
Verification of interactive software for medical devices:
PCA infusion pumps and FDA regulation as an example

Paolo Masci, Paul Curzon
Michael D. Harrison

Queen Mary University of London
United Kingdom

{paolo.masci,pc,mdh}@eecs.qmul.ac.uk

Anaheed Ayoub, Insup Lee
University of Pennsylvania

Philadelphia, PA, USA
{anaheed,lee}@seas.upenn.edu

Harold Thimbleby
Swansea University

United Kingdom
h.thimbleby@swansea.ac.uk

ABSTRACT
Medical device regulators such as the US Food and Drug Ad-
ministration (FDA) aim to make sure that medical devices are
reasonably safe before entering the market. To expedite the
approval process and make it more uniform and rigorous, reg-
ulators are considering the development of reference models
that encapsulate safety requirements against which software
incorporated in to medical devices must be verified. Safety,
insofar as it relates to interactive systems and its regulation,
is generally a neglected topic, particularly in the context of
medical systems. An example is presented here that illus-
trates how the interactive behaviour of a commercial Patient
Controlled Analgesia (PCA) infusion pump can be verified
against a reference model. Infusion pumps are medical de-
vices used in healthcare to deliver drugs to patients, and PCA
pumps are particular infusion pump devices that are often
used to provide pain relief to patients on demand. The ref-
erence model encapsulates the Generic PCA safety require-
ments provided by the FDA, and the verification is performed
using a refinement approach. The contribution of this work is
that it demonstrates a concise and semantically unambiguous
approach to representing what a regulator’s requirements for
a particular interactive device might be, in this case focusing
on user-interface requirements. It provides an inspectable and
repeatable process for demonstrating that the requirements
are satisfied. It has the potential to replace the considerable
documentation produced at the moment by a succinct docu-
ment that can be subjected to careful and systematic analysis.

Author Keywords
Software Engineering Methods and Processes - Formal;
Model-Based System Development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’13, June 24–27, 2013, London, United Kingdom.
Copyright 2013 ACM 978-1-4503-2138-9/13/06...$15.00.

ACM Classification Keywords
D.2.4. [Software/Program Verification];
D.2.2. [Design Tools and Techniques: User Interfaces]

INTRODUCTION
Many interactive systems are safety critical in the sense that
user action may have consequences that will compromise
safety (i.e., cause damage or harm). An important aspect of
the engineering of interactive computer systems is to provide
appropriate processes and evidence that systems are designed
to satisfy the various requirements that have been established
to reduce the risk of products causing such harm. This pa-
per addresses the engineering problem by describing a for-
mal technique that supports proof that user interface related
safety requirements are satisfied in a specified interactive sys-
tems design. The medical domain is chosen to demonstrate
the approach.

In many countries, medical equipment undergoes a degree of
scrutiny prior to being placed on the market. This scrutiny is
required by regulators to provide confidence that the device
is safe and fit for purpose, and (through the statutory role of
regulation) to manage potential litigation if defects are later
discovered. Currently, device approval is not standardised
across nations, and how the approval process should be car-
ried out [18, 19] continues to be a matter for debate. Current
approaches to medical device regulation typically combine
premarket review and post-market surveillance. As part of
the premarket review, manufacturers are required to “demon-
strate the safety and effectiveness of a device” prior to in-
troduction to market. Post-market surveillance involves the
development of monitoring mechanisms to identify potential
safety issues with deployed devices — in some cases these
issues only become apparent after the device has been in ser-
vice for several years with a large user population.

The level of scrutiny imposed by regulators in the premarket
review depends on risks in device use. The US Food and Drug
Administration (FDA), which is taken as a benchmark by
many other countries, e.g., in Japan and China [10], has iden-
tified three main risk classes of medical devices. Class I med-
ical devices are low risk devices subject only to “general con-
trols” [23] for example relating to misbranding. An example

of a Class I device is a syringe. Class II medical devices are
medium risk devices that require general controls (the same
as Class I devices) plus “special controls” such as verification
of mandatory performance and safety requirements. Exter-
nal infusion pumps, used as examples in the paper, belong to
this class. Class III medical devices are high risk devices that
support or sustain human life and are of substantial impor-
tance in preventing impairment of human health. Examples
include implantable devices such as pacemakers. These de-
vices require general controls and “premarket approval”. This
involves submitting sufficient engineering and clinical evalu-
ation evidence that the device can be safely deployed in its
intended context. Most marketed medical devices are classi-
fied as Class II devices [24] because medical devices can be
considered as Class II by regulators when manufacturers can
demonstrate substantial equivalence to already legally mar-
keted devices. A new device is substantially equivalent to a
legally marketed device when it has the same intended use
and either the same technological characteristics or different
technological characteristics that do not raise new questions
of safety and effectiveness. The manufacturer can satisfy the
regulator by demonstrating that the new device is at least as
safe and effective as the already marketed device. This re-
view process is described in the Premarket Notification doc-
ument [25], known as 510(k) clearance.

The FDA’s Centre for Devices and Radiological Health
(CDRH), which is responsible for medical device review, is
fairly small and needs to review a large number of devices
each year [29]. Recent figures suggest that over five thousand
new devices require 510(k) clearance each year. 510(k) ap-
plications must be substantively reviewed within 90 calendar
days of the date at which they were filed [27]. Device ap-
proval is entirely based on written documents and does not
involve any direct evaluation of the product. The typical size
of a 510(k) submission is tens of thousands of printed pages.

The FDA is currently reviewing the 510(k) clearance pro-
cess because a number of unexpected incidents have involved
cleared medical devices. There are a growing number of de-
vice recalls issued over the last few years for dangerous or de-
fective products that could cause serious health consequences
or death [3].

Several incidents have been due to external drug infusion
pumps, most commonly a result of (i) “software errors” and
(ii) “human factors errors” (e.g., use errors) [26].

