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Abstract. Software Product Lines (SPLs) are families of systems that
share a high number of common assets while differing in others. In
component-based systems, components themselves can be SPLs, i.e., each
component can be seen as a family of variations, with different interfaces
and functionalities, typically parameterized by a set of features and a
feature model that specifies the valid combinations of features. This pa-
per explores how to safely replace such families of components with more
refined ones. We propose a notion of refinement for Interface Featured
Timed Automata (IFTA), a formalism to model families of timed au-
tomata with support for multi-action transitions. We separate the notion
of IFTA refinement into behavioral and variability refinement, i.e., the
refinement of the underlying timed automata and feature model. Fur-
thermore, we define behavioral refinement for the semantic level, i.e.,
transition systems, as an alternating simulation between systems, and
lift this definition to IFTA refinement. We illustrate this notion with ex-
amples throughout the text and show that refinement is a pre-order and
compositional.
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1 Introduction

A Software Product Line (SPL) is a set of software systems that share a high
number of features while differing in others, where concrete configurations are
derived from a core of common assets in a prescribed way. A feature is referred
as a characteristic of the system visible to the user. A concrete configuration of
the SPL results in a particular product and is given by a selection of features.
The set of all valid feature selections, i.e., the products that can be derived from
the SPL, is determined by a feature model.

As in the development of any complex system, common and variable assets of
an SPL, such as software components, can be designed and developed by differ-
ent engineers agreeing on a common specification of what their interfaces should
be. In this sense, being able to reason about how standalone components, and in
this case families of components, implemented separately satisfy a given specifi-
cation becomes crucial. In this paper, we propose a notion of refinement for real
timed software product lines that are modeled as Interface Featured Timed Au-
tomata (IFTA), a formalism to model families of timed automata. We introduced
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Fig. 1. Example of an IFTA representing a family of coffee machines (left), and its two
projections into concrete products, represented as Timed Automata (right).

IFTA in [7] as an extension to Featured Timed Automata, in turn introduced by
Cordy et. al. [8], which incorporates interfaces in order to reason about variability
during composition and prepare the way to reason about refinement. Figure 1
shows an example of an IFTA representing a family of coffee machines (left),
and its corresponding projections into its concrete products (right), a coffee ma-
chine that serves coffee and cappuccino (top right) and a coffee machines that
serves only coffee (bottom right), both represented as Timed Automata (TA).
Projections are obtained by selecting a valid feature selection. The necessary
background on (Interface Featured) Timed Automata is introduced in Section 2.
Briefly, an IFTA is a TA with: logic guards over transitions, restricting the set
of products where the transitions are present; a logic guard associated to the
automaton representing the feature model; interface actions representing com-
munication points with other automata; and inferred logic guards associated to
interfaces, indicating the set of products where the interface action was designed
to be present in.

Refinement allows us to compare two models of the same system presented
at different levels of abstraction. The most abstract one is referred to as the
specification, while the most detailed one is referred to as an implementation
of the system. If an implementation refines the specification, it agrees with the
requirements of the specification in the sense that one may replace the imple-
mentation in any context where the specification is used, and still obtain an
equivalent system. However, since we are dealing with families of components,
we need to reason about how a set of implementations refine a set of specifica-
tions. Figure 2 exemplifies this problem. The figure shows two composed systems
(top): one (top left), composed by an IFTA C, representing a context (here left
undefined), and an IFTA CM corresponding to the coffee machine in Figure 1;
and the other (top right), which is a refinement of the system on the left, is com-
posed by the same context C, and a new family of coffee machines CM’ (defined
in Figure 4). Because refinement is compositional (up to some pre-conditions),
as will be discussed in Section 3, it suffices to verify if CM’ refines CM (in ad-
dition to such pre-conditions). However, both IFTA, CM and CM’, are actually
families of components which model different concrete automata, as depicted
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Fig. 2. Example scenario when reasoning about refinement of families of components.
A system composed by two IFTA, C and CM (left), is refined by a more detailed system
composed by the same IFTA C and a new IFTA CM’ (right).

in Figure 2 (bottom). Thus, we need to consider if each of the new automaton
CM’i, for i = 1, . . . , 4 refines an automaton CMj , for j = 1, 2.

In order to simplify this reasoning and allow greater flexibility we separate
the notion of refinement into variability refinement – which deals with feature
model refinement, i.e., when is a set of features considered a refinement of another
one; and behavioral refinement – which captures timed automata refinement,
i.e., when a specific system refines another one. Refinement of timed automata
is defined in terms of refinement of timed transition systems, their semantic
representation.

There are not many publications in the literature that explore the notion of a
refinement relation between two feature models. In [10] the authors reason about
four kinds of relations between feature models. However, we believe neither of
these aligns with the notion of refinement. Intuitively, a feature model refines
another one if it preserves its variability, i.e., allows the same set of products,
and such that new variability can only be defined in terms of new features.

