
Bidirectional Data-Flow Analyses, Type-Systematically

Maria João Frade
Departamento de Informática

Universidade do Minho
Campus de Gualtar, P-4710-057 Braga, Portugal

Email: mjf@di.uminho.pt

Ando Saabas and Tarmo Uustalu
Institute of Cybernetics

Tallinn University of Technology
Akadeemia tee 21, EE-12618 Tallinn, Estonia

Email: {ando|tarmo}@cs.ioc.ee

Abstract
We show that a wide class of bidirectional data-flow analyses and
program optimizations based on them admit declarative descrip-
tions in the form of type systems. The salient feature is a clear
separation between what constitutes a valid analysis and how the
strongest one can be computed (via the type checking versus prin-
cipal type inference distinction). The approach also facilitates ele-
gant relational semantic soundness definitions and proofs for anal-
yses and optimizations, with an application to mechanical transfor-
mation of program proofs, useful in proof-carrying code. Unidirec-
tional forward and backward analyses are covered as special cases;
the technicalities in the general bidirectional case arise from more
subtle notions of valid and principal types. To demonstrate the via-
bility of the approach we consider two examples that are inherently
bidirectional: type inference (seen as a data-flow problem) for a
structured language where the type of a variable may change over a
program’s run and the analysis underlying a stack usage optimiza-
tion for a stack-based low-level language.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, optimization; F.3.1 [Logics and
Meanings of Programs]: Specifying, Verifying and Reasoning
about Programs—Logics of programs; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—Oper-
ational semantics, Program analysis

General Terms Languages, Theory, Verification

Keywords program analyses and optimizations, type systems,
program logics, mechanical transformation of program proofs

1. Introduction
Unidirectional data-flow analyses are an important classical topic
in programming theory. The theory of such analyses is well under-
stood, there exist different styles of describing these analyses and
ascribing meaning to them and their interrelationships are clear. In
particular, the different styles can concentrate on the questions of
what makes a valid analysis of a program or how the strongest anal-
ysis can be computed, but it is known how to relate the two aspects
and there is an obvious and technically meaningful analogy to valid
Hoare triples and strongest postconditions/weakest preconditions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’09, January 19–20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-327-3/09/01. . . $5.00

Cascades of unidirectional analyses are enough for most analysis
tasks.

Nevertheless there are also meaningful analyses that do not
fit into this framework because of their inherent bidirectionality.
Bidirectional analyses are considerably less well known and so is
their theory. Nearly all theory on bidirectional analyses is due to
Khedker and Dhamdhere [6, 7, 5], who have convincingly argued
that such analyses are useful for a number of tasks, not unnatural
or complicated conceptually, provided one looks at them in the
right way, and not necessarily expensive to implement. However
the main emphasis in this body of work has been on algorithmic
descriptions that are based on transfer functions and focus on the
notion of the strongest analysis of a program. By and large, these
descriptions are silent about general valid analyses, which is a
subtle issue in the bidirectional case, as well as semantic soundness.

In this paper, we approach bidirectional analyses with a con-
ceptual tool that is very much oriented at a dual study of valid and
strongest analyses, including semantics and soundness, in one sin-
gle coherent framework, namely type systems. Type systems are a
lightweight deductive means to associate properties with programs
in such a way that the questions of whether a program has a given
property and what the strongest property (within a given class) of
the program is can be asked within the same formalism, becom-
ing the questions of type checking versus principal type inference.
We have previously argued [12, 16] that type systems are a good
vehicle to describe analyses and optimizations (with type deriva-
tions as certificates of analyses of programs). This is especially
true in proof-carrying code where the question of documentation
and communication of analysis results is important and where type
systems have an elegant application to mechanical transformation
of program proofs. Similar arguments have also been put forth by
Nielson and Nielson in their flow logic work [14] and Benton in his
work on relational soundness [4]. Our goal here is to scale up the
same technology to bidirectional analyses. We proceed from simple
but archetypical examples with clear application value and arrive at
several general observations.

The contribution of this paper is the following. We general-
ize the type-systematic account of unidirectional analyses to the
bidirectional case for structured (high-level) and unstructured (low-
level) languages. We formulate a schematic type system and prin-
cipal type inference algorithm and show them to agree; as a side
result, we show a correspondence between declarative pre/post-
relations and algorithm-oriented transfer functions. Crucially, dif-
ferently from unidirectional analyses, principal type inference does
not mean computing the weakest pretype of a program for a given
posttype, since any choice of a pretype will constrain the range of
possible valid posttypes and can exclude the given one. Instead,
the right generalizing notion is the weakest pre-/posttype pair for
a given pre-/posttype pair. This is the greatest valid pre-/posttype

pair pointwise smaller than the given one (which need not be valid
for the given program).

Further, we show a general technique for defining soundness
of analyses and optimizations based thereupon and a schematic
soundness proof. This is based on similarity relations. We also
demonstrate how soundness in this sense yields mechanical trans-
formability of program proofs to accompany analyses and opti-
mizations and argue that this is useful in proof-carrying code as
a tool for the code producer.

As examples we use type inference (seen as a data-flow prob-
lem) for a structured language where a variable’s type can change
over a program’s run but type-errors are unwanted and a stack usage
optimization, namely load-pop pairs elimination, for a low-level
language manipulating an operand stack. Both of these analyses
are inherently bidirectional and their soundness leads to meaning-
ful transformations of program proofs. In the first example, bidi-
rectionality is imposed by our choice of the analysis domain (the
inferred type of a variable can be either definite or unconstrained)
and the notion of validity. In the second example, it is unavoidable
for deeper reasons.

The load-pop pairs elimination example comes from our earlier
paper [18], where we treated several stack usage optimizations.
Here we elaborate this account and put it on a solid type-system-
theoretic basis, discussing, in particular, type checking vs. principal
type inference.

The paper is organized as follows. In Section 2, we introduce
the type-systematic technique for describing bidirectional analyses
on the example of type inference for a structured language. We de-
scribe this analysis declaratively and algorithmically via instances
of a schematic type system and schematic principal type inference
algorithm that cover a wide class of bidirectional analyses (includ-
ing the standard unidirectional analyses). In Section 3, we present
some basic metatheory of such descriptions: we show that pre/post-
relations and transfer functions correspond and that the principal
type inference algorithm is correct. In Section 4, we demonstrate
the similarity-relational method to formulate soundness of analy-
ses and give the schematic soundness proof. We also outline the
application to transformation of proofs. Section 5 is to illustrate
that the approach is also adaptable to unstructured languages. Here
we consider load-pop pairs elimination for a stack-based language.
In Section 6 we comment on some related work whereas Section 7
is to take stock and map some directions for further exploration.