To promote a more rigorous analysis of infusion pumps, the
FDA is running a pilot project, the Generic Infusion Pump
(GIP) [2], that aims to demonstrate how systematic and rig-
orous model-based analysis can be applied to software for in-
fusion pumps. The idea is to specify safety requirements for
broad classes of infusion pumps, such as Patient Controlled
Analgesia and Insulin pumps. As part of the GIP project,
Kim et al [9] have demonstrated how a model-based devel-
opment approach can be used to implement software for the
controller of a Patient Controlled Analgesia (PCA) pump ver-
ified against the Generic PCA (GPCA) safety requirements
provided by the FDA. This paper, in contrast, focuses on the
user interface module of a commercial infusion pump of the

PCA family. It takes a different approach with a focus on user
interface requirements, by creating a model from the software
of an existing product and then verifying this model against
the required safety requirements to verify the interactive be-
haviour of the already implemented software.

The contributions of this paper are: (i) a verification ap-
proach, based on reverse engineering and model refinement
that allows the verification of interactive software incorpo-
rated in user interfaces of medical devices (such as infusion
pumps) against given safety requirements; (ii) a tool-neutral
formalisation of selected GPCA safety requirements; (iii) an
example based on a commercial PCA infusion pump, where
PVS [14] (a higher-order logic based verification system) is
used to verify a reverse engineered version of the software
incorporated in the pump user interface against the GPCA
safety requirements.

The structure of the paper is as follows. After discussing re-
lated research, the verification approach is presented. It com-
bines reverse engineering and model refinement. A formali-
sation of the GPCA safety requirements provided by the FDA
is developed in a form suitable for use with refinement ap-
proaches. The PVS verification system is then used to spec-
ify and verify the interactive behaviour of a commercial PCA
pump against the formalised safety requirements. This leads
to a discussion of the utility of the approach within the current
regulatory and production cycles of medical devices. Finally
conclusions are drawn.

RELATED WORK
The work described in this paper brings together a number of
threads of previous research.

The verification of interactive systems against requirements
has been performed both informally using techniques such as
heuristic evaluation [13] and formally using model checking
techniques [7]. Indeed the models that are behind the con-
crete models described in this paper were originally devel-
oped for model checking analyses using MAL and NuSMV.
Other work checking properties of interactive behaviour in-
cludes the use of PVS to analyse predictability in number
entry [11, 12]. The use of finite state machines to describe
interactive systems has a very long history originating in the
early 1980s. Notable in this history has been the work of De-
gani [6] and Thimbleby [21].

The original GPCA safety requirements [2] were also for-
malised in [9]. In that work, the authors verified the controller
of the GPCA model provided by the FDA against the GPCA
safety requirements. They used an approach based on model
transformations and manually translated the safety require-
ments into properties of the controller of a formalisation of
the GPCA model. Here, in contrast, (i) an approach is used
based on refinement — this makes it possible to specify safety
requirements independently of the model to be verified; and
(ii) verification of the user-interface related GPCA safety re-
quirements is carried out on the user interface of a commer-
cial PCA pump, thus demonstrating that formal verification
can be used effectively even if software has been already de-
veloped and the model (if there was any) is not available.

Figure 1. Approach based on reverse engineering and model refinement.

A refinement approach similar to that used in our work has
been used in [16] for redeveloping core parts of a commercial
air traffic information system. The functional requirements of
the system were given as a VDM specification, and the orig-
inal development produced a single large specification that
was hard to comprehend and analyse. Event-B and the Rodin
platform were used for creating an abstract specification that
captured the core functionalities of the system. This abstract
specification was then gradually refined to a distributed model
that allowed reasoning about the consistency of the specifica-
tion. This work shares with ours the use of a verification ap-
proach based on refinement for the verification of an already
implemented system. However, in their work refinement is
used just for reasoning about the consistency of the specifi-
cation. In our work, in contrast, refinement is used to verify
the interactive behaviour of an existing user interface against
safety requirements independently provided by regulators.

Bowen and Reeves [5] presented a refinement approach for
user interface design. Their work specifically targets the de-
sign of user interface layouts. Presentation Interaction Mod-
els (PIMs) are used to describe the user interface layout in
terms of its component widgets. They use a mixture of formal
and informal refinement for turning the initial specification
into its implementation. Their work targets the verification
of user interface layout. With this perspective, their approach
could be used in a complementary way to ours, which is con-
cerned with the verification of user interface behaviour.

THE VERIFICATION APPROACH
The verification approach combines reverse engineering and
model refinement (see Figure 1). The verification process
starts with two independent branches:

• Formalisation of safety requirements: An abstract repre-
sentation of safety requirements is created that highlights
relevant functionalities of the implemented software to be
verified. This abstract representation is specified by means
of properties (axioms) of a model, hereafter called the ref-
erence model of the user interface.

• Reverse engineering: An accurate model of the behaviour
of interactive software incorporated in the device user in-
terface is obtained through systematic exploration of the
user interface functionalities and analysis of specification
documents (e.g., user manuals). This accurate model will
be referred to as the concrete model of the user interface.

Model refinement merges these two branches together. Model
refinement relates the semantics of two models (the reference
model and the concrete model in this case) and shows that
the behaviour of the two models is constrained by the re-
finement relation. A technique called model interpretation
is used in this work to perform refinement. Model interpre-
tation transforms axioms of the reference model into proof
obligations for the concrete model. Discharging these proof
obligations makes it possible to demonstrate that the concrete
model meets given safety requirements.

Formalisation of safety requirements. Safety requirements
are typically provided within a document written in natural
language. The approach translates the informal description
into a specification by identifying key notions and relation-
ships in the textual description. This identification process is
based on heuristics [28], and can be performed either manu-
ally, or semi-automatically through natural language process-
ing techniques. Here, a manual identification is performed
as it is sufficient to demonstrate the approach. The aim of
the formalisation is to create a model (the reference model)
that will form the basis for the analysis of the implemented
software. The reference model encapsulates the semantics of
the requirements and can provide guidance when performing
verification of the final implemented software, as a systematic
comparison against the reference model helps to understand
the correspondence between functionalities of the user inter-
face behaviour and the safety requirements.

