
A Generalized Approach to
Verification Condition Generation

Cláudio Belo Lourenço∗, Maria João Frade∗, Shin Nakajima†, Jorge Sousa Pinto∗
∗ HASLab/INESC TEC & Universidade do Minho, Portugal

† National Institute of Informatics, Japan

Abstract—In a world where many human lives depend on the
correct behavior of software systems, program verification as-
sumes a crucial role. Many verification tools rely on an algorithm
that generates verification conditions (VCs) from code annotated
with properties to be checked. In this paper, we revisit two
major methods that are widely used to produce VCs: predicate
transformers (used mostly by deductive verification tools) and
the conditional normal form transformation (used in bounded
model checking of software). We identify three different aspects
in which the methods differ (logical encoding of control flow,
use of contexts, and semantics of asserts), and show that, since
they are orthogonal, they can be freely combined. This results in
six new hybrid verification condition generators (VCGens), which
together with the fundamental methods constitute what we call
the VCGen cube. We consider two optimizations implemented in
major program verification tools and show that each of them
can in fact be applied to an entire face of the cube, resulting
in optimized versions of the six hybrid VCGens. Finally, we
compare all VCGens empirically using a number of benchmarks.
Although the results do not indicate absolute superiority of any
given method, they do allow us to identify interesting patterns.

I. INTRODUCTION

In spite of recent advances in the area of program verifica-
tion, tools such as those belonging to the two related families
of deductive verification [3], [13] and bounded model check-
ing [7], [9], are still not mature enough for software engineers
to use daily in their software development activities: they are
either not precise enough or lack efficiency. Even though the
bases of these tools diverge, they share a common feature: they
internally employ a verification condition generator (VCGen).
This is a component that takes, as input, a program with
a specification, and outputs a number of proof obligations,
called verification conditions (VCs). The VCs are then sent to
a backend proof tool for validity checking.

The VCGens may, however, differ on the format of the VCs
they generate and optimizations they employ. The VCGen
and the optimization algorithms are usually coupled tightly,
and both are hidden in the internals of tools. Identifying
the baseline features that influence efficacy and efficiency of
the verification techniques is not clear, and thus a thorough
study of these aspects is desirable to understand the intricacies
of each technique, to contribute towards improving current
tools, and to allow for new techniques to be investigated
systematically.

Some published works have already contributed towards a
uniform formulation for verification condition generation. A
first step taken by Gordon et al. [16] cover some ground on

proving the correctness of Hoare triples based on forward
computation of postconditions. Cruz et al. [11] present in a
systematic way VCGen algorithms for code in static single-
assignment (SSA) form. Lourenço et al. [6] cover some
empirical ground and shows that the selection of a VCGen is
not irrelevant in terms of efficiency, but also not easy to differ-
entiate. Although these works demonstrate the importance of
such an approach, they fall short of both proposing a uniform
framework at the theoretical level and presenting a suitable
empirical evaluation of different VCGens. Moreover, further
study is needed to clarify the interplay between baseline
methods and optimization techniques.

In this paper, we present a systematic study and cate-
gorization of VCGens and compare them empirically. The
contributions of the paper are as follows: taking as point of
departure the logical encoding of programs used in two well-
known VCGens, (i) we identify three dimensions in which
they differ and, combining these dimensions, (ii) we introduce
6 new hybrid VCGens and (iii) organize them graphically in
what we call the VCGen cube; (iv) we propose a set of novel
optimized hybrid VCGens, by considering how two flagship
tools optimize the two basic encodings of the control-flow
of programs, and showing that these optimizations can be
applied to entire faces of the cube; finally, (v) we provide a
comparative evaluation of all the different VCGens considered.

The paper is structured as follows: the next section discusses
background material and related work; Section III reviews the
two fundamental methods on which our study is based, and
identifies the characterizing dimensions in which they differ.
Section IV then shows how the dimensions may be combined
to produce six new hybrid methods. The resulting VCGens are
organized visually as a cube, and defined as a pair of generic
VCGens. The cube is extended in Section V by incorporating
optimization methods that are used in flagship tools, and
the resulting VCGens are then compared. In Section VI
we integrate all the previous definitions into a sigle unified
VCGen, and discuss how the existing verification tools fit
in our cube. Section VII describes how the VCGens have
been implemented and evaluated empirically, and discusses the
results of this evaluation. Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

We recall how two families of verification tools represent
programs and VCs. One aspect in which deductive verifiers
and bounded model checkers of software (BMCs) differ, is the

way in which they reduce iterating programs with subroutines
(procedures, functions, or methods), into simple branching
programs with no iteration or subroutines. In the former, the
treatment of iteration relies on the notion of loop invariant,
and subroutine are handled by means of the assume/guaran-
tee principle using the notion of a contract. Invariants and
contracts are typically provided by the user as annotations
in the code, and allow for the programs to be linearized:
loops and function calls can be replaced by sequences of
assume and assert statements (see for instance [14]) such
that the resulting branching program, while not operationally
equivalent to the original, produces an adequate set of VCs (the
transformation is sound). On the other hand, BMCs eliminate
user intervention, relying instead on loop expansion and code
inlining up to a given bound to handle iteration and (recursive)
calls to subroutine – for this reason bounded model checkers
are sometimes described as bug finders rather than program
verification tools. Note that the two families can be seen as
complementing each other; for instance, loop expansion may
be used in conjunction with a deductive verification tool, to
provide evidence, up to some bound, that a given invariant is
valid for the loop, or otherwise to find a counter-example.

The principles underlying VC generation in deductive ver-
ification tools are based on program logics [19], [25] and on
predicate transformers [12]. A good discussion of the choices
regarding the encoding of data is found in [9]; dealing with
complex data-structures requires a specific mechanism, such as
a memory model or the use of a dedicated logic [25]. The idea
of predicate transformers is that instead of being interpreted as
state transformers (as in other semantic approaches), programs
are interpreted as transformers of logical formulas charac-
terizing states. For instance, the strongest postcondition (SP)
interpretation of a program maps a formula φ (a precondition)
into another formula θ that characterizes the final states of the
program after (non-blocking and non-error producing) execu-
tions, starting from initial states satisfying φ. The definition
of predicate transformers may in general produce VCs of
exponential size in the length of the program, since it is based
on a path enumeration that duplicates formulas whenever a
conditional is reached, and the number of execution paths is
exponential in the worst-case. The problem can be avoided if
the programs are in a (dynamic) single-assignment (SA) form,
in which, in each execution path of the program, each variable
is assigned at most once. Flanagan and Saxe [14] show that
predicate transformers can be calculated from passive form
(similar to SA) in a way that generates quadratic-size VCs
in the worst-case. Predicate transformers can also be used to
generate VCs for unstructured programs [4], [17].