2. Analyses for structured languages: type
inference

In this section we introduce the type-systematic technique for de-
scribing bidirectional data-flow analyses. We do this on the exam-
ple of static type inference for a language that is “dynamically”
typed1 in the sense that variable types are not declared and the
type of a variable can change during a program’s run. This is the
simplest classical example that motivates the need for bidirectional
analyses reasonably well. We present this example as an instance
of the general bidirectional type-systematic framework.

The programming language we consider is WHILE. Its state-
ments s ∈ Stm, expressions e ∈ Exp are defined over a set of
program variables x ∈ Var in the following way:

e ::= x | const | e0 op e1

s ::= x := e | skip | s0; s1 |
if e then st else sf | while e do st.

1 This terminology is not perfect, but it has been used, e.g., by Khedker et
al. [8]. The term “dynamic” refers here to flow-sensitive typing, not to run-
time type checking, i.e., variables need not have invariant types, they can
have different types at different program points.

The constants const and binary operators op are drawn from a
typed signature over two types int and bool (i.e., their types are
const : t and op : t0 × t1 → t where t, t0, t1 ∈ {int, bool}); they
are all monomorphic. A type error can occur if a guard expression
is not of type bool or operands have the wrong type (e.g., at
evaluating x + y when x holds a value of type bool).

The type inference analysis attempts to give every variable a
definite type at each program point. Intuitively, a valid analysis
should have the property that if a program is started from a state
where all variables satisfy the inferred pretype, then the program
cannot have a runtime type error and if it finishes, the variables
satisfy the inferred posttype. For example for the program y :=
x; v := x + 10, variable x should be of type int in the pretype,
while y and v can have any type in the pretype. In the posttype, all
variables have type int. The program y := x; v := x∨v; y := y+5
on the other hand is ill-typed, since x is used as a bool and y as an
int in the second and third assignments, but they have to be equal
(and therefore have the same type) after the first assignment.

Type inference in this formulation is inherently bidirectional,
meaning that information about the type of a variable at a point
influences variable types both at its successor and predecessor
points. A variable can only be assigned a definite type t at a
program point if all reaching definitions and all reached uses agree
about this. Let us look at the following program:

if b then
if b’ then

x := y
else

x := 5
else

w := y

After the first forward pass, it is known that x has type int at the
end of the program, nothing is known of types of w and y. In the
next backward pass, it can be found that y needs to have type int in
the pretype. Using this information, running a forward pass shows
that w also has type int in the posttype. While it would be possible
to help type inference, e.g., by remembering equalities between
variables (copy information) in addition to their types, it would still
be impossible to derive the precise type by only using a forward or
a backward analysis.

Type system We now state an analysis of the above-indicated
flavour as a type system. The type system is given in Figures 1
and 2 where the rules in the latter are schematic for many analyses
and all information specific to our particular analysis is in the
former.

In our specific case, the type system features value types
τ ∈ ValType for variables, where ValType =df {int, bool}>⊥,
> meaning “any type” and ⊥ meaning “impossible”. A state
type d ∈ StateType is either a map from variables to a non-
bottom value type or “impossible”: StateType =df (Var −→
{int, bool}>)⊥ (⊥ is overloaded for variable and state types).2

For a variable x and variable type τ , we overload notation to have
⊥[x 7→ τ] =df ⊥ and ⊥(x) =df ⊥. In the general case, the main
category of types (that of the state types) is given by the domain D
of the analysis. Subtyping follows the partial order of D.

A statement is typed with a pair of state types, the judgement
syntax being s : d −→ d′. The intended reading is that (d, d′)
is a pair of agreeing pre- and poststate types for s, agreement de-
fined via some semantic interpretation of types. In our case the in-
terpretation is that, if the program is started in a state where the

2 Note that the value and state types of the object language correspond
to non-bottom types of the analysis type system. This particularity of our
example incurs some overloading of terminology in our discussion.

τ ≤ τ ⊥ ≤ τ τ ≤ > ⊥ ≤ d

∀x ∈ Var.d(x) ≤ d′(x)

d ≤ d′

x : (d, d(x))

d 6= ⊥ const : t

const : (d, t) const : (⊥,⊥)

op : t0 × t1 → t e0 : (d, t0) e1 : (d, t1)

e0 op e1 : (d, t)

e0 : (⊥,⊥) e1 : (⊥,⊥)

e0 op e1 : (⊥,⊥)

e : (d, τ)

x := e : d =⇒ d[x 7→ τ] skip : d =⇒ d

e : (d, τ) τ ≤ bool

e : d =⇒t d

e : (d, τ) τ ≤ bool

e : d =⇒f d

Figure 1. Pre/post-relations for type inference analysis

x := e : d =⇒ d′

x := e : d −→ d′
ass

skip : d =⇒ d′

skip : d −→ d′
skip

s0 : d −→ d′′ s1 : d′′ −→ d′

s0; s1 : d −→ d′
comp

e : d =⇒t dt st : dt −→ d′ e : d =⇒f df sf : df −→ d′

if e then st else sf : d −→ d′
if

e : d =⇒t dt st : dt −→ d e : d =⇒f d′

while e do st : d −→ d′
while

Figure 2. Schematic type system for general bidirectional analyses for WHILE

variables have the types specified in the pretype, then the execu-
tion, if it terminates, leads to a state where they conform with the
posttype; moreover, it cannot terminate abruptly because of a type
error (more on this in Section 4). Note that for simple type safety, a
unidirectional analysis would suffice, but the more precise bidirec-
tional analysis can offer additional benefits. The more a compiler
knows about the possible types of a variable during the run of pro-
gram, the more efficient code it can generate. If the types of all
variables are predetermined for all program points, then the pro-
gram can be executed taglessly: wherever some polymorphic op-
eration (e.g., printing) is applied to some variables, it is statically
known which instance of this operation is correct for this point.

The schematic typing rules for assignments and skip in Figure 2
state that they accept a pre-/posttype pair if a specific pre/post-
relation x := e : =⇒ resp. skip : =⇒ holds. The rules for
if- and while-statements depend on similar relations e : =⇒t

and e : =⇒f for guard expressions e. The pre/post-relations for
primitive constructs given in Figure 1 are specific to our particular
analysis. The relation for skip is just identity, while the relation
for an assignment depends on the actual type of its right-hand-side
expression e, given by the auxiliary relation e : (,) between state
and value types. In our particular case, the pre/post-relations for
guard expressions for true and false branches are identical, since
the analysis treats true and false branches similarly.