Reverse engineering. Reverse engineering makes it possible
to create a detailed model (the concrete model) of a product
(interactive software in this case) that can be used for analy-
sis or re-engineering. Techniques that are suitable for reverse
engineering a user interface include model-discovery [22] and
interaction walkthrough [20]. Both techniques develop a par-
allel system from the concrete implementation by explor-
ing implemented functionalities systematically. These ap-
proaches can be applied either by the development team (in
this case compiled or source code would probably be the start-
ing point), or by independent third parties (in this case the
final product would probably be the starting point).

Model refinement. Refinement is a formal process that
makes it possible to relate the semantics of two models and
show that the behaviour of the two models are constrained
by the refinement relation. This form of refinement is usu-
ally referred to as “structural” or “vertical” refinement, and
the refinement relation is usually called the glueing invari-

ant. Safety requirements can be verified by this means. The
reference model is used as the source model. The concrete
model obtained through reverse engineering is used as the
target model. The refinement relation connects the reference
model to the concrete model. This makes it possible to trans-
late axioms of the reference model (which encapsulate the
semantics of given safety requirements) into safety properties
for the concrete model. These safety properties of the con-
crete models are called proof obligations, and they are to be
verified in order to demonstrate that the safety requirements
are met.

The next sections illustrate the approach in more detail. First,
a tool-neutral formalisation based on predicate logic is pre-
sented of the GPCA safety requirements relating to usabil-
ity. The reverse engineering and refinement-based verifica-
tion approach are then demonstrated using PVS [14]. The
analysis is performed on the user interface of a commercial
PCA infusion pump [4].

FORMALISATION OF THE GPCA REQUIREMENTS
The FDA has released a draft document [2] that includes
safety requirements for PCA pumps.

Patients interact with the PCA pump with the help of a sin-
gle button. This can be used by them to request an additional
pre-specified amount of pain relief medication called a “bo-
lus.” The pump is pre-programmed by a clinician by speci-
fying the infusion parameters within hard limits, usually pre-
set by a technician, as appropriate for the class of treatment.
PCA pumps, particularly epidural pumps, are small and can
be carried conveniently by patients outside hospitals without
clinical supervision.

The GPCA safety requirements are designed to mitigate iden-
tified hazards [2] for the software of PCA pump controllers.
However, out of 97 GPCA requirements, we found that al-
most half of them can be actually related to user interface
functionalities. These requirements have been designed by
the FDA to be easily translated into a specification in either a
programming language or formal language.

The first step in our formalisation process is to extract those
terms that specify functionalities of the reference model that
are relevant to the semantics of the safety requirement. The
second step is to translate the semantics of each safety re-
quirement into a logic formula. This translation step defines
relational constraints that must be verified to meet the corre-
sponding safety requirement. This systematic process leads
to the creation of a model (the reference model) given as an
abstract state machine — each extracted term defines a state
transition function of the reference model, and each safety
requirements is a property (axiom) of the reference model.

The formalisation of selected GPCA safety requirements pro-
vided by the FDA is now illustrated. In some cases the for-
malisation is based on our understanding of their semantics.
A further process would be required in which the formalisa-
tion is validated with the FDA. In some cases there appears to
be overlap or duplication between requirements. This process
of formalisation and negotiation is valuable in bringing clarity
to established safety requirements. Classical logic operators

such as ∧ (conjunction), ∨ (disjunction),⇒ (implication) are
used to establish logic relations.

R1. Clearing of the pump settings and resetting of the pump
shall require confirmation. (GPCA safety requirement 2.2.3
about user input [2])

This safety requirement is designed to mitigate some hazards
that arise when clinicians or patients change infusion settings
inadvertently. The terms that are extracted from the require-
ment are: clearing settings, resetting pump, and require
confirmation. R1 is ambiguous because the English “and”
could mean a logical or, a logical and, or requiring the actions
in a sequence. Further enquiries with the FDA confirmed the
interpretation “or.” The following formalisation reflects the
concepts described in the requirement:

(clearing settings ∨ resetting pump)⇒ require confirmation

The formalisation also begs important questions that are not
explicit in the requirement. For example, does resetting the
pump imply changing the settings? Can settings be cleared
if they have already been cleared? Can the pump be used if
the settings are cleared? Analysis by the manufacturer during
this process would enable them to probe other features of their
design, which while not being crucial to safety would allow
them to improve the design’s usability.

R2. To avoid accidental tampering of the infusion pump’s
settings such as flow rate/vtbi1, at least two steps should be
required to change the setting. (GPCA safety requirement
2.1.1 about user interface resistance to tampering and acci-
dents [2])

This safety requirement is designed to mitigate hazards that
result from accidental or intentional tampering with pump
settings without authorisation. The formalisation of this re-
quirement introduces the following terms: changing settings
and require two steps:

changing settings⇒ require two steps

Although there may be a relation between the “two steps”
requirement for R2 and the “confirmation” requirement men-
tioned in R1, this relation is not explicit in the GPCA safety
requirements. To leave room for different interpretations, re-
quire two steps is introduced instead of reusing the term re-
quire confirmation from requirement R1.

