
Constructor subtyping

Gilles Barthe�� and Maria Jo�ao Frade�

� Departamento de Inform�atica� Universidade do Minho� Braga� Portugal
� Institutionen f�or Datavetenskap� Chalmers Tekniska H�ogskola� G�oteborg� Sweden

fgilles�mjfg�di�uminho�pt

Abstract� Constructor subtyping is a form of subtyping in which an induc�
tive type � is viewed as a subtype of another inductive type � if � has more
constructors than �� As suggested in ��� ��	� its
potential� uses include proof
assistants and functional programming languages�
In this paper� we introduce and study the properties of a simply typed
��calculus with record types and datatypes� and which supports record sub�
typing and constructor subtyping� In the �rst part of the paper� we show
that the calculus is con
uent and strongly normalizing� In the second part
of the paper� we show that the calculus admits a well�behaved theory of
canonical inhabitants� provided one adopts expansive extensionality rules�
including ��expansion� surjective pairing� and a suitable expansion rule for
datatypes� Finally� in the third part of the paper� we extend our calculus
with unbounded recursion and show that con
uence is preserved�

� Introduction

Type systems ��� �� lie at the core of modern functional programming languages�
such as Haskell ���� or ML ����� and proof assistants� such as Coq ��� or PVS ����	 In
order to improve the usability of these languages� it is important to devise
exible
�and safe� type systems� in which programs and proofs may be written easily	 A
basic mechanism to enhance the
exibility of type systems is to endorse the set of
types with a subtyping relation � and to enforce a subsumption rule

a
 A A � B

a
 B

This basic mechanism of subtyping is powerful enough to capture a variety of con�
cepts in computer science� see e	g	 ���� and its use is spreading both in functional
programming languages� see e	g	 ���� ��� ���� and in proof assistants� see e	g	 ��� ���
���	

Constructor subtyping is a basic form of subtyping� suggested in ���� and devel�
oped in ���� in which an inductive type � is viewed as a subtype of another inductive
type � if � has more constructors than �	 As such� constructor subtyping captures
in a type�theoretic context the ubiquitous use of subtyping as inclusion between
inductively de�ned sets	 In its simplest instance� constructor subtyping enforces
subtyping from odd or even numbers to naturals� as illustrated in the following ex�
ample� which introduces in a ML�like syntax the mutually recursive datatypes Odd
and Even� and the Nat datatype

datatype Odd � s of Even

and Even � �

� s of Odd �

datatype Nat � �

� s of Nat

� s of Odd

� s of Even �

Here Even and Odd are subtypes of Nat �i	e	 Even � Nat and Odd � Nat�� since
every constructor of Even and Odd is also a constructor of Nat	

In a previous paper ���� the �rst author introduced and studied constructor
subtyping for one �rst�order mutually recursive parametric datatype� and showed
the calculus to be con
uent and strongly normalizing	 In the present paper� we
improve on this work in several directions

�	 we extend constructor subtyping to the class of strictly positive� mutually re�
cursive and parametric datatypes	 In addition� the present calculus supports
incremental de�nitions�

�	 following recent trends in the design of proof assistants �and a well�established
trend in the design of functional programming languages�� we replace the elim�
ination constructors of ��� by case�expressions	 This leads to a simpler system�
which is easier to use�

�	 we de�ne a set of expansive extensionality rules� including ��expansion� sur�
jective pairing� and a suitable expansion rule for datatypes� so as to obtain a
well�behaved theory of canonical inhabitants �i	e	 of closed expressions in nor�
mal forms�	 The latter is fundamental for a proper semantical understanding
of the calculus and for several applications related to proof assistants� such as
uni�cation	

The main technical contribution of this paper is to show that the calculus enjoys
several fundamental meta�theoretical properties including con
uence� subject re�
duction� strong normalization and a well�behaved theory of canonical inhabitants	
These results lay the foundations for constructor subtyping and open the possibility
of using constructor subtyping in programming languages and proof assistants� see
Section �	

Organization of the paper The paper is organized as follows
 in Section �� we provide
an informal account of constructor subtyping	 In Section �� we introduce a simply
typed ��calculus with record types and datatypes� and which supports both record
subtyping and constructor subtyping	 In Section �� we establish some fundamental
meta�theoretical properties of the calculus	 In Section �� we motivate the use of
expansive extensionality rules� show that they preserve con
uence and strong nor�
malization and lead to a well�behaved theory of canonical inhabitants	 In Section ��
we extend our core language with �xpoint operators� and show the resulting calcu�
lus to be con
uent	 Finally� we conclude in Section �	 Because of space constraints�
proofs are merely sketched or omitted	 We refer the reader to ��� for further details	

Acknowledgements We are grateful to T	 Altenkirch� P	 Dybjer and L	 Pinto for
useful discussions on constructor subtyping	 The �rst author is partially supported
by a TMR fellowship	 The second author is partially supported by the Logcomp
project	

