Constructor subtyping

Gilles Barthe!2? and Maria Jodo Frade®

! Departamento de Informatica, Universidade do Minho, Braga, Portugal
% Institutionen for Datavetenskap, Chalmers Tekniska Hogskola, Goteborg, Sweden
{gilles,mjf}@di.uminho.pt

Abstract. Constructor subtyping is a form of subtyping in which an induc-
tive type o is viewed as a subtype of another inductive type 7 if 7 has more
constructors than o. As suggested in [5, 12], its (potential) uses include proof
assistants and functional programming languages.

In this paper, we introduce and study the properties of a simply typed
A-calculus with record types and datatypes, and which supports record sub-
typing and constructor subtyping. In the first part of the paper, we show
that the calculus is confluent and strongly normalizing. In the second part
of the paper, we show that the calculus admits a well-behaved theory of
canonical inhabitants, provided one adopts expansive extensionality rules,
including n-expansion, surjective pairing, and a suitable expansion rule for
datatypes. Finally, in the third part of the paper, we extend our calculus
with unbounded recursion and show that confluence is preserved.

1 Introduction

Type systems [3,8] lie at the core of modern functional programming languages,
such as Haskell [28] or ML [26], and proof assistants, such as Coq [4] or PVS [32]. In
order to improve the usability of these languages, it is important to devise flexible
(and safe) type systems, in which programs and proofs may be written easily. A
basic mechanism to enhance the flexibility of type systems is to endorse the set of
types with a subtyping relation < and to enforce a subsumption rule

a: A A<B
a:B

This basic mechanism of subtyping is powerful enough to capture a variety of con-
cepts in computer science, see e.g. [9], and its use is spreading both in functional
programming languages, see e.g. [25,30, 31], and in proof assistants, see e.g. [7, 24,
32].

Constructor subtyping is a basic form of subtyping, suggested in [12] and devel-
oped in [5], in which an inductive type o is viewed as a subtype of another inductive
type 7 if 7 has more constructors than o. As such, constructor subtyping captures
in a type-theoretic context the ubiquitous use of subtyping as inclusion between
inductively defined sets. In its simplest instance, constructor subtyping enforces
subtyping from odd or even numbers to naturals, as illustrated in the following ex-
ample, which introduces in a ML-like syntax the mutually recursive datatypes 0dd
and Even, and the Nat datatype:

datatype 0dd = s of Even datatype Nat = 0
and Even = 0 | s of Nat
| s of 0dd ; | s of 0dd
| s of Even ;

Here Even and 0dd are subtypes of Nat (i.e. Even < Nat and 0dd < Nat), since
every constructor of Even and 0dd is also a constructor of Nat.

In a previous paper [5], the first author introduced and studied constructor
subtyping for one first-order mutually recursive parametric datatype, and showed
the calculus to be confluent and strongly normalizing. In the present paper, we
improve on this work in several directions:

1. we extend constructor subtyping to the class of strictly positive, mutually re-
cursive and parametric datatypes. In addition, the present calculus supports
incremental definitions;

2. following recent trends in the design of proof assistants (and a well-established
trend in the design of functional programming languages), we replace the elim-
ination constructors of [5] by case-expressions. This leads to a simpler system,
which is easier to use;

3. we define a set of expansive extensionality rules, including n-expansion, sur-
jective pairing, and a suitable expansion rule for datatypes, so as to obtain a
well-behaved theory of canonical inhabitants (i.e. of closed expressions in nor-
mal forms). The latter is fundamental for a proper semantical understanding
of the calculus and for several applications related to proof assistants, such as
unification.

The main technical contribution of this paper is to show that the calculus enjoys
several fundamental meta-theoretical properties including confluence, subject re-
duction, strong normalization and a well-behaved theory of canonical inhabitants.
These results lay the foundations for constructor subtyping and open the possibility
of using constructor subtyping in programming languages and proof assistants, see
Section 7.

Organization of the paper The paper is organized as follows: in Section 2, we provide
an informal account of constructor subtyping. In Section 3, we introduce a simply
typed A-calculus with record types and datatypes, and which supports both record
subtyping and constructor subtyping. In Section 4, we establish some fundamental
meta-theoretical properties of the calculus. In Section 5, we motivate the use of
expansive extensionality rules, show that they preserve confluence and strong nor-
malization and lead to a well-behaved theory of canonical inhabitants. In Section 6,
we extend our core language with fixpoint operators, and show the resulting calcu-
lus to be confluent. Finally, we conclude in Section 7. Because of space constraints,
proofs are merely sketched or omitted. We refer the reader to [6] for further details.

Acknowledgements We are grateful to T. Altenkirch, P. Dybjer and L. Pinto for
useful discussions on constructor subtyping. The first author is partially supported
by a TMR fellowship. The second author is partially supported by the Loccomp
project.