R3. The pump shall issue an alert if paused for more than
t minutes. (GPCA safety requirement 2.2.2 about user in-
put [2])

This safety requirement is designed to mitigate situations
where the infusion settings are inadvertently changed. The
relevant terms are: issue alert, paused more than t minutes.
The second term embeds two notions: the pump is paused,
and the pump state has been the same for at least a given pe-
riod of time. These terms keep the specification as general
as possible, avoiding the necessity to be too specific about
the meaning of “more than” — does it mean strictly greater
1VTBI stands for “volume to be infused” and is the limit of the total
dose the pump will provide.

than (>) or greater than or equal (≥)? During interactive data
entry this distinction may make a difference. The philoso-
phy followed here is that the formalisation must not add more
constraints in this phase than those described in the safety re-
quirement. Given that the safety requirement is not specific
about the meaning of “more than”, the same should be true for
the formalisation. The natural language description of the re-
quirement need to be modified if “more than t minutes” needs
to be more specific. The developed formalisation follows.

paused more than t minutes⇒ issue alert

R4. If the pump is in a state where user input is required, the
pump shall issue periodic alerts/indications every t minutes
until the required input is provided. (GPCA safety require-
ment 2.2.1 about user input [2])

This safety requirement is designed to mitigate situations
in which incomplete infusion parameters have been entered.
The relevant terms are: user input required, periodic alerts
every t minutes, required input provided. The terms ex-
tracted in this requirement can be phrased for reuse: the state-
ment “until the required input is provided” can be rephrased
into the equivalent statement “if the required input is provided
then the periodic alerts/indications are cancelled.” This
rephrasing makes it possible to reuse required input pro-
vided, and leads to the identification of a new term alert can-
celled. This reformulation does not change the semantics of
the requirement — it is not adding additional constraints, and
makes explicit an implicit relation between two concepts de-
scribed in the same requirement. The requirement can be for-
malised as follows:

(user input required⇒ periodic alerts every t minutes) ∧
((periodic alerts every t minutes ∧ required input provided)

⇒ alert cancelled)

R5. The flow rate for the pump shall be programmable.
(GPCA safety requirement 1.1.1 about flow rate infusion con-
trol [2])

This safety requirement is designed to mitigate hazards that
result from incorrectly specified infusion parameters (e.g.,
flow rate too high or too low). To keep the formalisation gen-
eral a single notion is introduced, flow rate programmable
which allows different definitions of “programmable”, e.g., a
sequence of button clicks (this is the typical solution for the
current generation of infusion pumps), wireless communica-
tion from the pharmacy, or voice activation controls (these
functionalities are envisaged in future generations of infusion
pumps). The specific definition will be given when mapping
functionalities of a real device to the identified concept. This
requirement is thus formalised as follows:

flow rate programmable

The rest of the paper uses the formalisation of the GPCA
safety requirements to verify the interactive behaviour of a
commercial PCA pump [4]. The requirements are translated
into a PVS [14] specification. The PVS theorem prover is
then used to verify that a concrete user interface model main-
tains a defined refinement relation with the reference model.

VERIFICATION OF A COMMERCIAL PCA PUMP
The logic-based formalisation of the GPCA safety require-
ments is used to develop a PVS specification of the reference
model. The specification is given as a set of properties (ax-
ioms) over the model. This development approach guarantees
that the reference model meets the formalised requirements.

The PVS specification language builds on classical typed
higher-order logic with the usual base types (e.g., bool,
nat, integer and real), function type constructors [A
-> B] (predicates are functions with range type bool), and
abstract data types. The language supports predicate subtyp-
ing, which is a powerful mechanism to express complex con-
sistency requirements.

PVS specifications are organised into modules called theories
that describe types, axioms, definitions and theorems. Theo-
ries can be parametric in types and constants, and they can use
definitions and theorems of other theories by importing them.
PVS provides a pre-defined built-in prelude, and a number of
loadable libraries of standard definitions and proved facts that
can be used when developing new theories.

PVS has an automated theorem prover that can be used to
interactively apply powerful inference procedures within a
sequent calculus framework. The primitive inferences pro-
cedures include, among others, propositional and quantifier
rules, induction, simplification using decision procedures for
equality and linear arithmetic, data and predicate abstraction.

Formalisation of safety requirements
The extracted terms identified in the previous section define
the transition functions (hereafter function recognisers) of the
reference model. Function recognisers can be specified in
PVS using uninterpreted predicates. For example the predi-
cate require confirmation? translates the recogniser
require confirmation. By this means GPCA safety require-
ments can be expressed as axioms of the reference model.
As an illustration a complete example for safety requirement
R1 is given here. The specification and verification of the
other requirements can be done similarly but are not included
for lack of space. The reference model is specified in theory
reference model th given in Listing 1.

Listing 1. The Reference Model
reference_model_th: THEORY BEGIN
ui_state: TYPE
st,st0,st1: VAR ui_state

clearing_settings?(st): boolean
resetting_pump?(st): boolean
require_confirmation?(st): boolean

%-- requirement R1
R1(st): boolean =
(clearing_settings?(st) OR resetting_pump?(st))
=> require_confirmation?(st)

R1_Axiom: AXIOM
(init?(st) => R1(st)) AND
((R1(st0) AND R1_trans(st0, st1)) => R1(st1))

END reference_model_th

The state of the reference model is defined with an uninter-
preted type, ui state. Two logical variables, st0 and
st1, identify the current state and the next state of the refer-
ence model respectively. A third logical variable, st, identi-
fies a generic state of the reference model. When using theory
interpretation, these logical variables of the reference model
can be mapped to one or more states of the concrete model.
Because of this, at this stage it is not necessary to specify how
many distinct states are needed to express the requirement.

Safety requirements are specified as axioms of the reference
model. Given that the safety properties are to be verified in
a theorem prover, a sensible choice is to specify axioms in a
form that supports structural induction. Structural induction
proves a predicate R modelling a safety property as follows:
(i) R must hold for the initial system state (base case); (ii) if R
holds in a state st0, then R holds also for any state st1 result-
ing from st0 by applying any transition function (inductive
step). This is illustrated in the specification of R1 axiom in
Listing 1 for safety requirement R1. In the PVS specification,
init? identifies the initial system state; R1 trans is the
set of transitions; R1 translates the logic-based formalisation
of requirement R1 into a predicate.