There exist various notions of automata refinement in the literature, differing
on requirements made over the set of actions of the systems being compared,
properties inherent to the models used to specify the systems, and properties
that the relation should preserve, among others. Commonly, when dealing with
closed systems, i.e., systems that do not interact with the environment through
inputs or outputs, refinement is defined as a simulation relation [4]. The advan-
tage is that it preserves all safety properties from the specification. However,
when dealing with open systems, as in our case, simulation is a too strict rela-
tion, since it requires the implementation to have the same or less inputs than
the specification. On the one hand, this means that a refinement can not in-
corporate new behavior in terms of new inputs, which would not be a problem
since it would imply no behavioral changes in the resulting system, provided
that we can guarantee that the new inputs are not used. On the other hand, it
allows the refinement to have less inputs than the specification. But, in the case



of reactive systems, we can not replace a system for another that reacts to less
inputs than the original one. This would limit the behavior of the system, since
there will be output actions that are now not capture by the system, but are
left unattended. Then, when dealing with open systems it is common to define
refinement in terms of an alternating simulation relation [3,2,1,9], in which the
implementation must simulate all input behavior of the specification, while the
latter must simulate all output behavior from the implementation. For exam-
ple, de Alfaro et. al. [2] introduce Interface Automata, without time, and define
the notion of refinement in terms of alternating simulation, extended to support
internal steps, i.e., internal actions from both automata which are independent
from each other. In [9] David et. al. provide a complete specification theory for
Timed I/O Automata where they define refinement, logical conjunction, struc-
tural composition, and a quotient operator. However, their theory is based on
input enabled automata.

Our notion of refinement can be seen as an adaptation of [2] for families of
timed systems with support for multi-action transitions. We as well define refine-
ment as an alternating simulation, however, we relax some of the requirements as
discussed in Section 3.2. We show that refinement is a pre-order and congruent
with respect to IFTA operations, meaning refinement is compositional.

The rest of this document is structured as follows. Section 2 presents the
required theory to understand IFTA. Section 3 proposes a refinement relation
for IFTA. Finally, Section 4 concludes and hints on future work.

2 Interface Featured Timed Automata

Interface Featured Timed Automata is a mechanism introduced in [7] to enrich
Featured Timed Automata (FTA) [8] with (1) interfaces that restrict the way
multiple automata interact, and (2) transitions labelled with multiple actions
that simplify the design of synchronous coordination. Interfaces are input-output
synchronisation actions that can be linked to interfaces of other automata when
composing automata in parallel.

First, we recall some basic notions of timed automata and variability, and the
definition of IFTA. Then, we deconstruct IFTA into another formalisms, namely,
Interface Transition Systems (ITS), and Interface Featured Transition Systems
(IFTS), upon which we base the definition of refinement proposed here. Finally,
we explain IFTA operations and their properties.

2.1 IFTA Preliminaries

Informally, an IFTA is an automaton whose edges are enriched with clocks,
clock constraints (CC), feature expressions (FE), and multiple synchronisation
actions. A clock c ∈ C is a logical entity that captures the (continuous and
dense) time that has passed since it was last reset. When a timed automaton
evolves over time, all clocks are incremented simultaneously. A clock constraint
is a logic condition over the value of a clock. A feature expression (FE) is a



logical constraint over a set of features F . Each feature denotes a unit of vari-
ability; by selecting a desired combination of features one can map an IFTA into
an (Interface) Timed Automaton. The synchronization actions can be input or
output actions, and represent the interface of the automaton, i.e., the actions
through which an automaton can communicate with other automata. Each syn-
chronization action has associated an inferred feature expression that expresses
the valid set of products in which such action was designed to be present. Finally,
an IFTA has a special feature expression representing its feature model, which
imposes restrictions over possible combinations of features.

For example, consider the IFTA CM from Figure 1 (left). It has two loca-
tions, `0 and `1, with a clock c and two features cf and mk , standing for the
support for brewing coffee and for including milk in the coffee. There are two
input actions, coffee?, and cappuccino?, and one output action, serve!, standing,
respectively, for the selection of coffee, cappuccino, and the action of serving the
beverage. Initially the automaton is in location `0, indicated by a double-edge
node (following Uppaal1 real time model checker notation), and it can evolve
either by waiting for time to pass (incrementing the clock c) or by taking one of
its two transitions to `1. The top transition, for example, is labelled by the action
coffee? and is only active when the feature cf is present. Taking this transition
triggers the reset of the clock c back to 0, evolving to the state `1. Here it can
again wait for the time to pass, but for at most 5 time units, determined by the
invariant c ≤ 5 in `1. The synchronization actions are lifted to the interface of
the automaton, depicted with , and associated to the corresponding inferred
feature expression. Finally, the lower expression fm = cf defines the feature
model, i.e., how the features relate to each other. We model this as restrictions,
thus, in this case cf is a mandatory feature, however nothing is expressed about
mk , meaning it can either be present or absent.

Formally, clock constraints, feature expressions, and IFTA can be defined as
follows.

Definition 1 (Clock Constraints (CC), valuation, and satisfaction). A
clock constraint over a set of clocks C, written g ∈ CC(C) is defined by

g ::= c < n | c ≤ n | c = n | c > n | c ≥ n | g ∧ g | > (clock constraint)

where c ∈ C, and n ∈ N.
A clock valuation η for a set of clocks C is a function η : C → R≥0 that

assigns each clock c ∈ C to its current value η(c). We use RC to refer to the set
of all clock valuations over a set of clocks C. Let η0(c) = 0 for all c ∈ C be the
initial clock valuation that sets to 0 all clocks in C. We use η + d, d ∈ R≥0, to
denote the clock assignment that maps all c ∈ C to η(c) + d, and let [r 7→ 0]η,
r ⊆ C, be the clock assignment that maps all clocks in r to 0 and agrees with η
for all other clocks in C \ r.

