeness of typing (s : d −→ d′ iff
d′ being an upper bound on a poststate implies that d is an
upper bound on the prestates) are proven separately.

Theorem 2 (Soundness of typing) If s : d −→ d′, then,
for any δ, δ′ such that δ �s� δ′, δ |= d implies δ′ |= d′ (i.e.,
δ′ v d′ implies δ v d).

Proof. By induction on s : d −→ d′ and subordinate in-
duction on δ �s� δ′ in the case s = while b do st. 2

To prove completeness, we define a syntactic weakest
pretype operator wpt:

wpt(x := a, d′)

=df d′[x 7→ dd][y 7→ d′(y) t d′(x) | y ∈ FV(a)]

wpt(skip, d′) =df d′

wpt(s0; s1, d
′) =df wpt(s0, wpt(s1, d

′))

wpt(if b then st else sf , d′)

=df (wpt(st, d
′) t wpt(sf , d′))[y 7→ ll | y ∈ FV(b)]

wpt(while b do st, d
′)

=df ν(F ) where

F (d) =df (wpt(st, d) t d′)[y 7→ ll | y ∈ FV(b)]

Here ν is the greatest (wrt. our subtyping ≤) fixpoint oper-
ation on monotone type transformers.

The wpt operator is the type-systematic formulation of
an algorithm for computing the strongest analysis, i.e., the
MFP (“maximal fixpoint”) upper bound on the liveness
prestates for a liveness poststate.

The following lemmata show that the wpt of a given type
d′ is a pretype of d′, in the sense of typing, and greater than
any semantic pretype of d′.

Lemma 1 s : wpt(s, d′) −→ d′.

Proof. By induction on s. 2

Lemma 2 If, for any δ, δ′ such that δ�s�δ′, δ |= d implies
δ′ |= d′ (i.e., δ′ v d′ implies δ v d), then d ≤ wpt(s, d′)
(i.e., wpt(s, d′) v d).

Proof. Also by induction on s. 2

Theorem 3 (Completeness of typing) If, for any δ, δ′

such that δ �s� δ′, δ |= d implies δ′ |= d′ (i.e., δ′ v d′

implies δ v d), then s : d −→ d′.

Proof. Immediate from the two lemmata by the conseqlvts

rule. 2

From soundness and completeness we get that the col-
lecting semantics and the weakest pretype agree perfectly,
i.e., MOP=MFP.



x := a : d[x 7→ dd][y 7→ d(y) t d(x) | y ∈ FV(a)] −→ d
:=lvts

skip : d −→ d
skiplvts

s0 : d −→ d′ s1 : d′ −→ d′′

s0; s1 : d −→ d′′
complvts

st : d −→ d′ sf : d −→ d′

if b then st else sf : d[y 7→ ll | y ∈ FV(b)] −→ d′ if lvts

st : d −→ d[y 7→ ll | y ∈ FV(b)]

while b do st : d[y 7→ ll | y ∈ FV(b)] −→ d
whilelvts

d ≤ d0 s : d0 −→ d′
0 d′

0 ≤ d′

s : d −→ d′
conseqlvts

Figure 2. Type system for live variables

Corollary 1 JsK(δ′) v wpt(s, δ′).

Proof. By Lemma 1 and Thm. 2, δ �s� δ′ yields δ v
wpt(s, δ′) for any liveness state δ. 2

Corollary 2 wpt(s, δ′) v JsK(δ′)

Proof. By Lemma 2. 2

Lemma 2 and its consequences, including completeness
of typing (Thm. 3) and MFP v MOP (Cor. 2), depend on
the fact that the transfer functions of live variables analysis
are distributive (preserve meets). They do not, for instance,
hold for constant propagation, which fails to be distributive.