Reverse engineering
A reproduction of the layout of the particular PCA pump [4]
considered in this work is shown in Figure 2. A detailed
model of the interactive behaviour of a commercial volu-
metric infusion pump that shares many of the characteris-
tics of this device is described in [7]. The model has been
obtained by reverse engineering the pump using interaction
walkthrough [20]. The model is specified using a “layered”
approach to enable specification reuse. The inner “pump”
layer abstracts the behaviour of the controller for devices of
the same class. The middle “device” layer is specific to the
device being modelled and describes its user interface be-
haviour. The outer “activity” layer (which is not needed here)
describes intended user activities. The original model is given
in Modal Action Logic (MAL) [17] and is available in the
Minho repository (http://hcispecs.di.uminho.pt).

This MAL specification has been translated into PVS higher
order logic. The use of PVS is motivated by the fact that (i)
PVS has a mechanism (theory interpretations [15]) for per-
forming model refinement, and (ii) PVS has an expressive
specification language which allowed us to create a specifi-
cation that can be mapped easily to the original MAL model.
Other tools that support refinement like Rodin [1] have a less
rich specification language, and translating the original MAL
specification would have been less straightforward. A frag-
ment of the MAL specification is sufficient to illustrate the
verification approach. Relevant excerpts of the developed
PVS model that translate those fragments are now illustrated.

The state of the inner “pump” layer is specified in theory
pump th with a new PVS record type, pump as shown in
Listing 2. The type has four fields: powered on? is
a Boolean field modelling whether the pump is turned on;
infusing? is a Boolean field modelling whether an infu-
sion is running; infusionrate is a bounded non-negative
real number modelling the actual rate pumped by the device;

Figure 2. Reproduction of the layout of the commercial PCA pump user
interface analysed in this work.

and time is a bounded non-negative real number modelling
the time left to complete the programmed infusion.

Listing 2. The ‘pump’ layer
pump: TYPE =
[# powered_on? : boolean,

infusing? : boolean,
infusionrate: {x: nonneg_real | x < maxrate},
time : {x: nonneg_real | x < maxtime} #]

The state of the user interface is specified in theory
concrete model th with a new PVS record type,
concrete state given in Listing 3. The type includes
the following fields: device of type pump holds the state of
the inner “pump” layer; the enumerated type displaymode
identifies the current display mode of the user interface;
disprate models the rate displayed by the user interface
and has type irates, a record with two fields — val, a
real number, and vis, a Boolean that models whether the rate
is visible on the user interface; entrymode, an enumerated
type that models two generic user interface modes — interac-
tive data entry mode (an interactive mode where the user en-
ters the infusion parameters) or in confirm mode (where the
interface requires input from the user); two fields prevdm
and prevem that store the previous display mode and entry
mode (this information is used for the functionalities of but-
tons like clear that need to restore the previous display and
entry modes); timeout, a field holding the timer counter
used in various user interface modes; btnpressed, an enu-
merated field that stores information about the button being
clicked — this is used to support modelling of key press &
hold interactions.

Listing 3. The ‘device’ layer
concrete_state: TYPE =
[# device : pump,

displaymode: dispmode,
disprate : irates,
entrymode : emode,
prevdm : dispmode,
prevem : emode,
timeout : nonneg_real,
btnpressed : btnID #]

Actions are specified as transition functions over states of the
user interface (concrete state). An example of an ac-
tion is on. This describes the behaviour of the on button that
toggles the pump on and off. The behaviour of on and clear
is now illustrated as they are relevant to requirement R1.

Button on can be used to reset the pump settings. When the
device is powered off, interactions with the on button involve

http://hcispecs.di.uminho.pt

button clicks (a button click turns on the pump). When the
device is powered on, pressing and holding down the button
for more than 3 seconds turns the pump off. When the on
button is initially pressed, the user interface enters a confir-
mation mode and a countdown elapses while the button is
continuously held down. A way to model this functional-
ity is to split the specification of transition function on into
two parts: one for key pressed actions (on pressed, as
shown in Listing 4), and the other one for key released ac-
tions (on released, as shown in Listing 5).

A detailed illustration of function on pressed given in
Listing 4 is now provided. The argument, p, of the
function is a device state. The type of p is a sub-
type of concrete state obtained through predicate
per press on. The predicate translates a MAL “permis-
sion”, that is the condition under which the action can be
applied. The use of permissions is useful to enforce le-
gal sequences. In this case, for instance, the permission
states that the press action for button on can be performed
only if another button is not already pressed. This re-
flects the actual behaviour of the pump user interface, which
disables pressing multiple-keys simultaneously. The return
type of on pressed is concrete state. The body
of the function is thus defined. The button overloads the
on and off functionalities. Therefore a distinction is made
for the two cases. If the device is powered on (the con-
dition is encoded in the Boolean field powered on? of
the device layer device(p)) and the user interface is not
showing a power off confirmation message (condition NOT
msg turningoff? in Listing 4) then the user interface
enters a confirmation mode where the power off message is
shown. A timer is also started that expires in 3 seconds.
The user interface stays in this confirmation mode as long as
the on button is pressed and held down continuously (condi-
tion msg turningoff?(..) AND timeout(p)-1>0
in Listing 4). When the timer expires, the pump powers off.

Listing 4. Specification of the on button pressed action
on_pressed(p: (per_press_on))
: concrete_state =
IF device(p)‘powered_on?
THEN

COND
NOT msg_turningoff?(displaymode(p))
-> display_poweroff_confirmation(p, 3),
msg_turningoff?(displaymode(p))

AND timeout(p) - 1 > 0
-> decrement_poweroff_timer(p),
msg_turningoff?(displaymode(p))
AND timeout(p) - 1 <= 0
-> power_down(p)
ENDCOND

ELSE power_up(p) ENDIF

The specification of function on released is given in a
similar way. The on button can be released only after being
pressed (subtype (per release on) for the argument p).
The body of the function specifies that the action restores the
previous user interface state if the power off countdown was
started. Otherwise, the function just resets the action permis-
sions (function restore permission).

Listing 5. Specification of the on button released action
on_released(p: (per_release_on))

: concrete_state =
IF device(p)‘powered_on?