Clarke et al. [8] have proposed an alternative VC generation
method with the CBMC bounded model checker. It relies on
the conversion of code to an intermediate SA form that is
then transformed to conditional normal form (CondNF), in
which programs are sequences of single-branch conditionals
containing atomic commands. A VC of worst-case quadratic
size can be obtained from the CondNF.

In addition to the related works mentioned in the introduc-
tion [16], [11], [6], Godefroid et al. [15] report on the tech-
niques used by some tools for creating logical encodings of
programs. The authors briefly mention the complexity of each
method but no comparisons between the logical encodings are
offered, neither empirically nor theoretically. In the present
paper, on the other hand, we present and compare multiple
algorithms to generate VCs in a uniform way, abstracting away
from specific details of the tools, and then show how the tools
fit in our formulation.

Verification condition generation based on Hoare logic has
also been formalized in the past using Higher-Order Logic,
see for instance [20], [26], but not in the SA setting.

Finally, it should be mentioned that tools based on other
families of software analysis techniques, such as model check-
ers based on existential abstraction and symbolic execution
tools, often also integrate a VCGen as an auxiliary component.
For instance, in the TRACER tool [21], a VCGen is used to
determine when a given execution path subsumes another (the
problem of exponential explosion is solved by resorting to an
interpolation technique). Therefore we believe that our work
in this paper may also, indirectly, be of use to developers of
verification tools outside the deductive and bounded model
checking families.

III. FUNDAMENTAL VCGENS

We will consider branching programs over a set of variables
x ∈ Var, a language of program expressions e ∈ Exp, and
Boolean expressions b ∈ Expbool:

Comm 3 C ::= skip | x := e | C ; C | if b then C else C

| assume θ | assert θ

In addition, we require program assertions θ ∈ Assert,
obtained as a first-order expansion of Expbool, to express
properties about states. The language includes the assume and
assert commands, as normally found in the guarded commands
language initially introduced by Dijkstra [12]. Semantically,
the command assume θ is seen as blocking whenever exe-
cuted in a state in which θ is false, and assert θ is seen as
producing an error when θ is false. Note that blocked execu-
tions are dispensed from obligations that would be imposed
by subsequent assert statements. A program is correct if no
error may occur in non blocking executions. For example, the
fragment assumex ≥ 0 ; x := x+10 ; assertx > 10 admits
blocking executions (for initial values of x < 0), normal
executions (for x > 0) and an erroneous execution (for x = 0),
thus it is not correct. The program can be made correct by
replacing the first assume condition by x > 0.

A naive approach for generating VCs may be based on
path enumeration: for each asserted property, every incoming
execution path will generate a different VC, thus the number of
VCs is potentially exponential in the size of the program [6].
Straightforward VC generation by symbolic execution or pred-
icate transformers suffers from this problem, but it should be
noted that path enumeration has advantages from the point of

if x0>0 then y1 := 1 else y1 := 0;
assert y1 = 0 ∨ y1 = 1 ;
if x0>0 then y2 := 1 else y2 := 0;
assert y2 = y1 ;
if x0>0 then y3 := 1 else y3 := 0;
assert y3 = y1 ;

1. ((x0 > 0∧y1 = 1)∨ (¬x0 > 0∧y1 = 0)) → (y1 = 0∨y1 = 1)
2. ((((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 =
1)) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0))) → y2 = y1
3. ((((((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0))∧ (y1 = 0∨ y1 =
1))∧((x0 > 0∧y2 = 1)∨(¬x0 > 0∧y2 = 0)))∧y2 = y1)∧((x0 >
0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0))) → y3 = y1

Fig. 1: Example of an SA Program and its SP VCs

view of traceability: an invalid VC immediately identifies the
executions that may violate a property. But for big programs,
like those resulting from loop expansion in bounded model
checking, path enumeration is impractical and thus other
methods must be considered.

VCs Based on Predicate Transformers: Let us illustrate
this form of VC generation using the strongest postcondition
(SP) predicate transformer. A set of VCs can be calculated by
following recursively the structure of programs, carrying as
accumulator a propagated precondition φ as follows:

VCSP(φ, skip) = ∅
VCSP(φ, x := e) = ∅

VCSP(φ,assume θ) = ∅
VCSP(φ,C1 ; C2) = VCSP(φ,C1) ∪

VCSP(sp (φ,C1), C2)
VCSP(φ, if b then C1 else C2) = VCSP(φ ∧ b, C1) ∪

VCSP(φ ∧ ¬b, C2)
VCSP(φ,assert θ) = {φ→ θ}

Each assert statement originates a new VC, and the sp function
is used in the sequence case to propagate φ through the
first subprogram – sp returns the SP of the program C w.r.t.
the condition φ as defined in Gordon et al. [16]. Following
Flanagan and Saxe [14], if programs are in SA form, predicate
transformers can be calculated by combining the propagated
condition (without duplication) with a formula that depends
only on the program. For instance, sp (φ,C) ≡ φ ∧ F(C),
where:

F(skip) = >
F(x := e) = x = e

F(assume θ) = θ
F(C1 ; C2) = F(C1) ∧ F(C2)

F(if b then C1 else C2) = (b ∧ F(C1)) ∨ (¬b ∧ F(C2))
F(assert θ) = θ

This is in fact a compact logical encoding of all the non-
blocking, non-error producing executions of C. We will refer
to this method as the ‘predicate transformers VCGen’, since
the same principle can be applied to calculate verification con-
ditions based on the weakest (liberal) precondition predicate
transformer.

VCs Based on Conditional Normal Form: Conversion to
CondNF involves a number of transformation that are sound
if the code is in SA form [2]. In particular, it involves the
sequentialization of the two branches of each conditional as

if x0 > 0 then y1 := 1 ;
if ¬x0 > 0 then y1 := 0 ;
if > then assert y1 = 0 ∨ y1 = 1 ;
if x0 > 0 then y2 := 1 ;
if ¬x0 > 0 then y2 := 0 ;
if > then assert y2 = y1 ;
if x0 > 0 then y3 := 1 ;
if ¬x0 > 0 then y3 := 0 ;
if > then assert y3 = y1 ;

1. ((x0 > 0→ y1 = 1) ∧(¬x0 > 0→ y1 = 0) ∧(x0 > 0→ y2 =
1) ∧ (¬x0 > 0→ y2 = 0) ∧ (x0 > 0→ y3 = 1) ∧ (¬x0 > 0→
y3 = 0)) → ((> → y1 = 0 ∨ y1 = 1) ∧ (> → y2 = y1) ∧ (> →
y3 = y1))

Fig. 2: Conversion to CondNF and resulting VC

done by the function below: the accumulator π is a path
condition enabling the execution of the program.