� An informal account of constructor subtyping

Constructor subtyping formalizes the view that an inductively de�ned set � is a
subtype of an inductively de�ned set � if � has more constructors than �	 As may
be seen from the example of even� odd and natural numbers� the relative generality
of constructor subtyping relies on the possibility for constructors to be overloaded
and� to a lesser extent� on the possibility for datatypes to be de�ned in terms
of previously introduced datatypes	 The following example� which introduces the
parametric datatypes List of lists and NeList of non�empty lists� provides further
evidence	

datatype �a List � nil

� cons of ��a � �a List� �

datatype �a NeList � cons of ��a � �a List� �

Here �a NeList � �a List since the only constructor of �a NeList� cons � ��a

� �a List� ��a NeList is matched by the constructor of �a List� cons � ��a

� �a List� ��a List	
The above examples reveal a possible pattern of constructor subtyping
 for two

parametric datatypes d and d� with the same arity� we set d � d� if every declaration
�c in case of a constant� c of B otherwise� of d is matched in d�	� Another pattern�
used in ���� is to take subtyping as a primitive	 Here we allow for the subtyping
relation to be speci�ed directly in the de�nition of the datatype	 As shown below�
such a pattern yields simpler de�nitions� with less declarations	

datatype Odd � s of Even

and Even � �

� s of Odd �

datatype Nat � s of Nat

with Odd � Nat	

Even � Nat �

The original datatype may be recovered by adding a declaration of the form c

� � d� whenever c
 � � d and d � d�	 The same technique can be used to de�ne
�a List and �a NeList

datatype �a List � nil

and �a NeList � cons of ��a � �a List�

with �a NeList � �a List �

For the clarity of the exposition� we shall adopt the second pattern in examples�
whereas we consider the �rst pattern in the formal de�nition of ������data	

Thus far� the subtyping relation is con�ned to datatypes	 It may be extended
to types in the usual �structural� way	 In this paper� we force datatypes to be
monotonic in their parameters	 Hence� we can derive

Odd List � Nat List

�l

 Even� l�
 Nat List� l�
 Odd� � �l

 Nat� l�
 Nat List�
Nat� Even NeList � Odd� Nat NeList

from the fact that Odd � Nat� Even � Nat and �a NeList � �a List	 The formal
de�nition of the subtyping relation is presented in the next section	

In order to introduce strict overloading� which is a central concept in this paper�
let us anticipate on the next section by considering the evaluation rule for case�
expressions	 Two observations can be made
 �rst� our informal de�nition of datatype
allows for arbitrary overloading of constructors	 Second� it is not possible to de�ne
a type�independent evaluation rule for case�expressions for arbitrary datatypes	 For
example� consider the following datatype� where Sum is a datatype identi�er of arity
�

datatype ��a	�b� Sum � inj of �a

� inj of �b �

Note that the datatype is obtained from the usual de�nition of sum types by over�
loading the constructors inj� and inj�	 Now� a case�expression for this datatype
should be of the form

case a of �inj x� �
 b
 � �inj x� �
 b�

� For the sake of simplicity� we gloss over renamings and assume the parameters of d and
d� to be identical�

with evaluation rules

case �inj a� of �inj x� �
 b
 � �inj x� �
 b� � b
fx��ag
case �inj a� of �inj x� �
 b
 � �inj x� �
 b� � b�fx��ag

As b
 and b� are arbitrary� the calculus is obviously not con
uent	 Thus one needs
to impose some restrictions on overloading	 One drastic solution to avoid non�
con
uence is to require constructors to be declared at most once in a given datatype�
but this solution is too restrictive	 A better solution is to require constructors to be
declared �essentially� at most once in a given datatype	 Here �essentially� consists
in allowing a constructor c to be multiply de�ned in a datatype d� but by requiring
that for every declaration c of rho� we have rho � rhom where c of rhom is the
�rst declaration of c in d	 In other words� the only purpose of repeated declarations
is to enforce the desired subtyping constraints but �once subtyping is de�ned� only
the �rst declaration needs to be used for typing expressions	 This notion� which we
call strict overloading� is mild enough to be satis�ed by most datatypes that occur
in the literature� see ��� for a longer discussion on this issue	

We conclude this section with further examples of datatypes	 Firstly� we de�ne a
datatype of ordinals �or better said of ordinal notations�	 Note that the datatype is
a higher�order one� because of the constructor lim which takes a function as input	

datatype Ord � s of Ord � lim of �Nat �
 Ord�

with Nat � Ord �

Second� we de�ne a datatype of binary integers	 These datatypes are part of the
Coq library� but Coq does not take advantage of constructor subtyping	

datatype positive � xH � xI of positive � xO of positive �

datatype natural � ZERO

with positive � natural �

datatype integer � NEG of positive

with natural � integer �

Thirdly� and as pointed out in ��� ���� constructor subtyping provides a suitable
framework in which to formalize programming languages� including the object cal�
culi of Abadi and Cardelli ��� and a variety of other languages taken from ����	
Yet another example of language that can be expressed with constructor semantics
is mini�ML ����� as shown below	 Here we consider four datatypes identi�ers
 E of
expressions� I for identi�ers� P of patterns and N for the nullpattern� all with arity
�	

datatype I � ident �

datatype N � nullpat �

datatype P � pairpat of �P � P�

with I � P	 N � P �

datatype E � num � false � true � lamb of �P � E�

� if of �E � E � E� � mlpair of �E � E�

� apply of �E � E� � let of �P � E � E�

� letrec of �P � E � E�

with I � E	 N � E �

Lastly� we conclude with a de�nition of CTL� formulae� see ����	 In this example�
we consider two datatypes identi�ers SF of state formulae and PF of path formulae�
both with arity �	

datatype �a SF � i of ��a � �a SF� � conj of ��a SF � �a SF�

� not of �a SF � forsomefuture of �a PF

� forallfuture of �a PF

and �a PF � conj of ��a PF � �a PF� � not of �a PF

� nexttime of �a PF � until of �a PF

with �a SF � �a PF �

CTL� and related temporal logics provide suitable frameworks in which to verify the
correctness of programs and protocols� and hence are interesting calculi to formalize
in proof assistants	