2 An informal account of constructor subtyping

Constructor subtyping formalizes the view that an inductively defined set o is a
subtype of an inductively defined set 7 if 7 has more constructors than o. As may
be seen from the example of even, odd and natural numbers, the relative generality
of constructor subtyping relies on the possibility for constructors to be overloaded
and, to a lesser extent, on the possibility for datatypes to be defined in terms
of previously introduced datatypes. The following example, which introduces the
parametric datatypes List of lists and NeList of non-empty lists, provides further
evidence.

datatype ’a List = nil
| cons of (’a * ’a List) ;

datatype ’a NelList = cons of (’a * ’a List) ;

Here ’a NeList < ’a List since the only constructor of a NeList, cons : (’

(
* ’a List) —’a NeList is matched by the constructor of a List, cons : (’
* ’a List) —’a List.

The above examples reveal a possible pattern of constructor subtyping: for two
parametric datatypes d and d' with the same arity, we set d < d' if every declaration
(c in case of a constant, c of B otherwise) of d is matched in d’.! Another pattern,
used in [5], is to take subtyping as a primitive. Here we allow for the subtyping
relation to be specified directly in the definition of the datatype. As shown below,
such a pattern yields simpler definitions, with less declarations.

a
a

datatype 0dd = s of Even datatype Nat = s of Nat
and Even = 0 with 0dd < Nat,
| s of 0dd ; Even < Nat ;

The original datatype may be recovered by adding a declaration of the form ¢ :
o — d whenever ¢: 0 — d and d < d'. The same technique can be used to define
’a List and ’a NeList:

datatype ’a List = nil
and ’a NeList = cons of (’a * ’a List)
with ’a NeList < ’a List ;

For the clarity of the exposition, we shall adopt the second pattern in examples,
whereas we consider the first pattern in the formal definition of A_, [j gata-

Thus far, the subtyping relation is confined to datatypes. It may be extended
to types in the usual (structural) way. In this paper, we force datatypes to be
monotonic in their parameters. Hence, we can derive

0dd List < Nat List
[11:Even,12:Nat List,13:0dd] < [11:Nat,12:Nat List]
Nat — Even NeList < 0dd — Nat NelList

from the fact that 0dd < Nat, Even < Nat and ’a NeList < ’a List. The formal
definition of the subtyping relation is presented in the next section.

In order to introduce strict overloading, which is a central concept in this paper,
let us anticipate on the next section by considering the evaluation rule for case-
expressions. Two observations can be made: first, our informal definition of datatype
allows for arbitrary overloading of constructors. Second, it is not possible to define
a type-independent evaluation rule for case-expressions for arbitrary datatypes. For
example, consider the following datatype, where Sum is a datatype identifier of arity
2:

datatype (’a,’b) Sum = inj of ’a
| inj of ’b ;
Note that the datatype is obtained from the usual definition of sum types by over-

loading the constructors inj; and inj,. Now, a case-expression for this datatype
should be of the form

case a of (inj x) => bl | (inj x) => b2

! For the sake of simplicity, we gloss over renamings and assume the parameters of d and
d' to be identical.

with evaluation rules

case (inj a) of (inj x) => bl | (inj x) => b2 — bi{x:=a}
case (inj a) of (inj x) => bl | (inj x) => b2 — b2{x:=a}

As b1 and b2 are arbitrary, the calculus is obviously not confluent. Thus one needs
to impose some restrictions on overloading. One drastic solution to avoid non-
confluence is to require constructors to be declared at most once in a given datatype,
but this solution is too restrictive. A better solution is to require constructors to be
declared “essentially” at most once in a given datatype. Here “essentially” consists
in allowing a constructor c to be multiply defined in a datatype d, but by requiring
that for every declaration ¢ of rho, we have rho < rhom where ¢ of rhom is the
first declaration of ¢ in d. In other words, the only purpose of repeated declarations
is to enforce the desired subtyping constraints but (once subtyping is defined) only
the first declaration needs to be used for typing expressions. This notion, which we
call strict overloading, is mild enough to be satisfied by most datatypes that occur
in the literature, see [5] for a longer discussion on this issue.

We conclude this section with further examples of datatypes. Firstly, we define a
datatype of ordinals (or better said of ordinal notations). Note that the datatype is
a higher-order one, because of the constructor 1im which takes a function as input.

datatype Ord = s of Ord | lim of (Nat -> Ord)
with Nat < 0Ord ;

Second, we define a datatype of binary integers. These datatypes are part of the
Coq library, but Coq does not take advantage of constructor subtyping.

datatype positive = xH | xI of positive | x0 of positive ;

datatype natural = ZERD

with positive < natural ;
datatype integer = NEG of positive
with natural < integer ;

Thirdly, and as pointed out in [5,12], constructor subtyping provides a suitable
framework in which to formalize programming languages, including the object cal-
culi of Abadi and Cardelli [1] and a variety of other languages taken from [29].
Yet another example of language that can be expressed with constructor semantics
is mini-ML [22], as shown below. Here we consider four datatypes identifiers: E of
expressions, I for identifiers, P of patterns and N for the nullpattern, all with arity
0.

datatype I = ident ;

datatype N = nullpat ;

datatype P = pairpat of (P * P)

with I<P,NLP;

datatype E = num | false | true | lamb of (P * E)
| if of (E * E * E) | mlpair of (E * E)
| apply of (E * E) | let of (P * E x E)
| letrec of (P * E * E)

with I<E, NLE,;

Lastly, we conclude with a definition of CTL* formulae, see [15]. In this example,
we consider two datatypes identifiers SF of state formulae and PF of path formulae,
both with arity 1.

i of (a * ’a SF) | conj of (’a SF * ’a SF)
not of ’a SF | forsomefuture of ’a PF
forallfuture of ’a PF

datatype ’a SF

and ’a PF = conj of (’a PF * ’a PF) | not of ’a PF
| nexttime of ’a PF | until of ’a PF
with ’a SF < ’a PF ;

CTL* and related temporal logics provide suitable frameworks in which to verify the
correctness of programs and protocols, and hence are interesting calculi to formalize
in proof assistants.