The following weaker semantics-independent property
of the type system alone does not rest on distributivity (and
holds thus also for non-distributive backward analyses): the
wpt of a program wrt. a posttype d′ is greater than any
typing-sense pretype of d′. We already know that it also
is a typing-sense pretype of d′ (Lemma 1). In summary,
the wpt is the principal pretype of d′, in type systems jar-
gon. And computing the strongest analysis is principal type
inference.

Lemma 3 If d′0 ≤ d′, then wpt(s, d′0) ≤ wpt(s, d′).

Theorem 4 If s : d −→ d′, then d ≤ wpt(s, d′).

Proof. By induction on s : d −→ d′, using Lemma 3 in
some cases. (For live variables, one can also go via the
semantics and get the theorem as an immediate corollary of
Thm. 2 and Lemma 2.) 2

3 A Hoare logic for live variables

While the type system is a description of the semantics,
it is not a very direct one: the type system really relies on
both the semantics and properties of upper bounds. Nor is
the type system completely expressive; the only expressible
assertions are negations of upper bound conditions. A more
foundational formalism, which is also expressively com-
plete, can be obtained by recasting the liveness semantics

as a Hoare logic, in analogy with the Hoare logic character-
ization of the standard semantics.

The assertions of the Hoare logic are (generally open)
formulae of the (first-order) theory of ({dd, ll},v) over the
signature with an extralogical constant ls(x) (for the live-
ness value of x in the understood liveness state) for any
program variable x ∈ Var. The proof rules are in Figure 3.
The notation P [x Z⇒ a] denotes substituting the occurrences
of x in P by a. Again the design is for the standard notion of
validity, i.e., a forward implication: the precondition hold-
ing for a prestate implies that the postcondition holds for all
possible poststates. Reversing the implication is possible by
contraposition, i.e., by negating the two conditions.

The Hoare logic is adequate (both sound and com-
plete) with respect to the intended interpretation, which has
Jls(y)K(δ) =df δ(y) (so that ls(y) means the current live-
ness value of y).

Theorem 5 (Soundness) If {P} s {Q}, then, for any δ, δ′

such that δ �s� δ′, δ |=α P implies δ′ |=α Q for any valu-
ation α.

Lemma 4 {P} s {slp(P, s)} (for a correctly defined
strongest postcondition operator).

Theorem 6 (Completeness) If, for any δ, δ′ such that
δ �s� δ′, δ |=α P implies δ′ |=α Q for any valuation α,
then {P} s {Q}.

Note that since the domain of the intended interpretation
of the language of assertions is a doubleton, this language is,
in fact, essentially propositional. Hence the strongest post-
condition operation is trivially definable. And completeness
would still hold absolutely (as opposed to relatively to the
level of completeness of an axiomatization of arithmetic), if
we replaced the two entailment side conditions in the con-
sequence rule with side conditions of deducibility in an ap-
propriate proof system.

Clearly the Hoare logic is more foundational than the
type system, as it formalizes the semantics directly. But
this has the price that, generally, Hoare triple derivations are



{P}x := a {(ls(x) = ll ⊃ P [ls(y) Z⇒ ll | y ∈ FV(a)][ls(x) Z⇒ dd]) ∧ (ls(x) = dd ⊃ P )}
:=lvhoa

{P} skip {P}
skiplvhoa

{P} s0 {Q} {Q} s1 {R}
{P} s0; s1 {R}

complvhoa

{P [ls(y) Z⇒ ll | y ∈ FV(b)]} st {Q} {P [ls(y) Z⇒ ll | y ∈ FV(b)]} sf {Q}
{P} if b then st else sf {Q}

if lvhoa

{P [ls(y) Z⇒ ll | y ∈ FV(b)]} st {P}
{P}while b do st {P [ls(y) Z⇒ ll | y ∈ FV(b)]}

whilelvhoa

P |= P0 {P0} s {Q0} Q0 |= Q

{P} s {Q}
conseqlvhoa

Figure 3. Hoare logic for live variables

harder to construct than type derivations. For certification
of analyses, however, this is unproblematic. Constructing a
Hoare-logic derivation for a typing judgement (a purported
analysis result) is no harder than constructing a type-system
derivation: types admit a translation into Hoare-logic as-
sertions and a Hoare-logic derivation of a translated typ-
ing judgement is mechanically obtainable from its type-
system derivation, i.e., the translation of types extends to
type derivations.