We have chosen to state the typing rules without a rule of sub-
sumption. Subsumption (corresponding to laxities allowed by the
analysis) is pushed up to assignments, guards and skip statements.
This design gives purely syntax-directed type checking. Moreover,
in the case of typical general bidirectional analyses (with identity
edge flows) subsumption does not allow a statement to change its
type anyhow. However our choice implies that we cannot treat skip
as a trivial compound statement (with no effect in terms of data
flows), but must handle it as a primitive construct.

Characteristically to data-flow analyses (but not to the standard
use of type systems), all programs are typable (any program should
be analyzable): it is easy to verify that any statement s can be typed
at least with type ⊥ −→ ⊥. However the typings of real interest
are s : d −→ d′ where d, d′ are non-bottom.

Principal type inference The type system as given in Figures 1
and 2 is purely declarative. It makes it straightforward to check
(in a syntax-directed manner) whether a purported pre-/posttype

pair for a statement s is valid. But it gives no clues for inferring
the “best” of s. It is also an interesting question what being the
“best” should mean. In the case of unidirectional analyses one typi-
cally fixes some desired posttype and asks for the weakest agreeing
pretype (or vice versa). In the case of bidirectional analyses, this
is not a good problem statement, as there might exist no pretype
agreeing with the given posttype: any commitment about the pre-
type restricts the space of possible posttypes. A correct generaliza-
tion would be to ask what is the greatest valid pre-/posttype pair
(d, d′) that is smaller than the given (not necessarily valid) pair
(d0, d

′
0); we speak of computing the weakest valid pre-/posttype

pair wt(s, d0, d
′
0).

Clearly, such a pair of types would not always exist unless
the analysis had specific properties. The property needed is that
D has arbitrary joins (then D × D has them too) and that the
pre/post-relations for all statements in the language are closed
under arbitrary joins. Then for any such relation R and any pair
of given bounds (d0, d

′
0) one can identify the greatest pair (d, d′)

which is both in R and smaller than (d0, d
′
0). Our analysis domain

has this property. But as a consequence it would, for example, not
support overloaded operators: with an operator typed both int ×
int → bool and bool × bool → bool (such as overloaded
equality), the statement x := y op z would have no principal type
for the bounding pair (>,>). It would only have two maxima. To
support such operators, a different domain must be used.

The schematic principal type inference algorithm for bidirec-
tional type systems is given in Figure 4. It hinges on transfer func-
tions for primitive constructions, which are specific to every par-
ticular analysis. Here the wt computation for any compound state-
ment is a greatest fixpoint computation (unlike for unidirectional
type systems, where such computations are only needed for while-
loops). The bidirectionality of the algorithm is manifested in the
fact that the approximations of the expected valid pre-/posttype pair
recursively depend on each other as well as on the given bounding
pre-/posttype pair.

The transfer functions that principal type inference relies on can
be derived from the pre/post-relations of primitives, instantianting
the schematic type system. The general recipe for doing this will be
explained in Section 3. For our example, they are given in Figure
3. The forward and backward functions [x := e]→ and [x := e]←

for an assignment x := e depend on the transfer functions [e]→

[x](d, τ) = (d[x 7→ d(x)∧τ], d(x)∧τ) [const](d, τ) = (if τ∧t = ⊥ then ⊥ else d, τ∧t) for const : t

[e0 op e1](d, τ) = (if τ∧t = ⊥ then ⊥ else d∧d0∧d1, τ∧t) where
(d0, τ0) = [e0](d, t0)
(d1, τ1) = [e1](d, t1)
for op : t0 × t1 → t

[e]←(d, τ) = d′ where (d′,) = [e](d, τ) [e]→d = [e](d,>)

[x := e]←d′ = [e]←(d′[x 7→ >], d′(x)) [x := e]→d = d′[x 7→ τ ′] where (d′, τ ′) = [e]→d
[e]←t d′ = [e]←f d′ = [e]←(d′, bool) [e]→t d = [e]→f d = [e]→d

[skip]←d′ = d′ [skip]→d = d

Figure 3. Transfer functions for type inference analysis

wt(x := e, d0, d
′
0) =df greatest (d, d′) such that

d ≤ d0∧[x := e]←d′

d′ ≤ d′0∧[x := e]→d

wt(skip, d0, d
′
0) =df greatest (d, d′) such that

d ≤ d0∧[skip]←d′

d′ ≤ d′0∧[skip]→d

=

8<: (d0∧d′0, d
′
0∧d0) if [skip]← = [skip]→ = id

(d0, d
′
0∧d0) if [skip]← = const >, [skip]→ = id

(d0∧d′0, d
′
0) if [skip]← = id, [skip]→ = const >

wt(s0; s1, d0, d
′
0) =df (d, d′) where (d, , , d′) =df greatest (d, d′′, d′′′, d′) such that

(d, d′′) ≤ wt(s0, d0, d
′′′)

(d′′′, d′) ≤ wt(s1, d
′′, d′0)

wt(if e then st else sf , d0, d
′
0) =df (d, d′) where (d, , , d′,) =df greatest (d, dt, df , d′, d′′) such that

d ≤ d0∧[e]←t dt∧[e]←f df

(dt, d
′) ≤ wt(st, [e]

→
t d, d′0∧d′′)

(df , d′′) ≤ wt(sf , [e]→f d, d′0∧d′)

wt(while e do st, d0, d
′
0) =df (d, d′) where (d, , d′) =df greatest (d, dt, d

′) such that

(dt, d) ≤ wt(st, [e]
→
t d, d0∧[e]←t dt∧[e]←f d′)

d′ ≤ d′0∧[e]→f d

Figure 4. Schematic principal type inference for WHILE

and [e]← for the right-hand-side expression e (taking a state type
to a pair of a state type and value type and vice versa). In the
forward direction, x gets the type of the expression that is assigned
to it. In the backward direction, the pretype is computed from an
updated posttype where the type of x is set to be > together with
the posttype of x (as the type of the expression). The reason for
setting the type of x to > is that the posttype of x (the type of the
new x) has no influence over the type of x during the evaluation of
e (the old x). If x does not appear in the expression, its type in the
pretype returned by the transfer function will remain>. Otherwise,
the operators in e can constrain it.