3 A core calculus A_, [j data

In this section, we introduce the core calculus A_, |j gata- The first subsection is
devoted to types, datatypes and subtyping; the second subsection is devoted to
expressions, reduction and typing.

3.1 Types and subtyping

Below we assume given some pairwise disjoint sets £ of labels, D of datatype identi-
fiers, C of constructor identifiers and X of type variables. Moreover, we let [,1',1;,. ..

range over £, d,d', ... rangeover D, c,c, ¢;, ... range over C and a, o, a;, 3, . . . range
over X. In addition, we assume that every datatype identifier d has a fixed arity
ar(d) and that ai,as, ... is a fixed enumeration of X

Definition 1 (Types). The set T of types is given by the abstract syntaz:
o,7:=d[r,...,Tary] | |o = T|[li 101, ... ,ln:00]

where in the last clause it is assumed that the [;s are pairwise distinct. By conven-
tion, we identify record types that only differ in the order of their declarations, such
asl:ol' 7] and [I' : 7,1 : o).

We now turn to the definition of datatype. Informally, a datatype is a list of con-
structor declarations, i.e. of pairs (¢, 7) where ¢ is a constructor identifier and 7 is
a constructor type, i.e. a type of the form

pPrL— ... —>pn—>d[a1,...,aar(d)]

with d € D. However not all datatypes are valid. In order for a datatype to be valid,
it must satisfy several properties.

1. Constructors must be strictly positive, so that datatypes have a direct set-
theoretic interpretation. For example, ¢; : nat — d and c¢2 : (nat = d) — d
are strictly positive w.r.t. d, whereas c3 : (d — d) — d is not.

2. Parameters must appear positively in the domains of constructor types, so that
datatypes are monotonic in their parameters. For example, the parameter «
appears positively in the domain of @ — d[«], while it appears negatively in the
domain of (a — nat) — d[a].

3. Datatypes that mutually depend on each other must have the same number of
parameters, for the sake of simplicity.

4. Constructors must be strictly overloaded, so that case-expressions can be eval-
uated unambiguously.

In addition, we allow datatypes to depend on previously defined datatypes. This
leads us naturally to the notion of datatype context. Informally, a datatype con-
text is a finite list of datatypes. Below we let o, T range over types, X range over

datatype contexts, ¢ range over datatype constructors and d, d’' range over datatype
identifiers.

Definition 2 (Legal pre-type). o is a legal pre-type in N with variables in

{ay,...,ar} (or 0 if k =0) and a set of previously defined datatype identifiers F,
written N . o pretype(F), is defined by the rules of Figure 1.

R by o pretype(F) NbEy 7 pretype(F)

(pre —)

Rty o — 7 pretype(F)

R by o pretype(F) (1<i<n)
(pref])
Nbg[ly:o1,...,0, o] pretype(F)
deN Ny o pretype(F) (1 <i<ar(d))

(predata)

Ry, d[o] pretype(F)

N legal
(pre — a) B (1<i<h)

Rk a; pretype(F)

d¢F Nbpotype (1<i<ar(d))
R . d[o] pretype(F)

(predata — pre)

Fig. 1. PRE-TYPE FORMATION RULES

Note that in (predata-pre) we do not allow mutually dependent types to appear
nested, because we force each o; to be a type and not a pre-type.

Definition 3 (Legal type). o is a legal type in X with variables in {aq,...,ax}
(or O if k =0), written X ko type, is defined by the rules of Figure 2.

N g o type N g 7 type

(=)
N, o— 7 type
([]) N o; type (1 <1< TL)
Nbg[lh:o1,...,0n: 0n] type
deX Rbipo;type (1<i<ar(d))
(data)
N k. d[o] type
N legal
(@) _Nlegal” ey <<k
N F a; type

Fig. 2. TYPE FORMATION RULES

Definition 4 (Subtype). o is a subtype of 7 in X, written X F o < 7, is defined
by the rules of Figure 3, where X + d < d' if

—ar(d) = ar(d') =m;

N Fp o type

<re
(Sret) RFo<o
NFo<7 NEFETL
(Stra.ns) — =P
NEo<p
RFo' <o RNFTZT
(SH) — ’ =
NFo—717<0c =71
(<p) RNEoi<1s (1<i<n) Rbpojtype (n+1<j5<m)
=l RE o ylngm: Ongm] <[l 71,00y 1 0 7o
RFd<d RFo;<m (1<i<ar(d)
(Sdata) ’
R F dlo] <d'[7]
Fig. 3. SUBTYPING RULES
— every declarationc: 1 — ... = 17, = d[aq, ..., q,] in X is matched by another
declaration c: 1 — ... > T, = d'[oa, ..., ap] in X

Definition 5 (d-Constructor type). 7 is a d-constructor type in N with a set
of previously defined datatype identifiers F, written X F 7 coty(d)F, is defined by
the rules of Figure 6, where:

— « appears positively in 7, written o pos T, is defined by the rules of Figure 4;

— p is strictly positive w.r.t. d, written p spos d, is defined by the rules of Figure
5, where d nocc T denote that d does not occur in T;

— d € N if there exists a declaration (c: 1) € N in which d occurs.

