
A proof-of-concept prototype for IFTA
Technical Report

Guillermina Cledou

HASLab INESCTEC and Universidade do Minho, Braga, Portugal

mgc@inesctec.pt

Abstract

1 Introduction
This report presents a proof-of-concept prototype implemented to support Interface Featured Timed
Automata (IFTA) [3], a compositional formalism to model Software Product Lines (SPLs) with time
requirements, and discusses some implementation decisions and challenges encounter when experimenting
with the prototype. The relevant background on SPL and IFTA can be found in [1–3].

The prototype is developed in Scala1 and consists of a small Domain Specific Language (DSL) to
support specification of IFTA and networks of IFTA (NIFTA), as well as some operations over them.
By a network of any kind of automata we understand a set of automata composed in parallel (||) and
synchronized over a set of shared actions.

2 Prototype
The DSL provides an easy way to specify IFTA and networks of IFTA, and provides different features to
work over both, including:

– operations: product, synchronization and composition

– translations to other formalisms: (networks of) FTA and Uppaal (networks of) TA

– graphical representations: statical – using DOT2 graph description language; and interactive – using
Vis.js3 visualization library

– connectors: a set of commonly used Reo connectors to coordinate families of systems

We informally explain the DSL and its use through a simple example.

2.1 Example: family of payment methods
Let us consider a family of systems that supports online payments through different methods. Some
services support online payment through credit cards (cc), other services support payments through
PayPal (pp), and others support both. This represents a family of three possible services with shared
functionality, namely {cc, pp}, {cc}, and {pp}.

We model this small family by separating the behaviour of each type of payment into an automaton.
The mechanism that coordinates the selection of the payment method is also separated into different
automata. The behaviour of each of these components is described below.

1https://github.com/haslab/ifta
2http://www.graphviz.org/about/
3http://visjs.org

1

https://github.com/haslab/ifta
http://www.graphviz.org/about/
http://visjs.org

Credit Card – the component4 models payments through credit cards. If a user requests to pay by
credit card (paycc), a clock is reset to track payment elapsed time (topp), after which the user has
less than 1 unit of time (InvCC (`1)) to enter the details and proceed with the payment, which can
result in success (paidcc) or cancellation (cancelcc).

PayPal – the component models payments through PayPal accounts. If a user requests to pay by
PayPal (paypp), a clock is reset to track payment elapsed time (tocc), after which the user has less
than 1 unit of time (InvPP (`1)) to login and proceed with the payment, which can result in success
(paidpp) or cancellation (cancelpp).

PaymentNet – It comprises a network of automata to model the orchestration of payment requests
based on the availability of payment methods. It is composed by the Credit Card and PayPal
components, a router and two merger connectors. If a request for payment is received (payapp)
a router enables to choose between a payment by Credit Card or by PayPal (paypp or paycc). A
merger synchronizes the successful response (paidpp or paidcc), while other merger synchronizes
the cancellation response (cancelpp or cancelcc) from either CC or PP. In addition to the feature
model generated by the composition of these IFTA, the payment component imposes the additional
restriction that at least one payment method is supported by the system, (cc ∨ pp).

A scheme of the payment network can be seen in Figure 1. This figure was generated by the prototype
as we will explain below. Boxes represent IFTA, while ellipses represent the interface of the network, i.e.
input and output ports that haven’t been synchronized yet. In addition, a graphical representation of
each IFTA, automatically generated by the prototype, can be seen in Figure 4.

Figure 1: A architectural view of a network of IFTA.

2.2 Specifying IFTA
This network can be specified in the prototype by using the DSL as shown in Listing 1. In the figure,
creditcard, paypal, and paymentNet, correspond to the components described above. A new automaton
is created with the constructor newifta, which builds an empty IFTA. New transitions are added through
the operator ++. In the case of the credit card IFTA, three transitions are specified between parenthesis,
followed by the declaration of the ports. Each transition in the example specifies:

– the origin and destination location indicated by natural numbers and by the linking operator
between them ->;

– the actions labelling the transition, using the operator by followed by the set of actions encoded as
a string where actions are separated by a comma;

– the associated feature expression, using the operator when, followed by the feature expression, where
features are expressed as strings and the logical operators are encoded as usual, &&, ||, ->, not,
and <->; and

– the set of clock to reset, using the operator reset, preceding each clock to reset, encoded as a string,
and any clock constraint if it were the case, e.g., cc "t">=2, where cc stands for clock constraint, and
t is a clock name.

4the word component is used interchangeably with automaton.

2

val creditcard = newifta ++ (
0 --> 1 by "paycc" when "cc" reset "toutcc",
1 --> 0 by "cancelcc" when "cc",
1 --> 0 by "paidcc" when "cc"
) startWith 0 get "paycc" pub "cancelcc,paidcc" inv(1,"toutcc"<=1) name "CC"

val paypal = newifta ++ (
0 --> 1 by "paypp" when "pp" reset "toutpp",
1 --> 0 by "cancelpp" when "pp",
1 --> 0 by "paidpp" when "pp"
) startWith 0 get "paypp" pub "cancelpp,paidpp" inv(1,"toutpp"<=1) name "PP"

val paymentNet = (
router("payapp", "paycc", "paypp") ||
paypal || creditcard ||
merger("cancelcc", "cancelpp", "cancelpay") ||
merger("paidcc", "paidpp", "paidapp")) when ("pp" || "cc")

Listing 1: Example specification of a network of IFTA using the prototype DSL.