The forward transfer function [e]→ for an expression e takes a
state type to a pair of an updated state type and a value type (a
candidate type for the expression), corresponding to the idea that
expression evaluation returns a value. The backward function [e]←

proceeds from a pair of a state type and a value type and returns
an updated state type. The state type can change due to the fact
that the operators have fixed types (for example for the expression
x + y, we know that the type of the expression must be int, but
also that variables x and y must have type int in the state type). If
at any point a type mismatch occurs (for example, we are dealing
with expression x + y, but x is already constrained to have type

bool), it is propagated throughout and the encompassing program
is ascribed the type (⊥,⊥).

For the greatest fixed-points to exist, the transfer functions for
the primitive constructs must be monotone (in the case of our
example they are). As a consequence, all other functions whose
greatest fixed-points the algorithm relies on are monotone too. The
actual computation can be done by iteration, if the analysis domain
has the finite descending chains property (which again holds for
our example).

We should also note that unidirectional analyses, being a special
case of bidirectional ones seamlessly fit in the framework. The
laxities allowed by unidirectional analyses are expressed through
pre/post-relations and transfer functions for assignments, guards
and skip. In fact this is a good example why the typing relation for
skip is not equality in the general case: in the case of unidirectional
type systems, it would be≤ for backward analyses or≥ for forward
analyses. The corresponding transfer functions return constant >
for the reverse direction of the analysis.

Having described the schematic type system and principal type
inference algorithm on the example of type inference analysis, we
now proceed to defining the mathematical relationship between the
two.

3. Type checking versus principal type inference
What is required for the principal type inference algorithm to be
correct with respect to the type system, i.e., to indeed compute
principal types?

At the very least the principal type should always exist and the
greatest fixed-points in the algorithm for finding it should exist too.
Hence, the pre/post-relations ought to be closed under arbitrary
joins (any subrelation of a given relation should have a join that
is also in the relation) and the transfer functions must be monotone.
Moreover, the transfer functions should suitably agree with the
pre/post-relations. It turns out that this is enough.

Accordingly, we require that (D,≤) is a complete lattice,
i.e., it has arbitrary joins

W
(therefore also arbitrary meets). As

a result D × D is also a complete lattice, with the partial or-
der given pointwise and the join of a subrelation given by the
joins of its projections: for any R ⊆ D × D, we can setW

R =df (
W

R|0,
W

R|1) where R|0 =df {d | ∃d′. (d, d′) ∈ R},
R|1 =df {d′ | ∃d. (d, d′) ∈ R} and the operation thus defined is
indeed the join of R.

Now one can switch between closed under joins relations R ⊆
D ×D and pairs of monotone functions f←, f→ ∈ D → D.

We define, for a pair of monotone functions f← and f→, a
relation f2R(f←, f→) by

(d, d′) ∈ f2R(f←, f→) =df d ≤ f←(d′) ∧ d′ ≤ f→(d)

In the opposite direction, for a joins-closed relation R, we define a
pair of functions R2f←(R) and R2f→(R) by

R2f←(R)(d′0) =df

_
{d | ∃d′. d′ ≤ d′0 ∧ (d, d′) ∈ R}

R2f→(R)(d0) =df

_
{d′ | ∃d. d ≤ d0 ∧ (d, d′) ∈ R}

We can observe the following:

THEOREM 1. 1. For any joins-closed relation R, the two func-
tions R2f←(R) and R2f→(R) are monotone.

2. For any pair of monotone functions f←, f→, the relation
f2R(f←, f→) is joins-closed.

3. The functions R2f←, R2f→ are monotone: If R ⊆ R′, then
R2f←(R) ≤ R2f←(R′) and R2f→(R) ≤ R2f→(R′).

4. The function f2R is monotone: If f← ≤ f←′ and f→ ≤ f→′,
then f2R(f←, f→) ⊆ f2R(f←′, f→′).

5. The functions 〈R2f←, R2f→〉 and f2R form a coreflective Ga-
lois connection: For any pair of monotone functions f←, f→

and joins-closed relation R, we have 〈R2f←, R2f→〉(R) ≤
(f←, f→) if and only if R ⊆ f2R(f←, f→).
Moreover, for any joins-closed relation R,
f2R(R2f←(R), R2f→(R)) ⊆ R.

6. As a consequence: For any joins-closed relation R, we have
R = f2R(R2f←(R), R2f→(R)). For any pair of monotone
functions f←, f→, we have 〈R2f←, R2f→〉(f2R(f←, f→)) ≤
(f←, f→).

Assuming now that for assignments, guards and the skip state-
ment the transfer functions have been produced from their pre/post-
relations with R2f←, R2f→, one can prove the principal type in-
ference correct:

THEOREM 2. wt(s, d0, d
′
0) is the greatest (d, d′) such that d ≤

d0, d′ ≤ d′0 and s : d −→ d′.

The proof is by induction on the structure of s.

4. Semantic soundness and transformation of
program proofs

So far we discussed the type inference analysis detached from any
mathematical meaning assigned to this analysis. Now we show how
the types of the analysis can be assigned an interpretation in terms
of sets of states of the standard semantics of WHILE leading to a
soundness result.

A state σ ∈ State =df Var → Val is an assignment of
values to variables where values are (tagged) integers or booleans,
Val =df Z + B. We interpret a value type τ as a subset JτK
of Val by defining J⊥K =df ∅, JintK =df Z, JboolK =df B,
J>K =df Val. This interpretation is extended to state types in the
obvious pointwise way: JdK =df {σ | ∀x ∈ Var. σ(x) ∈ Jd(x)K}.

Let us write σ �s� σ′ to denote that statement s run from state
σ terminates in σ′ and σ�s�p to denote that statement s run from
state σ terminates abruptly. We obtain soundness in the following
form: If s : d −→ d′ and σ ∈ JdK then (i) σ �s� σ′ implies
σ′ ∈ Jd′K and (ii) it is not the case that σ�s�p.

In the case of a general analysis, typically a more general ap-
proach is needed. A state type, i.e., an element d of D, is interpreted
as a relation ∼d on State × State. For type inference we define
σ ∼d σ∗ somewhat degenerately to mean σ = σ∗ ∈ JdK (as a sub-
relation of equality). We state the soundness theorem for slightly
more general type systems than we introduced thus far, with typing
judgements s : d −→ d′ ↪→ s∗, expressing not only that state-
ment s types with pre-/posttype pair d, d′ but also that this typ-
ing licenses a transformation (optimization) of s into s∗. We can
think of the simpler judgements s : d −→ d′ as abbreviations for
s : d −→ d′ ↪→ s (the transformation is identity).