� A core calculus ������data

In this section� we introduce the core calculus ������data	 The �rst subsection is
devoted to types� datatypes and subtyping� the second subsection is devoted to
expressions� reduction and typing	

��� Types and subtyping

Below we assume given some pairwise disjoint sets L of labels� D of datatype identi�
�ers� C of constructor identi�ers and X of type variables	 Moreover� we let l� l�� li� � � �
range overL� d� d�� � � � range overD� c� c�� ci� � � � range over C and �� ��� �i� �� � � � range
over X 	 In addition� we assume that every datatype identi�er d has a �xed arity
ar�d� and that ��� ��� � � � is a �xed enumeration of X 	

De�nition � �Types�� The set T of types is given by the abstract syntax�

�� �
� d���� � � � � �ar�d�� j � j � � � j �l�
 ��� � � � � ln
 �n�

where in the last clause it is assumed that the lis are pairwise distinct� By conven�
tion� we identify record types that only di�er in the order of their declarations� such
as �l
 �� l�
 � � and �l�
 �� l
 ���

We now turn to the de�nition of datatype	 Informally� a datatype is a list of con�
structor declarations� i	e	 of pairs �c� �� where c is a constructor identi�er and � is
a constructor type� i	e	 a type of the form

�� � � � �� �n � d���� � � � � �ar�d��

with d � D	 However not all datatypes are valid	 In order for a datatype to be valid�
it must satisfy several properties	

�	 Constructors must be strictly positive� so that datatypes have a direct set�
theoretic interpretation	 For example� c�
 nat � d and c�
 �nat � d� � d

are strictly positive w	r	t	 d� whereas c�
 �d� d�� d is not	

�	 Parameters must appear positively in the domains of constructor types� so that
datatypes are monotonic in their parameters	 For example� the parameter �

appears positively in the domain of �� d���� while it appears negatively in the
domain of ��� nat�� d���	

�	 Datatypes that mutually depend on each other must have the same number of
parameters� for the sake of simplicity	

�	 Constructors must be strictly overloaded� so that case�expressions can be eval�
uated unambiguously	

In addition� we allow datatypes to depend on previously de�ned datatypes	 This
leads us naturally to the notion of datatype context	 Informally� a datatype con�
text is a �nite list of datatypes	 Below we let �� � range over types� � range over
datatype contexts� c range over datatype constructors and d� d� range over datatype
identi�ers	

De�nition � �Legal pre�type�� � is a legal pre�type in � with variables in
f��� � � � � �kg �or � if k � �� and a set of previously de�ned datatype identi�ers F �
written � �k � pretype�F�� is de�ned by the rules of Figure ��

pre��
� �k � pretype
F� � �k � pretype
F�

� �k � � � pretype
F�

pre�	�
� �k �i pretype
F�
� � i � n�

� �k �l� � ��� � � � � ln � �n	 pretype
F�

predata�
d � � � �k �i pretype
F�
� � i � ar
d��

� �k d��	 pretype
F�

pre� ��
� legalF

� �k �i pretype
F�

� � i � k�

predata� pre�
d �� F � �k �i type
� � i � ar
d��

� �k d��	 pretype
F�

Fig� �� Pre�type formation rules

Note that in �predata�pre� we do not allow mutually dependent types to appear
nested� because we force each �i to be a type and not a pre�type	

De�nition � �Legal type�� � is a legal type in � with variables in f��� � � � � �kg
�or � if k � ��� written � �k � type� is de�ned by the rules of Figure 	�

��
� �k � type � �k � type

� �k � � � type

�	�
� �k �i type
� � i � n�

� �k �l� � ��� � � � � ln � �n	 type

data�
d � � � �k �i type
� � i � ar
d��

� �k d��	 type

��
� legalF

� �k �i type
� if � � i � k

Fig� �� Type formation rules

De�nition � �Subtype�� � is a subtype of � in �� written � � � � � � is de�ned
by the rules of Figure
� where � � d � d� if

	 ar�d� � ar�d�� � m�

�re��
� �k � type

� � � � �

�trans�
� � � � � � � � � �

� � � � �

���
� � �� � � � � � � � �

� � � � � � �� � � �

����
� � �i � �i
� � i � n� � �k �j type
n� � � j � m�

� � �l� � ��� � � � � ln�m � �n�m	 � �l� � ��� � � � � ln � �n	

�data�
� � d � d� � � �i � �i
� � i � ar
d��

� � d��	 � d��� 	

Fig� �� Subtyping rules

	 every declaration c
 �� � � � �� �n � d���� � � � � �m� in � is matched by another
declaration c
 �� � � � �� �n � d����� � � � � �m� in ��

De�nition
 �d�Constructor type�� � is a d�constructor type in � with a set
of previously de�ned datatype identi�ers F � written � � � coty�d�F � is de�ned by
the rules of Figure �� where�

	 � appears positively in � � written � pos � � is de�ned by the rules of Figure
�
	 � is strictly positive w�r�t� d� written � spos d� is de�ned by the rules of Figure

�� where d nocc � denote that d does not occur in � �
	 d � � if there exists a declaration �c
 �� � � in which d occurs�

pos�� � pos �

pos��
� �� ��

� pos ��

pos��
� pos � � neg �

� pos
� � ��

pos��
� pos �i
� � i � n�

� pos �l� � ��� � � � � ln � �n	

pos��
� pos �i
� � i � n�

� pos d���� � � � � �n	

neg��
� �� ��

� neg ��

neg��
� neg � � pos �

� neg
� � ��

neg��
� neg �i
� � i � n�

� neg �l� � ��� � � � � ln � �n	

neg��
� neg �i
� � i � n�

� neg d���� � � � � �n	

Fig� �� Positive�Negative rules

De�nition �� di�D� denote the set of datatype identi�ers of D� It can be de�ned
inductively as follows�

�� di��� � �
	� di�c
 �� � � � �� �n � d���� � fdg

spos��
d nocc �

� spos d

spos��
d nocc �i
� � i � n�

�� � � � �� �n � d��	 spos d

Fig� �� Strictly positive rules

coty�
� �k �i pretype
F� �i spos d �j pos �i
� � i � n � � � j � k�

� � �� � � � �� �n � d���� � � � � �k	 coty
d�F
� with d �� �

Fig� �� Constructor type rule

� di�D�� c
 �� � � � �� �n � d���� � di�D�� � fdg

De�nition � �Main d�declaration�� We say c
 � is a main d�declaration�
written maind�c
 ��� if it is the frist declaration of c in a datatype declaration�
maind�c
 �� can be de�ned by the rules of Figure ��

main��
�� c � �� � � � �� �n � d��	 ok
F�

maind
c � �� � � � �� �n � d��	�

main��
��D� c � �� � � � �� �n � d��	 ok
F� d �� di
D�

maind
c � �� � � � �� �n � d��	�

Fig� �� Main d�declaration rules

De�nition
 �Legal datatype context�� � is a legal datatype context with a
set of previously de�ned datatype identi�ers F � written � legalF � is de�ned by the
rules of Figure �� where � compatibleF �D� if

�� for every �c
 � �� � D�

� � � � coty�d�F � maind�c
 �� � ��D� � � � � �

	� for every �c
 ��� �c�
 � �� � D�

maind�c
 �� � maind��c�
 � �� � ar�d� � ar�d��

As you may notice� the rules of Figure � introduce a new kind of judgment
��D ok�F� which means that over the datatype context � we are constructing a
new datatype D in a legal way	 This judgment is very similar to the legal�judgment	
The di�erence is that the ok�judgment works with an �open datatype�	

Observe that De�nitions ��� are mutually dependent	 Note that De�nitions �
and � above are enforced by the side�conditions in �close� whereas De�nitions � and
� above are enforced by the rule �coty�	 Also note that in the side condition for
�close�� � � and � are compared w	r	t	 ��D� and not �	

empty� �� legal�

close�
��D ok
F�

��D� legalF � di
D�
� � compatible

F

D�

add�cons�
��D ok
F� � � � coty
d�F

��D� c � � ok
F�

add�data�
� legalF

� ok
F�

Fig� �� Datatype rules

��� Expressions and typing

In this subsection� we conclude the de�nition of ������data by de�ning its expressions�
specifying their computational behavior and providing them with a typing system	
Below we assume given a set V of variables and let x� x�� xi� y� � � � range over V 	
Moreover� we assume given a legal datatype context � and let T� be the set of legal
types in �� �nally �� �� � � � are assumed to range over T�	

De�nition �� The set E of expressions is given by the abstract syntax�

a� b
� x j �x
�� a j a b j �l� � a�� � � � � ln � an� j a�l j
c��� a j case�

d��� a of fc� � b� j � � � j cn � bng

Free and bound variables� substitution �f�
� �g are de�ned the usual way	 Moreover
we assume standard variable conventions ��� and identify record expressions which
only di�er in the order of their components� e	g	 �l � a� l� � a�� and �l� � a�� l �
a�	 All the constructions are the usual ones� except perhaps for case�expressions�
which are typed so as to avoid failure of subject reduction� see e	g	 ����� and are
slightly di�erent from the usual case expressions in that we pattern�match against
constructors rather than against patterns	

De�nition �� �Typing��

�� A context 	 is a �nite set of assumptions x�
 ��� � � � � xn
 �n such that the xis
are pairwise distinct elements of V and �i � T��

	� A judgment is a triple of the form 	 � a
 � � where 	 is a context� a � E and
� � T��

� A judgment is derivable if it can be inferred from the rules of Figure �� where
in the �case� rule it is assumed that c�
 ��� � � � � cn
 �n are the sole main d�
declarations and that �� denotes
� � � � ��
n � � whenever � �
� � � � ��

n � d����

� An expression a � E is typable if 	 � a
 � for some context 	 and type ��

The computational behavior of ������data is drawn from the usual notion of ��
reduction� ��reduction and ��reduction	