1 http://www.uppaal.org

http://www.uppaal.org


The satisfaction of a clock constraint g by a clock valuation η, written η |= g,
is defined as follows

η |= > always
η |= c� n if η(c)� n
η |= g1 ∧ g2 if η |= g1 ∧ η |= g2

(clock satisfaction)

where � ∈ {<,≤,=, >,≥}.

Definition 2 (Feature Expressions (FE), satisfaction, and semantics).
A feature expression ϕ over a set of features F , written ϕ ∈ FE(F ), is defined
by

ϕ ::= f | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | > (feature expression)

where f ∈ F is a feature. The other logical connectives can be encoded as usual:
⊥ = ¬>; ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2; and ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

Given a feature selection FS ⊆ F over a set of features F , and a feature
expression ϕ ∈ FE(F ), FS satisfies ϕ, noted FS |= ϕ, if

FS |= > always
FS |= f ⇔ f ∈ FS
FS |= ϕ1 ∧ ϕ2 ⇔ FS |= ϕ1 and FS |= ϕ2

FS |= ϕ1 ∨ ϕ2 ⇔ FS |= ϕ1 or FS |= ϕ2

FS |= ¬ϕ ⇔ FS 6|= ϕ

(FE satisfaction)

The semantics of a feature expression ϕ with respect to a set of features F ,
denoted JϕKF , is the set of valid feature selections over F that satisfy ϕ, formally,

JϕKF = {FS ⊆ F | FS |= ϕ} (FE semantics)

Definition 3 (Interface Featured Timed Automata). An IFTA is a tuple
A = (L, l0, A,C,E, Inv , F, fm, γ) where L is a finite set of locations, l0 is the
initial location, A = I ]O]H is a finite set of actions, where I is a set of input
ports, O is a set of output ports, and H is a set of hidden (internal) actions,
C is a finite set of clocks, E ⊆ L × CC(C) × 2A × 2C × L is the set of edges,
Inv : L→ CC(C) is the invariant, a total function that assigns clock constraints
to locations, F is a finite set of features, fm ∈ FE (F ) is a feature model defined
as a Boolean formula over features in F , and γ : E → FE (F ) is a total function
that assigns feature expressions to edges.

Notation: when not clear from the context, we will use LA, l0A , AA, . . . to refer
to the elements of an IFTA A, and when using automata names with subscripts
such as A1,A2, . . . , we will simply use L1, L2, l01 , l02 , . . . . For simplicity, some-
times we write l g,ω,r−−−−→A l′ instead of (l, g, ω, r, l′) ∈ EA, and use l g,ω,r−−−→

ϕ
A l
′ to

express that (l, g, ω, r, l′) ∈ EA and γA(l, g, ω, r, l′) = ϕ.
The interface of an IFTA A is the set PA = IA ]OA of all input and output

ports of A. Given a port p ∈ PA we write p? and p! to denote that p is an input
or output port, respectively, and write p instead of {p} when clear from context.



Notice that at this point, the definition of IFTA only incorporates the notion
of feature expressions associated to transitions through function γ, but does
not incorporate the notion of feature expressions associated to interfaces. Before
doing this, we define the notion of feature expression of an action. Given an
IFTA A, it is possible to infer for each action a ∈ AA a feature expression
based on the feature expressions of the edges in which a appears. Intuitively,
this feature expression determines the set of products requiring a. The formal
definition follows.

Definition 4 (Feature Expression of an Action). Given an IFTA A, the
inferred feature expression of any action a is the disjunction of the feature ex-
pressions of all of its associated edges, defined as

Γ̂A(a) =
∨
{γA(l

g,ω,r−−−−→A l′) | a ∈ ω} (FE of an action)

Now we can associate feature expressions to the actions of an IFTA. In order
to do this, we incorporate a new function Γ to the definition of an IFTA A, and
we say that A is grounded. Thus, given an IFTA A we can construct a grounded
A = (LA, l0A , AA, CA, EA, InvA, FA, fmA, γA, Γ ), where Γ : AA → FE (FA) is
a total function that assigns a feature expression to each action of A, and is
constructed based on Γ̂A. By doing this association only once, we are fixing the
feature expressions associated to each action, such that it represents the set of
products where each action was originally design to be present in.

The need for this function and for fixing it instead of using directly Γ̂ has to
do with the way we define the composition of IFTA and the properties that we
expect from it. We discuss this in Section 2.3.

2.2 Semantics

The above definition of IFTA, introduced in [7], is built on top of Featured
Transition Systems [5] extended with multi-action transitions. This section dis-
cusses the decomposition of an IFTA into Interface Featured Transition Systems
(IFTS) and Interface Transition Systems (ITS). These two formalisms can be
seen as an infinite transition system semantics for IFTA, and as an IFTS without
variability, respectively. The notion of refinement will be presented in Section 3
based on the semantics of IFTA as an IFTS.

We define an ITS as a regular transition system with multi-action transi-
tions and with an interface, i.e., we distinguish between input, output and in-
ternal actions. An IFTS is then defined by extending ITS with variability, by
incorporating features and a feature model.

Definition 5 (Interface Transition System). An ITS is a tuple S = (St, s0,
A, T ), where St is the set of states, s0 is the initial state, A = I ] O ] H is
the set of actions where I, O, and H are the set of input, output, and hidden
actions, respectively, and T ⊆ St× (2A ∪ R≥0)× St is the transition relation.