(pos0) @ pos a
! !
(posl) La’ (negl) La,
@ pos a neg a
(pos2) a pos o «negT (neg2) anego «posT
a pos (1 — o) a neg (1 = o)
« pos o; 1<i<n « neg o; 1<i1<n
(pos3) posoi (1<isn) (neg3) goi (1sisn)
apos[li:ot,...,ln:on] aneg[li:o1,...,ln:04]
oso; (1<21< eg o; 1< <
(posd) aposo; (1<i<m) (negd) anego; (1<i<n)
a pos d[oi,...,00] a neg d[o1,...,0x]

Fig. 4. POSITIVE-NEGATIVE RULES

Definition 6. di(D) denote the set of datatype identifiers of D. It can be defined
inductively as follows:

1.di() =0
2. di(c:p1 = ... = pp = dla]) = {d}

d nocc T

(sposl)
T spos d

dnocc p; (1<i<n)
p1L— ... = pp = d[a] spos d

(spos2)

Fig. 5. STRICTLY POSITIVE RULES

Ny pi pretype(F) pi spos d ajposp; (1<i<n,1<j<k)

, with d ¢ &
NEpr = ... = pn > day,. .., o] coty(d)F

(coty)

Fig. 6. CONSTRUCTOR TYPE RULE

3. di(D', ¢ pr — ... = pn = d[a]) = di(D') U {d}

Definition 7 (Main d-declaration). We say ¢ : 7 is a main d-declaration,
written maing(c : 7), if it is the frist declaration of ¢ in a datatype declaration.
maing(c : 7) can be defined by the rules of Figure 7.

N;c:p1r = ... = pn = d[a] ok(F)

(mainl) -
maing(c: p1 = ... = pn — d[at])

N; D c:pr = ... = pp = da] ok(F) d ¢ di(D)
maing(c: p1 = ... = pn = d[a])

(main2)

Fig. 7. MAIN d-DECLARATION RULES

Definition 8 (Legal datatype context). X is a legal datatype context with a
set of previously defined datatype identifiers F, written N legalF, is defined by the
rules of Figure 8, where X compatible-(D) if

1. for every (c:71') € D,
Nt 7' coty(d)F A maing(c:7) = ¥;D;F 7<7
2. for every (c:7),(c" : ") € D,

maing(c:7) A maing (¢’ :7') = ar(d) =ar(d)

As you may notice, the rules of Figure 8 introduce a new kind of judgment
N; D ok(F) which means that over the datatype context X we are constructing a
new datatype D in a legal way. This judgment is very similar to the legal-judgment.
The difference is that the ok-judgment works with an “open datatype”.

Observe that Definitions 2-8 are mutually dependent. Note that Definitions 5
and 8 above are enforced by the side-conditions in (close) whereas Definitions 3 and
4 above are enforced by the rule (coty). Also note that in the side condition for
(close), 7" and 7 are compared w.r.t. X; D; and not X.

(empty) .5 legal(

N; D ok(F
(close) i D ok() , R compatible (D)
X; D; legalF U di(D)
N; D ok(F) N F 7 coty(d)F
(add-cons)
N; D, c: 7 ok(F)
(add-data) N legal”
N ok(F)

Fig. 8. DATATYPE RULES

3.2 Expressions and typing

In this subsection, we conclude the definition of A_, [} 4ara by defining its expressions,
specifying their computational behavior and providing them with a typing system.

Below we assume given a set V of wvariables and let z,z’,z;,y,... range over V.
Moreover, we assume given a legal datatype context N and let 7y be the set of legal
types in N; finally o, 7, ... are assumed to range over 7.

Definition 9. The set £ of expressions is given by the abstract syntax:

a,b:=x|Azr.alab|lli =a1, ... I, =ay]|al]
clo] afcasef, aof {c1t =bi| ... |cn=bn}
Free and bound variables, substitution .{. := .} are defined the usual way. Moreover

we assume standard variable conventions [2] and identify record expressions which
only differ in the order of their components, e.g. [l = a,l' = a'] and [I' = d',l =
a]. All the constructions are the usual ones, except perhaps for case-expressions,
which are typed so as to avoid failure of subject reduction, see e.g. [19], and are
slightly different from the usual case expressions in that we pattern-match against
constructors rather than against patterns.

Definition 10 (Typing).

1. A context I' is a finite set of assumptions x1 : T1,...,%Ty : Tn Such that the ;s
are pairwise distinct elements of V and 7; € To.

2. A judgment is a triple of the form I' b a: 7, where I' is a context, a € £ and
T€Tp.

3. A judgment is derivable if it can be inferred from the rules of Figure 9, where

in the (case) rule it is assumed that ¢y : 71,...,¢, : T, are the sole main d-
declarations and that 7° denotes &, — ... = &, — o whenever T =&, — ... —
& — dlp].