De�nition ���

�� ��reduction �� is de�ned as the compatible closure of the rule

��x
�� a� b�� afx
� bg

	� ��reduction �� is de�ned as the compatible closure of the rule

�l� � a�� � � � � ln � an��li �� ai

start� � � x � � if x � � � �

application�
� � e � � � � � � e� � �

� � e e� � �

abstraction�
�� x � � � e � �

� � �x��� e � � � �

record�
� � ei � �i
� � i � n�

� � �l� � e�� � � � � ln � en	 � �l� � ��� � � � � ln � �n	

select�
� � e � �l� � ��� � � � � ln � �n	

� � e�li � �i
if � � i � n

constructor�
� � bi � �if� �� �g
� � i � k�

� � c�� 	 b � d�� 	
if c � �� � � � �� �k � d��	 � �

case�
� � a � d��	 � � bi �
�if� �� �g��
� � i � n�

� � case�d��� a of fc� 	 b� j � � � j cn 	 bng � �

subsumption�
� � e � �

� � e � �
if � � � � �

Fig� 	� Typing rules

� ��reduction �� is de�ned as the compatible closure of the rule

case�
d�� �� �ci�� �a� of fc� � f� j � � � j cn � fng �� fi a

� �basic is de�ned as �� � �� � ���

�� �basic and �basic are respectively de�ned as the re�exive�transitive and the
re�exive�symmetric�transitive closures of �basic�

Note that we do not require � and � � to coincide in the de�nition of ��reduction
as it would lead to too weak an equational theory	 However� the typing rules will
enforce � � � � on legal terms	

� Meta�theory of the core language

In this section� we summarize some basic properties of the core language	

Proposition � �Con�uence�� �basic is con�uent�

a �basic b � 	c � E � a�basic c � b�basic c

Proof� By the standard technique of Tait and Martin�L�of	

Proposition � �Subject reduction�� Typing is closed under �basic�

	 � a
 � � a�basic b � 	 � b
 �

Proof� By induction on the structure of the derivations� using some basic properties
of subtyping	

As usual� we say that an expression e is strongly normalizing with respect to a
relation � if there is no in�nite sequence

e� e� � e� � � � �

We let SN��� denote the set of expressions that are strongly normalizing with
respect to �	

Proposition � �Strong normalization�� �basic is strongly normalizing on ty�
pable expressions�

	 � a
 � � a � SN��basic�

Proof� By a standard computability argument	

We now turn to type�checking	 One cannot rely on the existence of minimal types�
as they may not exist �for minimal types to exist� one must require datatypes to
be pre�regular� see e	g	 ��� ����	 Instead� we can de�ne for every context 	 and
expression a a �nite set min� �a� of minimal types such that

� � min� �a� � 	 � a
 �
	 � a
 � � 	� � min� �a�� � � �

The set min� �a�� which is de�ned in the obvious way� is �nite because there are
only �nitely many declarations for each constructor	

Proposition �� Type�checking is decidable� there exists an algorithm to decide
whether a given judgment 	 � a
 � is derivable�

Proof� Proceed in two steps
 �rst compute min� �a�� second check whether there
exists � � min� �a� such that � � �	

� Extensionality

�� Motivations

Extensionality� as embodied e	g	 in ��conversion� is a basic feature of many type
systems	 Traditionally� extensionality equalities are oriented as contractive rules

e	g	 ��conversion is oriented as ��reduction	 On the other hand� expansive rules
provide an alternative computational interpretation of extensionality equalities
 e	g	
��conversion may be oriented as ��expansion	 Expansive extensionality rules have
numerous applications in categorical rewriting� uni�cation and partial evaluation	
In addition to these traditional motivations� which are nicely summarized in �����
subtyping adds some new fundamental reasons to use expansive rules

�	 contractive rules lead to non�con
uent calculi� even on well�typed expressions
 if
we adopt ��reduction for ��abstractions� then the following critical pair cannot
be solved

�x
�� ��y
�� y� x

�

��� � �
� � �

� � �
� � � �

����
���

���
���

�x
�� x �y
�� y

On the other hand� �x
�� ��y
�� y� x is well�typed �of type � � �� whenever
� � � �this observation is due to Mitchell� Hoang and Howard �����	 A similar
remark applies to datatypes
 if we adopt
�reduction for lists� as de�ned by

case
list�� �
list�� � e of fnil� nil�� � j cons� �a
�� �l
list�� �� cons�� �a lg �� e

then the following critical pair cannot be solved

M

�

��� � �
� � �

� � �

���
���

���
�

nil�� � nil���

where M
 case
list�� �
list�� � �nil���� of fnil� nil�� � j cons� �a
�� �l
list�� �� cons�� �a lg	

On the other hand� case
list�� �
list�� � �nil���� of fnil � nil�� � j cons � �a
 �� �l

list�� �� cons�� �a lg is well�typed �of type list�� �� whenever � � � 	
�	 contractive rules lead to calculi with too many canonical inhabitants �i	e	 closed

expressions in normal form�
 if we adopt
�reduction for lists then the following
expressions are canonical inhabitants of list�� �� provided � � � � a
 � and l

list���

nil��� nil�� � cons���a l cons�� �a l

On the other hand� one would expect canonical inhabitants of list�� � to be of
the form

nil�� � cons�� �a l

where in the second case l itself is a canonical inhabitant of list�� � and a is a
canonical inhabitant of � 	 Remarkably we obtain the desired e�ect if we reverse