In agreement with the semantic meaning of types, a type
d can be translated into the Hoare-logic assertion [d] =df

ls 6v d (i.e., ¬
∧
{ls(y) v d(y) | y ∈ Var}). This transla-

tion preserves subtyping and typing.

Theorem 7 (Preservation of subtyping) If d ≤ d′ in the
type system, then [d] |= [d′].

Theorem 8 (Preservation of typing) If s : d −→ d′ in the
type system, then {[d]} s {[d′]} in the Hoare logic.

Proof. A non-constructive indirect proof is immediate from
soundness of the type system and completeness of the Hoare
logic. An alternative constructive direct proof (by extending
translation to type derivations) is by induction on s : d −→
d′. 2

Of course the weakest preconditions in the Hoare logic
are more precise than those in the type system. For the state-
ment s =df if w = 3 then x := y else x := z, for instance,
we have that wpt(s, [w 7→ dd, x 7→ ll, y, z 7→ dd]) =
[w 7→ ll, x 7→ dd, y, z 7→ ll] while

wlp(s,¬(ls(w) = dd ∧ ls(y) = dd ∧ ls(z) = dd))

= ¬(ls(w) = ll ∧ ls(x) = dd

∧ ((ls(y) = ll ∧ ls(z) = dd) ∨ (ls(z) = ll ∧ ls(y) = dd)))

(for a poststate where w, y, z are dead, the type system can
only detect that x is dead in the prestate (w, y, z can be ei-
ther dead or live), while the Hoare logic knows also that w
is live and that exactly one of y and z is live).

4 A natural semantics and Hoare logic for fu-
ture defs, uses

Our discussion of live variables analysis thus far has
been quite detached from the (informal) definition of live-
ness we recalled in Sec. 2. Instead we built on a semantics
on liveness states, which looks very different. In fact, the
definition of liveness is part of a foundation for this seman-
tics, but we did not show this. Now we will close the gap.

The only observation needed is that liveness states are an
abstraction over another, more concrete (and thus more ba-
sic) non-standard notion of states. There is nothing like live-
ness states or a semantics for them “in the nature”. Instead,
the liveness definition speaks about “computation paths”,
more specifically, about future definitions and uses of vari-
ables on such paths. As no more information about paths is
relevant for liveness, we can confine our interest to future
transition traces, where the transitions are defs and uses.

Thus we introduce a natural semantics where states are
lists of tokens Dx with x ∈ Var and Ux

V with V ⊆ Var
and x ∈ Var + {pc}. A token Dx means a definition of
x. A token Ux

V means a use of the variables V for defining
x. The pseudovariable pc (for “program counter”) is for
the case where the variables V are used to evaluate a guard.
Lists of such tokens should be understood as defs and uses
to take place in the future.

The evaluation rules of the semantics are in Figure 4. (“·”
stands for both “cons” and “append”.) Again the causality
is backward, but compared to the rules of the liveness se-
mantics, they are entirely basic. The assignment rule, for
instance, tells us that the unique preagenda for a postagenda
τ is Ux

FV(a) · Dx · τ , i.e., to use all variables of a, to define
x and then to do τ .

Using traces as states, it is straightforward to formalize
the intuitive definition of liveness. For a trace τ , the corre-
sponding liveness state LS(τ) is defined as follows.