AND msg_turningoff?(displaymode(p))
THEN restore_prevmode(p)
ELSE restore_permission(p) ENDIF

Button clear can be used to clear settings. Interactions with
the clear button involve button clicks while the pump is
turned on. The cases given in Listing 6 describe the behaviour
of the button: (i) if the user interface is in interactive data-
entry mode, a clear button click zeroes the value on the dis-
play and moves the pump into a confirmation mode; (ii) if
the user interface is alarming, a clear button click clears the
alarm; (iii) if the user interface is displaying the main menu
and the device is not infusing, then the clear button makes it
possible to clear the infusion parameters; (iv) if the device is
not infusing then the clear button makes it possible to nav-
igate in reverse order the bootstrap sequence of the user in-
terface screens (main screen, main menu, use last therapy,
and new patient). When in confirmation mode, if the user in-
terface is left idle for predefined time periods then the user
interface enters an alert mode. An excerpt of the PVS speci-
fication for click actions of button clear (clear clicked)
is given in Listing 6. A detailed description is omitted from
this paper due to lack of space.

Listing 6. Specification of the clear button
clear_clicked(p: (per_click_clear))

: concrete_state =
IF disprate?(displaymode(p))

AND entrymode(p) = dataentry
THEN clear_display(p,cm_timeout)

ELSIF mainmenu?(displaymode(p))
AND entrymode(p) = nullemode THEN COND

device(p)‘infusing? = FALSE
-> display_last_therapy(p, tm_timeout),
device(p)‘infusing? = TRUE
-> display_mainscreen(p,0) ENDCOND

ELSIF %.. additional conditions omitted

Model refinement
Model refinement can be implemented in PVS through theory
interpretations [15]. It is a way to give semantics to uninter-
preted terms by mapping them to concrete expressions. In
this case the reference model is interpreted using the concrete
model. Given that the reference model is an abstract state
machine specified in terms of function recognisers, the inter-
pretation consists of mapping functionalities of the concrete
model into those function recognisers. With this approach,
axioms of the reference model are turned into proof obliga-
tions for the concrete model. Discharging these proof obli-
gations makes it possible to show that the behaviour of the
concrete model is consistent with the behaviour of the ref-
erence model. The reference model is verified against the
safety requirements by construction — safety requirements
are properties (axioms) of the model. Therefore the verifi-
cation of proof obligations corresponds to demonstrating that
the concrete model meets the same safety requirements.

Theory interpretation is now applied to refine function recog-
nisers used for the axiom (R1 axiom) that specifies safety
requirement R1. The syntax for specifying a theory inter-
pretation in PVS is that of a PVS theory importing clause
(keyword IMPORTING followed by the theory name) with
actual parameters (a list of substitutions provided within dou-
ble curly brackets).

For R1 axiom, an interpretation must be provided for the
following types and constants (Listing 7): the reference
model state (ui state) is interpreted with a pair of concrete
user interface states in this case (the current and the next de-
vice state); the uninterpreted constant init? is interpreted
with the predicate concrete init? that identifies the ini-
tial state of the concrete model; R1 trans is interpreted by
enumerating all actions (transition functions) of the user in-
terface:

Listing 7. Theory interpretation for requirement R1 (part 1 of 4)
IMPORTING reference_model_th {{
ui_state := [concrete_state, concrete_state],
init? := LAMBDA (st: [concrete_state,

concrete_state]):
concrete_init?(st‘1),

R1_trans := LAMBDA (st, st_prime:
[concrete_state,
concrete_state]):

(per_click_clear(st‘1) AND
st_prime‘1 = clear_clicked(st‘1)) OR %...

The interpretations of the function recognisers “clearing set-
tings,” “resetting pump” and “require confirmation” in terms
of the concrete model are as follows.

Clearing settings. The PCA pump under analysis makes it
possible to clear settings with the clear button in the follow-
ing situations (Listing 8): (i) when the user is entering infu-
sion parameters (i.e., the outer layer of the concrete model
is in dataentry mode), irrespective of whether or not the
device is infusing; (ii) from the main menu, when the pump
is not infusing (i.e., the outer layer of the concrete model is
in mainmenu mode and the infusing? field of the inner
layer is false). This mapping relation is specified in terms of
the theory interpretation parameters:

Listing 8. Theory interpretation for requirement R1 (part 2 of 4)
clearing_settings?
:= LAMBDA (st: [concrete_state, concrete_state]):

(dataentry?(entrymode(st‘1))
OR (mainmenu?(displaymode(st‘1))
AND NOT infusing?(device(st‘1))))
AND per_click_clear(st‘1)
AND st‘2 = clear_clicked(st‘1),

Resetting pump. The pump under analysis can be reset either
by clicking the clear key or by pressing and holding down the
on key for more than three seconds (Listing 9). The following
situations can be identified: (i) the clear key can be used to
reset the infusion parameters to their default settings from the
main menu when the pump is not infusing; (ii) the on key can
be clicked and held down in any situation for turning off the
pump and hence reset the infusion status and parameters to

their default values. This mapping relation can be specified
as follows in the theory interpretation parameters:

Listing 9. Theory interpretation for requirement R1 (part 3 of 4)
resetting_pump?
:= LAMBDA (st: [concrete_state, concrete_state]):

(per_click_clear(st‘1)
AND st‘2 = clear_clicked(st‘1)
AND mainmenu?(displaymode(st‘1))
AND NOT infusing?(device(st‘1)))

OR (per_press_on(st‘1)
AND st‘2 = on_pressed(st‘1)),

Require confirmation. The PCA pump under analysis
has predefined confirmation screens. In the developed
model, they correspond to states where field entrymode is
confirmmode shown in Listing 10. The mapping relation
that completes the specification of the theory interpretation
parameters is therefore the following:

Listing 10. Theory interpretation for requirement R1 (part 4 of 4)
require_confirmation?
:= LAMBDA (st: [concrete_state, concrete_state]):

entrymode(st‘2) = confirmmode }}

The theory interpretation given in Listing 7, 8, 9, and 10
generates the proof obligation named type check condition
(TCC) shown in Listing 11. The TCC must be discharged to
show that R1 is satisfied.