�reduction	 With this new reduction rule� which we call
�expansion and denote
by ��� we have

nil����� case
list�� �
list�� � nil��� of fnil� nil�� � j cons� cons�� �g

�� nil�� �

Similarly� for a
 � and l
 list���� one has

cons���a l �� case
list�� �
list�� � �cons���a l� of fnil� nil�� � j cons� cons�� �g

�� cons�� � a l

�Strictly speaking� expansive extensionality rules are de�ned relative to a con�
text and a type and the above reductions are performed at type list�� ���

�	 expansive rules provide a simple but useful program optimization
 if we adopt
expansive rules for records� the expression �n � �� c � blue� reduces at type
�n
 nat� to �n � ��� thus throwing out the irrelevant �elds at type �n
 nat�	

We therefore embark upon studying an expansive interpretation of extensionality
in ������data	

�� Expansive extensionality rules

The computational behavior of the calculus is now obtained by aggregating the
expansive extensionality rules to �basic	 Expansive extensionality rules need to be
formulated in a typed framework so we consider judgments of the form

	 � a� b
 �

For the sake of uniformity� we �rst reformulate �basic in a typed framework	

De�nition ���

�� Typed basic�reduction �basic is de�ned by the clause

	 � a�basic b
 �

i� 	 � a
 � and a�basic b�

	� ��expansion�� is de�ned as the quasi�compatible closure �see below� of the rule

	 � a�� �x
�� a x
 � � �

provided a �� �x
�� b� The usual rule

	 � a�� b
 � � � 	 � c
 �

	 � a c�� b c
 �

is only allowed under the proviso b �� �x
�� a x�

� Surjective pairing �sp is de�ned as the quasi�compatible closure �see below� of

the rule

	 � a�sp �l� � a�l�� � � � � ln � a�ln�
 �l�
 ��� � � � � ln
 �n�

provided a �� �l� � a�� � � � � ln � an�� The usual rule

	 � a�sp b
 �l�
 ��� � � � � ln
 �n�

	 � a�li �sp b�li
 �i

is only allowed under the proviso b �� �l� � a�l�� � � � � ln � a�ln��

�
�expansion �� is de�ned as the quasi�compatible closure �see below� of the

rule

	 � a�� case
d�� �
d�� � a of fc� � c��� � j � � � j cn � cn�� �g
 d�� �

provided a �� ci�� �b and a �� case
d�� �
d�� � a

� of fc� � c��� � j � � � j cn � cn�� �g� The

usual rule

	 � a�� a�
 d�� �

	 � case�
d�� � a of fc� bg �� case�

d�� � a
� of fc� bg
 �

is only allowed under the proviso a� �� case
d�� �
d�� � a of fc� � c��� � j � � � j cn �

cn�� �g�
�� Typed full�reduction �full is de�ned as the union of basic� �� sp�
�reduction�

i�e�
	 � a�full b
 � � 	 � a�basic���sp�� b
 �

�� �full and �full are respectively de�ned as the re�exive�transitive and the re�exive�
symmetric�transitive closures of �full�

Several points deserve attention

�	 the various restrictions on �� � �sp and �� are required to enforce strong
normalization	 Without those restrictions� one would have loops or in�nite re�
ductions� see the appendix	

�	 unlike the traditional formulations of ��expansion� we do allow ��expansions
on ��abstractions at type � � � if the type of the variable is not � 	 Such
a possibility is indeed crucial for expressions of type � � � to reduce to an
expression of the form �x
�� e at that type	 On the other hand� note that ��
expansion as de�ned here does not preserve�basic�normal forms	 For example�
for � � ��

� �x
�� x
 � � �

is in �basic�normal form but

� �x
�� x �� �z
�� ��x
�� x� z
�� �z
�� z

 � � �

A similar remark applies to records and case�expressions	

�	 ���like rules for datatypes seem to have received very little attention in the
literature	 As far as we know� only Ghani ���� proposes a possible such rule
�his rule is motivated by categorical considerations� but does not study it in
detail	 Our expansion rule for datatypes is weaker than the one suggested by
Ghani ���� and thus is inadequate to capture the categorical view of datatypes
as initial algebras in a suitable category	 It nevertheless serves its purpose� see
Proposition �	

�	 reduction is not preserved under subsumption
 that is� one may have

	 � a�full b
 � � 	 �� a�full b
 �

for � � � 	 On the other hand�

	 � a�full b
 � � 	 � a �full b
 �

for � � � 	

�� Preservation of con�uence and strong normalization

Expansive extensionality rules preserve the fundamental properties of ������data	

Proposition
 �Strong normalization�� The relation �full is strongly normal�
izing on typable expressions�

Proof� By modifying� along the lines of e	g	 ����� the computability argument of
Theorem �	

Proposition � �Con�uence�� The relation �full is con�uent on typable expres�
sions�

Proof� Using Newman�s Lemma� strong normalization and weak con
uence� which
is proved by a case analysis on the possible critical pairs	

�� Theory of canonical inhabitants

Below we write 	 �nf a
 � if 	 � a
 � and there is no b � E such that 	 �
a�full b
 � 	 The following result shows that the theory of canonical inhabitants is
well�behaved� i	e	 that typable closed expressions in normal form have the expected
shape	