LS(τ)(z) = ll
iff ∃υ, τ ′, x, V. τ = υ ·Ux

V · τ ′ ∧ z ∈ V



Ux
FV(a) ·Dx · τ �x := a� τ

:=trns
τ �skip� τ

skiptrns

τ �s0� τ ′ τ ′ �s1� τ ′′

τ �s0; s1� τ ′′
comptrns

τ �st� τ ′

Upc
FV(b) · τ �if b then st else sf� τ ′ iftttrns

τ �sf� τ ′

Upc
FV(b) · τ �if b then st else sf� τ ′ iffftrns

τ �st� τ ′ τ ′ �while b do st� τ ′′

Upc
FV(b) · τ �while b do st� τ ′′ whilett

trns
Upc

FV(b) · τ �while b do st� τ
whileff

trns

Figure 4. Natural semantics for future def/use traces

∧((∃τ ′′. τ ′ = Dx · τ ′′ ∧ LS(τ ′′)(x) = ll) ∨ x = pc)

This definition is wellformed, because it can be reorga-
nized into the following structurally recursive one.

LS(ε)(z) =df dd

LS(Dx · τ)(z) =df


dd if z = x
LS(τ)(z) otherwise

LS(Ux
V ·Dx · τ)(z) =df


LS(τ)(z) t LS(τ)(x) if z ∈ V
LS(Dx · τ)(z) otherwise

LS(Upc
V · τ)(z) =df


ll if z ∈ V
LS(τ)(z) otherwise

The abstraction function puts the semantics of live-
ness states into perfect agreement with the trace semantics.
Hence it is right to say that the trace semantics and the ab-
straction function are a foundation for the liveness state se-
mantics.

Theorem 9 If τ �s� τ ′, then LS(τ) �s� LS(τ ′).

Theorem 10 If δ �s� LS(τ ′), then there is a trace τ such
that τ �s� τ ′ and LS(τ) = δ.

Similarly to the liveness state semantics, the trace se-
mantics is also characterizable by a Hoare logic, by a com-
pletely analogous design. The assertions are (open) formu-
lae of the (first-order) theory of lists of def, use tokens over
the signature with an extralogical constant tr for the current
def-use future. The inference rules are in Figure 5.

Again the logic is sound and complete for the obvious
intended interpretation of the assertions where JtrK(τ) =df

τ (i.e., tr denotes the current trace). But completeness is
only relative to the completeness level of an axiomatization
of the theory of lists, if the entailments in the side conditions
of the consequence rule are replaced by deducibilities: the
incompleteness of axiomatizations of arithmetic applies.

Theorem 11 (Soundness) If {P} s {Q}, then, for any τ ,
τ ′ such that τ �s� τ ′, τ |=α P implies τ ′ |=α Q for any
valuation α.

Theorem 12 (Completeness) If, for any τ , τ ′ such that
τ �s� τ ′, τ |=α P implies τ ′ |=α Q for any valuation
α, then {P} s {Q}.

Just as constructing proofs in the Hoare logic for live-
ness in general was harder than constructing type deriva-
tions in the type system for liveness, constructing proofs in
the Hoare logic for traces is even harder, generally. But
again, if we have a proof for a triple in the Hoare logic
for liveness, the more foundational proof in the Hoare logic
for traces is obtainable mechanically. The assertions of the
Hoare logic for liveness can be translated into ones of the
Hoare logic for traces and the translation extends to deriva-
tions. Define LS to be a syntactic version of LS (so that
JLS (t)K(τ) = LS(JtK(τ))). An assertion P about the cur-
rent liveness state is naturally translated as the assertion
[P ] =df P [ls Z⇒ LS (tr)] about the current trace. This
translation preserves derivable triples.

Theorem 13 (Preservation of derivable Hoare triples)
If {P} s {Q} in the Hoare logic for live variables, then
{[P ]} s {[Q]} in the Hoare logic for traces.