THEOREM 3. If s : d −→ d′ ↪→ s∗ and σ ∼d σ∗, then (i) σ�s�σ′

implies the existence of σ′∗ such that σ′ ∼d′ σ′∗ and σ∗ �s� σ′∗,
and (ii) σ∗�s∗�σ′∗ implies the existence of σ′ such that σ′ ∼d′ σ′∗
and σ �s� σ′.

Moreover, we have neither σ�s�p nor σ∗�s∗�p.

The theorem is proved by structural induction on the type
derivation and the only part specific to particular analyses is the
base case of primitive constructs, which must be always verified
specifically.

One application of relational soundness of an analysis or opti-
mization is mechanical transformability of program proofs. This is
especially useful in the case of program optimizations, as it facili-
tates mechanical “optimization” of a proof of a given program into
one for a different program, namely the optimized form. But it is
perfectly meaningful also in the case of analyses detached from any
optimization, in particular, our example analysis.

A Hoare logic for a structured language where abrupt termina-
tions are possible (because of type errors, for example) can be error-
ignoring or error-free. In the error-free case, the triple {P} s {Q}
is intended to be derivable if and only if statement s, when started
in a state satisfying P , can terminate normally only in a state satis-
fying Q and cannot terminate abruptly. In the error-ignoring case,
no guarantees are given about impossibility of abrupt terminations.
Let P |d stand for P ∧

V
x∈Var x ∈ d(x), where x ∈ > =df >

and x ∈ ⊥ =df ⊥. Then we get a proof transformation result:
If s : d −→ d′ and {P} s {Q} in the error-ignoring logic, then
{P |d} s {Q|d′} in the error-free logic. Note that the result is non-
trivial: while the precondition is strengthened, the postcondition is
strengthened too, and, in addition, the error-freedom guarantee is
obtained.

In the case of a general analysis, one defines P |d to abbreviate
∃w. w ∼d state ∧ P [w/state]. The general theorem is:

THEOREM 4. If s : d −→ d′ ↪→ s∗ and {P} s {Q} in the error-
ignoring logic, then {P |d} s∗ {Q|d′} in the error-free logic.

Figure 5. Example program

The theorem follows from semantic soundness of the analysis
type system by the soundness and completeness of the logics. But
the actual program proof transformation is obtained with a direct
proof by induction on the type derivation.

5. Analyses for unstructured languages: stack
usage optimizations

We now proceed to a different language without phrase structure—
a stack-based language with jumps. We will show that the tech-
niques introduced previously for structured languages apply also to
flat languages where control-flow is built with jumps (essentially
flowcharts). A program in such a language is essentially one big
loop: instructions are fetched and executed (moving from a label to
a label) until a label outside the program’s support is reached and
the execution is a big case distinction over the fetched instruction.
It is therefore natural that a type system for an analysis is centered
around big invariants which specify a condition for any label.

Before proceeding to a detailed explanation on a concrete ex-
ample, let us define a simple stack-based language which we call
PUSH. The building blocks of the syntax of the language are labels
` ∈ Label =df N (natural numbers) and instructions instr ∈
Instr. We assume having a countable set of program variables
x ∈ Var. The instructions of the language are defined by the gram-
mar

instr ::= store x | load x | push const | binop op

| pop | dup | goto ` | gotoF `

where the constants const and binary operators op are drawn from
some given signature. They are untyped, the idea being that they
operate on a single set W of values (words): we do not want a
possibility of errors because of wrong operand types. But a piece
of code can nevertheless be unsafe as the stack can underflow (or
perhaps also overflow, if there is a bound on the stack height).

A piece of code c ∈ Code is a partial finitely supported
function from labels to instructions.

The example we look at is load-pop pairs elimination. Unless
the optimization is restricted to load-pop pairs within basic blocks
only, the underlying analysis must be bidirectional. In this general
form, it was described in [18]. We repeat a large part of the descrip-
tion here for the sake of self-containedness.

Load-pop pairs elimination tries to find pop instructions match-
ing up with load/push instructions and eliminate them. It makes
explicit a subtlety that is present in all transformations of stack-
based code that manipulate pairs of stack-height-changing instruc-
tions across basic block boundaries. This is illustrated in Figure 5,

where the ls nodes denote level sequences of instructions.3 Look-
ing at the example, it might seem that the load x instruction can be
eliminated together with pop. Closer examination reveals that this
is not the case: since load y is used by store z, the pop instruction
cannot be removed, because then, after taking branch 2, the stack
would not be balanced. This in turn means that load x cannot be re-
moved. As can be seen from this example, a unidirectional analysis
is not enough to come to such conclusion: information that a stack
position is definitely needed flows backward from store z to load y
along branch 3, but then the same information flows forward along
path 2, and again backward along path 1. This makes the analysis
inherently bidirectional, a trait common in many stack-based pro-
gram analyses. Also notice that we are not really dealing with pairs,
but webs of instructions in general.

In the type system, a code type Γ ∈ CodeType is an
assignment of a state type to every label: CodeType =df

Label → StateType. We write Γ` for Γ(`). In the case
of our analysis, state types are stack types plus an “impossi-
ble” type, StateType =df StackType⊥ and stack types
es ∈ StackType are defined by the grammar

e ::= mnd | opt

es ::= [] | e :: es | ∗

where e is a stack position type “mandatory” or “optional”.
The subtyping and typing rules are given in Figure 6. A typing

judgement Γ ` c ↪→ c∗ expresses that Γ is a global invariant
for c, warranting transformation (normally optimization) of c into
c∗. For any label, the corresponding property holds whenever the
control reaches that label, provided that the code is started so that
the property corresponding to the initial label is met.

The typing rules state that, if at some label a stack position
is marked “mandatory”, then at all other labels of its lifetime,
this particular position is also considered “mandatory”. Thus the
typing rules explain which optimizations are acceptable. The rule
for store instructions states that the instruction always requires
a “mandatory” element on the stack, thus its predecessors must
definitely leave a value on top of the stack. Instructions that put
elements on the stack “do not care”: if an element is required, they
can push a value (a mnd element on the stack in the posttype),
otherwise the instruction could be omitted (an opt element on
the stack in the posttype). The same holds for pop: if an element
is definitely left on the stack, a pop instruction is not removed,
otherwise it can be removed.

A general bidirectional analysis for PUSH would get its set of
state types and the subtyping relation from a general complete
lattice D; a code type then being a map Γ ∈ Label → D. The
general type system is given in Figure 7, parameterized by joins-
closed pre/post-relations for instructions. It is easy to verify that
load-pop pairs analysis is an instance, and that, in particular, the
pre/post-relations are joins-closed.