condNF(π, skip) = if π then skip
condNF(π, x := e) = if π then x := e

condNF(π,assume θ) = if π then assume θ
condNF(π,C1 ; C2) = condNF(π,C1) ;

condNF(π,C2)
condNF(π, if b then C1 else C2) = condNF(π ∧ b, C1) ;

condNF(π ∧ ¬b, C2)
condNF(π,assert θ) = if π then assert θ

For a program C, the encoding C of the operational behavior,
and the properties P to be verified can now be extracted using
(C,P) = split(condNF(>, C)), with split defined below (the
treatment of assume is ommitted for now). The verification
condition is written simply as

∧
C →

∧
P .

split(if b then skip) = (∅, ∅)
split(if b then x := e) = ({b→ x = e}, ∅)

split(C1 ; C2) = (C1 ∪ C2,P1 ∪ P2), where
(C1,P1) = split(C1), and
(C2,P2) = split(C2)

split(if b then assert θ) = (∅, {b→ θ})

Example: Fig. 1 shows a simple program consisting of a
sequence of three conditionals, each followed by an assert.
On the bottom it shows the VCs obtained with the predicate
transformers VCGen. This is in fact a worst-case example: the
number of VCs is linear in the program size, and the size of
each VC is linear in the length of the program prefix leading to
it, which results in a set of VCs of quadratic size. Fig. 2 shows
the same program converted to CondNF and the resulting VC.
Both sets C and P have linear size, and so does the resulting
VC, since the encoding is not partially duplicated for each
assert formula. However, the CondNF method also generates
quadratic VCs in the worst case, which occurs for programs
containing a chain of nested conditionals. In this case each
condition will be duplicated through all the internal branches,
generating the quadratic pattern.

VCGen Dimensions: The example motivates the discussion
of three dimensions in which the two methods differ.

• The first is the logical encoding: with predicate trans-
formers, programs are encoded following their branching
structure, with conditionals encoded as disjunctions of the
form (b∧ . . .)∨ (¬b∧ . . .), whereas the CondNF method

encodes programs as conjunctions of implicative formu-
las, with path conditions guarding atomic statements.

• The second dimension is the use of contexts for each
VC. The predicate transformers method produces one
VC for each assert; each VC is an implicative formula
whose antecedent is a partial context that encodes only
the part of the program that is relevant for that assert. The
CondNF method produces a global context that encodes
the behavior of the entire program.

• Finally, the VCGens differ in the semantics of the assert
command. The traditional interpretation of guarded com-
mands implies that an execution stops whenever assert θ
produces an error [12]; in Fig. 1, assert conditions are
introduced in the context to be used in subsequent VCs,
which is consistent with this interpretation. The CondNF
method treats asserts as commands that check the value
of assertions, but do not fail; when an assert is reached, it
is not known whether previous asserts have been passed
successfully or not. In Fig. 2 the global context C does
not contain assert conditions.

Let us now compare the options with respect to relevant
aspects for both the efficacy and efficiency of the verification.
Traceability. With a global context, if a VC is invalid then the

only way to locate the error is to interpret the counter-
example, which will give us a concrete execution that
violates a particular property. This may not be required
with a partial context encoding, since there is a clear
association between invalid VCs and violated properties.

Economy of Contexts. From the strict viewpoint of checking
each assert, partial contexts are preferable to a global
context, which may contain unnecessary information.
Consider a big program with a single assert placed at
the beginning: with partial contexts a small VC will be
generated, but with a global context the encoding of the
entire program will be part of the VC.

Redundancy. When verifying a whole program, the use of
partial contexts has the disadvantage of replicating oper-
ational and axiomatic information in the different VCs,
increasing the overall size.

Lemmas. Including assertions in the context, as in the pred-
icate transformers VCGen, implies that intermediate as-
sertions play the role of lemmas: once they are proved
they can be used to prove subsequent assertions.

In summary, partial contexts seem to be preferable regarding
traceability and the verification of each individual assert,
whereas global contexts reduce the overall redundancy of
generated VCs.

IV. A CUBE OF VCGENS

The three VCGen dimensions identified in the previous
section are orthogonal, and may be freely combined to produce
hybrid VCGens for SA programs (ranging over CommSA).
Let us now consider these combinations.

Some are more obvious than others. It is straightforward to
modify the predicate transformers VCGen to exclude asser-
tions from the context: it suffices to modify the definition of

VCSPG

global context

VCCNFG

global context

VCSPGA

global context
asserts

VCCNFGA

global context
asserts

VCSPP

partial contexts

VCCNFP

partial contexts

VCSPPA

partial contexts
asserts

VCCNFPA

partial contexts
asserts

Fig. 3: A Cube of VCGens: Left/right: SP/CondNF encoding;
Top/bottom: G/P contexts; Front/back: asserts included/not
included in the context.

the program formula so that F(assert θ) = >. The logical
encoding can be changed to CondNF in a straightforward
way, while keeping the partial contexts that are typical of the
predicate transformers VCGen. For instance, the first VC of
Fig. 1 would become ((x0 > 0 → y1 = 1) ∧ (¬x0 > 0 → y1 =

0)) → (> → y1 = 0 ∨ y1 = 1). It seems less trivial to include
assertions in the context in the VCGen based on CondNF,
while keeping a single global context. This can be achieved
by combining the operational context (encoding the behavior
of the entire program) with axiomatic partial contexts encoding
the assertion information that is relevant for each assert. The
VC of Fig. 2 would become ((x0 > 0 → y1 = 1) ∧ (¬x0 > 0 →
y1 = 0) ∧ (x0 > 0 → y2 = 1) ∧ (¬x0 > 0 → y2 = 0) ∧ (x0 > 0 →
y3 = 1) ∧ (¬x0 > 0→ y3 = 0)) → (> → y1 = 0 ∨ y1 = 1) ∧ ((> →
y1 = 0 ∨ y1 = 1) → (> → y2 = y1)) ∧ (((> → y1 = 0 ∨ y1 =

1) ∧ (> → y2 = y1)) → (> → y3 = y1)). Note that the use of
these axiomatic partial contexts reintroduces redundancy (in
the sense discussed in the previous section) in the encoding
of axiomatic information, but not of the operational behavior.
Finally, using predicate transformers to create a VC with a
single context would produce: ((x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 =

0)) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) ∧ ((x0 > 0 ∧ y3 =

1) ∨ (¬x0 > 0 ∧ y3 = 0)) → (y1 = 0 ∨ y1 = 1) ∧ y2 = y1 ∧ y3 = y1.
We propose in Fig. 3 a graphical organization of the

eight resulting VCGens as a cube. The VCGens will be
defined as two generic algorithms, one based on the predicate
transformers logical encoding, and the other based on the
CondNF encoding. Each generic algorithm corresponds either
to the left or right face of the cube, and admits four variants
corresponding to each of its vertices.