Proof. A non-constructive indirect proof is immediate from
soundness of the Hoare logic for live variables, Thm. 9 and
completeness of the Hoare logic for traces. An alternative
constructive direct proof is by induction on {P} s {Q}. 2

For analyses other than live variables analysis, the notion
of a trace considered need not be suitable. For available
expressions, for instance, it suffices to keep track of past
evaluations and modifications of non-trivial expressions on
a computation path. A more universal notion would record
all past and future “atomic actions” (which are assignments
and evaluations of guards).

5 Conditional liveness

Having outlined the foundational spectrum of certifica-
tion for live variables analysis, we now sketch a variant,
much to illustrate the flexibility of our setup. Namely, we
look at conditional liveness à la Strom and Yellin [19]. This
dwells on the same definition of liveness on a computation
path as before, but the states in the underlying concrete se-
mantics are pairs of a store (standard state) and a compu-
tation path, so only these transitions between computation



{P}x := a {P [tr Z⇒ Ux
FV(a) ·Dx · tr ]}

:=trhoa
{P} skip {P}

skiptrhoa

{P} s0 {Q} {Q} s1 {R}
{P} s0; s1 {R}

comptrhoa

{P [tr Z⇒ Upc
FV(b) · tr ]} st {Q} {P [tr Z⇒ Upc

FV(b) · tr ]} sf {Q}

{P} if b then st else sf {Q}
iftrhoa

{P [tr Z⇒ Upc
FV(b) · tr ]} st {P}

{P}while b do st {P [tr Z⇒ Upc
FV(b) · tr ]}

whiletrhoa

P |= P0 {P0} s {Q0} Q0 |= Q

{P} s {Q}
conseqtrhoa

Figure 5. Hoare logic for future def/use traces

paths are considered that are physically possible. Accord-
ingly, the analysis is finer.

The analogue to the semantics in Sec. 2 has as states pairs
(σ, δ) of stores (assignments of integers to variables) and
liveness states. The evaluation rules are in Figure 6.

The type system defining the analysis has as types d as-
signments to variables of assertions of the standard Hoare
logic (i.e., arithmetic formulae over a signature with an ex-
tralogical constant x for any variable x). There is one sub-
typing rule

d′ |= d

d ≤ d′

The typing rules are in Figure 7. In these rules, we have
written d′ |= d to mean that d′(y) |= d(y) for all y ∈ Var,
d[x Z⇒ a] to mean [y 7→ d(y)[x Z⇒ a] | y ∈ Var], b ⊃ d
to mean [y 7→ b ⊃ d(y) | y ∈ Var] and dt ∧ df to mean
[y 7→ dt(y) ∧ df (y) | y ∈ Var].

Adequacy (soundness and completeness) of the type sys-
tem wrt. the semantics holds wrt. the intended interpretation
of types, which is: σ, δ |= d iff it is not the case that, for all
variables y ∈ Var, δ(y) = ll implies σ |= d(y) (i.e., d(y)
is a necessary condition for y being live). (Again the nega-
tion is formal: the analysis is backward, but the validity
notion definition is forward, hence the need for contraposi-
tion.) The type > (verum) thus corresponds to the type ll
(“possibly live”) of the unconditional type system of Sec. 2
while ⊥ (falsum) is dd (“certainly dead”).

The strongest analysis algorithm is described by the
weakest pretype (wpt) operator defined as follows:

wpt(x := a, d′)

=df (d′[x 7→ ⊥][y 7→ d′(y) ∨ d′(x) | y ∈ FV(a)])[x Z⇒ a]

wpt(skip, d′) =df d′

wpt(s0; s1, d
′) =df wpt(s0, wpt(s1, d

′))

wpt(if b then st else sf , d′)

=df ((b ∧ wpt(st, d
′)) ∨ (¬b ∧ wpt(sf , d′)))

[y 7→ > | y ∈ FV(b)]

wpt(while b do st, d
′) =df ν(F ) where

F (d) =df ((b ∧ wpt(st, d)) ∨ (¬b ∧ d′))

[y 7→ > | y ∈ FV(b)]

Type derivations in this type system can be translated
into proofs in a Hoare logic. The assertions P are formulae
of the two-sorted theory of both the integers and the liveness
domain ({dd, ll},v) over the signature with an integer con-
stant y and liveness constant ls(y) for any variable y. The
proof rules are in Figure 8. A type d is translated as dic-
tated by the interpretation of types, namely by the assertion
¬

∧
{ls(y) = ll ⊃ d(y) | y ∈ Var}.