4. An expression a € £ is typable if I' - a: o for some context I' and type o.

The computational behavior of A_, [4ata is drawn from the usual notion of 3-
reduction, t-reduction and w-reduction.

Definition 11.

1. B-reduction — 3 is defined as the compatible closure of the rule
(Azo.a) b —p a{z := b}
2. m-reduction — is defined as the compatible closure of the rule

lh=a1,...,ln = au)li =7 a;

(start) I'tz:7 ife:rel’

I're:TrTso0 T Fe:r

application
(app) I'kee:o
Nz:7kFe:
(abstraction) T 9
I'-dere:7—o0
I''te:m (1<i<n)
(record)
'kt lh=e,... ln=ex]:[li:71,...,ln 7]
I'kFe:Jli: R O o
(select) eilhim,.. b7l if1<i<n
Fl—e.li:n
'+ b;:p; = 1<i<k .
(constructor) pla=7} 1<ish ifec:pr— ... > pp—>da]er
I' F ¢[7]b:d[7]
'ta:dp] I'Fbi:(n{a:=p}° (1<i<n)
(case)
I & casegaof {ei=bi|...lcn =>bu}:o
(subsumption) Lre:r ifRXFr<o
I'ke:o

Fig.9. TYPING RULES

3. t-reduction —, is defined as the compatible closure of the rule
caseg[r,] (ci[T]a) of {c1 = fi| ... |en = fa} = fia
4. —pasic 15 defined as =g U =, U —,.
5. —pasic and =pasic are respectively defined as the reflexive-transitive and the
reflexive-symmetric-transitive closures of —pasic-
Note that we do not require 7 and 7’ to coincide in the definition of :-reduction

as it would lead to too weak an equational theory. However, the typing rules will
enforce 7 < 7/ on legal terms.

4 Meta-theory of the core language
In this section, we summarize some basic properties of the core language.
Proposition 1 (Confluence). =445 is confluent:
@ =pasic0 = Jc€E. a—>pasicc N b—pgsic
Proof. By the standard technique of Tait and Martin-Lof.
Proposition 2 (Subject reduction). Typing is closed under —pgsic:
I'Fa:0 AN a—pesicb = ['Fb:o

Proof. By induction on the structure of the derivations, using some basic properties
of subtyping.

As usual, we say that an expression e is strongly normalizing with respect to a
relation — if there is no infinite sequence

e — el — ey —»

We let SN(—) denote the set of expressions that are strongly normalizing with
respect to —.

Proposition 3 (Strong normalization). —y.s. is strongly normalizing on ty-
pable expressions:
I'ta:0c = a€SN(=pasic)

Proof. By a standard computability argument.

We now turn to type-checking. One cannot rely on the existence of minimal types,
as they may not exist (for minimal types to exist, one must require datatypes to
be pre-regular, see e.g. [5,18]). Instead, we can define for every context I and
expression a a finite set miny(a) of minimal types such that

oceminp(a) = I'Fa:o
I'ta:o = Ire€minp(a). 7<0

The set minp(a), which is defined in the obvious way, is finite because there are
only finitely many declarations for each constructor.

Proposition 4. Type-checking is decidable: there exists an algorithm to decide
whether a given judgment I' & a : o is derivable.

Proof. Proceed in two steps: first compute miny(a), second check whether there
exists 7 € minp(a) such that 7 < .

5 Extensionality

5.1 Motivations

Extensionality, as embodied e.g. in n-conversion, is a basic feature of many type
systems. Traditionally, extensionality equalities are oriented as contractive rules:
e.g. n-conversion is oriented as n-reduction. On the other hand, expansive rules
provide an alternative computational interpretation of extensionality equalities: e.g.
n-conversion may be oriented as n-expansion. Expansive extensionality rules have
numerous applications in categorical rewriting, unification and partial evaluation.
In addition to these traditional motivations, which are nicely summarized in [13],
subtyping adds some new fundamental reasons to use expansive rules:

1. contractive rules lead to non-confluent calculi, even on well-typed expressions: if
we adopt n-reduction for A-abstractions, then the following critical pair cannot
be solved:

Azr. (\yo. y) ©
/ \
Ao T Ayo.y
On the other hand, Az:7. (Ay:0. y) = is well-typed (of type 7 — o) whenever

7 < o (this observation is due to Mitchell, Hoang and Howard [27]). A similar
remark applies to datatypes: if we adopt u-reduction for lists, as defined by

case::ztm e of {nil = nil[7] | cons = Aa:r. Allist[7]. cons[r]al} —, e

then the following critical pair cannot be solved:

M
ilf]/ \ illo]

where M = case{%] (nil[o]) of {nil = nil[7] | cons = Aa:r. Aldist[r]. cons[r]al}.
On the other hand, caset "] (nillo]) of {nil = nill] | cons = Xa:7. M:
list[7]. cons[r]a |} is well-typed (of type list[r]) whenever o < 7.