The generic predicate transformers VCGen, defined in Fig. 4
(top), comprises the four concrete versions VCSPP, VCSPPA,
VCSPG, and VCSPGA that differ only in the case of the assert
command. In order to standardize the VCGen definition while
allowing for the use of either a partial or global context,

VCSPi : Assert×Assert×CommSA → Assert×Assert× P(Assert)

VCSPi(φ, ρ, skip) = (>, >, ∅)

VCSPi(φ, ρ, x := e) = (x = e, >, ∅)

VCSPi(φ, ρ,assert θ) =

(>, >, {φ ∧ ρ→ θ}) if i = P

(>, θ, {φ ∧ ρ→ θ}) if i = PA

(>, >, {ρ→ θ}) if i = G

(>, θ, {ρ→ θ}) if i = GA

VCSPi(φ, ρ,assume θ) = (>, θ, ∅)

VCSPi(φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, Γ1 ∪ Γ2)

where (ψ1, γ1, Γ1) = VCSPi(φ,C1) and (ψ2, γ2, Γ2) = VCSPi(φ ∧ ψ1, ρ ∧ γ1, C2)

VCSPi(φ, ρ, if b then C1 else C2) = ((b ∧ ψ1) ∨ (¬b ∧ ψ2), (b ∧ γ1) ∨ (¬b ∧ γ2), Γ1 ∪ Γ2)

where (ψ1, γ1, Γ1) = VCSPi(φ ∧ b, ρ ∧ b, C1) and (ψ2, γ2, Γ2) = VCSPi(φ ∧ ¬b, ρ ∧ ¬b, C2)

VCCNFi : Assert×Assert×Assert×CommSA → Assert×Assert× P(Assert)

VCCNFi(π, φ, ρ, skip) = (>, >, ∅)

VCCNFi(π, φ, ρ, x := e) = (π → x = e, >, ∅)

VCCNFi(π, φ, ρ,assert θ) =

(>, >, {φ ∧ ρ→ π → θ}) if i = P

(>, π → θ, {φ ∧ ρ→ π → θ}) if i = PA

(>, >, {ρ→ π → θ}) if i = G

(>, π → θ, {ρ→ π → θ}) if i = GA

VCCNFi(π, φ, ρ,assume θ) = (>, π → θ, ∅)

VCCNFi(π, φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, Γ1 ∪ Γ2)

where (ψ1, γ1, Γ1) = VCCNFi(π, φ, ρ, C1) and (ψ2, γ2, Γ2) = VCCNFi(π, φ ∧ ψ1, ρ ∧ γ1, C2)

VCCNFi(π, φ, ρ, if b then C1 else C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, Γ1 ∪ Γ2)

where (ψ1, γ1, Γ1) = VCCNFi(π ∧ b, φ, ρ, C1) and (ψ2, γ2, Γ2) = VCCNFi(π ∧ ¬b, φ, ρ, C2)

Fig. 4: Generic VCGens, for i ∈ {P,PA,G,GA}, based on predicate transformers (top) and on CondNF (bottom)

incoming executions are encoded by a formula φ capturing
the operational aspects of executions (state changing), and
a formula ρ capturing the axiomatic aspects of executions
(assume and assert statements). In practice this separation is
not mandatory for the partial context variants. The result of
VCSPi(φ, ρ, C) is a tuple (ψ, γ, Γ) where Γ is a set of VCs,
and ψ, γ encode respectively the operational and axiomatic
execution information. The verification conditions of C are
obtained as follows. Let (ψ, γ, Γ) = VCSPi(>,>, C). If
i ∈ {P,PA}, the partial contexts VC are given by Γ. Oth-
erwise, if i ∈ {G,GA}, the global context VC is ψ →

∧
Γ.

We will refer to this set of VCGens as VCSP.
The generic VCGen based on CondNF, defined in Fig. 4

(bottom), differs from the previous one in that the encoding
of both the operational and axiomatic parts of programs is
based on the conditional normal form method. This requires
separating path conditions from the accumulator correspond-
ing to the axiomatic component of executions. Thus in the
call VCCNFi(π, φ, ρ, C) the formula π is the path condition
enabling the execution of C, and φ and ρ encode as before the
operational contents and information relative to assume and
assert statements of incoming executions. Again the choice

of a concrete VCGen depends on the assert clause used. Let
(ψ, γ, Γ) = VCCNFi(>,>,>, C). If i ∈ {P,PA}, the partial
contexts VC are given by Γ. Otherwise, if i ∈ {G,GA}, the
global context VC is ψ →

∧
Γ. We will refer to this set of

VCGens as VCCNF.

V. OPTIMIZATIONS AND COMPARISON OF VCGENS

The foremost deductive verification and bounded model
checking tools are practically usable because of their advanced
optimization techniques. These techniques are usually tied to
specific VCGen algorithms, and thus it is not clear whether
they can be applicable to others. This section clears that
gap by presenting how two important practical optimization
techniques [4], [7] are applicable to appropriate VCGens.
The graphical notion of the VCGen cube helps clarifying the
intricacies between the optimization technique and VCGens.

Guided by the work of Barnett et al. [4] and the VCGen
implemented in Boogie [3], it is possible to modify Flanagan
and Saxe’s predicate transformers VCGen for producing a
single VC that reduces redundancy. The idea is fairly simple:
even though the size of each VC is linear, the overall quadratic
size comes from the possible existence of a linear number

VCLeani : CommSA → Assert×Assert×Assert

VCLeani(skip) = (>, >, >)

VCLeani(x := e) = (x = e, >, >)

VCLeani(assert θ) =

{
(>, >, θ) if i ∈ {P,G}
(>, θ, θ) if i ∈ {PA,GA}

VCLeani(assume θ) = (>, θ, >)

VCLeani(C1 ; C2) =

(ψ1 ∧ ψ2, γ1 ∧ γ2,
δ1 ∧ (ψ1 ∧ γ1 → δ2)) if i ∈ {P,PA}

(ψ1 ∧ ψ2, γ1 ∧ γ2,
δ1 ∧ (γ1 → δ2)) if i ∈ {G,GA}

where (ψ1, γ1, δ1) = VCLeani(C1)

and (ψ2, γ2, δ2) = VCLeani(C2)

VCLeani(if b then C1 else C2) = ((b ∧ ψ1) ∨ (¬b ∧ ψ2),

(b ∧ γt) ∨ (¬b ∧ γ2), (b→ δ1) ∧ (¬b→ δ2))

where (ψ1, γ1, δ1) = VCLeani(C1),

and (ψ2, γ2, δ2) = VCLeani(C2)