Proposition �� Assume that 	 �nf a
 � �

�� If � � � � �� then a � �x
�� b�

	� If � � �l�
 ��� � � � � ln
 �n�� then a � �l� � b�� � � � � ln � bn��

� If � � d���� then a � c���b�

Proof� By a case analysis on the possible normal forms	

The above result may be seen as evidence that the �� sp�
�rules restore a semantical
justi�cation of the system� and in particular of the case�expressions
 as every canon�
ical inhabitant of d�� � is of the form c�� �b� it is justi�ed to do pattern�matching on
c	

� Adding �xpoints

������data has a very restricted computational power	 In particular� it does not sup�
port recursion	 In this section� we study an extension of ������data with �xpoints�
and show the resulting calculus to be con
uent	

De�nition ���

�� The set of expressions E is extended with the clause �x x
�� a�
	� Fixpoint reduction �rec is de�ned as the compatible closure of the rule

�x x
�� a�rec afx
� �x x
�� ag

� The typing system is extended with the rule�

	� x
 � � a
 �

	 � �x x
�� a
 �

� We let �full�rec denote �full � �rec�

We have

Proposition
� The relation �full�rec is con�uent on typable expressions�

Proof� Using a standard technique due to L�evy ����� and exploited e	g	 in ����	 The
idea is to introduce bounded �xpoints� show that the calculus remains strongly
normalizing and con
uent� and then use some elementary reasoning on abstract
reduction systems to conclude that �full�rec is con
uent	

Obviously� �full�rec is not strongly normalizing	 In order to preserve strong nor�
malization� one must restrict oneself to guarded �x�expressions	 Technically� it is
achieved by de�ning the notion of an expression e being guarded� and by adding
the side�condition a is guarded in the typing rule for �xpoints	 A precise description
of the guard mechanism may be found for example in ����	

� Conclusion and directions for further work

In this paper� we have introduced a simply typed ��calculus with record types and
parametric datatypes	 The calculus supports a combination of record subtyping and
constructor subtyping and thus provides a
exible type system	 We have shown the
calculus to be well�behaved� in particular with respect to canonical inhabitants	

In the future� we intend to study de�nitions for ������data and its extensions	
Our goal is to aggregate a theory of de�nitions which is
exible enough to support
overloaded de�nitions� such as multiplication

 �
�
 N � E � E

�
�
 E � N � E

�
�
 O � O � O

�
	
 N � N � N

where each
i is de�ned using case�expressions and recursion	 As suggested by the
above example� the idea is to allow identi�ers to stand for several functions that
have a di�erent type	 To do so� several options exist
 for example� one may require
the de�nitions to be coherent in a certain sense	 Alternately� one may exploit some
strategy� see e	g	 ���� ���� to disambiguate the de�nitions	 Both approaches deserve
further study	

Furthermore� we intend to scale up the results of this paper to more complex
type systems	

�	 Type systems for programming languages
 in line with recent work on the
design of higher�order typed �HOT� languages� one may envisage extending
������data with further constructs� including bounded quanti�cation ���� objects
���� bounded operator abstraction ����	 We are also interested in scaling up our
results to programming languages with dependent types such as DML ����	 The
DML type system is based on constraints� and hence it seems possible to con�
sider constructor subtyping on inductive families� as for example in X i � X j

if i � j where X i is the type f�� � � � � ig	 Extending constructor subtyping to
inductive families is particularly interesting to implement type systems with
subtyping	

�	 Type systems for proof assistants
 the addition of subtyping to proof assistants
has been a major motivation for this work	 Our next step is to investigate
an extension of the Calculus of Inductive�Coinductive Constructions� see e	g	
����� with constructor subtyping	 As suggested in ��� ���� such a calculus seems
particularly appropriate to formalize Kahn�s natural semantics ����	

In yet a di�erent direction� it may be interesting to study destructor subtyping�
a dual to constructor subtyping� in which an inductive type � is a subtype of
another inductive type � if � has more destructors than � 	 The primary example
of destructor subtyping is of course record subtyping� as found in this paper	 We
leave for future work the study of destructor subtyping and of its interaction with
constructor subtyping	

References

�� M� Abadi and L� Cardelli� A theory of objects� Springer�Verlag� �����

�� H� Barendregt� The Lambda Calculus� Its Syntax and Semantics� volume ��� of Studies
in Logic and the Foundations of Mathematics� North�Holland� revised edition� �����

�� H� Barendregt� The impact of the lambda calculus in logic and computer science�
Bulletin of Symbolic Logic� �
����������� June �����

�� B� Barras et� al� The Coq Proof Assistant User�s Guide� Version ���� May �����

�� G� Barthe� Order�sorted inductive types� Information and Computation� ���x� To
appear�

�� G� Barthe and M�J� Frade� Constructor subtyping� Technical Report UMDITR�����
Department of Computer Science� University of Minho� �����

�� G� Betarte� Dependent Record Types and Algebraic Structures in Type Theory� PhD
thesis� Department of Computer Science� Chalmers Tekniska H�ogskola� �����

�� L� Cardelli� Type systems� ACM Computing Surveys� ��
����������� March �����

�� L� Cardelli and P� Wegner� On understanding types� data abstraction and polymor�
phism� ACM Computing Surveys� ��
����������� December �����

��� G� Castagna� G� Ghelli� and G� Longo� A calculus for overloaded functions with
subtyping� Information and Computation� ���
����������� February �����

��� A� Compagnoni and H� Goguen� Typed operational semantics for higher order sub�
typing� Technical Report ECS�LFCS�������� University of Edinburgh� July �����

��� T� Coquand� Pattern matching with dependent types� In B� Nordstr�om� editor� In�
formal proceedings of Logical Frameworks���� pages ������ �����

��� R� Di Cosmo� A brief history of rewriting with extensionality� Presented at the Inter�
national Summer School on Type Theory and Term Rewriting� Glasgow� September
�����

��� R� Di Cosmo and D� Kesner� Simulating expansions without expansions� Mathematical
Structures in Computer Science� �
����������� September �����

��� E� Emerson� Temporal and modal logic� In J� van Leeuwen� editor� Handbook of
theoretical computer science� volume B� pages ��������� Elsevier Publishing� �����

��� N� Ghani� Adjoint rewriting� PhD thesis� Laboratory for the Foundations of Computer
Science� University of Edinburgh� �����

��� E� Gim�enez� Structural recursive de�nitions in Type Theory� In K�G� Larsen�
S� Skyum� and G� Winskel� editors� Proceedings of ICALP���� volume ���� of Lec�
ture Notes in Computer Science� pages �������� Springer�Verlag� �����

��� J� Goguen and R� Diaconescu� An Oxford survey of order sorted algebra� Mathematical
Structures in Computer Science� �
����������� September �����

��� H� Hosoya� B� Pierce� and D�N� Turner� Subject reduction fails in Java� Message to
the TYPES mailing list� �����

��� C�B� Jay and N� Ghani� The virtues of eta�expansion� Journal of Functional Program�
ming� �
����������� April �����

��� M�P� Jones� Dictionary�free overloading by partial evaluation� In Proceedings of
PEPM���� pages �������� ����� University of Melbourne� Australia� Department of
Computer Science� Technical Report �����

��� G� Kahn� Natural semantics� In Proceedings of the Symposium on Theoretical Aspects
of Computer Science� volume ��� of Lecture Notes in Computer Science� pages ������
Springer�Verlag� �����

��� J��J� L�evy� An algebraic interpretation of the �	
�calculus and a labelled ��calculus�
Theoretical Computer Science� ��������� �����

��� Z� Luo� Coercive subtyping� Journal of Logic and Computation� ���x� To appear�
��� S� Marlow and P� Wadler� A practical subtyping system for Erlang� In Proceedings of

ICFP��	� pages �������� ACM Press� �����
��� R� Milner� M� Tofte� R� Harper� and D� MacQueen� The De
nition of Standard ML

�Revised�� The MIT Press� �����
��� J� C� Mitchell� M� Hoang� and B� T� Howard� Labelling techniques and typed �xed�

point operators� In A�D� Gordon and A�M� Pitts� editors� Higher Order Operational
Techniques in Semantics� pages �������� Cambridge University Press� �����

��� J� Peterson and K� Hammond
editors�� Haskell
���� A Non�strict� Purely Functional
Language� April �����

��� F� Pfenning� Re�nement types for logical frameworks� In H� Geuvers� editor� Informal
Proceedings of TYPES���� pages �������� �����

��� B�C� Pierce and D�N� Turner� Local type inference� In Proceedings of POPL���� pages
�������� ACM Press� �����

��� F� Pottier� Synth�ese de types en pr�esence de sous�typage� de la th�eorie la pratique�
PhD thesis� Universit�e Paris VII� �����

��� N� Shankar� S� Owre� and J�M� Rushby� The PVS Proof Checker� A Reference Manual�
Computer Science Laboratory� SRI International� February ����� Supplemented with
the PVS� Quick Reference Manual� �����

��� H� Xi and F� Pfenning� Dependent types in practical programming� In Proceedings of
POPL���� ACM Press� ����� To appear�

Loops and in�nite reductions for unrestricted extensionality

rules

For ��expansion

	 � a c �� ��x
�� a x� c

�� a c

 � � �

For surjective pairing �we treat the case where a
 �l
 �� l�
 �� but a similar remark
applies to arbitrary records�

	 � a�l �sp �l � a�l� l� � a�l���l
�� a�l

 �

For
�expansion �if we allow constructors to be expanded�

	 � �ci�� � b��� case
d�� �
d�� � �ci�� � b� of fc� � c��� � j � � � j cn � cn�� �g

�� ci�� � b

 d�� �

and �if we allow case�expressions to be expanded�

	 � case
d�� �
d�� � a of fc� � c��� � j � � � j cn � cn�� �g

�� case
d�� �
d�� � a� of fc� � c��� � j � � � j cn � cn�� �g

�� case
d�� �
d�� � a� of fc� � c��� � j � � � j cn � cn�� �g

�� � � �

 d�� �

where a� � a and

ai�� � case
d�� �
d�� � ai of fc� � c��� � j � � � j cn � cn�� �g

and �if we take the compatible closure of
�

	 � a�� case
d�� �
d�� � a of fc� � c��� � j � � � j cn � cn�� �g

�� case
d�� �
d�� � a� of fc� � c��� � j � � � j cn � cn�� �g

�� case
d�� �
d�� � a� of fc� � c��� � j � � � j cn � cn�� �g

�� � � �

 d�� �

where a� � a and

ai�� � case
d�� �
d�� � ai of fc� � c��� � j � � � j cn � cn�� �g

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