2. contractive rules lead to calculi with too many canonical inhabitants (i.e. closed
expressions in normal form): if we adopt p-reduction for lists then the following
expressions are canonical inhabitants of list[r], provided ¢ < 7, a : 0 and [:
list[o]:

nil[o] nil[7] consfo]a cons[t]a I
On the other hand, one would expect canonical inhabitants of list[T] to be of
the form
nil[7] cons[t]a [
where in the second case [itself is a canonical inhabitant of list[r] and a is a
canonical inhabitant of 7. Remarkably we obtain the desired effect if we reverse
p-reduction. With this new reduction rule, which we call y-expansion and denote
by —z, we have:
nillo] =7 case:::m nil[o] of {nil = nil[7] | cons = cons|7]}

—, nil[7]

Similarly, for a : 0 and [: list[o], one has:
cons[ola | =5 case::z:m (cons[o]a 1) of {nil = nil[r] | cons = cons[7]}
—, cons[7] al

(Strictly speaking, expansive extensionality rules are defined relative to a con-
text and a type and the above reductions are performed at type list[7]);

3. expansive rules provide a simple but useful program optimization: if we adopt
expansive rules for records, the expression [n = 3,¢ = blue] reduces at type
[n : nat] to [n = 3], thus throwing out the irrelevant fields at type [n : nat].

We therefore embark upon studying an expansive interpretation of extensionality

in Aa,[],data-

5.2 Expansive extensionality rules

The computational behavior of the calculus is now obtained by aggregating the
expansive extensionality rules to —p4si.. Expansive extensionality rules need to be
formulated in a typed framework so we consider judgments of the form

I'Fa—b:0o

For the sake of uniformity, we first reformulate — 45 in a typed framework.
Definition 12.

1. Typed basic-reduction —pqsic 25 defined by the clause
I'F a—pesicb:o

iff ' F a:0 and a —pgsic b-

2. n-expansion — is defined as the quasi-compatible closure (see below) of the rule
I' -a—=glzrazc:7 =0
provided a # \x:T. b. The usual rule

I'Fa—=yb:T—>0 I'kFe:r

I'Fac—gbc:o

is only allowed under the proviso b # \x:T. a x.
3. Surjective pairing — s, is defined as the quasi-compatible closure (see below) of

the rule
''Fa—=sgplli=aly, ... lp=alp]:[lh:m, ... ln:7]
provided a # [ly = a1, ... ,l, = ay,]. The usual rule
I'kFa—gpbiflhim, .. 07
I+ (J,.li —>sp blz LT

is only allowed under the proviso b # [l = a.ly, ... ,l, = a.l,)].
4. p-expansion —y is defined as the quasi-compatible closure (see below) of the

rule

I+ a—ycaseql aof {oo = alr]| ... |en= calr]}:d[r]
provided a # ¢;[T]b and a # casejm a' of {e1 = a1[T]| ... |en = en[T]}. The

usual rule
I'F a—gad:dr]
I' = casey, a of {¢ = b} -y casey, a' of {c=b}:0

is only allowed under the proviso a' # casegm aof {e1 =]| ... |en =
cnlT]}-

5. Typed full-reduction — ¢y is defined as the union of basic, 7, sp, fi-reduction,
i.€.

I''Fa—=fub:o & I'F a—pasicnspub:o

6. — ruu and =gy are respectively defined as the reflexive-transitive and the reflexive-
symmetric-transitive closures of =y -

Several points deserve attention:

1. the various restrictions on —3, —,, and —y are required to enforce strong
normalization. Without those restrictions, one would have loops or infinite re-
ductions, see the appendix.

2. unlike the traditional formulations of n-expansion, we do allow n-expansions
on A-abstractions at type 7 — o if the type of the variable is not 7. Such
a possibility is indeed crucial for expressions of type ¢ — 7 to reduce to an
expression of the form Az:o. e at that type. On the other hand, note that -
expansion as defined here does not preserve —,5;.-normal forms. For example,
for 7 < o,

FAro.z:7—>0

is In —pgsic-normal form but

F Avo. .z =5 dzr. (Avo.z) z : 7 =0
—3 AZT. 2

A similar remark applies to records and case-expressions.

3. —y-like rules for datatypes seem to have received very little attention in the
literature. As far as we know, only Ghani [16] proposes a possible such rule
(his rule is motivated by categorical considerations) but does not study it in
detail. Our expansion rule for datatypes is weaker than the one suggested by
Ghani [16] and thus is inadequate to capture the categorical view of datatypes
as initial algebras in a suitable category. It nevertheless serves its purpose, see
Proposition 7.

4. reduction is not preserved under subsumption: that is, one may have

Fl—a—>fullb:a A F|7‘a—>fu”b:7—
for 0 < 7. On the other hand,
Fl—a—>fu”b:0 = Fl—a,:fu”b:T

for o < 7.

5.3 Preservation of confluence and strong normalization

Expansive extensionality rules preserve the fundamental properties of A_,] gata-

Proposition 5 (Strong normalization). The relation — pyy is strongly normal-
1zing on typable expressions.

Proof. By modifying, along the lines of e.g. [20], the computability argument of
Theorem 3.

Proposition 6 (Confluence). The relation — ¢y is confluent on typable expres-
$40MS.

Proof. Using Newman’s Lemma, strong normalization and weak confluence, which
is proved by a case analysis on the possible critical pairs.