Fig. 5: Lean optimization VCGen, for i ∈ {P,PA,G,GA}

of such VCs, each replicating partially the encoding of the
program. This set of VCs can be transformed into a single
VC, applying the equivalence (φ → θ) ∧ (φ ∧ θ ∧ γ → ψ) ≡
φ → θ ∧ (θ ∧ γ → ψ) the required number of times (with
θ and ψ assert conditions). Consider again the three VCs
of Fig. 1; applying this equivalence twice we obtain the
following VC, where asserts (the ‘goals’ of the VC) are
in bold: ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) →
(y1 = 0 ∨ y1 = 1) ∧ ((y1 = 0 ∨ y1 = 1) → ((x0 > 0 ∧ y2 =

1) ∨ (¬x0 > 0 ∧ y2 = 0))→ y2 = y1 ∧ (y2 = y1 → ((x0 > 0 ∧ y3 =

1) ∨ (¬x0 > 0 ∧ y3 = 0)) → y3 = y1)). This optimization can
actually be applied to the entire left-hand face of the VCGens
cube. If asserts are not to be introduced in the context we
simply note that φ→ θ∧(θ∧γ → ψ) ≡ φ→ θ∧(γ → ψ), resulting
in ((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0))→ (y1 = 0 ∨ y1 = 1)∧
(((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) → y2 = y1 ∧ (((x0 >

0∧y3 = 1)∨(¬x0 > 0∧y3 = 0))→ y3 = y1)). This also applies to
cases with a global context: ((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 =

0)) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) ∧ ((x0 > 0 ∧ y3 =

1) ∨ (¬x0 > 0 ∧ y3 = 0)) → (y1 = 0 ∨ y1 = 1) ∧ (y1 = 0 ∨ y1 =

1 → (y2 = y1 ∧ (y2 = y1 → y3 = y1))). The lean optimization
defined through the function VCLeani is defined in Fig. 5.
Note that, it does not use the accumulator parameters and the
result of VCLeani(C) is a tuple (ψ, γ, δ) where the first two
components are the same as with VCSPi, and δ is a single
formula. Again, if i ∈ {P,PA}, the partial context VC is δ,
otherwise, if i ∈ {G,GA}, the global context VC is ψ → δ.

SSA Optimization: An entirely different optimization, in-
tegrated in the CBMC tool [7], can be applied to the right-
hand side face of the cube. This optimization requires con-
verting programs to a static single-assignment (SSA) form,
where variables may occur in the code (syntactically) at most

once as an l-value. Different versions of the same variables
assigned in different branches need to be merged using a Φ-
function [10]. Following [7], we will use here conditional
expressions as found in the C programming language. For
instance, the program if b then x := e1 else x := e2 can
be translated to the following SSA form: if b then x1 :=
e1 else x2 := e2 ; x3 := b ?x1 : x2. These conditional
expressions can then be encoded logically as conjunctions
of two implicative formulas with mutually exclusive con-
ditions. For instance, x3 := b ?x1 : x2 can be encoded
as (b → x3 = x1) ∧ (¬b → x3 = x2). The basis of the
optimization is the observation that path conditions introduced
in the CondNF for assignment statements are not required.
Without the optimization the above example would be encoded
as the formula (b → x1 = e1) ∧ (¬b → x2 = e2) ∧ (b → x3 =

x1) ∧ (¬b → x3 = x2), whereas with the optimization this
becomes x1 = e1 ∧ x2 = e2 ∧ (b → x3 = x1) ∧ (¬b → x3 = x2).
Note that the left hand side of the implications come from the
conditional expression and not from the path condition. The
generic VCGen based on this optimization will be denoted
by VCSSAi and differs from VCCNFi in the assignment case,
which becomes: VCSSAi(π, φ, ρ, x := e) = (x = e, >, ∅).
Note that path conditions are still required for assert and
assume statements.

Comparison of VCGens: As a proof of concept, to show
that studying different methods for the generation of VCs is
useful and can lead to improvements in the state of the art
verification tools, we give here an analytical comparison of
the behavior of the different VCGens for a specific program.

Our case study is representative of programs with a dense
presence of assert statements. This will allow us to investigate
whether it will be advantageous (as in theory it seems to be)
to use a global context VCGen for verifying programs with
a substantial number of asserts. We will consider a program
of size N containing a number of asserts that is linear in N ,
such that execution may go through all the asserts. An easy
way to generate such a program is by expanding iterations of
a loop containing asserts, as the one shown in Fig. 6a. The
result of expanding the loop twice is in Fig. 6b and its CondNF
representation in Fig. 6c.

The table below shows the asymptotic analysis of the size
of the VCs generated from this program.

VCCNF VCSSA VCSP VCLean

G θ(N2) θ(N2) θ(N2) θ(N)
GA θ(N3) θ(N3) θ(N2) θ(N)
P θ(N3) θ(N2) θ(N2) θ(N)
PA θ(N3) θ(N3) θ(N2) θ(N)

For VCCNF, since there are N nested conditionals due to loop
expansion, the loop condition is replicated θ(N2) times with
different variables. The size of the global context VC will be
in θ(N2), whereas the size of the partial contexts VCs will
be in θ(12), θ(22), . . . , θ(N2), resulting in an overall size of
θ(N3) – 2N VCs will be generated because there are two
asserts in the loop. If asserts are included in the context, the

assumex≥0 ∧ x≤50;
assume y < x;
while x < 100 do {

assert y < 100;
x := x+ 1;
y := y + 1;
assert y ≤ 100}

(a) Initial program

assumex≥0 ∧ x≤50;
assume y < x;
if x < 100 then {

assert y < 100;
x := x+ 1;
y := y + 1;
assert y ≤ 100;
if x < 100 then {
assert y < 100;
x := x+ 1;
y := y + 1;
assert y ≤ 100;
if x < 100 then
assume⊥

}}

(b) Expanding loop

if > then assumex0 ≥ 0 ∧ x0 ≤ 50;
if > then assume y0 < x0;
if x0<100 then assert y0 < 100;
if x0<100 then x1 := x0 + 1;
if x0<100 then y1 := y0 + 1;
if x0<100 then assert y1 ≤ 100;
if x0<100 ∧ x1<100 then assert y1 < 100;
if x0<100 ∧ x1<100 then x2 := x1 + 1;
if x0<100 ∧ x1<100 then y2 := y1 + 1;
if x0<100 ∧ x1<100 then assert y2 ≤ 100;
if x0<100 ∧ x1<100∧x2<100 then assume⊥;
if x0<100 then x3 := (x1 < 100) ? x2 : x1;
if x0<100 then y3 := (x1 < 100) ? y2 : y1;
if > then x4 := (x0 < 100) ? x3 : x0;
if > then y4 := (x0 < 100) ? y3 : y0;

(c) After converting to CondNF

Fig. 6: Bounded model checking a program with asserts by
unfolding loops twice

global context VC also becomes of size θ(N3), because each
lemma will be guarded by a formula of size θ(12), . . . , θ(N2).