Listing 11. Proof obligation generated from R1
% Mapped-axiom TCC generated
IMP_reference_model_th_R1_Axiom_TCC1: OBLIGATION
FORALL (st, st0, st1:

[concrete_state, concrete_state]):
(concrete_init?(st‘1) => R1(st)) AND
((R1(st0) AND

((per_click_clear(st0‘1)
AND st1‘1 = clear_clicked(st0‘1))

OR %...))) => R1(st1));

This proof obligation is simply the interpretation of axiom
R1 Axiom and can be proved with the PVS theorem prover.
In the following we illustrate how we discharged the above
proof obligation in PVS. The verification was almost auto-
matic, and a similar verification approach has also been used
to discharge proof obligations generated for other axioms.

Proving the axiom. The proof of the induction base was au-
tomatically discharged by PVS in seconds with grind, a
predefined decision procedure of PVS that repeatedly applies
definition expansion, propositional simplification, and type-
appropriate decision procedures. The verification of the in-
ductive step was discharged with a small amount of manual
intervention. More in details, a direct application of grind
was initially not successful because expansions and substi-
tutions automatically performed by the strategy were lead-
ing to unreachable device states (e.g., device infusion when
turned off). This is not a weakness of the theorem prover or
a mistake in the specification, but a lack of conditions in the
permissions – the subtyping constraints imposed in the per-
mission of the transition functions were not accurate enough.
Manual case-splitting allowed us to diagnose the combination

of cases leading to the unreachable states. A small number of
additional subtyping conditions were thus included in the per-
mission of transition functions to avoid these combination of
cases. After the modification, grind automatically proved
the inductive step.

DISCUSSION
The review process of medical devices is a dialogue between
manufacturers and regulators. The verification approach il-
lustrated here aims to make this dialogue precise and in-
spectable, as manufacturers can specify in a precise way what
a requirement means with respect to the behaviour of their de-
vice user interface — the “interpretation” phase within our
approach. Additionally, manufacturers can also provide a
mathematical proof that the behaviour of the device user in-
terface is always compliant to the provided interpretation.

The possibility to provide different interpretations is a flex-
ibility that both regulators and manufacturers are willing to
have, because they need to take into account different trade-
offs in different systems, and want to leave space for inno-
vation. The validity of the interpretation is negotiated during
the review process.

The presented approach relies on reverse engineering. As
such, the produced model may contain mistakes, and there-
fore have a behaviour that is slightly different from the origi-
nal device. The impact of mistakes in the reverse engineering
process can be mitigated through validation of failure traces
on the original device – this way false positives can be identi-
fied and the model adjusted. When the verification of a safety
requirement succeeds, a successful trace should be generated
and validated against the original device — this way false
negatives can also be identified.

Within production and regulatory cycles, the presented ap-
proach can be used in several ways.

(1.) It can be used to generate supporting evidence for human
factors claims, for example, as part of a safety case [8]. For
example a claim that a clinician will not be able to enter an
incorrect infusion rate may be supported in part by providing
evidence that the device requires confirmation whenever any
number entry is completed.
(2.) It can be used to develop user interface reference models
that characterise the key features of broad classes of devices.
(3.) It can be used to identify the source of user interface
problems (e.g., during forensic engineering investigations)
by checking the device systematically against the reference
model and encapsulated requirements.
(4.) It can be used to understand how to fix design problems,
e.g., when a device is recalled or fixed in the field. Analysing
these requirements and the match to the reference model is
formative in that failure of a requirement will lead to sugges-
tions about how the design could be improved.

Before the techniques described here can be used as part of a
regulatory process, the community, both regulators and man-
ufacturers, must be convinced that the process of learning
these skills and applying them is justified. At one level this
process can only be achieved through successive generations
of the process to demonstrate both the savings in terms of

documentation and the clarity and inspectability of the result.
Further work also needs to be done to automate these pro-
cesses, rendering the requirements and reference models as
libraries and automating the means of refining the reference
models to the concrete models and proving the resulting re-
fined requirements.

CONCLUSIONS
There are a number of obstacles to developing systems from
models. The classical model based design process lacks flex-
ibility, failing to address the iterative and experimental ap-
proach that is usually the practice of developers, particularly
in relation to the interactive system. In practice a process of
refinement closer to reverse engineering, as described in this
paper, enables a developer to assess the extent to which re-
quirements are satisfied in a design. Reference models, that
describe the generic classes of systems, are useful because,
typically, there are many products that are designed to satisfy
a similar set of requirements and to support a similar set of
activities.

This paper describes and illustrates a method of assessing the
extent to which a design satisfies requirements. The method
is of broad applicability but is clearly relevant to the case of
interactive systems where a particular class of requirements
must be satisfied. This paper demonstrates that verification
approaches based on model refinement are applicable to this
situation by using a specific class of medical devices that are
subject to regulatory control. Safety requirements, as spec-
ified in FDA draft regulatory material, have been translated
into a logic-based formal representation using function recog-
nisers. These function recognisers are used as the basis for a
reference model generic to a class of systems, in this case
PCA pumps. It describes how, using a process akin to in-
teraction walkthrough, a concrete model can be constructed
using PVS and that the function recognisers can be linked to
this concrete model using a refinement relation. Finally, it
has been demonstrated by illustration that these formalised
requirements can be re-expressed as theorems and proved of
the PVS concrete model.