5.4 Theory of canonical inhabitants

Below we write I' F*/ a: 7if I' F a : 7 and there is no b € £ such that I" F
a — puu b : 7. The following result shows that the theory of canonical inhabitants is
well-behaved, i.e. that typable closed expressions in normal form have the expected
shape.

Proposition 7. Assume that I' F*f a: 7.

1. If T =0 — p, then a = \x0. b;
2. Ifr=[lh:01, ... ,Ip:oy], thena=1[l1 =by, ... 1, =0yl
3. If T = d[o], then a = c[o]b.

Proof. By a case analysis on the possible normal forms.

The above result may be seen as evidence that the 7, sp, fi-rules restore a semantical
justification of the system, and in particular of the case-expressions: as every canon-
ical inhabitant of d[7] is of the form ¢[7]b, it is justified to do pattern-matching on
c.

6 Adding fixpoints

A [),data has a very restricted computational power. In particular, it does not sup-
port recursion. In this section, we study an extension of A_, j 4ata With fixpoints,
and show the resulting calculus to be confluent.

Definition 13.

1. The set of expressions £ is extended with the clause fix z:7.a.
2. Fizpoint reduction —,c. is defined as the compatible closure of the rule

fix z:7.a e a{z :=fix z:7.0}
3. The typing system is extended with the rule:

x:tkFa:1

I'F fixz:t.a:7

4. We let — full+rec denote —full U —rec-
We have:

Proposition 8. The relation — fyii4rec 15 confluent on typable expressions.

Proof. Using a standard technique due to Lévy [23], and exploited e.g. in [14]. The
idea is to introduce bounded fixpoints, show that the calculus remains strongly
normalizing and confluent, and then use some elementary reasoning on abstract
reduction systems to conclude that — fyi4rec is confluent.

Obviously, — fuii4rec is not strongly normalizing. In order to preserve strong nor-
malization, one must restrict oneself to guarded fix-expressions. Technically, it is
achieved by defining the notion of an expression e being guarded, and by adding
the side-condition a is guarded in the typing rule for fixpoints. A precise description
of the guard mechanism may be found for example in [17].

7 Conclusion and directions for further work

In this paper, we have introduced a simply typed A-calculus with record types and
parametric datatypes. The calculus supports a combination of record subtyping and
constructor subtyping and thus provides a flexible type system. We have shown the
calculus to be well-behaved, in particular with respect to canonical inhabitants.

In the future, we intend to study definitions for A_, j qata and its extensions.
Our goal is to aggregate a theory of definitions which is flexible enough to support
overloaded definitions, such as multiplication x:

x=%x N> E—>E
=% :E->N->E
=%x3:0-0—-0
=%,: N> N->N

where each x; is defined using case-expressions and recursion. As suggested by the
above example, the idea is to allow identifiers to stand for several functions that
have a different type. To do so, several options exist: for example, one may require
the definitions to be coherent in a certain sense. Alternately, one may exploit some
strategy, see e.g. [10,21], to disambiguate the definitions. Both approaches deserve
further study.

Furthermore, we intend to scale up the results of this paper to more complex
type systems.

1.

Type systems for programming languages: in line with recent work on the
design of higher-order typed (HOT) languages, one may envisage extending
A, [.data With further constructs, including bounded quantification [9], objects
[1], bounded operator abstraction [11]. We are also interested in scaling up our
results to programming languages with dependent types such as DML [33]. The
DML type system is based on constraints, and hence it seems possible to con-
sider constructor subtyping on inductive families, as for example in X i < X j
if i < j where X 7 is the type {0,...,i}. Extending constructor subtyping to
inductive families is particularly interesting to implement type systems with
subtyping.

Type systems for proof assistants: the addition of subtyping to proof assistants
has been a major motivation for this work. Our next step is to investigate
an extension of the Calculus of Inductive/Coinductive Constructions, see e.g.
[17], with constructor subtyping. As suggested in [5,12], such a calculus seems
particularly appropriate to formalize Kahn’s natural semantics [22].

In yet a different direction, it may be interesting to study destructor subtyping,
a dual to constructor subtyping, in which an inductive type ¢ is a subtype of
another inductive type 7 if ¢ has more destructors than 7. The primary example
of destructor subtyping is of course record subtyping, as found in this paper. We
leave for future work the study of destructor subtyping and of its interaction with
constructor subtyping.

References

1.
2.

3.

10.

11.

12.

13.

14.

15.

16.

M. Abadi and L. Cardelli. A theory of objects. Springer-Verlag, 1996.

H. Barendregt. The Lambda Calculus: Its Syntaz and Semantics, volume 103 of Studies
in Logic and the Foundations of Mathematics. North-Holland, revised edition, 1984.
H. Barendregt. The impact of the lambda calculus in logic and computer science.
Bulletin of Symbolic Logic, 3(2):181-215, June 1997.

B. Barras et. al. The Coq Proof Assistant User’s Guide. Version 6.2, May 1998.

G. Barthe. Order-sorted inductive types. Information and Computation, 199x. To
appear.

G. Barthe and M.J. Frade. Constructor subtyping. Technical Report UMDITR9807,
Department of Computer Science, University of Minho, 1998.

G. Betarte. Dependent Record Types and Algebraic Structures in Type Theory. PhD
thesis, Department of Computer Science, Chalmers Tekniska Hogskola, 1998.