To obtain an algorithm for principal type inference, the rela-
tions can be turned into transfer functions following the general
recipe. The monotone transfer functions are given in Figure 8. The
schematic algorithm, assuming monotone transfer functions for in-
structions, is in Figure 9. The greatest fixed-points can again be
computed by iteration, if, e.g., the domain has the finite descend-
ing chains property (in which case the iteration converges in a fi-
nite number of steps) or the transfer functions are downward ω-
continuous (in which case the iteration converges at ω). Our cho-
sen domain does not have the finite descending chains property (in-

3 A sequence of instructions is a level sequence, if the net change of the
stack height by these instructions is 0 and the instructions do not consume
any values that were already present in the stack before executing these
instructions.

mnd ≤ opt e ≤ e ⊥ ≤ es [] ≤ []

e ≤ e′ es ≤ es′

e :: es ≤ e′ :: es′ es ≤ ∗
∀` ∈ Label.Γ` ≤ Γ′`

Γ ≤ Γ′

Γ` = mnd :: Γ`+1

Γ ` (`, store x) ↪→ (`, store x)
store

mnd :: Γ` = Γ`+1

Γ ` (`, load x) ↪→ (`, load x)
load1

opt :: Γ` = Γ`+1

Γ ` (`, load x) ↪→ (`, nop)
load2

mnd :: Γ` = Γ`+1

Γ ` (`, push const) ↪→ (`, push const)
push1

opt :: Γ` = Γ`+1

Γ ` (`, push const) ↪→ (`, nop)
push2

Γ` = mnd :: mnd :: es mnd :: es = Γ`+1

Γ ` (`, binop op) ↪→ (`, binop op)
binop1

Γ` = opt :: opt :: es opt :: es = Γ`+1

Γ ` (`, binop op) ↪→ (`, nop)
binop2

Γ` = mnd :: Γ`+1

Γ ` (`, pop) ↪→ (`, pop)
pop1

Γ` = opt :: Γ`+1

Γ ` (`, pop) ↪→ (`, nop)
pop2

Γ` = mnd :: es mnd :: mnd :: es = Γ`+1

Γ ` (`, dup) ↪→ (`, dup)
dup1

Γ` = e1 :: es opt :: e1 :: es = Γ`+1

Γ ` (`, dup) ↪→ (`, nop)
dup2

Γ` = Γm

Γ ` (`, goto m) ↪→ (`, goto m)
goto

Γ` = mnd :: es es = Γm es = Γ`+1

Γ ` (`, gotoF m) ↪→ (`, gotoF m)
gotoF

Γ` = ⊥ ⊥ = Γm ⊥ = Γ`+1

Γ ` (`, gotoF m) ↪→ (`, gotoF m)
gotoF

Γ` = ⊥ ⊥ = Γ`+1

Γ ` (`, instr) ↪→ (`, instr)
nonjump

∀` ∈ dom(c). Γ ` (`, c`) ↪→ (`, c∗`)

Γ ` c ↪→ c∗
code

Figure 6. Type system for load-pop pairs elimination

goto : Γ` =⇒ Γm

Γ ` (`, goto m)
goto

gotoF : Γ` =⇒t Γ`+1 gotoF : Γ` =⇒f Γm

Γ ` (`, gotoF m)
gotoF

instr : Γ` =⇒ Γ`+1

Γ ` (`, instr)
nonjump

∀` ∈ dom(c). Γ ` (`, c`)

Γ ` c
code

Figure 7. Schematic type system for bidirectional analyses for PUSH

finite descending chains can be built from ∗), however the trans-
fer functions are downward ω-continuous. Moreover, the algorithm
still converges in a finite number of steps as soon as the bounding
type for at least one label in each connected component of the code
is a stack type of a specific height or ⊥. (Also, it is possible to give
the domain a finite height by bounding the stack height.)

That the algorithm really computes the principal type is ex-
pressed by the following theorem:

THEOREM 5. wt(c, Γ0) is the greatest Γ such that Γ ≤ Γ0 and
Γ0 ` c.

The types can be interpreted to mean similarity relations on
states of the standard semantics of the language. A state is a triple
(`, zs, σ) ∈ Label × Stack × Store of a label, stack and store
where a stack is a list over words and a store is an assignment of
words to variables: Stack =df W∗, Store =df Var → W. The
similarity relation is defined by the rules

[] ∼[] []
zs ∼es zs∗

z :: zs ∼mnd::es z :: zs∗
zs ∼es zs∗

z :: zs ∼opt::es zs∗

zs ∼∗ []

zs ∼es zs∗

(`, zs, σ) ∼es (`, zs∗, σ)

The rules express that two states are related in a type, if they agree
everywhere except for the optional stack positions in the first state,
which must be omitted in the second. The ∗ type stands for stacks
of unspecified length with all positions optional, so any stack is
related to the empty stack in type ∗.

Soundness states that running the original code and its op-
timized form from a related pair of prestates takes them to a
related pair of poststates (including equi-termination). Letting
(`, zs, σ) �c� (`′, zs ′, σ′) to denote that code c started in state
(`, zs, σ) terminates in state (`′, zs ′, σ′) and (`, zs, σ)�c�p to de-
note that it terminates abruptly (because of stack underflow) (we
refrain from giving the semantic evaluation rules, but they should
be obvious), we can state:

THEOREM 6. If Γ ` c ↪→ c∗ and (`, zs, σ) ∼Γ` (`∗, zs∗, σ∗),
then
(i) (`, zs, σ) �c� (`′, zs ′, σ′) implies the existence of (`′∗, zs

′
∗, σ
′
∗)

such that (`′, zs ′, σ′) ∼Γ`′ (`′∗, zs
′
∗, σ
′
∗) and (`∗, zs∗, σ∗) �c∗�

(`′∗, zs
′
∗, σ
′
∗),

(ii) (`∗, zs∗, σ∗) �c∗� (`′∗, zs
′
∗, σ
′
∗) implies the existence of (`′, zs ′, σ′)

such that (`′, zs ′, σ′) ∼Γ`′ (`′∗, zs
′
∗, σ
′
∗) and (`, zs, σ) �c� (`′, zs ′, σ′).

Moreover, we have neither (`, zs, σ)�c�p nor (`∗, zs∗, σ∗)�c∗�p.

Again the soundness of the analysis has a formal counterpart
that can be expressed in terms of a programming logic. As men-
tioned earlier, this has a practical application in proof transforma-
tion, where a proof can be transformed alongside a program, guided
by the same typing information.