Definition 6 (Interface Featured Transition System). An IFTS is a tuple
S = (St, s0, A, T, F, fm, γ, Γ ), where St, s0, A, T are defined as in ITS, F is a
set of features, fm is the feature model, γ : T → FE (F ), is a total function
that assigns feature expressions to transitions, and Γ : A → FE(F ), is a total
function that assigns feature expressions to actions.

Notation:As before, when not clear from the context, we will use StS , s0S , AS , . . .
to refer to the elements of an I(F)TS S.

We may now present the formal definition of semantics of a grounded IFTA
in terms of an IFTS.

Definition 7 (Semantics of an IFTA as an IFTS). The semantics of a
grounded IFTA A = (L, l0, A,C,E, Inv , F, fm, γ, Γ ) written JAK, is an IFTS
S = (St, s0, A, T, F, fm, γ

′, Γ ), where St ⊆ L × RC is the set of states, s0 =
〈`0, η0〉 is the initial state, T ⊆ St× (2A ∪ R≥0)× St is the transition relation,
and γ′ : T → FE (F ) is the total function that assigns feature expressions to
transitions in T , both defined as follows.

〈`, η〉 d−→
>
〈`, η + d〉 if η |= Inv(`) and (η + d) |= Inv(`), (1)

for d ∈ R≥0
〈`, η〉 ω−→

ϕ
〈`′, η′〉 if ∃ ` g,ω,r−−−→

ϕ
`′ ∈ E s.t. η |= g, (2)

η |= Inv(l), η′ = [r 7→ 0]η, and η′ |= Inv(`′)

Given a feature selection FS it is possible to project an IFTS into an ITS.
Only transitions and actions satisfied by FS are preserved by the projection.

Definition 8 (IFTS Projection). The projection of an IFTS S over a set of
features FS is an ITS S ↓FS= (StS , s0S , A, T ), where A and T are defined as

T = { t ∈ TS | FS |= γS(t) }
A = { a ∈ AS | FS |= ΓS(a) }

2.3 Operations on IFTA

Two IFTA can be composed by combining their feature models and linking
interfaces, imposing new restrictions over them. The composition is built on top
of two operations: product and synchronisation. The product operation for IFTA,
unlike the classical product of timed automata, is defined over grounded IFTA
with disjoint sets of actions, clocks and features, performing their transitions in
an interleaving or synchronous-step fashion.

Definition 9 (Product of IFTA). Let A1 and A2, be two different grounded
IFTA with disjoint actions, clocks and features; then, the product of A1 and A2,
denoted A1 ×A2, is

A = (L1 × L2, `01 × `02 , A, C1 ∪ C2, F1 ∪ F2, E, Inv , fm1 ∧ fm2, γ, Γ )

where A, E, Inv , γ and Γ are defined as follows



– A = I ]O ]H, where I = I1 ∪ I2, O = O1 ∪O2, and H = H1 ∪H2.
– E and γ are defined by the rules below, for any ω1 ⊆ A1, ω2 ⊆ A2.

`1
g1,ω1,r1−−−−−→
ϕ1

1 `
′
1

〈`1, `2〉
g1,ω1,r1−−−−−→
ϕ1

〈`′1, `2〉

`2
g2,ω2,r2−−−−−→
ϕ2

2 `2
′

〈`1, `2〉
g2,ω2,r2−−−−−→
ϕ2

〈`1, `′2〉

`1
g1,ω1,r1−−−−−→
ϕ1

1 `
′
1 `2

g2,ω2,r2−−−−−→
ϕ2

2 `
′
2

〈`1, `2〉
g1∧g2,ω1∪ω2,r1∪r2−−−−−−−−−−−−→

ϕ1∧ϕ2

〈`′1, `′2〉

– Inv(`1, `2) = Inv1(`1) ∧ Inv2(`2).
– ∀ a∈PA · Γ (a) = Γi(a) if a ∈ Ai, for i = 1, 2.

Both top transitions represent the interleaving of both automata. The bottom
transition represents the synchronous execution of transitions from A1 and A2,
for every combination of outgoing transitions from a state `1 ∈ L1 and `2 ∈ L2.

The synchronisation operation over an IFTA A connects and synchronises
two actions a and b in AA. The resulting automaton has transitions without
neither a and b, nor both a and b. The latter become internal transitions.

Definition 10 (Synchronisation). Given a grounded IFTA A = (L, `0, A,
C, F,E, Inv , fm, γ, Γ ) and two actions a, b ∈ A, the synchronisation of a and b
is given by ∆a,b(A) = (L, `0, A

′, C, F,E′, Inv , fm ′, γ, Γ ) where A′, E′ and fm ′

are defined as follows

– A′ = I ′]O′]H ′, where I ′ = I \{a, b}, O′ = O \{a, b}, and H ′ = H ∪{a, b}.
– E′ = {` g,ω,r−−−−→ `′ ∈ E | a /∈ ω and b /∈ ω} ∪

{` g,ω\{a,b},r−−−−−−−−→ `′ | ` g,ω,r−−−−→ `′ ∈ E and a ∈ ω and b ∈ ω}
– fm ′ = fm ∧ (ΓA(a)↔ ΓA(b)).