L. Cardelli. Type systems. ACM Computing Surveys, 28(1):263—-264, March 1996.

L. Cardelli and P. Wegner. On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys, 17(4):471-522, December 1985.

G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with
subtyping. Information and Computation, 117(1):115-135, February 1995.

A. Compagnoni and H. Goguen. Typed operational semantics for higher order sub-
typing. Technical Report ECS-LFCS-97-361, University of Edinburgh, July 1997.

T. Coquand. Pattern matching with dependent types. In B. Nordstrom, editor, In-
formal proceedings of Logical Frameworks’92, pages 66—79, 1992.

R. Di Cosmo. A brief history of rewriting with extensionality. Presented at the Inter-
national Summer School on Type Theory and Term Rewriting, Glasgow, September
1996.

R. Di Cosmo and D. Kesner. Simulating expansions without expansions. Mathematical
Structures in Computer Science, 4(3):315-362, September 1994.

E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
theoretical computer science, volume B, pages 995-1072. Elsevier Publishing, 1990.
N. Ghani. Adjoint rewriting. PhD thesis, Laboratory for the Foundations of Computer
Science, University of Edinburgh, 1995.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

E. Giménez. Structural recursive definitions in Type Theory. In K.G. Larsen,
S. Skyum, and G. Winskel, editors, Proceedings of ICALP’98, volume 1443 of Lec-
ture Notes in Computer Science, pages 397-408. Springer-Verlag, 1998.

J. Goguen and R. Diaconescu. An Oxford survey of order sorted algebra. Mathematical
Structures in Computer Science, 4(3):363-392, September 1994.

H. Hosoya, B. Pierce, and D.N. Turner. Subject reduction fails in Java. Message to
the TYPES mailing list, 1998.

C.B. Jay and N. Ghani. The virtues of eta-expansion. Journal of Functional Program-
ming, 5(2):135-154, April 1995.

M.P. Jones. Dictionary-free overloading by partial evaluation. In Proceedings of
PEPM’9/, pages 107-117, 1994. University of Melbourne, Australia, Department of
Computer Science, Technical Report 94/9.

G. Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical Aspects
of Computer Science, volume 247 of Lecture Notes in Computer Science, pages 22-39.
Springer-Verlag, 1987.

J.-J. Lévy. An algebraic interpretation of the ABk-calculus and a labelled A-calculus.
Theoretical Computer Science, 2:97-114, 1976.

Z. Luo. Coercive subtyping. Journal of Logic and Computation, 199x. To appear.

S. Marlow and P. Wadler. A practical subtyping system for Erlang. In Proceedings of
ICFP’97, pages 136-149. ACM Press, 1997.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML
(Revised). The MIT Press, 1997.

J. C. Mitchell, M. Hoang, and B. T. Howard. Labelling techniques and typed fixed-
point operators. In A.D. Gordon and A.M. Pitts, editors, Higher Order Operational
Techniques in Semantics, pages 137-174. Cambridge University Press, 1998.

J. Peterson and K. Hammond (editors). Haskell 1.4.: A Non-strict, Purely Functional
Language, April 1997.

F. Pfenning. Refinement types for logical frameworks. In H. Geuvers, editor, Informal
Proceedings of TYPES’93, pages 285—299, 1993.

B.C. Pierce and D.N. Turner. Local type inference. In Proceedings of POPL’98, pages
252-265. ACM Press, 1998.

F. Pottier. Synthése de types en présence de sous-typage: de la théorie la pratique.
PhD thesis, Université Paris VII, 1998.

N. Shankar, S. Owre, and J.M. Rushby. The PVS Proof Checker: A Reference Manual.
Computer Science Laboratory, SRI International, February 1993. Supplemented with
the PVS2 Quick Reference Manual, 1997.

H. Xi and F. Pfenning. Dependent types in practical programming. In Proceedings of
POPL’99. ACM Press, 1999. To appear.

Loops and infinite reductions for unrestricted extensionality
rules

For n-expansion:

't ac—yAerax)c:Tt—=o0
—pac

For surjective pairing (we treat the case where a : [l : 7,1’ : 0] but a similar remark
applies to arbitrary records):

't al—gl=al,l!l=alll:7
—. al

For p-expansion (if we allow constructors to be expanded):

Ik (e;lr] b) = caselr] (c;[7] b) of {er = ca[T]| ... |en = cal7]} - d[7]

—, c[T] b

and (if we allow case-expressions to be expanded):

I+ casejlaof {er = alr]| .. |en = colr]} - d[r]
=7 caseg[:] ar of {c1 = c1[T]| ... |en = cnl7]}
—ﬁcm%%w”qiqﬁ|m|%é%M}
- -

where ag = a and
iy = casegm a; of {1 = c1[7]| ... |en = culT]}

and (if we take the compatible closure of 1):

kaﬁmﬁﬁa&M$QM|m|%i%M}dm
—7 casegﬁ ar of {c1 = c1[7]| ... |en = cnl7]}
=z caseg[:] as of {c1 = c1[T]] ... |en = ca[T]}
—T -

where ag = a and

aip1 = casezllm a; of {c1 = ci[T]| ... |cn = cu[T]}

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