Assume we have a program logic in the style of Bannwart and
Müller [1] for reasoning about bytecode programs, with judge-
ments P ` (`, instr) for instructions and P ` c for programs.
Here, P is a map from labels to assertions, where assertions can
contain the extralogical constant stk to refer to the current state of
the stack. The judgement P ` c is valid if (zs, σ) |= P` implies

[store x]←es = mnd :: es [store x]→(e :: es) = es
[store x]→∗ = ∗

[load x]←(x :: es) = es [load x]→es = opt :: es
[load x]←∗ = ∗
[push const]←(e :: es) = es [push const]→es = opt :: es
[push const]←∗ = ∗
[binop op]←(e :: es) = e :: e :: es [binop op]→(e :: e′ :: es) = e∧e′ :: es
[binop op]←∗ = opt :: opt :: ∗ [binop op]→(e′ :: ∗) = e′ :: ∗

[binop op]→∗ = opt :: ∗
[pop]←es = opt :: es [pop]→(e :: es) = es

[pop]→∗ = ∗
[dup]←(e :: e′ :: es) = e′ :: es [dup]→(e :: es) = opt :: e :: ∗
[dup]←(e′ : ∗) = e′ :: ∗ [dup]→∗ = opt :: opt :: ∗
[dup]←∗ = opt :: ∗
[gotoF]←t es = [gotoF]←f es = mnd :: es [gotoF]→t (e :: es) = [gotoF]→f (e :: es) = es

[gotoF]→t ∗ = [gotoF]→f ∗ = ∗
[goto]←es = es [goto]→es = es

[instr]←es = ⊥ otherwise [instr]→es = ⊥ otherwise

Figure 8. Transfer functions for load-pop pairs analysis

wt(c, Γ0) =df largest Γ such that Γ` ≤ Γ0`

∧
V
{[instr]←Γ`+1 | c` = instr}

∧
V
{[goto]←Γm | c` = goto m}

∧
V
{[gotoF]←t Γ`+1∧[gotoF]←f Γm | c` = gotoF m}

∧
V
{[instr]→Γ`−1 | c`−1 = instr}

∧
V
{[goto]→Γm | cm = goto `}

∧
V
{[gotoF]→t Γ`−1 | c`−1 = gotoF m}

∧
V
{[gotoF]→f Γm | cm = gotoF `}

Figure 9. Schematic principal type inference for PUSH

that (i) (`, zs, σ) �c� (`′, zs ′, σ′) implies (zs ′, σ′) |= P`′ and (ii)
in the case of an error-free logic, also that (`, zs, σ)�c�p cannot be.

It is then easy to show that if Γ ` c ↪→ c∗ then any proof for
P ` c can be transformed into a corresponding proof for P |Γ ` c∗,
where (P |Γ)` =df ∃w. w ∼Γ` stk ∧ P`[w/stk].

Informally, each (P |Γ)` is obtained from P` by quantifying out
stack positions which are opt, i.e., stack values which are absent
in the optimized program. Of course this changes the height of the
stack, so any stack position below the removed one is shifted up.

For example, if we have an assertion P |` =df ∃v. st = v :: 6 ::
[]∧ 2 ∗ v = x and type Γ` = opt :: mnd :: [], the assertion (P |Γ)`

becomes ∃v.st = 6 :: [] ∧ 2 ∗ v = x.
We obtain the following proof transformation theorem.

THEOREM 7. If Γ ` c ↪→ c∗ and P ` c in the error-ignoring
logic, then P |Γ ` c∗ in the error-free logic.

6. Related Work
We proceeded from our own work on type systems for analyses and
optimizations [12, 16, 9, 18, 17], with applications, in particular, to
program proof transformation, but similar techniques appear in a
number of works where semantics is a concern. Most relevantly
for us here, the distinction between declarative and algorithmic is
prevalent in the flow logic work of Nielson and Nielson [14]. In
this terminology, our exposition of the type inference analysis is in
the “compositional, succinct format” (‘compositional’ referring to
working on the phrase structure, ‘succinct’ to not annotating inner
points of a phrase) while the treatment of the load-pop pairs analy-
sis is in the “abstract” format (‘abstract’ referring to working on a

flow chart representation). Semantic soundness based on similarity
relations has a central role for Benton [4]. Systematic optimization
soundness proofs are the central concern in the work of Lerner et
al. on the Rhodium DSL for describing program analyses and op-
timizations [13]. Transformation of program proofs has also been
considered by Barthe et al. [2, 3], but their approach cannot handle
general similarity relations. In our terms, it is confined to similarity
relations that are subrelations of equality; in proof transformation,
assertions are accordingly only strengthened.

Static type inference for a “dynamically” typed imperative lan-
guage is a classical problem. In particular, it has been understood
as a bidirectional data-flow problem at least since Tenenbaum [19],
Jones and Muchnick [10] and Kaplan and Ullman [11]. There ex-
ist very fine bidirectional analyses, e.g., a relatively recent one by
Khedker et al. [8], but the domain of the inferrable types and its
interpretation varies a lot. Also, far from always is it clear what
the intended notion of validity of an analysis is intended to be. We
consider a rather basic analysis with a very simple domain, but it is
nevertheless instructive and (more importantly) sound wrt. a very
useful semantics: a variable acquiring a type at some point means
that all reaching definitions and all future uses before future re-
definitions agree with this type, guaranteeing safety and enabling
tagless execution.

Inferring stack types is an integral element in Java bytecode
verification. A load-pop pairs removal analysis has been proposed
and proved correct by Van Drunen et al. [20], but only for straight-
line programs (no jumps). We have treated the general case as a
bidirectional analysis and optimization [18], covering also proof
transformation [15].

7. Conclusions and Future Work
Our goal with this paper was to produce an account of bidirectional
data-flow analyses that enables a clear distinction between accept-
able analyses and the strongest analysis of a program. We chose to
try to base such an account on type-systematic descriptions where
this distinction is inherent. We deem that this attempt was success-
ful: type systems provide indeed a useful way to look at bidirec-
tional analyses. Here is why.

Bidirectional analyses have been defined and assessed mostly
algorithmically in ways concentrating on the strongest analysis al-
gorithm of a program and tending to leave it vague what general
valid analyses would be. This breaks the natural modular organiza-
tion of the metatheory where the soundness statement of an analysis
pertains to any valid analysis of a program and the soundness of the
strongest analysis is only one (trivial) consequence.