The resulting feature model imposes new restrictions over the set of features
based on the actions being synchronised. Intuitively, if two actions a and b are
synchronised, they depend on each other. Thus, we require that they should both
be present or both absent in any valid set of features. This is done based on Γ
which gives us the original set of products in which a and b where design to be
present in.

Together, the product and the synchronisation can be used to obtain in a
compositional way, a complex IFTA built out of primitive ones. The composition
of IFTA is made by linking ports and by combining their variability models.
Thus, we define the composition of two IFTA as their product, followed by the
explicit binding of actions through synchronization. The composition is defined
for interface actions synchronized on an input-output fashion only.

Definition 11 (Composition of IFTA). Given two grounded IFTA, A1 and
A2, with disjoint set of actions, features and clocks; and a possible empty set of



bindings {(a1, b1), . . . , (an, bn)}, such that for each pair ai and bi, for 1 ≤ i ≤ n,
we have that

(ai, bi) ∈ I1 ×O2 or (ai, bi) ∈ O1 × I2 (io-only)

then, their composition is a new grounded IFTA defined as follows

A1 1(a1,b1),...,(an,bn) A2 = ∆a1,b1 . . . ∆an,bn(A1 ×A2)

Figure 3 exemplifies the composition of the coffee machine CM (top right)
from Figure 1, and a new IFTA R, representing a router (top left), which receives
an input i?, and executes simultaneously one of its outputs, if they are present,
or receives i? and does nothing if neither output are present. The composition
is done by linking the ports o1! with coffee?, and o2! with cappuccino?. The
resulting IFTA combines the feature models of both IFTA, imposing additional
restrictions given by the binded ports, e.g., the binding (o1!, coffee?) imposes
that o1! will be present, if and only if, coffee? is present, which depends on the
feature expressions of each port, i.e., (fi ∧ fo1 ) ↔ cf . In the composed IFTA,
transitions with binded actions transition together, while transitions with non-
binded actions (i? and serve!) can transition independently or together.

CM
(Figure 1)`2

{i?, o1!}
fi ∧ fo1

{i?}
fi ∧ ¬(fo1 ∨ fo2 )

{i?, o2!}
fi ∧ fo2

i?
fi

o1!
fi ∧ fo1

o2!
fi ∧ fo2

coffee?
cf

cappuccino?
cf ∧mk

serve!

./
o1 ↔ coffee
o2 ↔ cappuccino

fm = (fo1 ∨ fo2 )→ fi fm = cf

l2, l0
l2, l1
c ≤ 5

serve!

i?
fi ∧ fo1 ∧ cf , c := 0

i?
fi ∧ fo2 ∧ cf ∧mk , c := 0

{i?,serve! }
fi ∧ ¬(fo1 ∨ fo2 )

i?
fi ∧ ¬(fo1 ∨ fo2 )

i?
fi ∧ ¬(fo1 ∨ fo2 )

fm = cf ∧ (fo1 ∨ fo2 )→ fi ∧ (fi ∧ fo1 )↔ cf ∧ (fi ∧ fo2 )↔ (cf ∧mk)

i?
fi

serve!=

Fig. 3. Composition of an IFTA R (top left), representing a router coordination com-
ponent, with the IFTA CM (top right), defined in Figure 1, by binding ports (o1, coffee)
and (o2, cappuccino), yielding the IFTA at the bottom.

Notice that because we define composition as the product followed by the
synchronization, the product will produce many transitions that are later cut by



the synchronization when linking actions. Then, the order in which actions are
linked, and therefore, the order in which transitions are cut by the synchroniza-
tion operation affects the inferred feature expression of actions. Thus, if we were
to use Γ̂ instead of Γ , synchronization would not be commutative. By fixing the
feature expression of an action before doing the product, we avoid this issue and
the synchronization remains commutative.

By allowing each IFTA to have its own feature model and taking into account
variability during composition, we can reason about how composing families of
timed automata in parallel affects the presence of interfaces and the variability
of the composed system.

Operations over IFTA satisfy the usual properties up to strong bisimulation
(∼) and are discussed in [7]. We recall them in the following theorem.

Theorem 1. Given any IFTA A1,A2 and A3, and actions a, b, c, d ∈ AA1
, such

that a, b, c, d are different actions, the following properties hold.

A1 ×A2 ∼ A2 ×A1 (×-commutativity)
A1 × (A2 ×A3) ∼ (A1 ×A2)×A3 (×-associativity)
∆a,b∆c,dA1 ∼ ∆c,d∆a,bA1 (∆-commutativity)
(∆a,bA1)×A2 ∼ ∆a,b(A1 ×A2) (∆ interacts well with ×)

3 Refinement

As mentioned in the introduction, there are two different aspects to be taken
into account when discussing a notion of refinement for IFTA. The first concerns
refinement of the feature model, which we call variability refinement. The second
one is refinement of timed automata obtained by projection onto a feature se-
lection, which we call behavioural refinement. Thus, refinement of an IFTA will
be defined as a refinement of both its feature model and its projections.

3.1 Variability Refinement

Thum et al. [10] recognize four type of relations between two feature models fm1

and fm2, based on their set of products, even when their set of features, may
not coincide: fm1 refactors or is equivalent to fm2 if they model the same set
of products; fm1 specializes fm2 if the set of products of fm1 is a subset of the
products of fm2; fm1 generalizes fm2 if the set of products of fm1 is a superset
of the products of fm2; and fm1 and fm2 are arbitrarily related otherwise.