Let us consider now VCSSA with the program shown in
Fig. 6c after removing the gray code. The left-hand side of
the global context VC (operational encoding) becomes of size
θ(N), since the optimization dispenses entirely the accumu-
lated path conditions. However, note that path conditions can
only be removed from assignments, and so the consequent of
the VC is still of size θ(N2) (resp. θ(N3), with asserts in the
context), since it contains 2N assert conditions, each guarded
by a path condition of size in θ(N) (resp. θ(N2)). It is in the
partial contexts version (with no asserts) that the optimization
becomes more interesting, since it will now generate 2N VCs,
of size θ(1) to θ(N) (each having a single assert condition as
consequent), with overall size in θ(N2).

Let us turn to predicate transformers. Our example leads
to the θ(N2) worst-case behavior of VCSP in terms of VC
size. In the partial contexts version there will be 2N VCs of
size in θ(1), . . . , θ(N); for the global context version, the
operational encoding will have size in θ(N), but the size of
the VC consequent will be in θ(N2) – each assert will be
guarded by conditions originated by the loop expansion. With

VCG : CommSA×{SP,CNF,LEAN,SSA}×{P,PA,G,GA}
→ P(Assert)

VCG(C,SP, i) = let (ψ, ,Γ) = VCSPi(>,>, C)

in if i ∈ {P,PA} then Γ else {ψ →
∧

Γ}
VCG(C,CNF, i) = let (ψ, ,Γ) = VCCNFi(>,>,>, C)

in if i ∈ {P,PA} then Γ else {ψ →
∧

Γ}
VCG(C, LEAN, i) = let (ψ, , δ) = VCLeani(C)

in if i ∈ {P,PA} then {δ} else {ψ → δ}
VCG(C,SSA, i) = let (ψ, ,Γ) = VCSSAi(>,>,>, C)

in if i ∈ {P,PA} then Γ else {ψ →
∧

Γ}

Fig. 7: Unified VCGen

VCLean, the VC size becomes linear in all variants.
It should be noted that in the worst case VCLean generates

VCs of size θ(N2). As an example consider the program
(assertφ1 ; assertφ2) ; assertφ3 (note that the sequence
of commands are associated to the left). The generated VC
using VCLeanPA is φ1 ∧ (φ1 → φ2)∧ (φ1 ∧ φ2 → φ3), which
duplicates the asserted conditions. Even though in this example
the duplication of assertions can be avoided by associating the
sequences to the right (without interfering with the program
semantics), the same growth of the VC size can be obtained
with nested if statements.

VI. A UNIFIED VC GENERATOR

It is clear from the above that each of the two original
optimizations generates four new hybrid VCGens that can be
added to our cube as follows:

VCLeanG VCSPG VCCNFG VCSSAG

VCLeanGA VCSPGA VCCNFGA VCSSAGA

VCLeanP VCSPP VCCNFP VCSSAP

VCLeanPA VCSPPA VCCNFPA VCSSAPA

All the VCGens can now be integrated into a single unified
generator as shown in Fig. 7.

Let us now consider how the existing verification tools fit
in our cube. First of all, it should be said that no tool, as far as
we know, uses global contexts: all existing tools are located in
the bottom face of the cube. Although the pure CondNF, using
a global context, was originally introduced for CBMC [8],
the current version of the tool seems to use the CondNF-
encoding with partial contexts together with the SSA-based
optimization. Therefore, CBMC is likely based on VCSSAP.

The Boogie [3] and Why3 [13] deductive verifiers are
located on the left-hand face. Both use partial contexts that
include assert conditions. Boogie incorporates a linear opti-
mization similar to the lean optimization, but it avoids du-

plication of assertions by translating structured programs into
unstructured ones and resorting to SMT-LIB let binders [4].
While Boogie supports the use of loop invariants, typical of
deductive verification, it also supports loop unrolling as found
in bounded model checking tools, which has the potential to
generate programs with a large cyclomatic complexity. This
is probably additional motivation for the use of the linear-
size VCGen. Why3 is entirely based on deductive reasoning
with invariants and contracts, does not support loop unrolling,
and has traceability as an important feature. The method used
by default in Why3 is based on a potentially exponential
path enumeration, which has advantages from the point of
view of traceability: the Why3 graphical interface is able
to highlight execution paths corresponding to selected VCs.
Nevertheless, Why3 also implements and makes available
(through a command-line switch) the VCLeanPA algorithm,
and a splitting operation can then be used explicitly to separate
the VC into a set of ‘single-goal’ VCs.

VII. EXPERIMENTAL RESULTS

The cube sets the basis for a thorough comparative evalua-
tion of the VCGens w.r.t. different criteria, using a represen-
tative set of benchmark programs.

Setting and Toolchain: Since no existing tool implements all
the algorithms, we developed a tool on top of SNIPER [22]
to analyze the effect of solving VCs generated by different
VCGens. This tool, baptized SNIPER-VCGen (available from
http://alfa.di.uminho.pt/∼belolourenco/sniper-vcgen.html), tar-
gets the verification of iteration-free LLVM intermediate rep-
resentation [23]. The use of LLVM as intermediate language
is convenient for our purposes, since loop expansion and op-
timizations involving constant propagation and simplification
are readily implemented by the LLVM toolset prior to VC
generation. An empirical comparison of VCGens requires the
generation of VCs of substantial size, which we obtain by
expanding loops. The resulting formulas are encoded in the
SMT-LIB v2 language [5], and are then sent to different
solvers for checking in the QF AUFLIA logic, which supports
quantifier-free formulas, (unbounded) integer arithmetic, and
integer arrays. In our experiments we used the Z3 (v. 4.4.1,
http://github.com/Z3Prover/z3), CVC4 (v. 1.4, http://cvc4.cs.
stanford.edu), and MathSAT (v. 5.3.10, http://mathsat.fbk.eu)
SMT solvers, to evaluate whether our VCGen comparison
results hold consistently across a diverse set of solvers, or
whether they are solver-dependent.

Evaluation of the Running Example: For the first part of
the evaluation, we take the program from Fig. 6, translate
it to LLVM, unwind loops N times, and generate a set of
VCs using one of the VCGens mentioned before. The size
of the corresponding SMT problem and the solving time
are then measured experimentally. The detailed results for
N = 100, 200, 300 are in the tool’s webpage.

The file size data supports the above asymptotic reasoning.
With respect to the VCGens based on CondNF, the SSA
optimization produces a dramatic decrease on the file size

when partial contexts are used, in particular if no asserts
are included. For VCSP, the file size for both global and
partial contexts without asserts are similar to those obtained
for SSA, but now the inclusion of assertions as lemmas in the
context has only marginal impact on the file size. With the
lean optimization, VC size becomes linear in all cases; the
data confirms that this is by far the most efficient of all the
evaluated VCGens regarding file size.