In contrast, in the type-systematic account, the notion of a gen-
eral valid analysis is central and primary. The strongest analy-
sis becomes a derived notion and a nice correspondence between
pre/post-relations (defining general analyses) and transfer functions
(instrumental in algorithms for computing the strongest analyses)
arises. From the point of view of trusting analyses computed by an-
other party (useful in proof-carrying code applications), it is clearly
beneficial to be able to determine whether a purported analysis re-
sult is valid without having to know how it was computed or to
recompute it.

The future work will address a number of issues that we re-
frained from treating here. We did not show that, for high-level
programs, the structured (declarative resp. algorithmic) definitions
of a valid analysis and the strongest analysis agree with the cor-
responding flat definitions on the control-flow graph. We did not
show that analysis domain elements can normally be understood
as properties of computation traces/trees (stretching, in the case of
bidirectional analyses, to both the past and the future), leading to
results of soundness and completeness wrt. accordingly abstracted
semantics (completeness holds only for distributive transfer func-
tions). We did comment on the relationship of this semantics to
similarity relations. Our comments on mechanical program trans-
formation were only tangential.

In terms of the reach of approach, we made some deliberate
simplifications in this paper. In particular, we chose to hide edge
flows into node flows (making it necessary to see skip statements
and goto instructions as nodes rather than “nothing” in terms of
control flow). For complex bidirectional analyses, this is not an
option. An alternative and more scalable approach is to support
edge flows directly by an explicit consequence (subsumption) rule
in the case of a structured language and by separate node exit and
entry points in the case of an unstructured language.

Acknowledgments
We are thankful for our three anonymous PEPM 2009 referees for
their useful remarks.

This work was supported by the Portuguese Foundation for Sci-
ence and Technology under grant No. FCT/PTDC/EIA/65862/2006
RESCUE, the Estonian Science Foundation under grant No. 6940
and the EU FP6 IST integrated project No. 15905 MOBIUS.

References
[1] F. Bannwart, P. Müller. A program logic for bytecode. In Proc.

of 1st Wksh. on Bytecode Semantics, Verification, Analysis and
Transformation, Bytecode 2005, v. 141(1) of Electron. Notes in Theor.
Comput. Sci., pp. 255–273, Elsevier, 2005

[2] G. Barthe, B. Grégoire, C. Kunz, T. Rezk. Certificate translation
for optimizing compilers. In K. Yi, ed., Proc. of 13th Int. Symp. on

Static Analysis, SAS 2006, v. 4134 of Lect. Notes in Comput. Sci.,
pp. 301–317, Springer, 2006.

[3] G. Barthe, C. Kunz. Certificate translation in abstract interpretation. In
S. Drossopoulou, ed., Proc. of 17th Europ. Symp. on Programming,
ESOP 2008, v. 4960 of Lect. Notes in Comput. Sci., pp. 368–382,
Springer, 2008.

[4] N. Benton. Simple relational correctness proofs for static analyses
and program transformations. In Proc. of 31st ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, POPL
2004, pp. 14–25, ACM Press, 2004.

[5] U. P. Khedker. Data flow analysis. In Y. N. Srikant, P. Shankar, eds.,
The Compiler Design Handbook: Optimization and Machine Code
Generation, pp. 1–59. CRC Press, 2002.

[6] U. P. Khedker, D. M. Dhamdhere. A generalized theory of bit
vector data flow analysis. ACM Trans. on Program. Lang. and Syst.,
16(5):1472–1511, 1994.

[7] U. P. Khedker, D. M. Dhamdhere. Bidirectional data flow analysis:
myths and reality. ACM SIGPLAN Notices, 34(6):47–57, 1999.

[8] U. P. Khedker, D. M. Dhamdhere, A. Mycroft. Bidirectional data
flow analysis for type inferencing. Comput. Lang., Syst. and Struct.,
29(1–2):15–44, 2003.

[9] M. J. Frade, A. Saabas, T. Uustalu. Foundational certification of data-
flow analyses. In Proc. of 1st IEEE and IFIP Int. Symp on Theor.
Aspects of Software Engineering, TASE 2007, pp. 107–116, IEEE CS
Press, 2007.

[10] N. D. Jones, S. S. Muchnick. Binding time optimization in pro-
gramming languages: some thoughts toward the design of an ideal
language. In Proc. of 3rd ACM Symp. on Principles of Programming
Languages, POPL 1976, pp. 77–94, ACM Press, 1976.

[11] M. A. Kaplan, J. D. Ullman. A scheme for the automatic inference of
variable types. J. of ACM, 27(1):128–145, 1980.

[12] P. Laud, T. Uustalu, V. Vene. Type systems equivalent to data-flow
analyses for imperative languages. Theor. Comput. Sci., 364(3):292–
310, 2006.

[13] S. Lerner, T. Millstein, E. Rice, C. Chambers. Automated soundness
proofs for dataflow analyses and transformations via local rules.
In Proc. of 32nd ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, POPL 2005, pp. 364–377, ACM Press,
2005.

[14] H. R. Nielson, F. Nielson. Flow logic: a multi-paradigmatic approach
to static analysis. In T. Æ. Mogensen, D. A. Schmidt, I. H.
Sudborough, eds., The Essence of Computation, Complexity, Analysis,
Transformation, v. 2566 of Lect. Notes in Comput. Sci., pp. 223–244,
Springer-Verlag, 2002.

[15] A. Saabas. Logics for low-level code and proof-preserving program
transformations (PhD thesis), Thesis on Informatics and System
Engineering C143. Tallinn Univ. of Techn., 2008.

[16] A. Saabas, T. Uustalu. Program and proof optimizations with type
systems. J. of Logic and Algebraic Program., 77(1–2):131–154, 2008.

[17] A. Saabas, T. Uustalu. Proof optimization for partial redundancy
elimination. In Proc. of 2008 ACM SIGPLAN Wksh. on Partial
Evaluation and Semantics-Based Program Manipulation, PEPM
2008, pp. 91–101. ACM Press, 2008

[18] A. Saabas, T. Uustalu. Type systems for optimizing stack-based code.
In M. Huisman, F. Spoto, eds., Proc. of 2nd Int. Wksh. on Bytecode
Semantics, Verification, Analysis and Transformation, Bytecode 2007,
v. 190(1) of Electron. Notes in Theor. Comput. Sci., pp. 103–119,
Elsevier, 2007. (The treatment of ∗ in the accounts of dead stores and
load-pop pairs elimination is garbled in the published version.)

[19] A. Tenenbaum. Type determination for very high level languages.
Report NSO-3, Courant Inst. of Math. Sci., New York Univ., New
York, 1974.

[20] T. Van Drunen, A. L. Hosking, J. Palsberg. Reducing loads and stores
in stack architectures, manuscript, 2000.