However, in order to reason about refinement of families of timed automata
we also would like to relate feature models in terms of a refinement relation.
Intuitively, a feature model fm1 refines a feature model fm2 if, when considering
the set of features of fm2, fm1 expresses exactly the same set of products as
expressed by fm2. Thus, fm1 can add new variability or details only in terms of
new features. Formally, if we consider feature models with only terminal features
[10], i.e., no abstract features, we define feature model refinement as follows.



Definition 12 (Feature model refinement). Given two feature models fmi ∈
FE(Fi) over a set of features Fi, i = 1, 2, fm1 refines fm2, denoted fm1 v fm2,
if and only if,

F1 ⊇ F2 (preserves features)

Jfm1K
F1 |F2

= Jfm2K
F2 (fm1 refines fm2)

where JfmKF |F ′ = {FS ∩ F ′ | FS ∈ JfmKF }.

For example, if we consider the coffee machines CM and CM’ from Figure 4,
we have that JfmCM K = {{cf }, {cf ,mk}} and JfmCM ′K = {{cf }, {cf ,wt}, {cf ,
mk}, {cf ,mk ,wt}}. When we restrict fmCM ′ to only features in FCM , we have
JfmCM ′K|FCM

= {{cf }, {cf ,��wt}, {cf ,mk}, {cf ,mk ,��wt}} = JfmCM K, where ��wt

means that feature wt is removed from the set. Thus, fmCM ′ v fmCM . However,
let us assume that the feature model of CM’ is fmCM ′ = cf ∧ (wt → mk) instead
of just cf , then we have JfmCM ′K|FCM ′

= {{cf ,mk}, {cf ,mk ,��wt}}. In this case
fmCM ′ 6v fmCM , since it does not preserves variability by not allowing a coffee
machine that only serves coffee.

Theorem 2 (v is a partial order). For any feature model fmi, for i = 1, 2, 3,
fm1 v fm1; if fm1 v fm2 and fm2 v fm3, then fm1 v fm3; and if fm1 v fm2

and fm2 v fm1, then fm1 ≡ fm2.

Proof. Immediate by unfolding definitions and set-theoretic properties.

3.2 Behavioral Refinement

Intuitively, an automata A that refines an automata B should be able to replace
B in every environment that B appears in, yielding an equivalent system. Re-
finement allows to check if a given implementation agrees with a specification.
We consider implementations as automata that are more detailed specifications.
Our notion of refinement is similar to the one in [2], where there is an alternat-
ing simulation between both automata: A must simulate all input behavior of
B, while B must simulate all output behavior from A. Thus, A can allow more
legal inputs, and fewer outputs, than B.

Similarly to [9] we define refinement at the semantic level, i.e., IFTS, and
then we define refinement of IFTA in terms of IFTS refinement. However, first
we define the notion of refinement for Interface Transition Systems, separating
the notion of behavioral refinement from variability refinement.

Our notion of refinement can be seen as an extension of [2] for timed systems
and multi-action transitions. Here as well, the definition of refinement must con-
sider the fact that both automata have internal actions which are independent
from each other. Since we are dealing with timed transition systems, the def-
inition of refinement must consider that internal steps can incorporate delays.
Thus, we define a transition relation that captures all transition steps that can
be done from a state s to a state s′, by any combination of internal and delay
steps.



Definition 13. Given an ITS S and states s, s′ ∈ StS, we write s d
=⇒S s′ if

there is a sequence of transition steps from TS, such that

∃ s d0∪τ−−−−→S s1 . . . sn
dn∪τ−−−−→S s

′ and d =

n∑
i=0

di

where di ∈ R≥0, and τ represents any internal action. For simplicity, we write
s

ω
=⇒d

S s
′ if there is a sequence of transition steps from TS, such that

∃ s d
=⇒S sn

ω−−→S s
′

In this context, ITS refinement is defined as follows.

Definition 14 (Refinement of ITS). Given two ITS, S and T , such that
IT ⊆ IS and OS ⊆ OT , S refines T , denoted S � T , if and only if, ∃ R ⊆
StS × StT , such that (s0, t0) ∈ R and for each (s, t) ∈ R, we have

1. s d
=⇒S s

′, d ∈ R≥0 then t d
=⇒T t

′ and (s′, t′) ∈ R, for some t′ ∈ StT
2. s OIs===⇒d

S s′, d ∈ R≥0, O 6= ∅ then t
OIs===⇒d

T t′ and (s′, t′) ∈ R for some
t′ ∈ StT

3. t IO
==⇒d

T t
′, d ∈ R≥0, I 6= ∅ then s

IO
==⇒d

S s
′ and (s′, t′) ∈ R for some s′ ∈ StS

where Is is either ∅, or has only inputs shared by both automata, Is ⊆ IT .

Condition 1 expresses that any delay d allowed by s, possibly through internal
steps, must be a delay allowed from t, possibly through internal steps. Condition
2 expresses that any transition with output O, with a possible empty set of
inputs Is ⊆ IT that are shared by both systems, which can be taken from s
after a delay d, possibly through internal steps, must simulate a (sequence of)
transition(s) from t. In case there is a multi-action transition with outputs and
inputs, such that the inputs include new inputs in IS , is considered as new
behavior incorporated by the new inputs, and as such, it is ignored. Condition 3
expresses that any transition with inputs I, with a possible empty set of outputs
O, which can be taken from t after a delay d, possibly through internal steps,
must be simulated by a (sequence of) transition(s) from s.