We refrain from spelling out the semantics and Hoare
logic for store and transition trace pairs.

6 Dead code elimination
As an example of a data-flow analysis based optimiza-

tion, let us look at dead code elimination. This opti-
mization removes assignments to dead variables. Type-
systematically, it is straightforwardly defined by a transfor-
mational add-on to the analysis type system of Fig. 2. The
rules of the extended type system are in Fig. 9. For any
type assigned to a program, this also assigns a transformed
program.

This type-systematic definition of the optimization al-
lows for a simple proof of relational soundness of the anal-
ysis. Defining σ ∼d σ′ to denote that σ(x) = σ′(x) for any
x ∈ Var such that d(x) = ll (i.e., that two states agree on
all variables live in a type), the optimization is sound in the
following sense: If s : d → d′ ↪→ s∗ and σ ∼d σ∗, then (i)
σ �s� σ′ implies that there exists σ′∗ such that σ′ ∼d′ σ′∗
and σ∗ �s∗�σ′∗, (ii) σ∗ �s∗�σ′∗ implies that there exists σ′

such that σ′ ∼d′ σ′∗ and σ�s�σ′. The proof is by induction
on s : d → d′ ↪→ s∗. Moreover, the type-derivation based
program transformation can be extended to a transformation
of functional correctness proofs [4, 16].

Conditional liveness analysis facilitates more refined
dead code elimination optimization. For assignment, one
could, for instance, choose to give these rules:

d(x) 6|= ⊥
x := a :
(d[x 7→ ⊥][y 7→ d(y) ∨ d(x) | y ∈ FV(a)])[x Z⇒ a] −→ d

↪→ x := a
d(x) |= ⊥

x := a : d[x Z⇒ a] −→ d ↪→ skip



σ, δ[x 7→ dd][y 7→ δ(y) t δ(x) | y ∈ FV(a)] �x := a� σ[x 7→ JaKσ], δ
:=lvns

σ, δ �skip� σ, δ
skiplvns

σ, δ �s0� σ′, δ′ σ′, δ′ �s1� σ′, δ′′

σ, δ �s0; s1� σ′′, δ′′
complvns

σ |= b σ, δ �st� σ′, δ′

σ, δ[y 7→ ll | y ∈ FV(b)] �if b then st else sf� σ′, δ′ ifttlvns

σ 6|= b σ, δ �sf� σ′, δ′

σ, δ[y 7→ ll | y ∈ FV(b)] �if b then st else sf� σ′, δ′ iffflvns

σ |= b σ, δ �st� σ′, δ′ σ′, δ′ �while b do st� σ′, δ′′

σ, δ[y 7→ ll | y ∈ FV(b)] �while b do st� σ′′, δ′′ whilett
lvns

σ 6|= b

σ, δ[y 7→ ll | y ∈ FV(b)] �while b do st� σ, δ
whileff

lvns

Figure 6. Natural semantics for conditional liveness

x := a : (d[x 7→ ⊥][y 7→ d(y) ∨ d(x) | y ∈ FV(a)])[x Z⇒ a] −→ d
:=lvts

skip : d −→ d
skiplvts

s0 : d −→ d′ s1 : d′ −→ d′′

s0; s1 : d −→ d′′
complvts

st : b ⊃ d −→ d′ sf : ¬b ⊃ d −→ d′

if b then st else sf : d[y 7→ > | y ∈ FV(b)] −→ d′ if lvts

st : b ⊃ d −→ d[y 7→ > | y ∈ FV(b)]