The contribution of this work is that it demonstrates a concise
and semantically unambiguous approach to representing what
a regulator’s requirements for a particular device might be. It
provides an inspectable and repeatable process for demon-
strating that the requirements are satisfied. It has the poten-
tial to replace the considerable documentation produced at
the moment by a succinct document that can be subjected to
careful and systematic analysis. The challenge of this work
is to facilitate these techniques so that their use as part of the
everyday development of interactive software can be clearly
justified. Formal approaches raise and address subtle conse-
quences of a design that require a systematic approach; in
other words, a formal approach like the one we outline is
necessary. Using a formal development process rigorously
enough in principle for regulatory use relies on advanced for-
mal skill levels that are unlikely to be familiar to industrial
developers. It is therefore a matter of priority to develop
good formally-based tools that work effectively in real en-
vironments.

Acknowledgements
CHI+MED (EPSRC EP/G059063/1), NSF CNS-1035715,
and NSF CNS-1042829.

REFERENCES
1. Event-B and the Rodin Platform.

http://www.event-b.org/.

2. The Generic Patient Controlled Analgesia Pump Hazard
Analysis and Safety Requirements.
http://rtg.cis.upenn.edu/gip.php3.

3. Medical Devices and the Public’s Health: The FDA
510(k) Clearance Process at 35 Years. Institute of
Medicine, 2011.

4. B-Braun Melsungen AG. Perfusor Space and Accessory:
Instruction for Use.

5. Bowen, J., and Reeves, S. Refinement for user interface
designs. Formal Aspects of Computing 21, 6 (2009).

6. Degani, A. Taming HAL: Designing Interfaces Beyond
2001. Palgrave Macmillan, 2004.

7. Harrison, M., Campos, J., and Masci, P. Reusing models
and properties in the analysis of similar interactive
devices. Innovations in Systems and Software
Engineering (2013), 1–17.

8. Kelly, T. Arguing safety – a systematic approach to
managing safety cases. PhD thesis, Department of
Computer Science, University of York, 1998.

9. Kim, B., Ayoub, A., Sokolsky, O., Lee, I., Jones, P.,
Zhang, Y., and Jetley, R. Safety-assured development of
the GPCA infusion pump software. In Proceedings of
the ninth ACM international conference on Embedded
software, EMSOFT ’11, ACM (New York, NY, USA,
2011), 155–164.

10. Liu, G., Fukuda, T., Lee, C., Chen, V., Zheng, Q., and
Kamae, I. Evidence-Based Decision-Making on Medical
Technologies in China, Japan, and Singapore. Value in
Health 12, Supplement 3, 0 (2009), S12–S17.

11. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A.,
Gimblett, A., Li, Y., Curzon, P., and Thimbleby, H. On
formalising interactive number entry on infusion pumps.
ECEASST 45 (2011).

12. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A.,
Gimblett, A., Li, Y., Curzon, P., and Thimbleby, H. The
benefits of formalising design guidelines: a case study
on the predictability of drug infusion pumps.
Innovations in Systems and Software Engineering
(2013), 1–21.

13. Nielsen, J., and Molich, R. Heuristic evaluation of user
interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’90, ACM
(New York, NY, USA, 1990), 249–256.

14. Owre, S., Rajan, S., Rushby, J., Shankar, N., and Srivas,
M. PVS: Combining Specification, Proof Checking, and
Model Checking. In Computer-Aided Verification, CAV

’96, no. 1102 in Lecture Notes in Computer Science,
Springer-Verlag (1996), 411–414.

15. Owre, S., and Shankar, N. Theory Interpretations in
PVS. Tech. Rep. SRI-CSL-01-01, Computer Science
Laboratory, SRI International, Menlo Park, CA, 2001.

16. Rezazadeh, A., Evans, N., and Butler, M.
Redevelopment of an Industrial Case Study Using
Event-B and Rodin. In BCS-FACS Meeting - Formal
Methods In Industry (December 2007).

17. Ryan, M., Fiadeiro, J., and Maibaum, T. Sharing actions
and attributes in modal action logic. In Proceedings of
the International Conference on Theoretical Aspects of
Computer Software, TACS ’91, Springer-Verlag
(London, UK, UK, 1991), 569–593.

18. Schoonmaker, M. The U.S. Approval Process for
Medical Devices: Legislative Issues and Comparison
with the Drug Model, March 2005. CSR Report for
Congress.

19. Sorrel, S. Medical device development: U.S. and EU
differences. Applied Clinical Trials Online (August
2006).

20. Thimbleby, H. Interaction walkthrough: evaluation of
safety critical interactive systems. In Proceedings of the
13th international conference on Interactive systems:
Design, specification, and verification, DSVIS’06,
Springer-Verlag (Berlin, Heidelberg, 2007), 52–66.

21. Thimbleby, H. Press On: Principles of Interaction
Programming. Mit Press, 2010.

22. Thimbleby, H., and Gimblett, A. User interface model
discovery: Towards a generic approach. In Proceedings
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems — EICS 2010, G. Doherty,
J. Nichols, and M. D. Harrison, Eds., ACM (2010),
145–154.

23. US Food and Drug Administration. General Controls for
Medical Devices, 2009.

24. US Food and Drug Administration. Learn if a Medical
Device Has Been Cleared by FDA for Marketing, 2009.

25. US Food and Drug Administration. Premarket
Notification (510k), 2009.

26. US Food and Drug Administration. Total Product Life
Cycle: Infusion Pump - Premarket Notification [510(k)]
Submissions - Draft Guidance, April 2010.

27. US Food and Drug Administration. FDA and Industry
Actions on Premarket Approval Applications (PMAs):
Effect on FDA Review Clock and Goals, October 2012.

28. Vadera, S. and Meziane, F. From English to formal
specifications. The Computer Journal 37, 9 (1994).

29. Zuckerman, D., Brown, P., and Nissen, S. Medical
device recalls and the FDA approval process. Archives of
Internal Medicine 171, 11 (2011), 1006–1011.

http://www.event-b.org/
http://rtg.cis.upenn.edu/gip.php3

	Introduction
	Related work
	The verification approach
	Formalisation of the GPCA requirements
	Verification of a commercial PCA pump
	Formalisation of safety requirements
	Reverse engineering
	Model refinement

	Discussion
	Conclusions
	REFERENCES