As to the solver execution time, VCCNFG performs much
better than the remaining VCGens based on CondNF (more
than 10 times faster than the partial contexts VCCNFP).
The SSA optimization improves solving time only marginally
with global contexts, but with partial contexts reduces it to
roughly 1/3 (or to 1/2 if asserts are included in contexts).
Nonetheless, VCSSAG beats VCSSAP (resulting in roughly 5
times faster solving). With the SP VCGens again the use of
a global context results in several times faster solving than
partial contexts: VCSPG stands roughly between VCCNFG and
VCSSAG, and VCSPP has similar performance to VCSSAP.
Finally, and as expected from the analysis of VC size, VCLean
lead to significantly more efficient solving than any other
VCGen. Although in all other cases it is preferable to use
a global context, VCLean performs slightly better with partial
contexts.

Although in theory it seems that the example program will
expose the benefits of using asserts as lemmas, this kind of
reasoning is misleading. In practice, when an automated solver
is used, there is no way to influence the proof, and asserts are
best left out of contexts, since they result in worse performance
(with the exception of VCLean, for which adding asserts does
not affect performance).

Benchmarks: In addition to the example program of Fig. 6,
we evaluated the VCGens using a suite consisting of several
case studies from the Eureka and InvGen benchmarks [1], [18],
that have been used before to test, validate and evaluate other
tools. These programs are algorithmically more complicated,
and therefore allow us to compare the VCGens in a more
realistic setting. In particular, the Eureka benchmark was
created with the aim of assessing the scalability of software
model checking tools, with programs of increasing complexity.
Since assert statements are scarce in Eureka programs we also
use case studies from the InvGen benchmarks, which are rich
in asserts and allow us to evaluate the effect of including them
in the context (one of the dimensions of the VCGen cube). The
Eureka benchmark contains both correct and faulty annotated
programs, while the InvGen benchmark contains only correct
annotated programs. The properties found in both sets of
programs rely on Boolean expressions of the C language, and
therefore do not contain any quantifiers.

For the correct bounded Eureka programs, loops were
expanded the required number of times, and unwinding as-
sertions were introduced to ensure that the expansion was
sufficient. For the other programs loops were expanded a
reasonable number of times, with unwinding assumptions
introduced to prevent executions with more iterations from
being considered. Table I shows the results obtained with Z3

http://alfa.di.uminho.pt/~belolourenco/sniper-vcgen.html
http://github.com/Z3Prover/z3
http://cvc4.cs.stanford.edu
http://cvc4.cs.stanford.edu
http://mathsat.fbk.eu

Eureka InvGen Total
VCGen Correct (s) # Faulty (s) # Total (s) # Total (s) # (s) #

VCCNFGA 464.74 2 146.29 3 611.03 5 150.24 1 761.27 6

VCCNFG 417.03 2 126.90 2 543.93 4 101.11 0 645.03 4

VCCNFPA 842.36 1 447.13 1 1289.49 2 564.00 0 1853.49 2

VCCNFP 850.52 1 520.40 2 1370.91 3 553.84 0 1924.75 3

VCSSAGA 183.80 5 149.07 4 332.87 9 117.88 2 450.75 11

VCSSAG 92.75 7 123.02 27 215.77 34 70.89 2 286.66 36

VCSSAPA 463.94 5 376.20 3 840.14 8 436.14 0 1276.28 8

VCSSAP 417.82 4 368.66 2 786.48 6 392.88 0 1179.36 6

VCSPGA 325.88 2 111.47 8 437.35 10 70.39 2 507.73 12

VCSPG 301.28 10 114.70 10 415.98 20 63.56 1 479.54 21

VCSPPA 437.28 1 129.54 8 566.83 9 247.08 1 813.90 10

VCSPP 559.95 1 244.85 3 804.80 4 291.71 0 1096.51 4

VCLeanGA 328.43 18 109.82 5 438.25 23 46.27 12 484.52 35

VCLeanG 291.30 35 109.34 9 400.63 44 43.68 14 444.31 58
VCLeanPA 331.79 11 76.24 21 408.03 32 41.21 9 449.24 41

VCLeanP 312.20 7 92.00 10 404.21 17 39.34 12 443.55 29

TABLE I: Z3 solving time for benchmark programs (time in seconds)

for each VCGen separated by benchmark. The column labeled
Correct (resp. Faulty) refers to the total solving time for all
VCs generated from the correct Eureka programs (resp. faulty
programs). The columns marked with Total refer to the total
solving time for each benchmark set of programs; the sum
of both is also shown in the final column. Columns marked
with # show the number of times that each VCGen performed
better than the others. Finally the bars on the right are just
to simplify the comparison of the total results. The detailed
results for each program can be found in the tool’s webpage.

A considerable number of Eureka programs use assumes
and asserts simply as pre- and postconditions, as opposed to
InvGen programs which are densely populated with asserts.
This is reflected in the table: the solving time difference
between VCGens based on partial and global contexts is
greater in the InvGen benchmark than it is in the Eureka
benchmark. The results also confirm the trends identified
previously (global contexts lead to faster solving; placing
asserts in contexts increases solving time), but allow for
an exception to be identified: in all three data sets (Eureka
Correct, Eureka Faulty, and InvGen), VCSPPA performs better
than VCSPP (nonetheless, VCSPG behaves much better).

As before, the solving times for VCSPG and VCCNFG

are close, with VCSPG performing consistently better in all
three benchmark datasets. The optimizations improve perfor-
mance: VCSSAG performs better than VCCNFG in all three
datasets, and VCLean outperform all the others. Note that
this observation is not immediately visible in the Eureka
Correct data, because the dataset contains an outlier program
(bubblesort safe-9.c) that biases the data heavily in favor of
VCSSA. If this program is removed, the supremacy of VCLean
is restored. Finally, it remains to discuss which variety of

the VCLean performs better. The aggregate solving time for
the benchmarks is inconclusive (with G, PA and P resulting
in similar times), but if we take the number of programs in
which each VCGen outperforms the others, the clear winner is
VCLeanG (58 programs against 41 for VCLeanPA). This is in
accordance with the general trend that using a global context
without asserts seems to be the best choice.

The analysis of the data obtained with CVC4 and MathSAT
confirms the general trends described above, but reveals some
points that are solver-specific. In particular it reinforces the
fact that VCSPPA performs better than VCSPP with all solvers;
and with MathSAT several programs in the benchmarks time-
out with all VCGens except VCSSA, which causes the latter
to have the best aggregate solving time, supplanting VCLean.
It is also interesting to note that VCSSAG performs better with
CVC4 than all other VCGens in most case studies.