while b do st : d[y 7→ > | y ∈ FV(b)] −→ ¬b ⊃ d
whilelvts

d ≤ d0 s : d0 −→ d′
0 d′

0 ≤ d′

s : d −→ d′
conseqlvts

Figure 7. Type system for conditional liveness

{P [x 7→ a]}x := a {(ls(x) = ll ⊃ P [ls(y) Z⇒ ll | y ∈ FV(a)][ls(x) Z⇒ dd]) ∧ (ls(x) = dd ⊃ P )}
:=lvhoa

{P} skip {P}
skiplvhoa

{P} s0 {Q} {Q} s1 {R}
{P} s0; s1 {R}

complvhoa

{b ∧ P [ls(y) Z⇒ ll | y ∈ FV(b)]} st {Q} {¬b ∧ P [ls(y) Z⇒ ll | y ∈ FV(b)]} sf {Q}
{P} if b then st else sf {Q}

if lvhoa

{b ∧ P [ls(y) Z⇒ ll | y ∈ FV(b)]} st {P}
{P}while b do st {¬b ∧ P [ls(y) Z⇒ ll | y ∈ FV(b)]}

whilelvhoa

P |= P0 {P0} s {Q0} Q0 |= Q

{P} s {Q}
conseqlvhoa

Figure 8. Hoare logic for conditional liveness

d(x) = ll

x := a : d[x 7→ dd][y 7→ ll | y ∈ FV(a)] −→ d ↪→ x := a
:=1

lvopt

d(x) = dd

x := a : d −→ d ↪→ skip
:=2

lvopt

skip : d −→ d ↪→ skip
skiplvopt

s0 : d −→ d′ ↪→ s′
0 s1 : d′ −→ d′′ ↪→ s′

1

s0; s1 : d −→ d′′ ↪→ s′
0; s

′
1

complvopt

st : d −→ d′ ↪→ s′
t sf : d −→ d′ ↪→ s′

f

if b then st else sf : d[y 7→ ll | y ∈ FV(b)] −→ d′ ↪→ if b then s′
t else s′

f

if lvopt

st : d −→ d[y 7→ ll | y ∈ FV(b)] ↪→ s′
t

while b do st : d[y 7→ ll | y ∈ FV(b)] −→ d ↪→ while b do s′
t

whilelvopt

d ≤ d0 s : d0 −→ d′
0 ↪→ s′ d′

0 ≤ d′

s : d −→ d′ ↪→ s′
conseqlvopt

Figure 9. Type system for dead code elimination



A more aggressive optimization could be built on con-
ditional liveness information together with conditional con-
stant propagation information.

Consider this example (b does not contain z, y and x; the
pretypes for all constituent statements have been computed
from the given global posttype on line 8, where we have
chosen that z may be live and y, x must be dead).

1 [z 7→ b, y 7→ ¬b, x 7→ ⊥] x := 5;
2 [z 7→ b, y 7→ ¬b, x 7→ ⊥] if b then
3 [z 7→ b, y 7→ ⊥, x 7→ ¬b] y := x

else
4 [z 7→ b, y 7→ ¬b, x 7→ ⊥] skip;
5 [z 7→ b, y 7→ ¬b, x 7→ ⊥] if b then
6 [z 7→ >, y 7→ ⊥, x 7→ ⊥] z := z + 1

else
7 [z 7→ ⊥, y 7→ >, x 7→ ⊥] z := y
8 [z 7→ >, y 7→ ⊥, x 7→ ⊥]

Because of path sensitivity, the assignment to x on line 1 is
eliminated by the rules above, since x is necessarily dead
after it. The assignment to y on line 3 is conditionally live
and could be removed on the basis of additional forward
analysis information that its liveness postcondition ¬b can-
not actually obtain.