In comparison with de Alfaro et. al., we relax some of the requirements made
over the states being compared, s and t. In particular, when considering input
labeled transitions (condition 3), de Alfaro et. al. defines that s and t are in a
refinement relationship, only if, whenever in t is possible to receive and input,
s may receive the same input. Here, we require that whenever in t is possible
to receive an input within certain time, possibly through a sequence of internal
steps, s may receive the same input within the same time, possibly through a
series of internal steps.



3.3 IFTA refinement

Before considering refinement for families of timed automata, let us consider
refinement for IFTS. Informally, given two IFTS, S and T , S refines T if for
each product in S, the projection of S onto such product refines the projection
of T onto the same product. However, depending on the relation existing between
the set of products of S and T , this can lead to different notions of refinement.
Ideally, S should preserve the variability of T , i.e., S should allow exactly the
products in T , although it may also increase the set of features and allow more
products when considering the new features. Formally, the refinement of IFTS
and IFTA are defined as follows.

Definition 15 (Refinement of IFTS). Given two IFTS, S and T , S refines
T , denoted S � T , if and only if,

fmS v fmT (variability refinement)

∀ FS ∈ JfmSKFS · S ↓FS � T ↓FS (behaviour refinement)

Definition 16 (Refinement of IFTA). Given two grounded IFTA A and B,
A refines B, denoted A � B, if and only if, JAK � JBK.

Figure 4 shows an implementation of a family of coffee machines, CM’ (right),
which refines the IFTA CM (left). The new automaton introduces a new input,
water? that depends on a new feature wt which represents the support for serving
water. In addition, CM’ ensures that coffee is served faster than in CM, as
indicated by the invariant c ≤ 3 .

`0
`1

c ≤ 5

cappuccino?
cf ∧mk , c := 0

coffee?
cf , c := 0

serve!
cf

coffee?
cf

cappuccino?
cf ∧mk

serve!
cf

CM (Figure 1)

fm = cf

`0
`1

c ≤ 3

cappuccino?
cf ∧mk , c := 0

coffee?
cf , c := 0

serve!
cf{water?,serve!}

wt

coffee?
cf

cappuccino?
cf ∧mk

serve!
cf

water?
cf

CM ′ (CM Implementation)

fm = cf

�
(refined by)

Fig. 4. Example of a family of coffee machines CM’ with new variability, interfaces and
time restrictions, refining the family CM introduced in Figure 1.

Figure 5 shows a more complex example of refinement incorporating internal
actions. The IFTA on the left, P1, specifies a payment system using PayPal, and
is part of a larger system composed of various automata, which models a family
of licensing services introduced in [7]. The IFTA on the right, P2, represents a
more detailed implementation of P1. The specification requires that whenever



the user makes a payment through PayPal, the system will issue an error or
a success signal in less than ten units of time. The implementation deals with
the actual login into PayPal and confirmation of the payment. In P2, after the
user requests to issue a payment through PayPal, the user must login within 5
units of time, or an error is issued. The log in can be successful or it can issue
an error in less than one unit of time. In case the user logs in successfully, a
confirmation of the payment must be issued in less than one unit of time after
which the system issues a signal of error or success. Both, P1 and P2, share
the same feature model. In addition, P2 guarantees that whenever a payment
is made through PayPal, the system will issue an error or success signal in less
than seven units of time, satisfying the requirements of P1. Thus, P2 � P1.

`0
`1

t ≤ 10
paypal?

pp, t := 0

success!
pp

error!
pp

paypal?
pp

error!
pp

success!
pp

P1 (PayPal Specification)

fm = >

`0
`1

c ≤ 5
`2

c ≤ 1

`3
c ≤ 1

`4
c ≤ 1

paypal?
pp, c := 0

{error!,timeout;}
pp, c == 5

userinfo;
pp, c < 5 , c := 0

ok;
pp

c := 0

confirm;
pp, c := 0

error!
pp

success!
pp

{error!,incorrect;}
pp

paypal?
pp

error!
pp

success!
pp

P2 (PayPal Implementation)

fm = >

Fig. 5. An example of IFTA refinement with internal actions, where P2�P1.

Refinement of IFTA is a pre-order and it is compositional. The latter allows
decomposition of refinement proofs, improving efficiency in refinement checking.
In order to be compositional, refinement must be congruent with respect to
IFTA operations, product and synchronization. The former is straightforward,
however stronger pre-conditions are required to ensure congruence with respect
to synchronization.

The problem arises with feature model refinement. Intuitively, by definition
of refinement, in the implementation an input can be present in more products
and an output can be present in less products, than in the specification. Thus, it
is natural that the feature expressions associated to the input and output that we
want to synchronize in the implementation differ from the feature expressions
in the specification. Thus, if an implementation refines a specification, after
synchronization, the feature model of the implementation does not necessarily
refine the feature model of the specification.



Intuitively, a possible solution is to require that an implementation can only
replace the specification if it does not add new interface bindings and maintains
all bindings already in the specification. This means that, for each valid product
in the implementation, the corresponding automata in the implementation can
be synchronized over a given set of input and outputs, if and only if, the corre-
sponding automata in the specification can be synchronized over the same inputs
and outputs. The following theorems capture the pre-order and compositional
properties of IFTA refinement.