VIII. CONCLUSIONS

Based on two well-known fundamental VCGen algorithms,
we identified three orthogonal design dimensions, and pro-
posed a conceptual framework (the VCGen Cube) that allowed
us to define in a uniform way 6 hybrid VCGens, which had
not (to our knowledge) been studied or assessed before. We
then extended our framework by showing how optimizations
implemented in popular tools could be carried over to the
hybrid VCGens. We believe that this categorization is helpful
for both users of existing program verification tools, since it
helps in the interpretation of the output results, and designers
of new tools comprising a VCGen. Finally, we presented an
evaluation of the design dimensions in our framework. We
remark that the equivalence of all the VCGens described in
this paper are formally proved. The proofs are non-trivial and
can be found in [24].

The results of our evaluation are compactly summarized
as follows: we identified the general trends that it is almost
always preferable to use a global context; asserts should not be
included in the context; and the VCSSAG and VCLeanG are
the best VCGens overall. With Z3, those based on VCLean
seem to be, for the example of Fig. 6, the only ones for which
solving time grows slower than θ(N3) (but recall that these
VCGens may be a bad choice if traceability has high priority).
However, we remark that based on our data it is not possible
to elect a single ‘best VCGen’, since different VCGens beat
all the others for a significant number of cases.

We are currently in the process of testing the VCGens
discussed in this paper in Why3. This requires extending
them to the much richer features of WhyML (the underlying
programming/specification language of Why3), and will allow
us to evaluate the VCGens with programs whose specifications
make extensive use of quantifiers, which is not the case for
the benchmarks used in this paper.

There are also specific reasons for integrating and testing
alternative VCGens in other verification tools. We first remark
that although our experimental results do not consider a SAT
encoding, there is a good chance that using VCLean or the
global context VCSSAG could improve the performance of
CBMC. Our results indicate that VCLeanG performs slightly
better than VCLeanPA with Z3: since Boogie is designed to
work with this solver it might be interesting to consider testing
an alternative global context algorithm for Boogie.

We remark that the two VCGens from which we departed
have their origins in two different traditions and families of
tools. Our work here will hopefully help bridging a gap be-
tween the deductive verification and software model checking
communities and thus contribute towards a uniform framework
that makes program verification more accessible to developers.

IX. ACKNOWLEDGMENTS

This work is partially financed by the ERDF – European Regional
Development Fund through the Operational Programme for Com-
petitiveness and Internationalisation - COMPETE 2020 Programme
within project ‘POCI-01-0145-FEDER-006961’, and by National
Funds through the Portuguese funding agency, FCT - Fundação para a
Ciência e a Tecnologia as part of project ‘UID/EEA/50014/2013’. The
first author is also sponsored by FCT grant SFRH/BD/52236/2013.

REFERENCES

[1] Alessandro Armando, Massimo Benerecetti, and Jacopo Mantovani.
Counterexample-guided abstraction refinement for linear programs with
arrays. Automated Software Engineering, 21(2):225–285, 2013.

[2] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania.
Bounded model checking of software using SMT solvers instead of
SAT solvers. International Journal on Software Tools for Technology
Transfer, 11(1):69–83, 2009.

[3] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Proceedings of the 4th International Symposium
Formal Methods for Components and Objects, pages 364–387, 2005.

[4] Michael Barnett and K. Rustan M. Leino. Weakest-precondition of
unstructured programs. In Proceedings of the 2005 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Software Tools and
Engineering, pages 82–87, 2005.

[5] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. Technical report, Department of Computer Science, The
University of Iowa, 2010. Available at www.SMT-LIB.org.

[6] Cláudio Belo Lourenço, Si-Mohamed Lamraoui, Shin Nakajima, and
Jorge Sousa Pinto. Studying verification conditions for imperative
programs. In Proceedings of the 15th International Workshop on
Automated Verification of Critical Systems, 2015.

[7] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Proceedings of the 10th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 168–176. Springer, 2004.

[8] Edmund Clarke, Daniel Kroening, and Karen Yorav. Behavioral con-
sistency of C and Verilog programs using bounded model checking. In
Proceedings of the 40th Annual Design Automation Conference, pages
368–371. ACM, 2003.

[9] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. SMT-based
bounded model checking for embedded ANSI-C software. IEEE
Transactions on Software Engineering, 38(4):957–974, July 2012.

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991.

[11] Daniela da Cruz, Maria João Frade, and Jorge Sousa Pinto. Verification
conditions for single-assignment programs. In Proceedings of the 27th
ACM Symposium On Applied Computing, pages 1264–1270. ACM,
2012.

[12] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 - where programs

meet provers. In 22nd European Symposium on Programming, pages
125–128, 2013.

[14] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. In Proceedings of the 28th
Symposium on Principles of Programming Languages, pages 193–205.
ACM, 2001.

[15] Patrice Godefroid and Shuvendu K. Lahiri. From program to logic:
An introduction. In Tools for Practical Software Verification, LASER,
International Summer School 2011, pages 31–44, 2011.

[16] Mike Gordon and Hélène Collavizza. Forward with hoare. In Reflections
on the Work of C.A.R. Hoare, History of Computing, pages 101–121.
Springer, 2010.

[17] Radu Grigore, Julien Charles, Fintan Fairmichael, and Joseph Kiniry.
Strongest postcondition of unstructured programs. In Proceedings of
the 11th International Workshop on Formal Techniques for Java-like
Programs, pages 6:1–6:7. ACM, 2009.

[18] Ashutosh Gupta and Andrey Rybalchenko. Invgen: An efficient invariant
generator. In Proceedings of the 21st International Conference on
Computer Aided Verification, pages 634–640. Springer-Verlag, 2009.

[19] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576–580, 1969.

[20] Peter V. Homeier and David F. Martin. A mechanically verified
verification condition generator. Comput. J., 38(2):131–141, 1995.

[21] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E.
Santosa. TRACER: A symbolic execution tool for verification. In
Proceedings of the 24th International Conference Computer Aided
Verification, pages 758–766, 2012.

[22] Si-Mohamed Lamraoui and Shin Nakajima. A formula-based approach
for automatic fault localization of imperative programs. In Proceedings
of the 16th International Conference on Formal Engineering Methods,
pages 251–266. Springer, 2014.

[23] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceedings of the
2nd IEEE / ACM International Symposium on Code Generation and
Optimization, pages 75–88, 2004.

[24] Cláudio Belo Lourenço. Single-assignment programs and VCGens. PhD
thesis, University of Minho, 2018 (to appear).

[25] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th IEEE Symposium on Logic in
Computer Science, pages 55–74, 2002.

[26] Norbert Schirmer. A verification environment for sequential imperative
programs in Isabelle/HOL. In LPAR, volume 3452 of Lecture Notes in
Computer Science, pages 398–414. Springer, 2004.