Each port, encoded as a string, is preceded by the operator get if it is an input port, and pub if an
output port. The feature model is specified by a feature expression using the operator when as before.
When the feature model is not specified, it is automatically assumed as >. Similarly, if the initial location
is not specified by starWith, location 0 is assumed as initial location. A net can be created by composing
automata in parallel as in the case of paymentNet. The DSL provides a set of Reo connector constructs,
such as the router and merger used in the example. In this case, both connectors follow the relaxed
approach [1] in which some of their ports may be missing.

2.3 Graphical representation
The prototype provides functionality to visualize IFTA and networks of IFTA, either statically or in-
teractively. In the statical option, automata are translated to Dot, a graph representation language. In
the interactive option, automata are as well translated to a graph representation language but using a
JavaScript library, Vis.js. For example, the command toDot(creditcard) produces the following output
code in Dot language (left) which can be visualized as the graph on the right5:

digraph G {
rankdir=LR;
node [margin=0 width=0.3 height=0.2]
edge [arrowsize=0.7]

{ rank=min;
node [style=filled,shape=doublecircle] 0 }
label=<<I>fm = true</I>>

{ node [xlabel="toutcc <= 1"] 1 }

0 -> 1 [label="paycc,toutcc:=0,cc"]
1 -> 0 [label="cancelcc,cc"]
1 -> 0 [label="paidcc,cc"]
}

Similarly, the command con2dot(paymentNet) can be used over a network of IFTA. In this case, when
visualized, the output code results in the graph from Figure 1.

Likewise, the commands toVis(creditcard,"cc.html") and con2vis(paymentNet,"pn.html") can
be used over IFTA and networks of IFTA, respectively, to generate an HTML file. The file can be
opened on any browser to visualize the corresponding IFTA or NIFTA, the set of products that can be
derived from them, and how each valid feature selection affects the automaton transitions or network

5The code must be run with the command dot in the command line, or used in online tools such as http://viz-js.com/

3

http://viz-js.com/

connections. For example, in the case of the payment network, the prototype resolves there are three
possible feature selections (Figure 3). By selecting each option, the model highlights in black the port
connections between IFTA in the network, while grey lines represent connections that are not part of
such feature selection.

(a) feature selection = {cc}

(b) feature selection = {cc, pp}

(c) feature selection = {pp}

Figure 3: Interactive visualization of a network of IFTA.

The interactive visualization is essential when modelling complex families of systems. It quickly
provides visual feedback to understand if the resulting SPL models the set of desired products, and if
each product has the expected underlying architecture – when visualizing networks of IFTA; or if it has
the expected transitions – when visualizing IFTA.

This becomes more evident when modelling families of complex coordination mechanism due to the
need of using different approaches with different degrees of variability to model each connector. As
discussed in [1], currently this involves a manual process where the modeller must decide depending on
the expected variability which degree of variability must exhibit each individual connector. Being able to
quickly visualize how the chosen variability of a given connector affects the composed connector facilitates
the modelling of such mechanisms.

2.4 Conversion to other formalisms
A network of IFTA can be step-wisely converted into a network of FTA with committed states, which in
turn can be converted into a network of Uppaal TA, as follows.

1) NIFTA to NFTA. Informally, this is achieved by converting each multi-action transition to a
set of transitions with single actions that must execute atomically. The atomicity is achieved through
committed states between them. In addition, the new set of transitions should support all possible
combinations of execution order in the original multi-action transition. However, in practice this can
quickly lead to a state explosion. To reduce this problem, we allow only combinations were the execution
flows from inputs to outputs. For example, in Figure 5, the IFTA on the left is converted into the FTA

4

(a) CreditCard (b) PayPal

(c) Merger (successful payment) (d) Merger (cancelled payment)

(e) Router (payment selection)

Figure 4: IFTA models for each automaton in the payment network.

NIFTA
NFTA

+
committed states

Uppaal NTA
+

features

2A to A + CS FE to Variables + Context + FM

on the right. Ideally, i and o should be enabled at `0, however, we only model the combination were
i executes followed by o (dark arrows). The other possibility, when o executes first (light grey) is not
created. It is worth to mention that the word first refers here to the syntactic order, since semantically,
due to the committed locations, the sequence of transitions is done atomically, i.e. time does not pass.

`0
{i , o}
fi ∧ fo

→ `0
`2
C

`1
C

i
fi ∧ fo

o
fi ∧ fo

o
fi ∧ fo

i
fi ∧ fo

Figure 5: Conversion of multi-action transitions into single-action transitions.