Theorem 3 (� is a pre-order). For any grounded IFTA A1, A2 and A3,
A1 � A1, and if A1 � A2 and A2 � A3, then A1 � A3.

Proof. A1 � A1 is trivial by definition of �. In the case of transitivity, feature
model refinement follows immediately from Theorem 2. Behavioral refinement
follows by induction on the structure of IFTA for each case of Definition 14.

Theorem 4 (� is congruent w.r.t. ×). For any grounded IFTA A1, A2,
and B, such that Ai and B have disjoint set of actions and features, i = 1, 2, if
A1 � A2, then A1 × B � A2 × B.

Proof. Feature model refinement follows by definition of semantics of a feature
expression. Behavioral refinement follows by induction on the structure of IFTA
for each case of Definition 14.

Theorem 5 (� is congruent w.r.t. ∆). For any grounded IFTA A1, A2, and
actions i, o such that (i, o) ∈ Ii × Oi for i = 1, 2, if A1 � A2, then ∆i,oA1 �
∆i,oA2, only if, fm1 → ((Γ1(i)↔ Γ1(o))↔ (Γ2(i)↔ Γ2(o))).

Proof. Feature model refinement follows by definition of semantics of a feature
expression, and by the precondition on Γi for i ∈ {1, 2}. Behavioral refinement
follows by induction on the structure of IFTA for each case of Definition 14.

To meet strict space limitations, detailed proofs of all results are omitted in
the paper, but will appear in [6].

Let us consider again the IFTA CM composed with the router R (Figure 3).
If we want to check if we can replace CM by CM’ (Figure 4) in the system
composed by CM and R, because refinement is compositional, instead of checking
CM ′ 1(coffee,o1),(cappuccino,o2) R � CM 1(coffee,o1),(cappuccino,o2) R it suffices to
check the following conditions:

1. fm1 → ((ΓCM ′(coffee)↔ ΓCM ′(o1))↔ (ΓCM (coffee)↔ ΓCM (o1)))
2. fm1 → ((ΓCM ′(cappuccino)↔ ΓCM ′(o2))↔ (ΓCM (cappuccino)↔ ΓCM (o2)))
3. CM’ � CM

Conditions 1 and 2 correspond to the precondition for ∆ congruence. In our
example, both conditions are satisfied. However, let us assume now that we
have an IFTA CM” which differs from CM only by changing the feature ex-
pression associated to the transition labeled with cappuccino!, from cf ∧mk to
(cf ∧mk) ∨ instc, where instc represents the support for instant cappuccino. In



this case, when we try to replace CM by CM”, condition 2 does not hold. This
is because in CM, cappuccino appears only when cf and mk are both present,
however in CM” cappuccino can appear when cf and instc are present but not
mk . Thus, the resulting composed system with CM” and R, models a concrete
automaton that enables a synchronization between o2! and cappuccino? that was
not possible before.

4 Conclusions

We proposed a refinement relation for families of timed automata which are
modeled as Interface Featured Timed Automata. Since each IFTA can be seen as:
1) a feature model, which determines a set of valid feature combinations; and 2) a
set of concrete automata, where each of the concrete automata is determined by a
valid set of features; we separated the notion of IFTA refinement into variability
refinement and behavioral refinement. Furthermore, we decompose IFTA into
other formalisms on which we based such notions of refinement, namely Interface
Featured Transition System (IFTS) and Interface Transition Systems (ITS).

The refinement relation proposed here is a pre-order and congruent with
respect to IFTA product and synchronization, meaning refinement is compo-
sitional. However, in order to be congruent with respect to synchronization,
stronger conditions must be made over the synchronization actions used in the
composition. In particular, the implementation can only replace the specifica-
tion in a composed environment, if it does not add new interface connections
and maintains all connections of the specification. Although the requirement of
not allowing new connections and maintain existed ones is reasonable, it can be
too strict. For example, in alignment with the notion of ITS refinement, which
allows to incorporate new behavior through new inputs, it will be desirable to
incorporate new behavior in terms of new features, in a way that the example of
CM”, introduced in Section 3.3, can be considered a refinement of CM. In fact, in
[2], de Alfaro et. al. only require that no new connections with the environment
are made, while some connections can be lost, however, this is not sufficient to
ensure that IFTA refinement is compositional. In this sense, as a future work we
would like to explore and formalize other notions of refinement and how these
can affect the properties that we can expect from the relation. For example, in
the case of behavioral refinement, we could have defined that A refines B, if
and only if, for every feature selection FS in fmB (instead of fmA), JAK ↓FS �
JBK ↓FS . The advantage is that we can now incorporate behavior in terms of
new features, aligning better with the notion of refinement. However, on the one
hand, this requires that fmA contains at least all feature selections allowed by
fmB, meaning fmA can not incorporate mandatory features; and on the other
hand, it can be too flexible, since we can not account for how the system will
behave for new variability.

Currently, we are working on defining a notion of refinement over IFTS that
takes advantage of the variability to perform a refinement checking on the entire
family instead of a product by product approach. In addition, previously we



developed a prototype tool2 to specify IFTA, compose them and translate them
to other formalisms, including Uppaal Timed Automata to verify properties,
and we plan to extend it to support refinement checking.
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