Alternative designs would optimize partially dead as-
signments by code motion, e.g., move an assignment pre-
ceding an if into one branch of the if-statement.

7 Related work

We can only mention some items of related work. Use
of type systems to define program analyses is an old idea,
especially in the form of enrichments of standard type
systems (“annotated types”, especially for functional lan-
guages). The type systems philosophy is also central in
the “flow logic” work of Nielsen and Nielsen [15]. Type-
systematic accounts of classical data-flow analyses for op-
timizations (incl. soundness of optimizations and optimiza-
tion of functional correctness proofs, cf. translation valida-
tion) for imperative languages have been given by Benton
and the present authors [4, 12, 16]. Volpano et al.’s well-
known type system [20] for secure information flow is of
the same kind, but relatively weak (based on invariant state
types instead of pre- and poststate types).

The idea of characterizing non-standard semantics with
program logics is old as well. For imperative languages,
it appears already, e.g., in Andrews and Reitman’s Hoare
logic for secure information flow [2] and H. R. Nielson’s
Hoare logic for computation time [14]. Denney and Fischer
[9] have characterized safety policies with Hoare logics and
applied these to certification of safety.

The conditional data-flow analyses à la Strom and Yellin
[19] are an extension of Strom and Yemini’s typestate
checking paradigm [18], originally meant to address basic
safety.

Proof-carrying code was invented by Necula and
Lee [13], who certified safety of programs against a verifi-
cation condition generator. Foundationalism in PCC was pi-
oneered by Appel [3], who suggested using a universal logic
formalization of the underlying semantics instead. Hamid,
Zhao et al. [10] proposed that a foundational certificate can
consist in a type derivation and a formal soundness proof of
the type system.

Formal certification of data-flow analyses, especially for
Java bytecode, is the subject of a number of recent works.
Albert et al.’s analysis-carrying code [1] highlights that
analysis results can serve as analysis certificates allowing
for lightweight checking (without fixpoint recomputation,
only fixpoint checking). Besson, Jensen et al. [6] have taken
a more foundational approach, certifying also soundness of
analysis algorithms and addressing the issue of minimizing
certificate size. Also foundational is the work by Beringer,
Hofmann et al. [5] on certified heap consumption analysis
based on a type system specializing a program logic (con-
siderably more similarly to this paper).

8 Conclusions and future work

We have shown that classical data-flow analyses, such as
live variables analysis, can be certified on a variety of levels,
completely analogous to certification of program safety or
functional correctness. To accept a typing derivation in an
analysis type system as a certificate of a computed analysis,
one must believe in the textbook definition of the analysis
(this is what the type system formalizes) or in a justification
of this definition. To accept a derivation in the correspond-
ing Hoare logic for abstract properties, it suffices to trust
the definition of the abstract property semantics (which is
also the justification for the type system, but only together
with additional ideas about approximations). Finally, to ac-
cept a derivation in the Hoare logic for future def/use traces,
even this is not necessary: one must only believe in the ba-
sic definition of the trace semantics and in the definition of
the abstraction of traces into liveness states. How much pre-
requisite trust is required depends on the application, but a
formalism is available for each level.

In the case of more foundational formalisms, one can
ask what makes better certificates: direct derivations in the
foundational formalism (obtainable from derivations in an
applied formalism by translation) or derivations in an ap-
plied formalism accompanied by a proof of soundness of
the applied formalism wrt. the foundational one. It is also
an option to avoid trusting any program logics by relying
instead on the descriptions of their underlying program se-
mantics and universal (meta)logic. The program logics and
program semantics we have presented here support the full
spectrum of foundationalism.

As future work, we plan to take a closer look into type



system definitions of bidirectional analyses, such as par-
tial redundancy elimination [11]. We are also specifically
interested in the foundational spectrum of certification of
analyses for stack-based low-level languages such as Java
bytecode, in continuation of the initial work we did on type
systems for optimizing stack-based code [17].
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