2) NFTA to Uppaal NTA. To create a network ready for simulation and verification in Uppaal,
this activity involves three steps. Firstly, takes the NFTA obtained in the previous step and creates an
Uppaal TA per each FTA in the network, where features are encoded as boolean variables, and transition
feature expressions as a logic guard over Boolean variables. Secondly, the feature model of the network is
solved using a SAT solver to find the set of all valid feature selections (or products). This set is encoded
as a TA with an initial committed location and with an outgoing transition to a new location for each
element in the set. Each transition represents a valid selection of features by initializing the corresponding
set of variable representing those features. The initial committed state of the feature model ensures a
feature selection is made before any other transition is taken. Thirdly, a TA is created to represent the

5

context of the network, which corresponds to the interface of the network. The context is represented as
TA with an unique state and a loop transition for each action of the context. Figure 6 illustrates how
the IFTA of the PayPal component, and the feature model of the payment net (Listing 1) are translated
into Uppaal as TA. The composed feature model allows four products, from top to bottom: 1) feature
cc, 2) features pp and cc, 3) feature pp, and 4) none. The additional features modelled with a prefix v_,
represent generic features associated to the connectors.

(a) PayPal as Uppaal TA

(b) Feature model as Uppaal TA

Figure 6: Example of an Uppaal TA consisting of the PayPal component

A main issue when translating networks of IFTA to networks of Uppaal TA are sequences of commit-
ted states. Because of how Uppaal deals with such sequences, it can lead to a deadlock when verifying
properties. When the model checker sees that the first transition in such type of sequence is enabled,
it executes the transition, moving to the next committed state. If there are no enabled transitions from
that state, or another committed state, then the system is in a deadlock. This is a problem inherent to
Uppaal rather than a problem of the model.

Another issues when translating IFTA to FTA with committed states, is that the complexity of the
model grows quickly. For example, the IFTA of a simple replicator with 3 output ports consists of a
location and seven transitions, while its corresponding FTA consists of 23 locations and 38 transitions.
Without any support for composing variable connectors, modelling all possible cases is error prone and
it quickly becomes unmanageable.

This simplicity in design achieved through multi-action transitions leads to a more efficient approach
to translate IFTA to Uppaal TA in particular by using the composition of IFTA. The IFTA resulting
from composing a network of IFTA, can be simply converted to an FTA by flattening the set of actions
in to a single action, and later into an Uppaal TA, avoiding the use of committed states. For example,
the payment network can be composed and flattened into a single IFTA as shown in Figure 9.

The flattening of the net resolves the problem of the sequence of committed states. However, it
introduces a new issue, computing the composition of complex networks. For example, the prototype
is not able to compute the composition of a synchronous merger [5, 6]. The architectural view of such
coordination mechanism can be seen in Figure 7.

In the particular case of coordination mechanism, this issue is inherent to the composition of Reo
connectors and has been explored before [4]. The composition of Reo connectors is an example where the
composition of automata has a number of states/transitions linear in the number n of automata being
composed, however it may required exponential resources to compute such composition. Intuitively, as
connectors are being composed in Figure 7, initially the number of states and transitions may growth
exponentially because these connector share only some actions or not actions at all (in the worst case
it generates the product automata between two automaton). However, eventually, as all automata are

6

composed and began to share actions, the complexity of the composed automata reduces, since transitions
begin to be synchronized due to the shared actions.

In [4] the authors exemplify this issue by composing the constraint automata of a fifofull, two
fifo1 and a sync connector, as depicted in Figure 8. The figure shows how the connectors are being
composed (top) and the resulting automata of the composition (bottom). The results are analogous when
composing the corresponding IFTA of such Reo connectors. As future work, we intend to explore the
use of a state-by-state composition approach as suggested in [4] to improve composition times.

Figure 7: Synchronous merger with support for variable components.

Figure 8: Example of state explosion and eventual simplification in composing Reo connectors [4].

7

Figure 9: IFTA resulting from computing the composition of the payment network in Figure 1.

8

References
[1] G. Cledou. A Virtual Factory for Smart City Service Integration (forthcoming). PhD thesis, Univer-

sidades do Minho, Aveiro and Porto (Joint MAP-i Doctoral Programme), 2018.

[2] G. Cledou, J. Proença, and L. S. Barbosa. A refinement relation for families of timed automata. In
S. Cavalheiro and J. Fiadeiro, editors, Formal Methods: Foundations and Applications, pages 161–178,
Cham, 2017. Springer International Publishing.

[3] G. Cledou, J. Proença, and L. Soares Barbosa. Composing families of timed automata. In M. Dastani
and M. Sirjani, editors, Fundamentals of Software Engineering, pages 51–66, Cham, 2017. Springer
International Publishing.

[4] S.-S. T. Jongmans, T. Kappé, and F. Arbab. Composing constraint automata, state-by-state. In Re-
vised Selected Papers of the 12th International Conference on Formal Aspects of Component Software
- Volume 9539, FACS 2015, pages 217–236, Berlin, Heidelberg, 2016. Springer-Verlag.

[5] J. Proença. Synchronous Coordination of Distributed Components. PhD thesis, 2011.

[6] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow patterns.
Distributed and parallel databases, 14(1):5–51, 2003.

9

	Introduction
	Prototype
	Example: family of payment methods
	Specifying IFTA
	Graphical representation
	Conversion to other formalisms

	References

